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Abstract

The computational complexity of Convolutional Neural Networks has increased enor-

mously; hence numerous algorithmic optimization techniques have been widely proposed.

However, in a space design so complex, it is challenging to choose which optimization will

benefit from which type of hardware platform. This is why QuTiBench - a benchmarking

methodology - was recently proposed, and it provides clarity into the design space. With

measurements resulting in more than nine thousand data points, it became difficult to

get useful and rich information quickly and intuitively from the vast data collected.

Thereby this effort describes the creation of a web portal where all data is exposed

and can be adequately visualized. All the code developed in this project resides in an

online public GitHub repository, allowing contributions.

Using visualizations which grab our interest and keep our eyes on the message is the

perfect way to understand the data and spot trends. Thus, several types of plots were

used: rooflines, heatmaps, line plots, bar plots and Box and Whisker Plots.

Furthermore, as level-0 of QuTiBench performs a theoretical analysis of the data,

with no measurements required, performance predictions were evaluated. We concluded

that predictions successfully predicted performance trends. Although being somewhat

optimistic because predictions become inaccurate with the increased pruning and quan-

tization. The theoretical analysis could be improved by the increased awareness of what

data is stored in the on and off-chip memory. Moreover, for the FPGAs, performance

predictions can be further enhanced by taking the actual resource utilization and the

achieved clock frequency of the FPGA circuit into account. With these improvements to

level-0 of QuTiBench, this benchmarking methodology can become more accurate on the

next measurements, becoming more reliable and useful to designers.

Moreover, more measurements were taken, in particular, power, performance and

accuracy measurements were taken for Google’s USB Accelerator benchmarking Efficient-

Net S, EfficientNet M and EfficientNet L. In general, performance measurements were

reproduced; however, it was not possible to reproduce accuracy measurements.

Keywords: Deep Learning, Field Programmable Gate Arrays, Graphics Processing Unit,

Benchmarks, QuTiBench
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Resumo

A complexidade computacional de Redes Neuronais Convulsionadas aumentou muito

nos últimos anos, consequentemente inúmeras técnicas de otimização têm sido propostas

para endereçar este assunto. No entanto, num espaço de desenvolvimento tão complexo,

é difícil escolher que otimização vai beneficiar nestas plataformas de hardware, nome-

adamente nas FPGAs, GPUs e ASICs. É por isto que QuTiBench — uma metodologia

de benchmarking (avaliação comparativa) — foi recentemente proposta, a qual gerou

um conjunto de dados com mais de nove mil data points, os quais se tornam difíceis de

analisar e tirar informação útil de forma fácil e intuitiva.

Assim, este documento tem como objetivo descrever a criação de um portal web onde

todos os dados estão expostos e podem ser devidamente visualizados. Todo o código

desenvolvido para este documento está no GitHub, um repositório online e público, per-

mitindo contribuições de terceiros. Usando visualizações que captam o interesse e passam

a mensagem de uma forma intuitiva é a melhor maneira de entender os dados e detetar

tendências. Para o efeito, diversos tipos de gráficos foram usados tais como: rooflines,

mapa de calor, gráfico de linha, gráfico de barra e diagrama de caixa.

Como o nível 0 de QuTiBench faz uma análise teórica dos dados, foi efetuada uma

análise entre o previsto e o medido. Concluiu-se que as previsões teóricas conseguiram

prever as tendências gerais embora ainda sendo um pouco otimistas. A análise teórica

pode ser melhorada ao manter o registo de se os dados estão na memória on-chip ou

off-chip. Para as FPGAs, as previsões de performance podem ser melhoradas ao ter em

conta a verdadeira utilização de recursos e a frequência de clock atingida pelo circuito.

Com estes melhoramentos, o nível 0 de QuTiBench consegue prever a performance com

maior grau de certeza e gerar dados mais confiáveis.

Também foram feitas mais medições de consumo de energia, desempenho e precisão

ao USB Accelerator da Google das redes neuronais EfficientNet S, EfficientNet M e Effici-

entNet L. Em geral reproduziram-se os resultados apresentados pela Google em termos

de desempenho, mas não foi possível reproduzir os de precisão.

Palavras-chave: Deep Learning, Field Programmable Gate Arrays, Graphics Processing

Unit, Benchmarks, QuTiBench
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1
Introduction

Isn’t it a pleasure to study and practice what you have learned?
-Confucious

1.1 Context

Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) are nowa-

days shaping the future of every industry and every human being. To be clear on the

terms: Deep Learning forms a subset of Machine Learning, which forms a subset of Arti-

ficial Intelligence. AI is the main driver of emerging technologies like robotics, big data

and IoT, and it is foreseen to continue to be a technological enabler. Some sectors are

at the beginning of their AI journey, whereas others are veteran travellers. AI’s impact

is found on a large set of applications that goes from Transportation to Healthcare and

Education.

Neural networks have been around for a while, and recently they have been on the

spotlight for many machine learning applications. They can recognize patterns, clustering

it and classifying it. They have been applied to all kinds of applications because they are

so easy to use.

However, these algorithms strongly rely on computer power, and with it comes mas-

sive power consumption. Moreover, their heavy memory requirements make deployment

rather difficult in energy-constrained environments such as embedded systems.

With addressing these issues, a new plethora of hardware architecture has emerged,

specifically heterogeneous hardware architecture along with co-designed algorithms. Fur-

thermore, to diminish computer requirements as well as more significant bandwidth

requirements with the same accuracy, algorithmic and software optimizations, as well as

architectural optimizations for NNs, are being searched. Although some optimizations

1



CHAPTER 1. INTRODUCTION

consist of performing the same operations faster, other optimizations change entirely the

way the training is done.

Comparing all these criteria is rather difficult due to the scarcity of standard evalua-

tion criteria that examines all these considerations. This document is based on QuTiBench
[7], a Benchmark suite that addresses this need. Hardware systems and system topolo-

gies can differ a lot in design options. Each component and system design quite often

comes with its power, programmability and design trade-offs. For a significant amount

of reasons, what may be convenient for one system designer’s need may not be suitable

for some other system designer. However, there is no way to compare different design

options. While there is some work done in this area, it only covers very little of the em-

bedded design space. Up until today, benchmarks have trouble supporting important

algorithmic optimizations such as quantization, pruning and specialized heterogeneous

hardware architectures.

Due to the difficulty of comparing all these criteria, this document will present data

visualizations that could provide better understanding and comparison between all the

plethora of hardware architecture and techniques that have arisen.

1.2 Motivation

Deep Learning relies on computer power to solve more complex problems, and with new

computing technologies, companies can have AI models that can learn to solve complex

problems. Deep Learning enables researchers to train “with billions of parameters” [4]

“from massive datasets that improve in accuracy as the dataset grows” [10]. However, all

this computer power comes with great power consumption [49], and considering that the

world is experiencing an unprecedented growing electricity consumption by computers,

data centres and a growing number of internet users [27], the need to turn towards

greener solutions arises. To overcome the power issue makes it mandatory to shift from

traditional computing paradigms to new ones.

Deep Learning is changing our lives. However, there is a recent trend in which, to

achieve higher accuracy, models are getting larger and larger. Figure 1.1 shows that there

was an increase of 16 times in the model size of the winners in the ImageNet Challenge

from 2012 to 2015. Another example is Baidu’s deep speech model which increased

ten times the number of operations in only one year. All these heavy models make

distribution through over-the-air update very difficult. In mobile phones, for instance, if

the item is larger than one hundred megabytes, it can only be downloaded through wi-fi.

Another challenge that comes with larger models is speed. Figure 1.1 illustrates the

training time taken by several types of ResNets. The lowest error rate of 6.16% takes 1.5

weeks to train on four M40 GPUs. Furthermore, it is only 0.1% better than the second-

best error rate. This extended training time makes the researcher’s productivity greatly

limited.
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Figure 1.1: “Characteristics of winning Neural Networks model from the ImageNet Chal-
lenge. a)Increase of 16 times in neural networks’ model size between winner AlexNet in
2012 to winner ResNet in 2015. b) Ten times increase in the number of training operations
in Baidu’s deep speech neural network from 2014 to 2015” [22].

Table 1.1: ResNet models’ training time benchmarked with fb.resnet.torch using four
M40 GPUs. Table taken from Lecture 15 – Efficient Methods and Hardware for Deep
Learning.

Error rate Training time
ResNet18 10.76% 2.5 days
ResNet50 7.02% 5 days
ResNet101 6.21% 1 week
ResNet152 6.16% 1.5 weeks

The third most crucial challenge is energy efficiency. In the embedded environment

with energy constraints, larger models can drain all the power. In data centres, power

consumption is also crucial. The objective is to find the optimum balance that breaks

the boundary between algorithm and hardware, thus, improving performance and power

consumption.

The increasing need for more computer power has been fostering the increase in new

technology targeting AI. However, existing benchmarks are not suitable enough to ex-

haustively analyze hardware as well as algorithms to provide knowledge on system prob-

lems and thus instigate greener solutions. Moreover, the lack of standard benchmarking

methodology further aggravates the existing situation.

With more than nine thousand data points generated by QuTiBench, arises the need

for adequate visualization of the data in a manner that trends can be spotted, and it can

send a clear message. Moreover, there is a need for a web portal where all data can be

publicly available online, and that could allow for contributions.

This is why QuTiBench [7], the benchmarking methodology, which was used to take all

measurements taking into account hardware variety, numerous algorithmic optimization

techniques and a plethora of neural networks now need a proper way to present results
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to the public in an insightful way.

1.3 Problem statement

During this work, it was verified that as AI is emerging in numerous use cases, there

is a need to make it faster but especially greener. To achieve this, QuTiBench was pro-

posed, and after it collected more than nine thousand data points now, there is a need to

understand all data collected.

The following thesis is defended in this dissertation: It is possible to improve existing
benchmarking work by making use of QuTiBench, a benchmark methodology, that supports a
different kind of algorithmic optimizations such as quantization and provides system designers
with some insight about strengths and limitations on recent compute architectures regarding
Neural Networks. Having so much data from more than nine hundred measurements creates
the need for a powerful tool to understand them better. In this way, different kind of visualiza-
tions need to be created to gain better comprehension into all trade-offs between algorithmic
optimizations and hardware choices. Moreover, these visualizations need to be available online
inside a web portal where contributions can be made to the project.

Besides a powerful way to see and understand all gathered data, there is also a need

for it to be publicly accessible and to allow for contributions from third parties whom

themselves have performed measurements and wish to contribute.

Moreover, more measurements need to be taken. As Google announces that Efficient-

Net S, EfficientNet M and EfficientNet L achieve very high accuracy on its low power, high

throughput USB Accelerator, it becomes essential to include this device in the QuTiBench

measurements.

1.4 Objectives and Contributions

1.4.1 Objective

Considering the problem statement and related considerations, the objective of the thesis

is to display all data gathered by the benchmark suite to reveal the potential of different

hardware platforms publicly. In the envisaged approach, the idea is to explore neural

networks performance and hardware performance to maximize both for specific use cases.

1.4.2 Contributions

Related publications co-authored by this dissertation author are listed below:

• Michaela Blott, Nicholas J.Fraser, Giulio Gambardella, Lisa Halder, Johannes Kath,

Zachary Neveu, Yaman Umuroglu, Alina Vasilciuc, Miriam Leeser, and Linda Doyle,

“Evaluation of Optimized CNNs on Heterogeneous Accelerators using a Novel

Benchmarking Approach” in IEEE Transactions on Computers,
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DOI: 10.1109/TC.2020.3022318.

• M. Blott, A. Vasilciuc, M. Leeser and L. Doyle, “Evaluating Theoretical Baselines

for ML Benchmarking Across Different Accelerators,” in IEEE Design & Test, DOI:

10.1109/MDAT.2021.3063340.

1.5 Document Structure

The remaining of this report is divided into five chapters.

• Chapter 2 - Related Work: presents related work. It starts with a background

on neural networks, enumerates optimization techniques, an existing hardware

architecture for deep learning and describes existing Benchmarking. It presents the

key concepts of QuTiBench. Describes the various types of visualizations used.

• Chapter 3 - Development: Benchmarking Hardware presents this work contribu-

tion; in particular, it describes how benchmarking Google’s USB accelerator was

done.

• Chapter 4 - Development: Website Visualizations: describes the freshly build a

web portal, all its contents and visualizations.

• Chapter 5 - Evaluation: shows specific visualizations that highlight the difference

between what was predicted and what was measured. Moreover, it evaluates how

accurate predictions were compared to the measured data points and concludes

how to improve level 0 of QuTiBench.

• Chapter 6 - Conclusions and Future work: summarizes the main conclusions and

presents future directions.
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2
Related work

This chapter introduces previous related work. It focuses on benchmarking deep learning

algorithms and resents several state-of-the-art hardware architectures targeting neural

networks.

2.1 Definitions and Generic Background

2.1.1 Neural Networks

Neural networks are a class of machine learning algorithms based on several connected

nodes called artificial neurons roughly modelled after the human brain that are designed

to detect patterns.

Although they were proposed in the 1940s, their very first application did not appear

until the 1980s when a network called LeNet was developed for handwritten digit recog-

nition, which is still today used by ATMs to verify digit recognition on checks [31]. Later,

in 2010 NN-based application started to grow exponentially until present days. Figure

2.1 shows a timeline of popular NNs.

Neural networks accomplish this by considering examples and by automatically find-

ing specific characteristics from the samples they process. Over the past few years, neural

networks have become a major success and have been used in a variety of tasks, includ-

ing computer vision, robotics, speech recognition and machine translation. An exciting

aspect of NNs is that they have the theoretical property of being a type of machine learn-

ing which requires zero domain expertise, which makes them an appealing solution

both for unsolved problems and for solved ones. However, all this computational power

comes at a cost, the tremendous demand for more computing power comes with enor-

mous power consumption and memory requirements concerning capacity and access

bandwidth, which becomes an obstacle, especially in the embedded space.
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Figure 2.1: History of Neural Networks [46].

Unfortunately, evaluating ML performance for training systems is undoubtedly more

challenging than performance evaluation for classic software. ML systems are not like the

traditional processing systems because they operate in a very different way [39]. Tradi-

tional systems are programmed with specific logic, whereas ML systems are fed massive

datasets and are expected to apply algorithms that find patterns and features in all data.

“The main goal of ML is to train a model that makes high-quality predictions on unseen

data, which is referred to as generalization” [10]. This goal is achieved through the min-

imization of a loss-function to find a model that can learn weights from the training

dataset and more importantly, generalizes to new data from a similar distribution. Exist-

ing Benchmarks measure proxy metrics, for instance, time to process a minibatch of data,

but do not take into account whether the system as a whole will produce a high-quality

result.

Technically described, neural networks are a connected graph of neurons. Each neu-

ron processes a function to its input(s) to generate an output, thus being a processing

component. “Edges” are the connections between two different neurons and are rep-

resented through a number. The output of each neuron is computed by a non-linear

function of the sum of its inputs. Neurons, as well as edges, both have a weight, which

can increase or decrease the strength of the signal, and it is continually adjusted as the

learning process proceeds. Usually, neurons are assembled into many layers, in which

each different layer applies a different transformation to its input. Figure 2.2 depictures

a computational neural network. Values are propagated from the input layer to the hid-

den layer, also called the middle layer. The final value is presented to the user after all

weighted sums from all hidden layers eventually propagated to the output layer. Activa-
tions are sometimes referred to as the outputs of neurons.

Computation at each layer is done with the following equation: yi = f (
∑3
i=1Wij×xi+b),

where Wij are the weights, xi are the input activations, yi are the output activations and

f(.) is a nonlinear function. The bias term is absent in Figure 2.2 for simplicity.
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Figure 2.2: “Simple Neural Network example and terminology. (a) Neurons and Synapses.
(b) Compute weighted sum of each layer” [46].

