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Abstract. Polynomial interpolation or regression models are an important tool in Derivative-
free Optimization, acting as surrogates of the real function. In this work, we propose the use of
these models in the multiobjective framework of directional direct search, namely the one of Direct
Multisearch. Previously evaluated points are used to build quadratic polynomial models, which are
minimized in an attempt of generating nondominated points of the true function, defining a search
step for the algorithm. Numerical results state the competitiveness of the proposed approach.
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1. Introduction. Multiobjective optimization is a common topic in practical
applications, when several objectives need to be optimized and are conflicting among
each other [7, 34]. Applications appear on different domains such as engineering,
finance, or medicine [1, 8, 28, 35, 37].

In this work we address the Multiobjective Derivative-free Optimization problem

min F (x) ≡ (f1(x), . . . , fm(x))
>

s.t. x ∈ Ω ⊆ Rn,
(1.1)

where m ≥ 2, Ω ⊆ Rn represents the feasible region and each fi : Ω ⊆ Rn →
R ∪ {+∞}, i = 1, 2, . . . ,m denotes a component of the objective function, for which
derivatives are not available, neither can be numerically approximated. Often the
objective function is nonsmooth or the corresponding evaluation is expensive and/or
unreliable, justifying the derivative-free approach. A comprehensive review of single
objective derivative-free optimization methods can be found in [3, 15].

Several methods were already proposed for this class of problems. Some, like [6,
39], rely on the aggregation of the different components of the objective function,
addressing the multiobjective derivative-free optimization problem through a series
of single objective minimizations. In [6], the authors use a directional direct search
method for solving the single objective optimization problems, whereas [39] resorts to
a derivative-free trust-region approach.

The works [13, 17, 33] follow a different strategy, making use of the concept
of Pareto dominance, without considering any aggregation techniques. Directional
direct search methods are generalized in [17] to multiobjective optimization, while [33]
consists in a linesearch-based method and [13] can be regarded as a multiobjective
version of implicit filtering.

Being a directional direct search method, the algorithmic structure of each iter-
ation of [17] is organized in a search and a poll step. However, in [17] no particular
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strategy was proposed for the definition of a search step and the numerical experi-
ments reported are the result of only applying the poll step of the algorithm. In [16],
a multistart approach was proposed as a search step, jointly with a merging strategy,
in an attempt of conferring some global behavior to the algorithm, through the abil-
ity of identifying different local Pareto fronts for the problem. The current work will
be based on [17] and will propose the minimization of quadratic polynomial models,
built for the different components of the objective function, in the search step of the
algorithm, trying to improve its ability in generating approximations to the Pareto
fronts (not necessarily the global one). Models computation will reuse previously
evaluated points, at no additional cost in terms of objective function values. These
models will be minimized on their own, in an attempt of moving to the extreme points
of the Pareto front, or combined among them, trying to simultaneously improve the
different components of the objective function.

The use of surrogate models was already considered in multiobjective derivative-
free optimization, but not in directional direct search methods. Radial basis func-
tions have been explored jointly with evolutionary strategies [2, 19, 38] and Gaussian
processes have been proposed jointly with Monte-Carlo techniques [25]. However,
these are heuristic approaches, without a well-established general convergence anal-
ysis. On the other hand, providing convergence guarantees, quadratic polynomial
models have been used in trust-region derivative-free approaches to multiobjective
optimization problems, considering scalarization techniques [39, 41]. Recently, the
work [39], with respect to biobjective optimization problems, was extended to general
multiobjective optimization [23] (without rigourously establishing the corresponding
convergence analysis). In this latter case, models are built with Shepard’s method [40]
and MADS [5], a single objective directional direct search method, is used to mini-
mize weighted sums of these models. A similar approach was previously applied to
biobjective optimization problems [22].

Polynomial interpolation and regression models have also been successfully used
in the definition of a search step for single objective directional direct search [14, 18].
In fact, the minimization of these models is fully explored in trust-region methods
for derivative-free optimization [15]. This class of algorithms is particularly efficient
if the function to be minimized is smooth, even if derivatives are not available. The
combination of the minimization of polynomial interpolation and regression models
with directional direct search takes advantage of the strengths of both algorithmic
classes, allowing the method to exploit curvature and proceed, if there is enough
smoothness associated to the problem, or use the good geometrical properties of
positive spanning sets [20], when the search step based on the polynomial models fails
in generating a new successful point.

The paper is organized as follows. Section 2 will revise Direct Multisearch, both
in terms of algorithmic description and convergence analysis. Quadratic polynomial
models are introduced in Section 3, stating the corresponding quality as approxima-
tions of smooth functions. The strategy proposed for its joint use with directional
direct search for multiobjective optimization will be fully detailed in Section 4. Sec-
tion 5 reports the numerical experiments that support the validity of the proposed
search step. The paper ends in Section 6 with some conclusions.

2. Direct Multisearch. Direct Multisearch (DMS) was proposed in [17] as a
new class of methods, generalizing directional direct search to multiobjective derivative-
free optimization. Since then, it has been consistently used with good results both
for benchmark of new solvers [13, 33] or in real applications [9, 29].
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One of the main advantages of DMS is not considering any aggregation function
for the different components of the objective function, avoiding the definition of all
parameters inherent to these strategies [34]. In fact, the algorithm solely relies in
the concept of Pareto dominance to accept new points. Making use of the strict
partial order induced by the cone Rm+ , we say that point x dominates point y when
F (x) ≺F F (y), i.e., when F (y)− F (x) ∈ Rm+ \ {0}.

In DMS two globalization strategies can be adopted [17]. In the case of a global-
ization strategy based on integer lattices, an iteration of the algorithm will be declared
as successful when at least one new feasible nondominated point is found, which will
be added to a list that represents the current approximation to the Pareto front of
the problem. This list, which only includes feasible nondominated points, is updated
every time that a new feasible nondominated point is found, by adding this point
to it and removing from it all dominated points resulting from this adding. When
globalization requires sufficient decrease for accepting new feasible points, a forcing
function ρ : (0,+∞) → (0,+∞), i.e., a continuous and nondecreasing function, sat-
isfying ρ(t)/t → 0 when t ↓ 0 (see [31]) will be used. Typical examples of forcing
functions are ρ(t) = t1+c, for c > 0. Let D(L) ⊂ Rm be the image of the set of points
dominated by the list of points L and let D(L; a) be the set of points whose distance
in the `∞ norm to D(L) is no larger than a > 0. In a simplified way, DMS declares an
iteration as successful if a new point x is found such that F (x) /∈ D(L; ρ(α)), where
α represents a stepsize parameter associated with the current iteration.

DMS addresses constraints using an extreme barrier approach [4], only evaluating
the objective function at feasible points. Each iteration of the algorithm starts with
the selection of an iterate point and the corresponding stepsize parameter, from the
current list of previously evaluated feasible nondominated points. Different strategies
can be considered to order this list of points, resulting in different algorithmic variants.
In the current numerical implementation of DMS a spread metric is used for ordering,
in an attempt of reducing the gaps between consecutive points lying in the current
approximation to the Pareto front of the problem.

After selecting the iterate point, the algorithm performs a search step and, in case
of failure of adding a new point to the list, a poll step around the current iterate point.
The search step is not detailed in the original description of the algorithm, neither
it is implemented in the corresponding numerical solver. The major requirement of
this step is to be finite (and restricted to an implicit mesh, when using a globalization
strategy based on integer lattices).

The poll step corresponds to the evaluation of the objective function along a set of
directions scaled by a stepsize parameter. Different requirements should be satisfied
by these poll directions, depending on the level of smoothness of the objective function
and on the geometry of the feasible region around the poll center. Typically, positive
spanning sets are considered [20]. Polling can be complete, meaning that all feasible
poll points will be evaluated, or opportunistic, in which case sampling is stopped as
soon as a success is declared, meaning that a new point was added to the list.

At the end of each iteration the stepsize is updated, by increasing it or by main-
taining it constant for successful iterations and by decreasing it for unsuccessful ones.

Algorithm 1 provides a schematic, but simplified description of the DMS algo-
rithm (for a complete description, see [17]).

DMS has a well-established convergence analysis [17], which follows the general
lines of any other directional direct search method. For any of the two globalization
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Algorithm 1: A simplified description of Direct Multisearch (DMS).