2.1.2 Deep Neural Networks

All the different connections between all different layers define the structure of the net-

work. Deep Neural Networks (DNNs) are classified as such due to the number of layers,

in this case, more than three layers. That means that there are one or more hidden layers.

Nowadays, the usual range of hidden layers goes from five to more than a thousand [46].

In a fully connected network, all neurons from a particular layer are connected to every

neuron from the subsequent layer.

DNNs are broadly used for image processing, as they can distinguish high-level fea-

tures. When pixels from an image are fed to the DNN, the first layer can extract low-level

features like lines and edges. At the next layer, all previous features are used to extract

higher-level features like shapes. In the end, the output will be a probability that all those

high-level characteristics belong to a particular object or scene. The use of all those layers

enables DNNs to achieve more outstanding performance in many use cases.

2.1.3 Convolutional Neural Networks

A Convolutional Neural Network’ structure is similar to a DNN except for the fact that

convolutional neural networks (CNNs) are specialized for image-related tasks. A CNN is a

deep learning algorithm that takes an input, usually, an image and drafts the importance

of all features in the token image and, after it is trained, it is ready to differentiate any

given images. CNNs can understand the Spatial and Temporal dependencies in an image

through the application of relevant filters. In a CNN architecture, if the input image is

on grayscale, then the input layer is 1-dimensional, but if the image comes in colours,

then the input layer is 3-dimensional which corresponds to the colour channels like RGB.
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Each image is represented as a 3D matrix with a dimension for the height, width and

depth. Depth refers to the colour channels used in an image. The architecture comprises

two types of layers: convolution and subsampling, also known as pooling layers.

In a convolutional layer, the mapping of activations from each layer to the subsequent

is done using a filter. Thus, a convolution is defined, as it is shown in figure 2.3. Figure

2.3 shows an input image of 32x32, which is convolved with a filter of weights of 5x5.

The learned weights are kernels that are convolved with the image to extract features.

The convolution uses a multidimensional filter of weights, which means that numerous

convolutions are performed on the input, in which each operation uses a different filter.

The subsequent layers are calculated by doing the dot product between the weights in the

filter and the image pixels. This results in several feature maps. In figure 2.3 C1 holds

all six feature maps, which means that six different filters were applied. These filters

is to highlight contrast, blur, edge and many other things. Performing the convolution

between the filter of weights and pixels is done at all possible positions, from left to right

and from top to down.

The objective of pooling is to extract only “interesting” features, which is achieved

by downsampling each one of the feature map. These convolutions, followed by pooling

layers, are repeated multiple times in a CNN to produce high-quality features present in

the input images.

Figure 2.3: A diagram depicting all steps that a single grayscale input image endures in
each layer. Figure taken from [2].

2.1.4 Popular DNN models

Apart from the neural networks described above, there are other different types, and

newer ones continue to arise. In this section, an overview of some of the most popular

NNs will be given, most of these models are available for download.

Some of the NNs described below competed in the ImageNet Challenge [41]. The

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an annual computer

vision competition which uses the computer vision dataset called ImageNet. It accounts

for more than 14 million images and around 1 million images with boxes around an
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identified object in each image. Accuracy has been improved significantly from the 2010

edition to the 2014 edition. There have been many important developments and academic

publications relating to ILSVRC.

LeNet [31] was one of the first Convolutional Neural Network approaches introduced

in 1989, it is what made CNNs successful for the first time. Back then it was used for

digit recognition on checks used by ATMs. Its designated task was to recognize digit

handwritten in greyscale images of size 28 × 28. Throughput rates obtained were of

more than ten digits per second. LeNet-5, the most well-known version contains three

convolutional (CONV) layers and two fully connected layers (FC) [32]. Each one of the

convolutional layers uses filters of size 5 × 5, being one channel per filter. After the

second CONV layer, there is a subsampling layer. For the nonlinearity, a sigmoid is

used. Summing up, LeNet requires 60000 weights and 341000 multiply-and-accumulate

(MACS) per one input (image) [32].

AlexNet [30] won the ImageNet Challenge in 2012 being the very first convolutional

neural network to achieve this. It has five CONV layers and three FC layers, it also

has pooling layers. A powerful GPU implementation of the convolution operation was

used to speed up training, along with saturating neuron. The overfitting in the fully

connecting layers was reduced due to the application of a method called “dropout”. This

NN achieved a winning top-1 test error rate of 37.5% and a top-5 test error rate of 17%.

Overfeat’s [42] architecture is analogous to AlexNet, it comes with “five convolutional

layers and three fully connected layers” [7]. The difference between Overfeat and AlexNet

is the number of filters used in each layer. For layers 3, 4 and 5 Overfeat uses a larger

amount of filters. Thus, there is a significantly higher amount of weights, one hundred

and forty-six million to be exact. Overfeat has two main model variations: described

above is fast, and there is also another model referred to accurate model used in the

ImageNet Challenge. Although the accurate model achieves better accuracy than the fast

model, it performs 1.9×more MACs.

VGG-16 [43] has sixteen layers, thirteen are convolutional layers and three FC layers.

Because it has so many layers, 5 × 5 filters are assembled from other 3 × 3 filters. It is

estimated that “VGG-16 requires one hundred and thirty-eight million weights and 15.5

MACs to process a 224 × 224 input image” [46]. There are two variant models of VGG:

VGG-16 (described above) and VGG-19, which produces a lower top-5 error rate, however,

it does 1.27×more MACS.

GoogLeNet [47] goes deeper with twenty-two layers composed of three CONV layers

followed by nine inception layers and one FC layer. It introduces an inception module

that, instead of a previously single serial connection, is composed of parallel connections.

It uses multiple filter sizes (e.g., 1 × 1, 3 × 3, 5 × 5). As it uses several sizes for the filter,

it processes the input at multiple scales. An interesting aspect of GoogLeNet is that the

weights and activation fit into a single GPU memory. 1× 1 filters are applied to diminish

the number of weights by reducing channels for each filter.

ResNet [25], often referred to as Residual Net, benefits of residual connections and
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has around thirty-four layers. ResNet is made of one CONV layer, sixteen shortcut layers

and one FC layer. It is estimated that ResNet requires “25.5 million weights and 3.9G

MACs per image” [46]. ResNet comes in different depths. The winner of the ImageNet

Challenge owned one hundred and fifty-two layers.

Efficientnet S, M and L introduced in 2019 [48], were chosen to be run on the USB

Accelerator for many reasons. First of all, these NNs are pre-compiled models that Google

made available specifically for the USB Accelerator. The other reason is that EfficientNets

were recently proposed, along with a new scaling method to achieve higher accuracy.

Let us start with what scaling is and why it is essential. There are three scaling

dimensions: depth, width and resolution. Depth relates to the number of layers a model

owns. Width relates to how vast the network is, for instance, the number of channels in

a convolutional layer. Furthermore, the resolution is the input image resolution. Figure

2.4 [48], illustrates each of these concepts. Scaling is done to improve a model’s accuracy

on a specific task such as ImageNet classification. If done correctly, it can also improve

efficiency.

Figure 2.4: Model Scaling. (a) baseline network example; (b)-(d) conventional scaling that
only increases one dimension of network width, depth, or resolution. (e) is the proposed
compound scaling method that uniformly scales all three dimensions with a fixed ratio.
Adapted from [48].

In this paper [48] the authors proposed a straightforward but effective technique to

scale the network depth uniformly, width and resolution using a compound coefficient φ.

This compound scaling method allowed to scale up a baseline ConvNet to produce an Ef-

ficientNet model that can surpass state-of-the-art accuracy while using fewer parameters

and Floating-point Operations (FLOPs).

2.1.5 Popular Data Sets for Classification

MNIST was introduced in 1998 and is a commonly used dataset for digit classification.

It is made of sixty thousand 28× 28 pixel greyscale images of handwritten digits. When

MNIST was first introduced, LeNet-5 was able to achieve a 99.05% accuracy. Since then

the accuracy has increased, making MNIST a reasonably easy data set.
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Table 2.1: DNN models summarized [7].

CIFAR [53] is a subset of Tiny Image data set consisting of colored images of different

objects released around 2009. It holds sixty thousand of 32x32 images containing one of

ten object classes, with six thousand images per class. There are fifty thousand training

images and ten thousand test images.

ImageNet [41] was first popularized in 2010. It has 256× 256 pixel coloured images

with one thousand classes. The accuracy is calculated using two metrics: Top-1 and Top-5

error. The top-5 error means that if the first five answers provided include the correct

answer, then it is considered to have provided the correct answer. The top-1 error implies

that the answer provided is the correct answer.

2.2 Algorithmic Optimization techniques

Quantization and Numerical Representations is the idea of reducing the number of bits

that represent a number. On small image classifications benchmarks show that quantized

neural networks can attain results which can “achieve state of the art accuracy despite

the reduction in precision” [7].

Pruning is an algorithm for efficient inference which drastically reduces memory

requirements. The idea is to remove some of the unnecessary weights while still main-

taining the same accuracy [13].
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2.3 Hardware for DNN Processing

There has been a steep development in hardware platforms targeting DNNs along with

new features being deployed. The goal is to minimize memory access to save power.

The Intel Knights Mill CPU will get into the DL field by introducing vector instruc-

tions into the design [28]. Nvidia Tegra, Samsung Exynos and FPGAs are an embedded

system on chip (SoC) that runs inference. It is crucial to study how is the computation

made to improve throughput and energy efficiency further. Multiply-and-accumulate

(MAC) operations are a common component of both CONV and FC layers, which can

easily be parallelized. There are two high-parallel compute paradigms that envision high

performance: temporal and spatial architectures.

Figure 2.5: Highly parallel compute paradigms [46].

Temporal architectures are typical of both CPUs, and GPUs [46]. CPUs are latency

oriented, whereas GPUs are throughput oriented. "A variety of techniques are applied

to improve parallelisms, such as parallel threads (SIMT) or vectors (SIMD)"[46]. This

type of architecture uses a centralized control for many ALUs. These ALUs are bound

to fetch data and communicate only with Memory Hierarchy and not with each other.

Spatial architectures, on the other hand, use dataflow processing which means that the

ALUs can pass data one another. These ALUs that can communicate with one another and

hold local memory through control logic are called as register file and are also referred to

as Processing Engine (PE). Spatial architectures are most commonly used for DNN and

found on ASICs and FPGAs designs.

2.3.1 Increased Efficiency in Temporal Architectures

This section discusses design optimizations for efficient computing. CPUs and GPUs use

some techniques called SIMT and SIMD, which are used to process things, like MACs in

parallel. All ALUs have access to the same memory (register file) and control.

The first approach is to make use of the Toeplitz matrix. It is possible to map the

CONV layer to matrix multiplication in a DNN using a variant form of the Toeplitz

matrix. However, the downside of this approach is that it is introduced unnecessary data
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into the input feature map matrix, which can lead to difficulties in accessing memory

which implies inefficiency in storage.

Figure 2.6: Mapping to matrix multiplication for convolutional layers. (a) Mapping
convolution to Toeplitz matrix. (b) Extend Toeplitz matrix to multiple channels and
filters. Adapted from [46].

Libraries that can ultimately improve matrix multiplications for CPUs are, for in-

stance, openBLAS, and for GPUS there is cuBLAS.

Fast Fourier Transform (FFT) comprises numerous frameworks [35]. To perform the

convolution, it first takes the FFT of the feature map and the filter, it then computes

the multiplication in the frequency domain. Afterwards, the inverse FFT is applied to

the resulting product to recover the output feature map in the spatial domain. This

way reduces the number of multiplications from O(N2
oN

2
f ) to O(N2

o log2No), in which the

output size is NoNO and the filter size is Nf ∗Nf . While FFT can reduce computation, it

needs higher bandwidth and storage capacity.

2.3.2 Increased Efficiency in Spatial Architectures

For DNNs memory access is what originates most bottlenecks. In each MAC iteration, it is

necessary to perform three memory reads as shown in figure 2.7 and then it is necessary

to do a memory write to update the partial sum [46]. The worst-case scenario happens

when all memory access is done to the off-chip DRAM, as accessing DRAM is costly and

negatively impacts throughput and power efficiency.

The energy cost of internal cache access to functional operations costs about ten pJ,

whereas the cost of DRAM access is about one to two nJ, which is a lot more [26]. “DRAM

power consumption is crucial in contemporary computer systems as DRAM now accounts

for almost half of the total system power consumption” [19]. All this is due to the growing

demand for more memory bandwidth and compute power.

Making use of different levels of local memory hierarchy can greatly reduce the power

cost of data movement, which is commonly done by numerous accelerators. This tech-

nique includes the introduction of a Global Buffer, a network of all PEs connected moving

data between the ALU/s and a register file (RF) in each processing unit as shown in figure
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Figure 2.7: Read and write access per MAC [46].

2.8. The introduction of multiple levels of memory hierarchy can help diminish the power

cost of data moving because accessing data costs less. Specifically, getting data from the

RF or the neighbour PE will cost less than fetching from DRAM.

Figure 2.8: Memory hierarchy and data movement energy cost [46].

2.4 Hardware Architectures for Deep Learning

This section will present several types of hardware architectures and implementation

alternatives. CPUs, GPUs, FPGAs and specialized architectures are amongst the most

popular ones. There has been some research on computer architecture specialized on

deep learning processing units (DPUs), and this can be implemented with FPGAs or

ASICs. All these different types of architectures are organized according to: “basic type

of compute operation, memory bandwidth, level of parallelism, degree of specialization

and inherent precision support” [7].

CPU is latency oriented processing architecture which means that it is a serial com-

pute engine. It tries to accomplish as many operations as possible belonging to a single

serial thread. Possessing different memory hierarchies, it allows floating-point operations.

The memory hierarchy splits the computer storage into a hierarchy based on the response

time. Nowadays, CPUs are mainly multicore supporting parallel processing and can

incorporate vector processing units, for instance, the Intel Knights Mill CPU. A vector

processing unit is a CPU that implements an instruction set containing several instruc-

tions that operate on one-dimensional arrays of data, referred to as vectors. Depending
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on the workload, it can significantly improve performance.

GPUs are throughput-oriented processors. Their main aim is to maximize the total

throughput of the system, rather than the latencies of all individual threads that they

work on. Inherently, according to Blott, Halder, Leeser & Doyle [7] “GPUs are vector

processors that support smaller floating-point formats (FP16) natively, most recently

fixed point 8bit integer formats, and have a mix of implicitly and explicitly managed

memory”. Efficiently accessing memory is a crucial driver to fully explore the power of

GPUs [37] [59]. For instance, NVIDIA’s GTX980 holds a raw computational power of

4,612 GigaFLOPs/sec 1 , but its theoretical memory bandwidth is only 224 GB/s.

Field Programmable Gate Arrays (FPGAs) are reconfigurable hardware architecture

that can adapt to every environment. Due to their massively parallel computing capacity

are heavily demanded. FPGAs play an increasingly important role in data sampling and

processing industry given their low power consumption and the fact that allow tailor-

ing the amount of hardware parallelism necessary. There are many emerging new use

cases for FPGA in the artificial intelligence field, for training and implement the neural

networks and machine learning algorithms. Therefore, many companies have applied

FPGAs into AI and Machine learning fields such as autonomous driving and Automatic

Spoken Language Recognition. FPGAs are so flexible that they can even support bit-serial

hardware architectures.

Google introduced its Tensor Processing Unit (TPU) [29] in 2016 designed to accel-

erate Google’s Tensorflow framework. Google’s TPU is a custom ASIC deployed in dat-

acenters to specifically accelerate the inference phase of neural networks. As shown in

picture 2.9, TPU’s core is “a 65,536 8-bit MAC matrix multiply unit that offers a peak

throughput of 92 TeraOPs/s 2 and a large (28 MiB) software-managed on-chip memory”

[16]. Its design for dense matrices has more than 25× as many MACs vs GPU and more

than 100× as many MACs vs CPU.

In 2016, Han et al. [23] extended their work by combining Network Pruning with

quantization and Huffman encoding to create Deep Compression. Based on this deep

compression, the Efficient Inference Engine (EIE) is a hardware accelerator that was

designed to work on a compressed model. It was able to improve energy efficiency, and

it achieved substantial speedup. By compressing the network through weight sharing or

pruning, it was possible to fit recent networks like AlexNet in on-chip SRAM. Processing

these compressed models on CPUs and GPUs is somewhat complex and challenging due

to the sparse matrices and relative indices after pruning. Han et al. [23] apply a simple

rule: “multiply each non-zero activation by all non-zero elements in its corresponding

column” [23].

1GigaFLOPs/sec means Giga (109) floating-point operations per second
2TeraOPs/s means Tera (1012) Operations per second
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Figure 2.9: Floor Plan of Google’s TPU [29].

2.4.1 FPGA: FINN and BISMO architetcures

The following subsections will explain some architectures presented by Xilinx Research

Labs that was benchmarked as part of QuTiBench. These architectures were evaluated

as part of QuTiBench project, and several results were obtained; thus, it is important to

explain them beforehand.

2.4.1.1 BISMO

BISMO [57] and [56] is a software-programmable scalable bit-serial matrix multiplication

overlay that can be instantiated on an FPGA. In other words, BISMO is a programmable

FPGA accelerator for few-bit integer matrix multiplication. It can achieve high perfor-

mance for matrix multiplication where each matrix element is an integer of 2,3,4,.. bits.

This architecture is beneficial for applications like quantized neural networks. It was

developed as part of a collaboration between Xilinx Research Labs Ireland and the Nor-

wegian University of Science and Technology Computer Architecture Lab. Its hardware

is presented in figure 2.10. BISMO is composed both by a “hardware part and a software

part. The hardware part is composed of a scalable bit-serial matrix multiplication datap-

ath with the associated memory and control logic. The software part creates instructions

for the hardware for the given matrix size and precision” [57].

It presents a few advantages, such as the fact that it supports several different preci-

sions while performing matrix multiplications. The same hardware can be leveraged for
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Figure 2.10: Overview of BISMO’s hardware architecture [56].

many use cases, achieving higher speed with the lower precision matrix multiplication

than with the higher precisions.

2.4.1.2 FINN

FINN ([55] and [6]) is an experimental framework built at Xilinx Research Labs which

explores quantized neural networks inference on FPGAs. It is essentially an open-source

framework for building Binarized Neural Networks (BNN) inference accelerators on

FPGA. It is very flexible as it allows to dataflow-style architectures customized for each

model. It is ideal for embedded applications as it can perform millions of classifications

per second.

Figure 2.11: Overview of FINN flow for a BNN

Figure 2.11 shows how an FPGA accelerator can be built from a trained BNN with

FINN. Everything starts with the user supplying a Theano-trained (Theano refers to

a machine learning library) BNN to the FINN synthesizer, which in turn begins with
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determining the needed parameters that can meet the target fps and applies specific

optimizations. After, it produces a synthesizable C++ network description which can

then be loaded into Vivado HLS and deployed to an FPGA.

2.4.2 Coral USB Accelerator

The Coral USB Accelerator is a small PCB that contains an Edge TPU coprocessor and a

USB socket to connect to the computer. It is capable of performing 4 TeraOPs/s 3, able to

perform ML inference and lightweight transfer learning, but not training.

Installing the API library and the Edge TPU runtime on the host computer allows

working with the USB accelerator. At this point, it is possible to select between the

default clock frequency or the maximum clock frequency at which the device will operate.

The maximum clock frequency is twice the default clock frequency which is translated

in increased inference speed but also power consumption.

The ML runtime used to execute models is based on TensorFlow Lite. As EdgeTPU is

only able to perform 8-bit math, as such, models need to be in a specific format, which

means that the network needs to be trained using TensorFlow quantization technique.

This technique ensures that the forward pass matches the 8-bit precision for both training

and inference. The Edge TPU runtime is required to communicate with the Edge TPU

and can be installed on a Linux, Mac or Windows computer host.

2.4.2.1 Context

In 2019 Google released TPU hardware to the market under the Coral brand. However,

these are not as powerful as google’s cloud TPUs which can run a NN at more than one

hundred PetaFLOPs/sec 4. These recently released TPU devices are meant to be used “at

the edge”.

Edge Computing means that the computation and data storage runs on local places

like a computer, embedded system, IoT device or Edge Server. In contrast, Cloud Com-

puting means that computing and data storage is done in the cloud. The access is done

through the internet instead of the computer’s hard drive. So data needs to be sent

through an internet connection, then wait for the server to process everything and then

it sends the results back. This process can be quick on a wired connection, but on bad

connections can take up to a few seconds. Edge Computing avoids long-distance commu-

nication between a client and a server where bandwidth and latency are affected. This

characteristic is important because we humans like to interact with fast things, more

precisely, everything that runs faster than one hundred milliseconds.

Edge AI means that AI algorithms are running on a device that uses Edge Computing

and all data needed is physically present on the device with no need for fetching data

from the cloud. What usually runs at the edge is only inference whereas training is still

3TeraOPs/s means Tera (1012) Operations per second
4PetaFLOPs/sec means Peta (1015) floating-point operations per second
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done on servers. However, it is possible to train the last layer of a model on this device.

The inference is made with a lightweight version of TensorFlow models which have to be

converted to this file type which is more power-efficient. Depending on the application

type and especially on the AI workloads hardware options go from CPUs, GPUs, ASICs,

FPGAs and SoC accelerators.

Some of the Advantages of Edge AI are reduced cost, security, increased speed, and

easy to manage for beginners. Some examples of applications are surveillance and moni-

toring, autonomous vehicles, smart speakers and industrial IoT.

2.4.2.2 Edge TPU Processor

Being an ASIC, the Edge TPU is an Integrated Circuit (IC) chip customized for a very

particular use rather than a general-purpose use. It combines small electronic circuits, of

which field-effect transistors (FETs) and capacities, burned directly on the silicon layer. 5.

The logic behind it is simple, and image 2.12 shows the basic principle upon which the

Edge TPU was built.

Figure 2.12: Matrix Multiplier + summation [36].

Many neural networks consist mainly of convolutional layers. A convolution is defined

by the following equation:

(f × g)(t)def=
∫ ∞
−∞
f (τ)g(t − τ)dτ (2.1)

Each image pixel multiplies by each kernel pixel and then it is all summed up to

create a new “image”. This type of arithmetic is precisely the reason why the Edge TPU
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was created. Whenever data is fed to the buffers, parallel multiplication followed by

summation is done at very high speeds.

Being programmed for specific workloads, the Edge TPU can perform up to 4 TeraOP-

s/s 5 using 8-bit fixed point, and bandwidth capacity lies between 500 MB/s and 640

MB/s. Its size is about a fourth of a penny, and it only needs 500mA 5V USB port which

means that its power consumption is at most 2.5 Watt. It is fast because it was greatly

optimized for a specific application, unlike a CPU which can do almost everything. An

ASIC is specially designed to perform multiplications so it can complete them in a very

short time.

2.4.3 Intel NCS2

The Intel Neural Compute Stick 2 is Intel’s deep learning inference development kit. It is

packed in an USB-stick form factor and is powered by the VPU (vision processing unit) –

the Intel Movidius Myriad X, which includes an on-chip neural network accelerator called

the Neural Compute Engine. With 16 SHAVE cores and a dedicated hardware neural

network accelerator it’s set to deliver 4 trillion operations per second. Intel Distribution

of OpenVINO Toolkit supports Ubuntu, CentOS, and Yocto Linux distributions along

with Microsoft Windows and Raspbian 32-bit OS. OpenVINO Toolkit includes tools

for generating an Intermediate Representation (IR) from TensorFlow, Caffe, and Apache

MXNet models. It also supports Open Neural Network Exchange (ONNX) for importing

and exporting deep learning models across multiple frameworks.

2.5 Characteristics and Challenges in Benchmarking

A Benchmark is a process of measuring the performance of a particular product, service

or process, against those of another business. According to Blott, Halder, Leeser & Doyle

[7] a more practical definition would imply that a benchmark is a “well-defined set of

executable tests and measured regarding a specific set of figures of merit”. Sometimes

it can analyze some system aspects which can clarify system bottlenecks. The main

objective is to identify opportunities for further improvement. Marketing also plays a

part when it comes to benchmarking. It is important for a company’s products to do well

on a benchmark, otherwise it will lose popularity.

For software system designers it can identify which algorithms lead to better per-

formance. For hardware designers, it can clarify what aspects of the architecture need

improvement. As neural networks’ development is progressing faster than ever, co-design

of hardware and algorithms becomes crucial. Some key elements need to be taken into

consideration to ensure a good benchmark.

1. Benchmarks need to be relevant to the user;

5TeraOPs/s means Tera (1012) Operations per second
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2. They need to be objective and repeatable in terms of the same results and time.

Nevertheless, what does repeatable mean? Does it mean that it is enough for a

third-party to validate the results? This is hard mainly due to the hardware cost.

Benchmarking results have to be objective in order not to favour any specific system

or hardware configuration [7];

3. Benchmarks need to represent true workloads in terms of applications, algorithms

and computational patterns;

4. Benchmarks need to support algorithmic optimization. Researchers making DL

computing cannot rely entirely on hardware. Combining hardware optimizations

with software optimizations techniques such as model compression can lead to

energy-efficiency and performance improvement;

5. Portability needs to be taken into consideration when it comes to benchmarking.

6. Complexity vs Speed vs Accuracy: The aim is to have a benchmark which is low in

complexity, very high in speed and accuracy. However, these three criteria influence

one another. To lower a benchmark complexity, there is a need to consider the speed

and accuracy of the output;

7. Adaptive: The benchmark suite has to be adaptive because the ML research field is

evolving faster than ever, so it can keep up with the emerging algorithms.

2.6 Existing Benchmarking

This section will distinguish three different benchmarking types: “ML benchmarks, per-

formance benchmarks and NN system benchmarks” [7]. ML benchmarks are driven

by the improvement on accuracy, which improves the overall system performance, with

no regards to power efficiency, computing workload or execution time. “Performance

benchmarks record hardware performance only, specifically throughput (measured in

processed inputs per time or TOPs/s), latency or response time in milliseconds (ms), and

power consumption in Watts” [7]. NN system benchmarks take both things into account,

hardware performance as well as accuracy.

2.6.1 NN System Benchmarks

BenchIP [50] presents a Benchmark suite for intelligence processors, and contains two

types of benchmarks: micro-benchmarks and macro benchmarks. The aim is to identify

performance/energy bottlenecks for potential optimization. However, it does not provide

an overall score. It also does not cover the stack of layers, which is important to isolate

bottleneck in data movement. It also does not provide the comparison via Pareto curves.

Fathom [1] assembled a collection of eight archetypal DL workloads to be studied.

It determines where time is spent and studies the effects of parallelism on scaling and
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focuses on understanding deep learning workloads. Nonetheless, it is rather limited at

benchmarking. It contains CONV and FC layers but lacks Deconvolution, Unpooling

and Batch Normalization. It does not provide a benchmarking method for customized

hardware architectures. In the customized hardware field, Fathom does not process fine-

grained architectures’ performance.

TBD [60] proposes a benchmark suite for DNN training, it holds a set of eight DNN

models covering six ML applications. It comprises numerous frameworks, more than

Fathom, and numerous applications.

MLPerf [38] aims to provide a comprehensive benchmark suite for training as well

as inference over ML hardware, software and services. MLPerf began in February 2018

with several meetings between engineers and researchers from Baidu, Google and some

universities from the USA. MLPerf provides insights on how to build a solution. However,

it does not address hyper-parameter optimizations.

DAWNBench [10] is a project led by Stanford University, and it allows us to com-

pare many DL methodologies which are done by creating competitions. It introduces a

benchmark focused on training time to achieve better accuracy. Unlike prior work that

focuses solely on throughput metrics, this approach focuses primarily on a combined met-

ric called time-to-accuracy (TTA), which assesses how long it takes to train for a target.

However, it only considers ImageNet for both training and inference, making it limited

in the application scope, and it does not provide insights into the full design space.

Collective Knowledge Framework [11] in conjunction with the ASPLOS Request

Tournament [3] give space for different hardware accelerators while providing an as-

sessment of correlations between accuracy, performance and power trade-offs. It also

supports heterogeneous hardware architectures.

QuTiBench [7] is the benchmark proposal in which this work is inserted, so this was

the benchmark used in this work. It will be discussed in details later in section 2.9.

2.6.2 ML Benchmarks

Machine Learning is fuelled by the insatiable demand of accuracy in generalization; it

completely discards the computation load. One of the most recent considerably popular

is the ImageNet Challenge [41] that consists of a computer vision competition in which

a computer vision dataset called ImageNet is used. The evaluation is done through the

calculation of an error-rate with no regards to compute power or energy consumption.

CortexSuite [52] details a benchmark suite inspired by the brain. Using the cerebral

cortex’ lobes to organize and classify data, it analyses performance bottlenecks identify-

ing the parts of the program mostly active during runtime with the increasing of data.

However, it only analyses the algorithm’s total runtime and is limited to measuring accu-

racy. BenchNN [9] present a benchmark suite to encourage research on hardware neural

network accelerators. Although it emphasizes the potential of NNs, it looks more like a

symbol rather than a benchmark suite. BenchNN provides only five NN applications, and
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the NNs used are classic models, like multi-layer perceptrons which are not very popular

nowadays. DjiNN and Tonic [24] is an open infrastructure for DNN that supports several

applications and NN architecture. It introduces seven end-to-end applications that use

the DjiNN service, which are quite representative of the emerging workloads, such as

computer vision, speech recognition and language processing systems. MLBench [34]

presents a novel dataset to benchmark ML systems and services. It presents an example

use-case by conducting a study of ML services like Amazon and Microsoft Azure.

2.6.3 Performance Benchmarks

DeepBench [15] is an open-source benchmarking tool that measures performance on a

lower level, namely basic operations involved in training deep neural networks on dis-

tinct hardware platforms such as direct convolutions. DeepBench also provides insights

in terms of which hardware provides the best performance on the specific operations.

Most of the popular compute patterns are covered, but it does not support lower preci-

sion data types. It does not support data movement bottlenecks between layers. There

are other hardware benchmarks such as TPC [54], which measures the performance of

decision-support solutions targeting data processing communities. SHOC [14] consists of

a benchmark suite targeting heterogeneous computing. It makes use of microbenchmarks

to assess low-level architectural features of the system using OpenCL as design entry.

However, SHOC’s focus is on systems containing Graphics Processing Units (GPUs) and

multicore processors. SPEC [44] is a non-profit corporation that endorses benchmarks

and tools to evaluate performance and energy efficiency for the most recent generations

of computing systems. It covers a vast range of applications including mail servers, MPI,

virtualization, storage and graphics. STREAM [45], on the other hand, solely focuses on

memory bandwidth in high-performance computers.

In conclusion, very few benchmarks include algorithmic optimizations such as quan-

tization and pruning. None of the benchmarks gives proper insights on both hardware

and software optimizations.

2.7 Rooflines

2.7.1 Context

Roofline models will be used throughout the entire document. Thus a brief description

of what they are and what they consist of will be made.

There are multiple products on the market, each with a different number of cores that

adds up to different trade-offs between performance and cost. However, such diversity,

although it is suitable for competition, it complicates programmers and architect’s job. For

this reason, a need for an easy-to-understand model that offers insights on performance

has risen. There are already models that predict multiprocessors performance accurately

25



CHAPTER 2. RELATED WORK

[17], however, they hardly ever provide insights on how to improve performance, or they

can be of problematic use for non-experts.

2.7.2 What is it?

A roofline is “an easy-to-understand, visual performance model that offers insights on

improving parallel software and hardware for floating-point computations” [58].

2.7.3 The Roofline Model

The proposed model is a simple one because it does not attempt to predict performance.

Instead, it performs bound and bottleneck analysis. It was specially designed to consider

the off-chip memory traffic because off-chip memory bandwidth can often be the con-

straining resource. In figure 2.13 it is depicted the Roofline model for a 2.2 GHz AMD

Opteron X2 model. The Y-axis represents the attainable floating-point performance,

whereas the X-axis represents the operational intensity. Operational intensity means op-

erations per byte of DRAM traffic. What is measured is the traffic between caches and

DRAM instead of traffic between caches and processor. In Figure 2.13, operational inten-

sity varies from ¼ FLOPs/DRAM byte accessed to sixteen FLOPs/DRAM byte accessed.

The modelled system has a peak floating-point performance of 17.6 GigaFLOPs/sec and a

peak memory bandwidth of fifteen GBytes/sec. As the X-axis is GigaFLOP s/byte and the

Y-axis is GigaFLOP s/second then the line at 45 degrees is bytes/second – which is equal

to (GigaFLOP s/second)/(GigaFLOP s/byte). This line shows the maximum floating-point

performance that the computer can support for a given operational intensity. The plot is

driven from the following equation:

AttainableGigaFLOP s/sec =Min(P eak Floating point P erf ormance,

P eak Memory Bandwidth×Operational Intensity)

This plot is created for a multicore computer and not for a single kernel. For a given

kernel, based on its operational intensity it is possible to see the performance of that

kernel on that computer. The way to do this is, based on its operational intensity, we find

a point on the X-axis and see what the attainable floating-point performance is. Based

on this, we can get insights on whether the kernel performance will be compute-bound

if it hits the flat part of the plot or memory-bound if it hits the sloping part of the plot.

In figure 2.13, it is possible to see that a kernel with an operational intensity of 0.75

will be memory bound, and a kernel with an operational intensity of 4 will be compute-

bound. The turning/ridge point also provides meaningful insights. Its X-coordinate is

the minimum operational intensity at which the kernel achieves maximum performance.

If this point is far to the right, then only kernels with high operational intensity will

achieve maximum performance. In contrast, if it is far to the left, then kernels with lower

operational intensity can also reach maximum performance.
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Figure 2.13: “Roofline model for (a) AMD Opteron X2 on left and (b) Opteron X2 vs.
Opetron X4 on the right” [58].

2.7.4 How to improve performance

Suppose our program is performing far below the Roofline. How can it be optimized?

The objective is to reduce computational bottlenecks along with memory bottlenecks.

It is possible to reduce computational bottlenecks by:

• “Improve Instruction Level parallelism (ILP) and apply SIMD” ([58]): Performance

is increased when the number of instructions is increased. So improving the com-

piler code to increase ILP is an option. One way would be to unroll loops. For x86

architectures, one way of improving ILP would be to use floating-point SIMD in-

structions. These hardware components capable of performing SIMD instructions

can perform the same operation on multiple data operands concurrently. Two in-

put vectors are provided, the same operation is done on adjacent operands, and an

output vector is provided with the results inside.

• “Balance Floating-point operation mix” ([58]): Due to many computers having an

equal number of adders and multipliers, there is a need to have the same amount

of floating-point additions and multiplications. This way, all resources can be fully

utilized at the same time.

It is possible to reduce memory bottlenecks by:

• “Restructure loops for unit stride access” ([58]): which means accessing memory

elements that are next to each other, which is desired because when they are non-

sequential, the number of cache misses increases, and time is wasted for data to be

transferred from the main memory (DRAM) to cache.
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• “Memory affinity” ([58]): Many microprocessors nowadays have an on-chip memory

controller. In a system with two multicore chips, some addresses are in the DRAM

local to one multicore, and the rest is over an interconnect inside the other chip.

The aim is to have all data needed inside the DRAM local to one multicore.

• “Use software prefetching” ([58]): Cache prefetching is a technique used by proces-

sors to improve memory access bandwidth. It consists of fetching instructions or

data in chunks from slow main memory to a fast cache memory before it is needed.

Accessing cache is much faster than accessing main memory because it was specially

built for this, it is small (comparing to main memory) and it is fast. So, software

prefetching is doing this with software. Sometimes it is even quicker than hardware

prefetching.

2.8 Data Visualizations

Data visualization is a trending topic in the sense that before the digitalization era, data

went from challenging to find and expensive to being abundant and cheap. What is

difficult now is to process it in meaningful ways and understand it. Terabytes of unused

data are sitting in data centres, but if it is correctly processed, it can become digital

gold. This step is where data visualization comes in. Data visualizations consist of

taking the raw data and transform it into all sorts of charts, graphs or even videos which

explain the numbers and provides us with easy-to-understand insights on it. It comes

down to making data visually more understandable. In this “age of Big Data” data

visualizations is a powerful tool with which stories can be created out of the trillions of

rows of data generated every day. However, this story is not an easy one to make, and a

good visualization involves highlighting trends, removing noise and detecting outliers.

There are a huge plethora of ways to present data effectively, and interestingly, the

one that will be used in throughout this work are: Rooflines; Heatmaps; Line plots; Bar

plots and Box and Whisker plots.

Rooflines were explained in more details in section 2.7.2. Heatmaps are graphical

representations of data where all data is represented not through a number but as a

colour. Line plots are one of the simplest ways to display data. A Line plot can be defined

as a graph that displays data as points above a number line, showing the frequency

of each value. Bar plots display data using several bars of different height. It is an

excellent way to show relative sizes/quantities, and it is not as good with continuous

data; however, for that, a histogram would be more adequate. A histogram is used for

continuous data, where the bins represent ranges of data, while a bar chart is a plot of

categorical variables. Box and Whisker plots are a more complex way to display data; they

are based on statistical information. Box and Whisker plots show groups of numerical

data through quartiles. They can also have lines extending from the box, which indicate

variability outside the upper and lower quartiles.
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2.9 Previous implementation: QuTiBench

This section aims at describing the benchmark proposal and all its related considerations.

Soon after it will describe some results that were achieved with this proposal.

“QuTiBench is a novel multi-tiered benchmarking methodology (Ti)” [7], it supports

quantization (Qu), which is an algorithmic optimization, and helps researchers under-

stand in more depth the limitations and benefits of the underlying architecture. Its

multi-tiered approach (fig:2.14) introduces the concept of abstraction levels, by subdivid-

ing the benchmark suite into these. For both inference and training, it supports several

numerical representations which bring system-level insights.

By pairing hardware performance with accuracy it broader distinguishes itself from

existing benchmarking. Specifically, reduced precision models are compared with floating-

point implementation, which allows for higher performance at considerably lower power

consumption. Optimal solutions can be visualized with Pareto graphs which will display

the results.

A theoretical level will be introduced, which will allow performance estimation.

Figure 2.14: Illustration of the multi-tiered approach proposed by the benchmark method-
ology - QuTiBench [7].

QuTiBench is constituted by several test suites on every abstraction level. It also com-

prises quantization and algorithmic optimizations, namely awareness regarding datasets,

framework challenges and hyperparameters, such as reproducibility and adaptability.

Multiple tiers – Abstraction levels It will be described all four levels of abstraction.

Level 0 - Theoretical Level 0 is a baseline that provides instant results. It introduces

the awareness of performance for each data type operation, which is crucial to algorithmic

optimizations such as quantization. Two tables are presented (table 2.2), the first presents

characteristics of the hardware and the second presents the characteristics of NNs. The

hardware table lists different hardware platforms and supportive native datatype.

In the neural networks table for each model of CNN, there are four values recorded:

“total number of compute operations for a single input, the model size, the size of the

state and the total amount of tensors in between layers that require buffering. These

values can be used as a basis to derive memory requirements and compute requirements

29



CHAPTER 2. RELATED WORK

for both inference and training” [7].

All these values can help with seeing memory and compute requirements for inference

as well as training. Assuming that weights, weight updates, tensors and gradients will

be held somewhere in the hardware platform and knowing the size of the datatype, it

is possible to estimate the intensity of the calculations during training and inference.

Determining the estimate and knowing the Roofline of a given hardware platform makes

it possible to draw insights on the bound type, whether it is a memory or compute-bound.

Table 2.2: Hardware platforms and neural networks model [7].

Level 1 – Compute Patterns This level reports the attainable compute performance

for common neural network layers, such as fully connected, recurrent, residual, squeeze

and convolutional layers. Being analogous to Deepbench, the main difference is that

QuTiBench provides a much broader scope onto specialized numerical representations.

“For each of these compute patterns, and for both inference and training, we record the

following figures of merit: measured performance (TOPs/s 6 or GOPs/s 7), latency (ms),

power consumption (Watts) of the full platform in the embedded space, and the board

excluding the host system in the cloud” [7]. Even though level 1 does not provide insights

about accuracy at the application level, it verifies that the system is functioning correctly.

Test speed is relatively high, and it considers thread and batch size.

Level 2 – Compute and Data Movement This level computes possible combinations

of tests done by level 1, and with that, it provides insights on potential bottlenecks and

storage requirements. Figures of merit are the same as indicated for level 1.

Level 3 – Applications Level 3 provides application coverage, as it becomes possible

to optimize algorithms which can attain system-level performance and can only be con-

firmed with results provided by the application. This level includes the initial planned

dataset and models that perform correctly with quantization and pruning. For inference,

performance measures are included for a single image. For training a single image, this

level reports throughput, power and latency. It is possible to perform measurements with

a specific accuracy target. Finally, it is also possible to optimize the algorithm and the

network itself with the possibility to save data point in a graph.

Regarding quantization this methodology supports algorithmic optimizations such as

pruning and quantization. Thus, on every level, there are included all the next numerical

6TOPs/s means Tera (1012) Operations per second
7GOPs/s means Giga (109) Operations per second
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representations such as “FP32 8, FP16, INT8, BIN, TERN, and allow for arbitrary choices

to be included, for example, Microsoft’s custom floating-point” [7].

Frameworks and Datasets Datasets are very important because they directly impact

accuracy. Providing framework support is a significant challenge because all frameworks

are linked with a specific neural network. Thus, each framework may need its dedicated

hardware backend which may not be available.

Power and Energy This benchmarking methodology represents power measured at

the socket. Although it is not entirely accurate, this was chosen because measurements

need to be fair and so measuring subsystems, including memory, needs to be considered.

Power measurements at a socket have an accuracy of around 10%, so an average over ten

measurements is performed to address this issue.

2.9.1 Experimental Results and Evaluation

This section presents results that will help evaluate the proposed benchmarking method-

ology and figures of merit.“For both platforms, we carried out all levels of tests on one

specific Machine Learning task, ImageNet classification, for two different neural networks,

GoogleNetV1 and ResNet50. We use FP32, FP16 (supported by GPU), and INT8 (sup-

ported by FPGA) as numerical representations, a form of algorithmic optimization. We

run GPU platforms with a spectrum of batch sizes and different operating modes (MaxN,

MaxQ, MaxP), which are optimized for different performance and power consumption

targets6. For FPGAs, there is a spectrum of implementations available. We exercise the

Deephi DPU overlay, which uses threads instead of batch sizes to achieve high system

utilization, and therefore exercise a spectrum of thread counts. For FPGAs, we show the

theoretical limits of the current implementation (which is clocked at 666MHz), as well

as the datasheet peak performance of 750MHz. For GPUs, we use the theoretical peak as

dictated by the clock frequencies defined by the operating mode” [7].

For all levels of the benchmarking methodology was done a critical review as follows.

Level 0 In figure 2.15 it is possible to see that GoogleNet and ResNet50 are compute

bound for FP32, FP16 and INT8. FPGAs can achieve much greater performance for

bigger operational intensity. The larger the batch size the larger the operational intensity,

however the estimated performance for bigger batch sizes is similar.

Level 1 and 2 In figure 2.16 it is possible to see the performance of the different layers

for ResNet50. This neural network was chosen due to its regularity in structure as it

consists of a convolutional layer followed by pooling combinations, a fully connected

layer and sixteen residual blocks. Even though the compute requirements in each layer

are similar, there is a big range in the throughput of each layer, which means that some

of them are taking a lot longer execution times. The variation in data movements can

explain this particularity, which is likely to occur for other types of NNs as ResNet50 has

8FP32 refers to a floating-point precision of 32 bits which means that there are 32 bits or 8 bytes used to
store decimals
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Figure 2.15: Rooflines provided by level 0 for GoogleNet and ResNet50 on TX2 and
ZCU104 [7].

Figure 2.16: "Performance comparison layer0, layer1, layer2 and layer3 for TX2 (MaxN,
FP16 configuration)"[7] for ResNet50.

a more balanced topology. It is also visible that different convolutional layers have very

different performance, especially as the batch size increases. This difference is because

compute requirements differ from one another.

Figure 2.17: “System Performance evaluation” [7] for TX2 and ZCU104 for INT8, FP16,
FP32, for both GoogleNetV1 and ResNet50 and for different batch sizes [7].

Level 3 This level explores possible optimization solutions. Results show (fig.2.17)
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that the FPGA has the highest performance both system and compute level (948GOPs/s

and 1067GOPs/s). In comparison, the GPU shows a system performance of 809GOPs/s

and a compute level performance of 1011GOPs/s. In figure 2.17 it is possible to see that

the ZCU104 has considerably smaller latency compared to the TX2. The ZCU104 also

has better performance and accuracy compared to TX2. Regarding ResNet50 although

the FPGA achieves better performance, the GPU achieves better accuracy under worse

performance.

Summarizing QuTiBench is a fresher benchmarking methodology to give a clearer

vision on hardware innovation and algorithmic optimization. This work is in its early

stages, and future work will consider more in-depth development and experimentation.

The objective is to, firstly, further develop level0 and then building test suites targeting

CPUs, FPAs and DPUs.

33





C
h
a
p
t
e
r

3
Development: Benchmarking Hardware

The following chapters will describe the work completed during the internship at Xilinx,

Inc, which included benchmarking a hardware platform, creating visualizations to under-

stand better all the present data that there is and deployed them to a web portal that was

made.

This chapter will focus on describing the work done on benchmarking Google USB

Accelerator.

3.1 Coral USB Accelerator

The hardware platform that was benchmarked was Google’s USB Accelerator, and the

neural networks that were benchmarked on this hardware platform were: EfficientNet

Small, EfficientNet Medium and EfficientNet Large. All models that are to run inside the

USB Accelerator need to be on a ’tflite’ format. So it is possible to download these models

in this format or convert from another format to tflite format. EfficientNet S, M and L can

be downloaded from Google Coral webpage directly, specifically from here [12].

3.1.1 Data acquisition

To start, all necessary software that comes with the USB accelerator needs to be installed

to be later used. The EdgeTPU runtime was installed which provides the interface with

the Edge TPU and it can either be installed on Linux, on Mac, or Windows. It was

installed on Windows. Along with the installation of the Edge TPU runtime, there is

an option to install either the slow or maximum operating frequency. Both modes were

installed. There was also the need to install the tflite_runtime library. By cloning the

tflite repository from google-coral GitHub [51], there are a couple of getting started with

the USB Accelerator guides.
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The figures of merit that were measured on the USB Accelerator were performance,

power consumption and accuracy. This was done with a python script which is inspired

on this script [20], that directly interacted with the ClassificationEngine. These scripts

were not created as part of this work but were modified while taking measurements. The

USB Accelerator only supports batch sizes equal to one, which means that it can only

perform inference over one image at the time.

A block diagram between the USB Accelerator and the computer is shown in picture

3.1. The USB Accelerator connects to the computer via a USB Type-C cable. This is a very

short cable (about 31 cm) specially designed to have very low resistance.

Figure 3.1: Block diagram between the USB accelerator and the computer.

3.1.1.1 Performance Measurements

Two types of performance were measured, system performance and computing perfor-

mance, both illustrated with pseudo code. System performance (algorithm 1) accounts

for opening the image, creating an input tensor from it and calling inference. Whereas

computing performance (algorithm 2) only accounts for the time the inference call takes.

There is no need to measure performance on the entire 50000 images, only on a few

thousands.

Upon starting the inference the required arguments are the following:

• Model;

• Validation set: Folder with image(s) to run inference on;

• Path to the text file which holds all 1000 categories listed.

3.1.1.2 Accuracy Measurements

The accuracy measurement is done over the entire test set, which is made of 50000 im-

ages. The pseudo-code shown in algorithm 3 creates a file with results. All images were

preprocessed before being fed to the USB Accelerator, in particular, images were resized

to 256× 256 and then cropped to 224× 224, which is the recommended input size. For
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Algorithm 1 Algorithm for benchmarking system performance.

Get the input arguments (path to model, path to the labels and path to pictures to
test on).
Initialize the engine.
Accumulated time = 0
for Each image . . . do

Get current (start) time.
Open the image.
Preprocess the image (resize and crop).
Flatten the image into an input tensor.
Run inference over the image.
Get current (end) time.
T ime [ms] = (end time − start time) ∗ 1000
Accumulated time [ms] = Accumulated time+ T ime [ms]

end for
Average System Latency [ms/img] = Accumulated time [ms]

Number of Images

System T hroughput [GFLOP s/sec] = GFLOP s ∗ Number of images
Accumulated time [ms]

Save/print all results.

Algorithm 2 Algorithm for benchmarking computing performance.

Get the input arguments (path to model, path to the labels and path to pictures to
test on)
Initialize the engine.
Accumulated time = 0
for Each image . . . do

Open the image.
Preprocess the image (resize and crop).
Flatten the image into an input tensor.
Get current (start) time.
Run inference over the image.
Get current (end) time.
T ime [ms] = (end time − start time) ∗ 1000
Accumulated time [ms] = Accumulated time+ T ime [ms]

end for
Average Computing Latency [ms/img] = Accumulated time [ms]

Number of Images

Computing T hroughput [GFLOP s/sec] = GFLOP s ∗ Number of images
Accumulated time [ms]

Save/print all results.
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each input (image) the USB Accelerator outputs the probability of each one of the 1000

categories. Only the five categories with the highest score are registered. Then, with

another script, it is possible to compare the result obtained with the correct results and

derive a top-1 and top-5 accuracy percentage.

The accuracy obtained, however, was lower than the one documented by Google Coral.

Algorithm 3 Algorithm for benchmarking Accuracy.

Get the input arguments (path to model, path to the labels and path to pictures to
test on)
Initialize the engine.
Accumulated time = 0
for Each image . . . do

Open the image.
Preprocess the image (resize and crop).
Flatten the image into an input tensor.
Run inference over the image.
Get top-5 results as a list of tuples (Eg.: (354, 0.43210), ..., (458, 0.00001))
Write them orderly to a file, the first category has the highest result. Eg.: 1st image:

222,333,444,555,666; 2nd image: 222, 333, 444, 555, 666; ...; 50000th image:222, 333,
444, 555, 666.
end for

For top-1 accuracy, it only matters the category with the highest probability for that

image. For top-5 accuracy, what matters are the first five categories which hold the five

highest probabilities. Then, another script is run to calculate the accuracy based on the

results file and another file which has the correct answers. If the first answer is correct,

then that counts as top-1, if any of the following four answers is correct, then that counts

as top-5. In the end, the accuracies are calculated according to the following equations.

T op − 1 Accuracy = T op−1 correct answers
T otal number of images . T op − 5 Accuracy = T op−5 correct answers

T otal number of images .

3.1.1.3 Power Measurements

Power measurements were taken with UM34C USB Power Meter illustrated in figure

3.2. The pseudo-code used is shown in algorithm 4. Measurements can be taken by

plugging the UM34C into the computer and then plugging the USB Accelerator into the

UM34C, which is illustrated in figure 3.3. Then, whatever current flows into the USB

Accelerator it is detected by the power meter. What this little device measures are instant

Voltage (V) and instant Amperage (A) at each second that passes. Being able to connect

through Bluetooth to its app, which also helps to track these values, this device allows for

recording measured data into a .xlsx file. Power [W] can be derived from instant voltage

and current measurements.
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Algorithm 4 Algorithm for benchmarking power consumption.

Get the input arguments (path to model, path to the labels and path to pictures to
test on)
Initialize the engine.
for Each image . . . do

Open the image.
Flatten the image into an input tensor.
Run inference over the image.
Get the results.

end for

Figure 3.2: UM34C Power meter
used in the power measurements.

Figure 3.3: Connection between the
computer, the Power Meter and the
USB Accelerator.

3.1.2 Results

This section will begin with performance results. It is worth noting that these results

represent the maximum value of performance achieved. Google results can be found

here [21]. Table 3.1 shows latency results. Throughput results were also calculated,

but latency results are displayed to compare with Google’s results. EfficientNet S owns

the smallest latency per image, while EfficientNet L owns the highest one. The higher

the clock frequency of this device, the higher the performance it achieves, and vice-

versa. Obtained results were slightly (between 0.2 to 0.6 ms) better for EfficientNet

S and EfficientNet M than what Google reports out. Results obtained for EfficientNet

L were somewhat worse than what Google reports with a difference of 0.6 ms. These

differences can be explained by the way tests were done, in which case were different.

Google’s tests are performed using C++ benchmark tests. In contrast, these tests were

conducted using Google’s edge TPU Python API, specifically the base inference engine

that executes TensorFlow Lite models on the EdgeTPU. These different platforms affect

performance. Therefore mismatches are expected. Another thing to consider is that these

tests were conducted in a Windows Operating System, whereas Google does not disclose

which operating system was used while taking measurements.

Regarding accuracy results, table 3.2 depicts all accuracy numbers that were obtained
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Table 3.1: Latency Results

Latency
Full Frequency Half Frequency

Computing
System [ms] Computing [ms] System [ms]

Google [ms] Obtained [ms]
EffcientNet S 5.1 4.985 49.994 8.998 52.993

EfficientNet M 8.7 7.993 53.015 13.990 58.030
EfficientNet L 25.3 25.998 65.003 35.976 76.988

and the numbers reported by Google Coral. Obtained results are lower than what was

reported by Google. It was not possible to replicate Google accuracy results.

Table 3.2: Accuracy results from benchmarking EfficientNets on USB Accelerator

Top-1 Accuracy [%] Top-5 Accuracy [%]
Google Obtained Google Obtained

EfficientNet S 77.62 49.27 93.77 71.81
EfficientNet M 78.98 61.21 94.51 82.71
EfficientNet L 80.47 57.30 95.19 78.71

Regarding power results, the same can be found in table 3.3. For power measure-

ments, what is listed in table 3.3 is the Peak Power consumption [W], which refers to the

maximum value achieved. It is true that a spike of current might occur and might not

be taken into account because measurements are done from one second to one second.

However, as this was iterated through ten thousand images, the probability of this spike

not being noticed is highly decreased.

The inference was executed over ten thousand times, one image at the time since

the EdgeTPU only supports batch size equal to one. Statistical analysis with mean and

standard deviation was derived from these experiments, and the same can be found in

figure 3.4. This figure shows a bar plot where on the x-axis all topologies are listed, and

on the y-axis, there is power in Watts. Red bars correspond to running the model in

fast clock mode, which uses more energy, and the blue bars correspond to running the

model in slow clock mode. The height of the bar corresponds to the average of the power

consumption throughout the entire ten thousand experiments. The standard deviation

displayed is the standard deviation of the whole ten thousand inputs processed serially.

Idle mode power consumption is shown so there can be a comparison between what the

device consumes while in idle mode and while doing inference. This plot is not displayed

on the website.

There is the possibility that abnormal spikes might occur which introduces outliers in

the data; for that reason, an algorithm was developed in python to eliminate all these out-

liers. The algorithm eliminates all values higher than a certain threshold. This threshold

is calculated according to the following equation:

T hreshold = input coef icient ∗ standard deviation
Where:
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Table 3.3: Power consumption results from benchmarking EfficientNets on USB Accelera-
tor

Peak Power [W]
Half Frequency Maximum Frequency

Idle mode Board Load Idle mode Board Load
EfficientNet S 0.83 1.49 0.81 1.99
EfficientNet M 0.83 1.68 0.81 2.01
EfficientNet L 0.83 1.63 0.80 2.88

Figure 3.4: Average and standard deviation for power measurements on the USB Acceler-
ator. There were ten thousand measurement repetitions over batch size of one image.

Input coef f icient = ]−∞,+∞[ and standard deviation is the standard deviation of the

entire data. This code can be found on the online repository where all code is available.

To show the evolution of power over time, figure 3.5 was created. This figure shows

several line plots with the evolution of the power consumption split by topology and

clock mode. On the x-axis, there is time evolution on seconds, and on the y-axis, there is

the power consumption in Watts. This plot shows the first two hundred seconds of the

experiments. However, some experiments’ duration exceeded this time, but they are not

shown because the intention was to zoom in the first two hundred seconds. This plot can

be found on the website, and it is interactive, so besides zooming in, zooming out and

dragging the plot around, it is possible to see the entire duration of the experiments.
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Figure 3.5: Line plot with power consumption evolution over time for ImageNet task on
Google’s USB Accelerator. Figure available at [5].
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4
Development: Website Visualizations

This chapter will focus on describing the website development and all visualizations that

were created.

To provide full access to data, visualizations and to allow for contributions a web

portal was deployed, which can be found at [5]. The GitHub repository with all code

open-sourced can be found at [40].

The website was developed with fast pages which is an “easy to use blogging platform,

with support for Jupyter notebooks, Word Documents and Markdown” [18]. This technol-

ogy was chosen because is one of the fastest and easiest way to render a blogging website

directly from jupyter notebooks. With GitHub, an entire blog can be created, so a GitHub

account is needed. The setup process of fast pages includes creating a repo from the fast

pages template through a pull request, then a couple of steps need to be followed. Finally,

the webpage with a standard template is available. From then on, GitHub actions process

notebooks and each notebook is presented as a page inside the website. Figure 4.1 shows

a representation of the website rendering.

Figure 4.1: Fastpages diagram [18].

The website created is divided into several pages. The initial page shows an introduc-

tion to QuTiBench, the benchmarking methodology, then all pages available are presented.
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There is an “About this Work” section where all contributors to the QuTiBench project

can be found.

4.1 Theoretical Analysis - Level 0 of QuTiBench

Since level 0 of QuTiBench is the theoretical analysis, it makes sense to start describing the

website from this point on. A theoretical analysis is presented by applying level 0 of the

benchmarking methodology. Both compute, and memory requirements are analyzed for

both hardware platforms and applications. Performance predictions are made through

Heatmaps with the help of Roofline models. All these predictions are made with no

measurements required.

4.1.1 Methodology

Theoretical analysis is a simple tool from which preliminary conclusions can be drawn

with no actual data measured. It should provide instant feedback and performance pre-

dictions quickly. The theoretical analysis was applied to both hardware platforms (Peak

Performance in TOPS/sec, external memory bandwidth in GBps and Thermal Design

Power in Watts) as well as algorithms in the form of compute and memory requirements

for all CNN topologies. Combining hardware platform characteristics with algorithm re-

quirements makes it possible to create performance predictions with the help of roofline

models.

4.1.1.1 CNNs and their compute and memory requirements

As introduced in chapter 2, three machine learning tasks were selected: MNIST, ImageNet

and CIFAR-10. Within these machine learning tasks, there are different topologies with

several variants. Some models can be found online; other models were trained in-house.

Performance predictions can be formed by combining hardware platform charac-

teristics with algorithm requirements, which can be achieved through roofline models.

Determining algorithm requirements can be done by calculating the operational intensity

for each topology and each datatype.

Operational intensity is a concept introduced by the Rooflines. It is generally seen as

the ratio between Work (W) and Memory Traffic (M) as in equation 4.1. In this particular

context, work refers to the number of floating-point instructions performed on the data

and Memory Traffic refers to the amount of data bytes moved to and from the off-chip

memory. Note that for general-purpose processors, the Memory Traffic is considered to be

between the DRAM and the cache hierarchy and not between the cache hierarchy and the

processor because the former is often much slower than the latter. Moreover, the intent is

to look for the worst-case scenario. One fundamental assumption is that all parameters

are staying off-chip and all intermediate values, i.e., activations, are on-chip memory.
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The operational intensity for each datatype was calculated according to equation 4.1,

which is equivalent to equations 4.2,4.3,4.4,4.5, meaning that they all mean the same, just

written in a different way.

Operational Intensity =
W
M

(4.1)

Operational Intensity =
Compute Requirements

Memory Requirements
(4.2)

Operational Intensity =
Number of Floating point operations

Of f − chip bytes transf erred
(4.3)

Operational Intensity =
Number of Floating point operations

Number of parameters ∗ bytes
(4.4)

Operational Intensity =
T otal Operations

Model size ∗ Datatype bits8

(4.5)

Where:

W = Work

M = Memory traffic

The total amount of operations and the model size are inherent characteristics of

each topology and can be found on table 4.2. Table 4.1 shows a complete overview of

the topologies leveraged in the experimentation and also the acquired accuracies. Some

models were trained by us; others were not.

Table 4.1: Experimental CNNs and their accuracies. Table adapted from [8]

INT2 INT4 INT8 FP16 FP32
top1 (top5) [%] top1 (top5) [%] top1 (top5) [%] top1 (top5) [%] top1 (top5) [%]

GoogLeNetv1 100 nm nm 69.24 (88.45) 66.93 (87.83) 66.96 (87.84)
MobileNetv1 100 nm nm 69.57 (87.71) nm nm
EfficientNet-S 100 nm nm 77 nm nm
EfficientNet-M 100 nm nm 78.6 nm nm
EfficientNet-L 100 nm nm 80.2 nm nm

ResNet-50 100 nm nm 73.29 (91.26) 75.14 (92.12) 75.15 (92.11)
ResNet-50 80 nm nm 73.30 (91.40) nm nm
ResNet-50 50 nm nm 69.49 (91.00) nm nm
ResNet-50 30 nm nm 68.83 ( 90.16) nm nm

CNV 100 86.86 87.4 nm 87.02 87.06
CNV 50 84.29 84.88 nm 85.55 85.6
CNV 25 79.89 81.09 nm 83.28 83.25

CNV 12.5 73.64 75.85 nm 77.82 77.84
MLP 100 98.75 98.77 nm 97.3 97.31
MLP 50 98.49 98.62 nm 97.45 97.46
MLP 25 98.04 98.29 nm 97.49 97.44

MLP 12.5 96.85 97.54 nm 97.95 97.15

Looking at these equations, it is possible to understand why it is essential that the

lower the precision, the higher is the operational intensity. Moreover, vice versa is also

visible, the higher the denominator, the lower the operational intensity becomes. Thereby,

mathematically quantization makes a difference in the operational intensity.
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4.1.1.2 Hardware Platforms Performance

In this study, several types of hardware were studied. FPGAs are one of the most flexible

among other hardware platforms and were configured to support all numerical represen-

tations.

For FPGA platforms, it was assumed a 100% resource utilization and a frequency of

666MHz. There are three different types of implementations. The first implementation is

the Deep Learning Processor Unit (DPU) which consists of a matrix of processing engines

instantiated on the device. The second is FINN which mimics the CNN topology in the

hardware by creating a customized dataflow compute architecture and was previously

presented in subsection 2.4.1.2. The third one is BISMO which is a generic matrix mul-

tiply accelerator and was previously introduced in subsection 2.4.1.1. More information

on these hardware platforms can be found here [6].

4.1.1.3 Methodology

Rooflines model the theoretical peak performance of given hardware, taking into ac-

count two things: the off-chip memory bandwidth (mem_bw) and the peak compute

performance (p_hw_pp) of the hardware. There are different peak performances for

each numerical representation. For example, a GPU has different peak performance for

FP32, FP16, INT8, INT4 and INT2. Hardware performance (hw_pp) can be thought

of as a function of the operational intensity of an application, which represents the ra-

tio between work and memory traffic, more specifically, between compute requirements

cmp_req and memory requirements mem_req: Operational Intensity = cmp_req
mem_req . Hardware

performance hw_pp was calculated through formula 4.6.

hw_pp =Min(p_hw_pp ,mem_bw ∗
cmp_req
mem_req

) (4.6)

Where hw_pp is calculated as the minimum between peak hardware performance and

memory bandwidth mem_bw multiplied by an application’s operational intensity.

A roofline graph, presented in figure 4.2 is a 2D line graph where the x-axis shows

the operational intensity of applications and the y-axis represents hardware performance

(hw_pp). In this plot, the slope part of the chart represents the memory-bound area, and

the flat part of the graph represents the compute-bound. By combining theoretical peak

performance, memory bandwidth and the operational intensity of all CNNs, it is possible

to understand if a model will be compute or memory bound.

As presented in chapter 2, Level 0 is achieved with a Theoretical Analysis that pro-

vides instant results. Theoretical Peak Performance (TOP/sec) and Memory Bandwidth

(GBps) are performance upper bounds and are architecture-specific, do not depend on

the given application. However, what limits the application’s performance (either peak

performance or memory bandwidth) much depends on the application itself, and so, on

the type of computation that is performed.
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Figure 4.2: Performance estimate on a Roofline model [8].

Although Roofline models were first introduced for general-purpose processors, the

same concept is being applied to FPGAs. However, estimating a Roofline model for

FPGAs is somewhat tricky because FPGAs do not define a fixed architecture. As there are

a lot of possible FPGA architectures that can be implemented for the same application, it

becomes difficult to estimate whether the application will be compute-bound or memory-

bound. This is opposed to a general-purpose processor in which the architecture is well

defined and known. Even so, the Roofline model can still be used to understand which is

the maximum level of performance that can be achieved on a target FPGA. For this, the

final implementation has to be fully optimized.

Having each CNN’s operational intensity obtained by equation 4.1 and replacing

this in equation 4.6 performance estimates can be made. The performance estimate is

indicated in figure 4.2 with the red circle at the intersection between the roofline and

the line representing the application. To compute the operational intensity of each CNN,

some assumptions had to be made, for instance where weight, weight updates, tensor,

gradients and state of a neural network are stored and combine all with the size of the

datatypes.

To facilitate comparison between all CNNs of the same ML task performance predic-

tions pp were created, measured in inputs/sec, through equation 4.7. pp is the perfor-

mance prediction, hw_pp represents the theoretical peak performance calculated with the

roofline model, cmp_req is amount of compute necessary to process one input,mem_bw is

available memory bandwidth,mem_req are memory requirements in millions of elements

(ME) and p_hw_pp is hardware’s absolute peak performance.

pp =
hw_pp
cmp_req

=Min(
p_hw_pp
cmp_req

,
mem_bw
mem_req

) (4.7)

Results are computed with this equation and are visualized with heatmaps as will be

shown in section 4.1.2.4.
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4.1.2 Results

Three ML tasks were benchmarked, namely MNIST, ImageNet and CIFAR-10 with differ-

ent datasets and different topologies per ML task. Regarding hardware platforms, several

categories were benchmarked, particularly GPUs, CPUs, VLIWs, FPGAs and Edge TPU.

There are pruned and quantized versions of several topologies on all three machine learn-

ing tasks to cover a broader scope of optimization techniques across several types of ML

tasks and topologies. A sweep over batch size, thread count and stream size was made

over all operating modes supported by hardware. What was measured was throughput,

power, accuracy and latency. More details and all results can be found on the web portal

[5].

4.1.2.1 CNN Topologies

All results for level-0 of QuTiBench are shown in table 4.2 which includes, for each topol-

ogy, the total number of operations per one input in Giga Operations (GOPs), the model

size in Millions of Elements (ME), and finally, the Operational Intensity in operations

per byte read or written from memory. The operational intensity for each datatype was

calculated according to equations 4.1,4.2,4.3,4.4 and 4.5.

Table 4.2: CNNs and their compute and memory requirements. Table Adapted from [8].

Total OPs Total Model Size OI (INT2) OI (INT4) OI (INT8) OI (FP16) OI (FP32)
GOPs [ME] [Ops/Byte] [Ops/Byte] [Ops/Byte] [Ops/Byte] [Ops/Byte]

GoogLeNetv1 100% 3.1 6 2093.97 1046.99 523.49 261.75 130.87
MobileNetv1 100% 1.1 4.2 1075.47 537.74 268.87 134.43 67.22
ResNet-50 100% 7.7 25.5 1210.84 605.42 302.71 151.36 75.68
ResNet-50 80% 6.5 23.7 1086.59 543.3 271.65 135.82 67.91
ResNet-50 50% 3.8 15.8 949.85 474.93 237.46 118.73 59.37
ResNet-50 30% 2.5 10.1 970.16 485.08 242.54 121.27 60.64
EfficientNet-S 100% 4.7 5.4 3481.48 1740.74 870.37 435.18 217.59
EfficientNet-M 100% 7.4 6.9 4289.86 2144.93 1072.46 536.23 268.12
EfficientNet-L 100% 19.4 10.6 7313.21 3656.6 1828.3 914.15 457.08
CNV 100% 0.47 6.16 304.95 152.48 76.24 38.12 19.06
CNV 50% 0.12 1.54 308.32 154.16 77.08 38.54 19.27
CNV 25% 0.03 0.39 315.01 157.51 78.75 39.38 19.69
CNV 12.5% 0.01 0.1 332.61 166.3 83.15 41.58 20.79
MLP 100% 0.02 10.01 8 4 2 1 0.5
MLP 50% 0.00582 2.91 8 4 2 1 0.5
MLP 25% 0.0019 0.93 8 4 2 1 0.5
MLP 12.5% 0.0007 0.33 8 4 2 1 0.5

Regarding Total Operations executed per DRAM traffic EfficientNet Large is the high-

est followed by ResNet-50 while MLPs are by far the lowest ones. ResNets own the most

massive model size while CNVs own the smallest model size.

The operational intensity is calculated for each data type, and the assumptions are

that weights reside off-chip, intermediate results reside on-chip, and the batch size is

equal to one. Regarding the operational intensity (Ops/Byte), EfficientNets have the

highest operational intensity because they were specifically created based on a new scaling

method to achieve high accuracies but also high performance. MLPs, however, own the

lowest operational intensity essentially because of its three fully connected hidden layers,

which turn out to be very memory intensive.
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Some conclusions can be drawn early on. Looking at the operational intensity of

each topology, it is predicted that EfficientNets will probably be compute-bound, due to

the extremely high OI. MLPs will probably be memory bound due to the extremely low

OI. Pruning does not affect operational intensity. However, as the compute per frame

decreases, the frame rate of the entire algorithm should increase proportionally to the

pruning factor. In general, quantization doubles the OI. This is because quantization

decreases the number of elements that need to be read and written to memory, thus

increasing the OI.

To better understand table 4.2, figure 4.3 was created and shows the two bar charts

that were created based on it. Both charts show different figures of merit in the function

of the corresponding CNN. The first chart shows the number of operations (GOPs) per

CNN, and the second one shows the total model size (ME). Please note the logarithmic

scale. Looking at these charts, it becomes obvious that EfficientNet Large owns the highest

number of operations, whereas ResNets own the highest number of elements.

Please note that all these charts are interactive, and so it is possible to zoom in or

move them around, everybody is encouraged to visit the website to give it a try.

Figure 4.3: CNNs compute and memory requirements. Figure available at [5].

4.1.2.2 Hardware Architectures

Table 4.3 summarizes level 0 of QuTiBench for hardware platforms. In this table, theo-

retical peak performance (TOP/sec) for the designated data types, memory bandwidth in

Giga Bytes per second (GBps), memory capacity (GB) and power consumption (Watt) can

be visualized.

Regarding this table, some conclusions can be made. GPUS are the highest in terms

of Memory Bandwidth, but also power consumption, in this field, USB devices such as

Google’s EdgeTPU and Intel’s NCS are the lowest. Regarding performance, the highest
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Table 4.3: Level 0 of QuTiBench. Hardware platforms with their Peak Performance Pre-
dictions [8].

Hardware Platforms INT2 INT4 INT8 FP16 FP32 Memory Bandwidth Memory Capacity Power
[TOP/sec] [TOP/sec] [TOP/sec] [TOP/sec] [TOP/sec] [GBps] [GB] [Watt]

Ultra96-DPU na na 0.96 na na 4.26 2 na
ZCU104-DPU na na 4.6 na na 19.2 4 na
ZCU102-DPU na na 6.71 na na 19.2 4 na
ZCU104-FINN 30.7 8.8 na na na 19.2 4 na

ZCU104-BISMO 30.7 8.8 na na na 19.2 4 na
TX2 max-n na na na 1.33 0.67 59.7 8 15
TX2 max-p na na na 1.15 0.57 59.7 8 15
TX2 max-q na na na 0.87 0.44 59.7 8 15

EdgeTPU-fast na na 4 na na 25.6 1 2
EdgeTPU-slow na na 2 na na 25.6 1 2
NCS (MyriadX) na na 1 0.5 na 12.8 2 1

U96-Quadcore A53-INT8 0.192 0.192 0.192 na na 4.26 2 na

one is achieved with the lowest precision (INT2) by the FPGAs, which are the only hard-

ware platforms that support reduced precision. In general, reduced precision increases

performance. In contrast, increased precision reduces performance, and this is quite

visible for the TX2, where 32-bit Floating-Point Representation (FP32) performance is

half the 16-bit Floating-Point Representation (FP16) performance.

Some bar charts were also created to visually illustrate this table shown in figure I.1.

Please note the logarithmic scale.

4.1.2.3 Roofline model

Having each CNN’s operational intensity, it is possible to plot these neural networks along

with hardware platforms to get insights to whether models will be compute or memory

bound. With this in mind, figure 4.4 was created.

Figure 4.4: Roofline Model. Figure available at [5].

By combining hardware platform characteristics with application requirements, this
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plot presents insights into performance predictions.

With Rooflines, performance predictions can be made, where the maximum perfor-

mance for a CNN in that specific hardware is given by the value that lies at the intersec-

tion point between the operational intensity and the roofline of the hardware platform

as shown in figure 4.2. ResNet50 is one of the highest in compute and memory require-

ments, followed by GoogLeNet and then MobileNetv1. Figure 4.5 shows the operational

intensity for all neural networks datatypes leveraged in this experimentation.

CNN’s operational intensity for FP32 ranges from 0.5 to 458. In contrast, CNN’s op-

erational intensity for INT2 ranges from 8 to 7313, with an increased incidence near the

7313 ops/byte. The range is also shown for FP16, INT8 and INT4. For FP32, most neu-

ral networks are memory bound for most hardware platforms. With reduced precision,

however, this changes, pushing the intersection points to the right of the plot, turning

these neural networks into compute-bound. Even so, even with INT2, there are still some

models that are memory bound. A possible solution for this could be to increase batch

size.

Figure 4.5: Performance prediction with roofline analysis. Figure available at [5].

With this model (fig 4.4 and 4.5), insights on how to scale up performance can be

made. There are several options available for improving the application’s performance.

If the application is memory bound in an FPGA, there are several options to improve

performance. The first one would be to increase the bit width of data transfers. Each bit

of data must be transferred on a different wire of the data bus because sending more than

one electrical signal on the same wire causes a short circuit. Then, if the data bus consists

of 8 bits it can transfer 1 byte of data per reading or write operation; if it consists of 16

bits, it can move 2 bytes of data per reading or write operation; and so on. Therefore, the

width of the data bus determines the amount of data transferred per memory transfer

operation. Another option would be to increase the number of memory ports used when

transferring data to and from off-chip memory [33]. Now, another option would be to
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increase the operational intensity of the application to make it compute-bound instead

of memory bound. This can be done leveraging local memories available on the FPGA

to optimize the data transfer required. As a result, increasing the number of operations

performed concerning the amount of data moved to and from the off-chip memory could

be a solution. Another technique used to improve operational intensity is to compress

the data input and output so that the overall memory traffic is reduced. In essence, the

aim is to reduce the number of bits needed to encode data, also known as quantization.

What is interesting to note is that reducing precision pulls the application to the right

side of the plot, making it more compute-bound. This makes sense because reducing

precision inherently increases the number of operations because of the amount of exter-

nal memory required for storage weights decreases. This is the same as saying that the

processor no longer needs to be fetching so much data from external memory. Since exter-

nal memory is extremely slow, it can now spend that time doing operational operations.

However, even for INT2, there are still memory-bound topologies, namely MLP. What

needs to be taken into account is the initial assumption that weights reside off-chip and

batch size is equal to one.

4.1.2.4 Performance Predictions

Heatmaps (figures 4.6, I.2 and I.3, ) show the input/sec for all leveraged neural networks

across all hardware platforms. In order to allow for comparisons between all different

models, performance predictions expressed in input/sec are used as a metric for theoreti-

cal performance, which is calculated with equation 4.7.

Figure 4.6: Performance Predictions with Heatmaps for MNIST classification

The colour of each cell represents the intensity of the performance predictions accord-

ing to the legend. These results were plotted using heatmaps, and there is one heatmap
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per ML task. All these plots are interactive, meaning that a tooltip is displayed when

hovering with the mouse showing the designated input/second, the model name and

hardware platform.

For MNIST, the prediction made is that the highest performance will be achieved by

MLP pruned at 12.5% with INT2 representation on the ZCU104.

For ImageNet ML task it is predicted that the highest performance will be for Mo-

bileNetv1 on the TPU followed by GoogLeNetv1 with INT8 precision on the ZCU102-

DPU, followed by ResNet50 pruned at 30% with INT8 representation on the ZCU102-

DPU.

For CIFAR-10, the highest predictions are for CNV pruned at 12.5% with INT2 repre-

sentation achieving 638592 inputs/sec on both ZCU104-FINN and ZCU104-BISMO.

It is predicted that the highest performance is achievable with the lowest precisions

on the FPGAs. What is clear from these results is that in general pruning combined with

quantization provides the highest performance. One thing to note is that FPGAs are the

only hardware platform where reduced precision is supported.

Figure 4.7: Effect of quantization on OI and performance [8].

Quantization works by pulling the ceiling upwards, because reduced precision, in

general, increases performance; this is illustrated in figure 4.7. Besides that, quantization

also improves the operational intensity of the application making it more likely to be

compute-bound. Thus, the benefits of quantization are twofold.

Some conclusions can be derived from these early results. Pruning does not affect

operational intensity, but as the compute per input is reduced the overall input/sec should

increase in proportion to the amount of pruning. Quantization, on the other side, does

affect the operational intensity by lowering the amount of traffic to and from memory.
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Besides this, quantization also increases the theoretical performance of a given hardware

platform. Thus a double benefit can be achieved.

4.1.2.5 Theoretical Pareto

Figure 4.8: Theoretical Pareto for MNIST Classifications. Figure available at [5].

Combining performance results from heatmaps with the accuracies of the topologies,

a theoretical Pareto plot can be created, which is shown in figures 4.8, I.4 and I.5. In

these figures, a theoretical Pareto curve for each machine learning task is shown. These

figures present theoretical data which was predicted with no actual data collected. On

the y-axis, there is top-1 accuracy and on the x-axis throughput, expressed as frames per

second. The best solution would be situated on the top right corner because that is where

the accuracy and the throughput hold the highest value. However, such a solution does

not exist. The higher the throughput, the lower accuracy. There is always a compromise

between accuracy and throughput. A way to make use of this kind of plot is described

as the following. Suppose the application is accuracy bound. When a horizontal line is

drawn, below which the accuracy cannot be lower, then the data point with the highest

throughput above that horizontal line is the optimal solution for the application.

Imagine a particular application that is bound by throughput; it could be a real-time

embedded application. If a vertical line is drawn and stipulated that the throughput
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cannot be lower then that exact value, then the data point with the highest accuracy at

the right of that vertical line is the optimal solution for the application.

4.2 MNIST Classification - Level 3 of QuTiBench

After theoretical analysis presenting level 0 of QuTiBench is described, this effort will

carry on describing level 3 of QuTiBench. Only level 0 and level 3 results are presented on

the web portal. This section will start with describing level 3 for MNIST classification, and

since all three pages (one per ML task) have the same structure, CIFAR-10 and ImageNet

will not be described, in order not to repeat the same kind of content.

The MNIST page starts by presenting a theoretical analysis which was introduced in

the theoretical analysis page. Here data points were filtered out to the MNIST machine

learning task, so all data points show MLP and its variants across the full spectrum of

hardware platforms and configurations. Then there are performance predictions with

heatmaps which were already presented in the theoretical analysis. Next, there is the

experimental data analysis were all data points were no longer predicted but indeed

measured.

4.2.0.1 Box Plots

Figure 4.9 presents an overview of power consumption across all the design space. A

pruning factor of one hundred means that the model was not pruned. The more pruned

the network is the less power it consumes, this is a trend across all Hardware platforms.

Figure 4.9: Power consumption. Figure available at [5].

4.2.0.2 Pareto Graphs

In figure 4.10 there is a Pareto graph which presents the accuracy vs performance in

frames per second for all Hardware platforms across several pruning and quantization

configurations. It can provide insights into accuracy based configurations and also

performance-based configurations.

The main question that this plot tries to answer is for a certain accuracy what brings

the best performance, is it pruning or reduced precision? The way that this plot was
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created was the following. It is a standard line plot, and the Pareto frontier was created

connecting all the data points that appeared to be on the frontier. It is not easy to identify

all the data points in figure 4.10, and so the reader is invited to visit the website to

visualize better the plot and all its data. This plot is interactive as it can zoom in, zoom

out and move the chart around. There are also tooltips when hovering with the mouse on

top of each data point.

Figure 4.10: Accuracy versus performance. Figure available at [5].

4.2.0.3 Power Plots

Based on the power consumption of each model on each platform, it was created a rather

simple bar chart on figure 4.11. This bar chart answers the following questions. In

each platform, which model consumes more power? Which model consumes less power?

Furthermore, does pruning have any impact on power consumption?

In this bar chart, the height of the bar represents the peak power consumption that

that model has consumed on that specific platform. In the MNIST plot, pruning plays an

important factor in power consumption, as there is a drop in power consumption for the

pruned variants of MLP. This is visible for almost all hardware platforms.

4.2.0.4 Performance Normalized by Power Plots

After having the power plots mentioned above, it is important to be able to compare per-

formance while having an idea of the power consumption. This kind of plot is illustrated
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Figure 4.11: Power bar charts for MNIST. Figure available at [5].

in figure 4.12. The height of the bar represents the performance [fps] normalized by

power.

Figure 4.12: Performance normalized Bar charts for MNIST. Figure available at [5].

All these plots are created for ImageNet and CIFAR-10 classification. In order not

to repeat the same thing, it will not be explained all the details of the other two pages

because they are quite very similar to this one in structural terms, to which the reader is

invited to visit.

As a last note, the line plots inside the website are not part of this work so they will

not be described here.

4.3 Raw Measurements

This page presents all the raw data that there is. The data is separated by machine learning

task. Inside each machine learning task, data is separated by the hardware platform. It is

possible to download all data related to a specific machine learning task into a CSV file.
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4.4 FAIR and Open Data

FAIR and Open data are two very similar concepts; however, they are not the same.

FAIR is the abbreviation of Findable, Accessible, Interoperable and Reusable. FAIR data

means that data generated complies with some or all of the principles for scientific data

management and stewardship. This project has adhered to the FAIR principles, by:

• Making all data open and freely available. All data can be viewed and downloaded

through an open-source repository and a web portal;

• Created a Unique and Persistent Identifier (DOI) with ResearchGate associated with

the data: DOI: 10.13140/RG.2.2.35785.57448;

• Created data-level and project-level documentation also metadata associated with

the data through the Dublin Core Generator which can be found in the repository.

4.5 How to make contributions page

There is a page showing how everybody can contribute to the QuTiBench project. For

this, there are a couple of steps that anybody who wishes to contribute can easily follow.

4.6 Overview of the Experiments page

On this page, an overview of all experiments is presented. It consists of three tables, one

per machine learning task. It is possible to visualize which model ran into which hard-

ware platform with what precision and pruning factor. The batch size is also indicated.

4.7 Code and online repository

Full code will not be accompanying this document, as it is available in an online GitHub

repository [40]. There are 5 jupyter notebook files, namely the following: “CIFAR-

10_Classification.ipynb”; “ImageNet_Classification.ipynb”; “MNIST_Classification.ipynb”;

“Contributing_Measurements.ipynb” and “Overview_of_experiments.ipynb”.

Website structure can be found in figure 4.13, where each square denotes a web page

and inside each square/rectangle there are all that page’s contents. MNIST, ImageNet and

CIFAR-10 web pages have the same structure, so only one is shown to avoid repetition.

In total, there are eight web pages besides the “About us” page.

An overview of the GitHub project is shown in figure 4.14. Each web page is codified

in each Jupyter notebook, as shown in figure 4.14.

What is needed to create a Roofline is to load into memory a python file, where all

methods are defined and then call the “rooflines” method specifying the desired machine

learning task. So the code to create a roofline stands in a script and then whenever that
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Figure 4.13: Website structure

Figure 4.14: GitHub repository overview

plot needs to appear on a specific page only then this code is called. This is because the

same kind of plot is needed in several web pages, with minor modifications, therefore, to

avoid code repetition, the code for the plot is defined only once in a python file and then

called with the desired parameters from several web pages. Several script files store all

methods needed to create all plots.
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5
Evaluation

This chapter will show certain visualizations that highlight the difference between what

was predicted (level 0) and what was measured (level 3). Moreover, it will evaluate how

accurate predictions were compared to the measured data points and if there are meaning-

ful performance optimization techniques that can be drawn from this experimentation.

The terminology used in the plots and throughout this text will be the following

explained in table 5.1.

5.1 Theoretical Pareto and Measured Pareto Overlapped

Concerning differentiating predicted from measured data points an overlapped Pareto

plot was created, and it is illustrated in figures 5.1, I.6 and I.7 which show a theoreti-

cal Pareto and a measured Pareto plot overlapped, for all three machine learning tasks

(MNIST, ImageNet and CIFAR-10). This plot can easily illustrate the differences between

what was predicted and what was measured.

As this is a Pareto plot, the x-axis shows performance in frames per second and the y-

axis shows the top-1 accuracy. Moreover, the orange Pareto frontier shows the theoretical

data points, while the blue Pareto frontier shows the measured ones.

For MNIST, on the measured Pareto frontier, most data points are BISMO and FINN

(these two have the same predicted performance; hence they are overlapped) and one

TX2 data point. On the measured frontier, most data points are ZCU-104FINN; there is

also one ZCU-104BISMO data point and one NCS2 data point.

It would be expected that the theoretical Pareto frontier would be at the right of the

measured Pareto frontier, which happens both for ImageNet and CIFAR-10 overlapped

Pareto plots, but not for MNIST. MNIST classification got better measurements than what

was predicted. The reason for this will be explained in section 5.3.
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Table 5.1: Terminology used throughout this effort is explained in this table. For instance
u96-quadcore-a53_int4_mlp_25 refers to the hardware platform U96 Quadcore A53, the
model implemented on this platform is the MLP with the INT4 data type and pruning
scale at 25%.

Keyword Explanation

u96-quadcore-a53_int4_mlp_25

Hardware Platform: U96 Quadcore A53
Datatype: INT4

Neural Network: MLP
Pruning scale: 25%

u96-quadcore-a53_int4_mlp_50

Hardware Platform: Ultra96 Quadcore A53
Datatype: INT4

Neural Network: MLP
Pruning scale: 50%

tx2-maxq_fp32_mlp_25

Hardware Platform: TX2
Hardware mode: max-q

Datatype: FP32
Neural Network: MLP

Pruning scale: 25%

tx2-maxp_fp16_cnv_12.5

Hardware Platform: TX2
Hardware mode: max-p

Datatype: FP16
Neural Network: CNV
Pruning scale: 12.5%

edgetpu-fast_int8_efficientnet-l_100

Hardware Platform: USB Accelerator
Hardware mode: Fast Clock

Datatype: INT8
Neural Network: EfficientNet L

Pruning scale: 100% (no pruning)

zcu104-bismo_int2 mlp_12.5

Hardware Platform: ZCU104
Implemented Architecture: BISMO

Datatype: INT2
Neural Network: MLP
Pruning scale: 12.5%
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This plot is interactive, so it is possible to zoom in, zoom out, drag the chart around,

see on-plot tooltips, and select which platform types it is desired to hide.

Figure 5.1: Overlapped pareto plot for MNIST classification. Orange pareto frontier
shows the theoretical data points and the blue pareto frontier shows the measured data
points. Figure available at [5].

5.2 Efficiency plots

In order to have a better comprehension of what was theoretically predicted and what

was really measured, efficiency bar-charts were created (figures 5.2, I.8 and I.9). There

are efficiency bar charts for MNIST, ImageNet and CIFAR-10, but for a matter of space

optimization only MNIST bar charts are showcased, the rest can be fully visualized on the

website. In these plots, what was predicted was usually higher than what was measured.

The size of each bar corresponds to the absolute performance. All predicted are shown

in red, all measured data points in orange and the theoretical peak performance of the

hardware platform in blue. The percentages shown on top of the blue bars correspond to
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the efficiency achieved as a percentage of the predicted performance. Measured perfor-

mance can exceed 100% of the predicted performance because all theoretical predictions

take memory bottlenecks into account.

The percentage which is shown on top of each bar is the efficiency, and it was calcu-

lated according to Ef f iciency = measured perf ormance
predicted perf ormance ∗ 100.

Efficiency plots were drawn separately per machine learning task (ImageNet, MNIST

and CIFAR-10), afterwards split per hardware type. For each machine learning task, there

is the FPGAs plot, the GPUs plot and the USB devices plot.

An interesting phenomenon occurs in these plots. In the TX2 bar chart (fig. I.9)

for MNIST all measured values for hardware and topology combinations are above the

predicted ones, which also happens for FINN in figure 5.2. This phenomenon takes place

for MNIST classification alone. A more in-depth explanation will be given in section 5.3

as to why this happens.

Figure 5.2: Bar chart showing Efficiency for MNIST classification over the FPGAs, more
specifically on the ZCU104-FINN, ZCU104-BISMO. Figure available at [5].

5.3 Evaluation between theoretical and measured

Regarding performance predictions, heatmaps were created as an easy, visual way to

present them. Measured values are displayed in a different variety of visualizations. For

instance, several boxplots show latency, throughput and power per hardware platform

and topology combination. Moreover, a Pareto frontier is also presented with the perfor-

mance (x-axis) versus the accuracy (y-axis) for the measured data points.

For the comparison between predicted data points versus the measured ones, an

overlapped Pareto plot was created with both predicted and measured values. Efficiency

plots in the form of bar charts were also created where predicted performance is measured
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in frames per second on the y-axis and compare to the measured performance (frames

per second) for the same topology and hardware combination.

5.3.1 FPGA Platforms

Three FPGA platforms were benchmarked: BISMO, FINN and DPU. BISMO and FINN

were benchmarked on CIFAR-10 and MNIST classification, while the DPU was bench-

marked on the ImageNet classification.

BISMO on the CIFAR-10 classification had very low measured values compared to the

predicted ones (between 0% and 1% as per table 5.2). The reason behind this is that the

implementation only uses a fraction of BISMO resources, with no time to implement a

larger prototype. In the future, it could be beneficial and exciting to implement it with the

full range of FPGA resources. On the MNIST classification, however, got values between

15% and 22% of what was predicted, as per table 5.3.

FINN on the CIFAR-10 classification achieved a performance between 8% and 35% of

the predicted values, as per table 5.2. On the MNIST classification, however, got between

10 to 50 times the predicted values, as per table 5.3. After performing quantization, the

entire MLP model fit in the on-chip memory, contrary to what was initially assumed for

this model. Initially, it was considered that the whole model would reside in the off-chip

memory, being memory-bound and that memory would bottleneck performance. So the

operational intensity would be very low due to this. However, as the entire model fit in

the on-chip memory the operational intensity was much higher, memory bottleneck was

avoided altogether, and consequently, the performance was way higher than what was

predicted, between 10 to 50 times higher.

The DPU (Ultra96 and ZCU102 using the DPU architecture) on the ImageNet Clas-

sification got measured values between 6% and 26% of the predicted ones, as per table

5.4.

Overall, the efficiency across all platforms seems to be constant at an average of

roughly around 19%. This low efficiency on the FPGAs might be due to its vast imple-

mentation flexibility, where performance predictions assume 100% resource utilization;

however, in reality, that might not be the case. Also, the clock frequency might not be at

the maximum theoretical peak.

In general, efficiency predictions decrease with increased pruning. This observation is

precise for ultra96-dpu-resnet50, ncs2-cnv, zcu104-finn-cnv and tx2-cnv. Another critical

aspect can be drawn: the increased the quantization, the less accurate predictions become,

which is also very visible for resnet-50-cnv and tx2-mlp.

Efficiency predictions can be improved by adjusting the resource utilization and clock

frequency for peak performance within the model assumption. Regarding MNIST, mea-

sured performance exceeds predictions, because predictions were made assuming that

the model would remain in the off-chip memory. However, this was not the case as the

quantized versions of the model stayed in the on-chip memory, eradicating the memory
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bottleneck and increasing performance. To improve the prediction quality for heavily

quantized models, the solution would be to either ignore memory constraints altogether

or introduce an on-chip memory capacity assumption in future work.

Overall it is visible that level-0 predictions show an average of around 10%-20% of the

measured performance. As the pruning scale goes up, predictions become less accurate,

and the same can be verified for quantization. For future work, performance predictions

can be improved by taking the resource utilization into account and the clock frequency

of the FPGA circuit also into account. Another improvement would be to create an on-

chip memory, and then it would only be necessary to compare the model size with the

on-chip memory size and decide to ignore the memory access.

Table 5.2: Efficiency results for the FPGAs for all pruned and quantized variants of CNV.

Hardware Maximum Median Average Minimum
zcu104-finn 34.5 15.1 18.7875 7.9

zcu104-bismo 0.4 0.3 0.3 0.1

Table 5.3: Efficiency results for the FPGAs for all pruned and quantized variants of MLP.

Hardware Median Average Minimum Maximum
zcu104-bismo 19.9 19.18 14.6 21.8
zcu104-finn 1675.9 2020.3 1039.1 5031.4

Table 5.4: Efficiency results for the FPGAs for all topologies of ImageNet.

Hardware Median Average Minimum Maximum
ultra96-dpu 20.0 18.259 12.7 21.7
zcu102-dpu 25.549 25.5497 25.4 25.7
zcu104-dpu 14.55 14.55 5.9 23.2

5.3.2 GPU Platforms

The GPU platform benchmarked is the Jetson TX2 with its three modes: max-n, max-p

and max-q. The max-n mode is meant for full clock speed, meaning that it is throughput

oriented. The max-q mode is very power consumption-oriented. The max-p mode is a

hybrid between max-q and max-n promoting power and performance balance.

5.3.2.1 CIFAR-10

The topology benchmarked is the CNV not pruned and pruned at 50%, 25% and 12.5%.

For CIFAR-10 classification, efficiency ranges between 25.7% and 88.9% with an average

of 60%, as per table 5.5; this means that measured values were, on average, 60% of the

predicted values.
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Results make evident that the more pruned the model is, the more inaccurate predic-

tions are, this is visible across all model variants, for instance, on TX2-maxn-FP16-CNV-

100 had an efficiency of 79%. In contrast, TX2-maxn-FP16-CNV-12.5 had an efficiency

of 26%.

Regarding quantization, prediction accuracy decreases with the increase in quantiza-

tion; this is also evident across all model variants; for instance, the tx2-maxn-fp16-cnv-

100 got 78.8% efficiency, whereas the tx2-maxn-fp32-cnv-100 got 86.7% efficiency.

Regarding performance (fps), the maximum measured value achieved by the GPUs in

the CIFAR-10 machine learning task was achieved by TX2-maxn with a total of 34197.2

fps on tx2-maxn-fp16-cnv-12.5. The second best 29763.1 fps tx2-maxp-fp16-cnv-12.5.

Which makes sense according to the max-n, max-p and max-q characteristics.

Overall predictions are relatively constant across all CNV variants. Predictions effi-

ciency decreases with pruning and quantization, which, again, could be caused by the

limitations of the memory model in the theoretical analysis.

Table 5.5: Efficiency results for the TX2s for all pruned and quantized variants of CNV.

Hardware Maximum Median Average Minimum
TX2 max-n 86.7 63.8 59.75 25.7
TX2 max-p 88.4 64.15 60.2375 25.9
TX2 max-q 88.9 65.3 61.425 26.8

5.3.2.2 MNIST

The topology benchmarked was MLP not pruned and pruned at 50%, 25% and 12.5%.

For MNIST classification, efficiency values range between 254.8% and 3069.4% averag-

ing at 1362%, as per table 5.6. These values mean that measured performance exceeds

predictions by 2.5 and 30.7 times which is not usual. However, this also happened with

the FPGAs. Again, this occurred because performance predictions assume a very low

operational intensity for MLP. After all, they are quite memory heavy, predicting that

they will be memory bound. However, this did not happen because the model fit in the

on-chip memory of the GPU, eradicating the memory bottleneck, which increased the

measured performance considerably above the predicted one.

In this case, the more pruned the topology is, the more inaccurate predictions are,

for instance, tx2-maxn-fp16-mlp-100 got 2365.5%, whereas the tx2-maxn-fp16-mlp-12.5

got 333.4%.

Drawn plots also make evident that the more quantized the topology is, the less

accurate predictions are, for instance, tx2-maxn-fp32-mlp-100 got 3069.4% whereas the

tx2-maxn-fp16-mlp-100 got 2365.5%.

The maximum measured performance (fps) achieved by the GPUs on the MNIST

classification was achieved by tx2-maxn-fp32-mlp-12.5 with 309646 fps, and the second

best-measured performance was achieved by tx2-maxn-fp16-mlp-12.5 with 297674 fps.
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The best result was achieved on the max-n mode, which was expected as this is the model

with the highest performance. Another thing is that the best results and the second-best

result were both obtained with a severely pruned variant of the topology.

Overall predictions were constant across MLP variants. In this classification, it is

concluded that prediction efficiency decreases with pruning and quantization. This ob-

servation could be due to the limitations in the memory model in the assumptions for the

theoretical analysis.

Table 5.6: Efficiency results for the TX2s for all pruned and quantized variants of MLP.

Hardware Median Average Minimum Maximum
tx2-maxn 1577.75 1610.3125 333.4 3069.4
tx2-maxp 1361.35 1397.11 311.4 2666.8
tx2-maxq 1095.1 1078.41 254.8 2060.8

5.3.2.3 ImageNet

The topologies benchmarked were GoogLeNet-v1 and ResNet-50 both on full precision

(FP32) and half-precision (FP16). They were benchmarked across all three operating

modes of the GPU (max-n, max-p and max-q). Pruning was not applied to any of these

models, so it is not possible to draw any conclusions from that.

For ImageNet classification, the efficiency values range between 65% and 84.6%, av-

eraging at around 75%, as per table 5.7, which means that measured values were, on

average, 75% of the predicted values.

Table 5.7: Efficiency results for the TX2s for all topologies of ImageNet.

Hardware Median Average Minimum Maximum
tx2-maxn 74.6 73.925 65.0 81.5
tx2-maxp 75.75 75.075 65.5 83.3
tx2-maxq 77.55 76.824 67.6 84.6

GoogLeNet-v1 efficiency values ranged between 65% and 75.8%. ResNet-50 efficiency

values ranged between 76% and 84.6%. These values mean that estimations were rela-

tively accurate

The increase in quantization means the decrease in efficiency predictions, for instance

tx2-maxn-fp32-googlenetv1-100 got 73.2% whereas the tx2-maxn-fp16-googlenetv1-100

got 65%. This observation is seen across all ImageNet measurements.

Overall, predictions were quite accurate for ImageNet classification with all prediction

efficiencies above 65%. What is visible both for CIFAR-10 and MNIST is that the higher

the pruning scale, the lower the prediction efficiency. This is visible for TX2 max-n, max-

p and max-q. It is visible for all experiments (CIFAR-10, MNIST and ImageNet) that the

more quantized the topology is, the lower the prediction efficiency is.
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In summary, theoretical predictions were leveraged to predict performance over sev-

eral pruning variants and quantization variants. Predictions reflect the benefits of opti-

mizations - pruning and quantization - even though a bit too optimistically. Moreover, it

is predicted that the built-in memory assumptions negatively influenced results and is

key to the differences between predictions and measured performance.

5.3.3 Edge TPU and NCS2 Platforms

In regards to CIFAR-10 the NCS2 got efficiency values between 2.9% corresponding to

ncs2-fp16-cnv-12.5, and 25.6% corresponding to ncs2-fp16-cnv-100. This shows, once

again, that the increased pruning lowers the efficiency of the prediction. For MNIST

the NCS2 got values between 97%, corresponding to ncs2-fp16-mlp-100, and 14.6%

corresponding to the pruned version (ncs2-fp16-mlp-12.5). For ImageNet classification,

the NCS2 achieved a 28.2% of the predicted performance on the ResNet-50 topology.

The EdgeTPU, on the other hand, was only benchmarked with the ImageNet classi-

fication. It was also not possible to check for pruning effect on predictions efficiency

because there was no pruning applied or quantization. It is only possible to conclude

that MobileNet-v1 achieved an average of 13% of the predicted performance, whereas

GoogLeNet-v1 achieved an average of 24% of the predicted performance. EfficientNets

also achieved an average of 24% of the predicted performance. What it is possible to

observe is that smaller topologies like MobileNet-v1 achieved a lower efficiency.

In conclusion, performance predictions for smaller topologies are relatively low, which

is quite visible on the efficiency numbers for the pruned variants (12.5%). For this reason,

it is concluded that predictions were overly optimistic. Overall efficiency values for the

NCS2 and the EdgeTPU are lower on average than the FPGAs and the GPUs.

Table 5.8: Efficiency results for the NCS2 for all topologies of ImageNet.

Hardware Maximum Median Average Minimum
ncs 25.6 12.65 13.45 2.9

Table 5.9: Efficiency results for the NCS2 for all pruned and quantized variants of MLP.

Hardware Median Average Minimum Maximum
ncs 49.3 52.575 14.6 97.1

Table 5.10: Efficiency results for the NCS2 and USB Accelerator for all topologies of
ImageNet ML task.

Hardware Median Average Minimum Maximum
edgetpu-fast 20.6 19.04 11.1 23.5
edgetpu-slow 26.5 24.18 14.0 27.4

ncs 28.2 28.2 28.2 28.2
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6
Conclusions and Future work

This effort presents the work done on creating several kinds of data visualizations, their

deployment to a web portal and the results from benchmarking the EfficientNets on

Google’s USB Accelerator.

A way to better understand all gathered data was proposed and successfully created.

More specifically, several kinds of visualizations were designed to provide insights into

the recent compute architectures and the trade-offs between algorithmic optimizations

and hardware choices. Almost all visualizations are interactive and were deployed to

a web portal where all predicted and measured data is available. The web portal ad-

heres to the FAIR guiding principles, by owning metadata and a DOI and by supporting

contribution (a set of guiding steps are available for anyone who wishes to contribute).

As part of this effort, the EffcientNets were benchmarked on Google’s USB Accelerator,

and accuracy, performance and power consumption measurements were taken. There

were two types of measured performances: system performance and computing perfor-

mance. An inference script was used to which the model and the validation set were

fed. This script outputted the results from the inference over one image, and the process

repeats for all them. At the same time, this process is timed to get performance results.

Obtained results were very close to the ones that Google reports out, with the computing

performance always being faster system performance. This makes sense because comput-

ing performance only accounts for the time the inference call takes. In contrast, system

performance accounts for opening the image, creating a tensor from it and calling infer-

ence. Moreover, EfficientNet S is the fastest model benchmarked out of the three, due

to its small size. At the same time, EfficientNet L is the slowest model because it is the

biggest one with over 10 million elements.

Power measurements were taken with the UM34C power meter. The USB Accelerator

was plugged into the power meter, which was plugged into the computer, and the instant
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power was recorded at every one second. The experiments were repeated several times

in order not to miss any critical peak power consumption value. The board consumes

the most running at maximum frequency, which is the fastest mode, and EfficientNet L

is the one that drains more power, as it was expected, again, due to its size and GOPs. In

general, the board drains around 2 Watts while doing inference.

Accuracy measurements were taken using two scripts, one written in python that

performs inference and records the outputs and another one written in bash scripting

that verifies the outputs from the previous script and calculates the accuracy. Accuracy

results obtained were relatively lower than the ones reported by Google, as it was not

possible to replicate Google’s results.

Besides plotting measured data points, predicted data points that were created by

level 0 of QuTiBench were also plotted. The predicted data points were later compared

with the measured ones with the help of overlapped Pareto plots and efficiency bar charts.

In general theoretical predictions successfully predict performance trends. BISMO

had very low measured values compared to the predicted ones due to the lack of resources

in the implementation. The MLP variants got higher performance than what was pre-

dicted because the memory bottleneck was avoided altogether. Therefore FINN measured

performance exceed 10 to 50 times the predicted performance and the TX2 measured

performance exceeds 2.5 to 30.7 times the predicted performance. Again, since MLPs are

so memory-heavy, performance predictions assume an extremely low operational inten-

sity expecting that they will be memory bound. However, this did not happen as these

models fit in the hardware memory as they were heavily quantized. The FPGAs’ efficiency

is around 19%; this can be due to the vast implementation flexibility, where performance

predictions assume a resource utilization of 100%, which may not be happening and the

clock speed might also not be at the maximum theoretical peak. Moreover, efficiency

numbers for the USB Accelerator and the NCS2 are lower than for FPGAs.

Overall level-0 predictions show an average of 10%-20% of the measured performance.

What is sensed across all hardware platforms is that performance predictions become

more inaccurate with the increased pruning. Performance predictions also become more

inaccurate with the increased quantization.

In future work, level 0 of QuTiBench could be improved. More precisely, the memory

model could be refined regarding assumptions about what data is stored in the on and off-

chip memory. Meaning that we could introduce an on-chip memory capacity assumption,

if the model fits on-chip, memory access would then be ignored. This solution could

provide more accurate estimates for the heavily quantized CNNs. Alternatively, memory

bottleneck could be removed altogether as given through the roofline model and only

consider the peak compute performance for performance predictions. Moreover, for the

FPGAs, performance predictions can be further improved by taking the actual resource

utilization and the achieved clock frequency of the FPGA circuit into account.

Concluding, for the pruned variants, there are limitations in regards to the memory

model. While performance estimation was overly optimistic, especially for the pruned
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and quantized variants, predictions for the Pareto optimal points provide rich insights

into all the combinations between topologies, hardware and optimization strategies which

can save a considerable amount of implementation time to the designer. Therefore, it is

concluded that theoretical baselines can provide good baselines in ML benchmarking. In

conclusion, several improvements to level 0 of QuTiBench were drawn from these visual-

izations, which could make it more accurate at predicting performance in the future.

Regarding power consumption from all measurements, it is possible to conclude that

the NCS2 and the USB Accelerator are among the platforms that consume less energy, in

particular between 1 and 3 Watts. The peak power consumption for TX2 is between 5

and 20 Watts and for the FPGAs is between 10 to 20 Watts. It is concluded that, as is was

expected, ASICs own lower power consumption in comparison with GPUs and FPGAs.

Regarding the throughput visualization with box and whiskers, both for MNIST and

CIFAR-10, the ZCU104-FINN-INT2 achieves the higher throughput outperforming TX2,

NCS2, A53, and other less quantized versions of MLP on the ZCU104-FINN. With Im-

ageNet, it is the INT8-ZCU102-DPU that owns the highest throughput. In general, the

more quantized the model is, the higher the throughput achieved. Regarding pruning,

the more pruned the model is, the higher the throughput achieved.

Regarding latency, ZCU104-FINN-INT2 shows the lowest latency for the MNIST clas-

sification, whereas, for the CIFAR-10, both TX2 and FPGAs show quite the same latency.

On the ImageNet classification, however, the NCS2 is leading the way. Overall latency

increases with the less pruned and quantized versions of the model.

The web portal is up and running, with almost all visualizations being interactive,

which provide insights into what topology will give what performance in what hardware.

More measurements were successfully taken, in particular to the USB Accelerator. In

conclusion, all objectives were met.
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Annex 1 List of figures

This section will provide additional figures.

Figure I.1 shows the theoretical peak performance of a given hardware platform in a

visual way.

Figures I.2 and I.3 show Performance Predictions for ImageNet and CIFAR-10 classifi-

cation.

Figures I.4 and I.5 show the theoretical pareto for ImageNet and CIFAR-10 respec-

tively.

Figures I.6 and I.7 show an overlapped pareto plot with the theoretical and the mea-

sured data points.

Figures I.8 and I.9 show the efficiency bar charts for the NCS2, TX2 and the A53.
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Figure I.1: Hardware platforms with their Peak Performance Predictions. Figure available
at [5].
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Figure I.2: Performance Predictions with Heatmap for ImageNet classification. Figure
available at [5].

Figure I.3: Performance Predictions with Heatmap for CIFAR-10 classification. Figure
available at [5].
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Figure I.4: Theoretical Pareto for ImageNet Classifications. Figure available at [5].
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Figure I.5: Theoretical Pareto for CIFAR-10 Classifications. Figure available at [5].
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Figure I.6: Overlapped Pareto Plot for CIFAR-10 Classification. Orange pareto frontier
shows the theoretical data points and the blue pareto frontier shows the measured data
points. Figure available at [5].
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Figure I.7: Overlapped Pareto Plot for ImageNet Classification. Orange pareto frontier
shows the theoretical data points and the blue pareto frontier shows the measured data
points. Figure available at [5].
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Figure I.8: Bar chart showing Efficiency for MNIST classification over NCS2 and the A53.
Figure available at [5].

Figure I.9: Bar chart showing Efficiency for MNIST classification over the TX2. Figure
available at [5].
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