Initialization
Choose x0 ∈ Ω with fi(x0) < +∞,∀i ∈ {1, 2, . . . ,m}, α0 > 0 an initial
stepsize, 0 < β1 ≤ β2 < 1 the coefficients for stepsize contraction and γ ≥ 1
the coefficient for stepsize expansion. Let D be a set of positive spanning
sets. Initialize the list of feasible nondominated points and corresponding
stepsize parameters L0 = {(x0;α0)}.

For k = 0, 1, 2, . . .
1. Selection of an iterate point: Order the list Lk according to some

criteria and select the first item (x;α) ∈ Lk as the current iterate and
stepsize parameter (thus setting (xk;αk) = (x;α)).

2. Search step: Compute a finite set of points {zs}s∈S (lying in an
implicit mesh if the globalization strategy is based on the use of integer
lattices) and evaluate F at each feasible point in S. Compute Ltrial by
removing all dominated points (possibly using sufficient decrease,
depending on the globalization strategy considered) from
Lk ∪ {(zs;αk) : s ∈ S ∧ zs ∈ Ω}. If Ltrial 6= Lk declare the iteration
(and the search step) successful, set Lk+1 = Ltrial, and skip the poll
step.

3. Poll step: Choose a positive spanning set Dk from the set D. Evaluate
F at the feasible poll points belonging to {xk + αkd : d ∈ Dk}.
Compute Ltrial by removing all dominated points (possibly using
sufficient decrease, depending on the globalization strategy considered)
from Lk ∪ {(xk + αkd;αk) : d ∈ Dk ∧ xk + αkd ∈ Ω}. If Ltrial 6= Lk
declare the iteration (and the poll step) successful and set
Lk+1 = Ltrial. Otherwise, declare the iteration (and the poll step)
unsuccessful and set Lk+1 = Lk.

4. Stepsize parameter update: If the iteration was successful then
maintain or increase the corresponding stepsize parameters, by
considering αk,new ∈ [αk, γαk] and replacing all the new points
(xk + αkd;αk) in Lk+1 by (xk + αkd;αk,new), when success is coming
from the poll step, or (zs;αk) in Lk+1 by (zs;αk,new), when success is
coming from the search. Replace also (xk;αk), if in Lk+1, by
(xk;αk,new).
Otherwise, decrease the stepsize parameter, by choosing
αk,new ∈ [β1αk, β2αk], and replace the poll pair (xk;αk) in Lk+1 by
(xk;αk,new).

strategies considered, it is possible to establish the existence of a subsequence of
stepsize parameters converging to zero. For this, some assumptions are required,
concerning the objective function and the feasible region.

Assumption 2.1. The set {x ∈ Ω : F (x) /∈ D({x0})} is compact.
Assumption 2.2. The function F is bounded in {x ∈ Ω : F (x) /∈ D({x0})}.
The level of smoothness of the objective function imposes additional conditions on

the poll directions. For continuously differentiable functions, Assumption 2.3 suffices,
whereas the presence of nonsmoothness requires Assumption 2.4.

Assumption 2.3. The set D = D of positive spanning sets is finite and the
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elements of D are of the form Gz̄j, j = 1, . . . , |D|, where G ∈ Rn×n is a nonsingular
matrix and each z̄j is a vector in Zn.

Assumption 2.4. Let D represent a finite set of positive spanning sets satisfying
Assumption 2.3.

The set D is so that the elements dk ∈ Dk ∈ D satisfy the following conditions:

1. dk is a nonnegative integer combination of the columns of D.
2. The distance between xk and the point xk + αkdk tends to zero if and only if

αk does:

lim
k∈K

αk‖dk‖ = 0 ⇐⇒ lim
k∈K

αk = 0,

for any infinite subsequence K.
3. The limits of all convergent subsequences of D̄k = {dk/‖dk‖ : dk ∈ Dk} are

positive spanning sets for Rn.

The third requirement above is included for consistency with the smooth case
and because it is part of the Mesh Adaptive Direct Search (MADS) original presen-
tation [5].

The type of globalization strategy considered also imposes different requirements
for convergence. In fact, when using sufficient decrease to accept new points the
previous assumption simplifies to Assumption 2.5.

Assumption 2.5. The distance between xk and the point xk+αkdk tends to zero
if and only if αk does:

lim
k∈K

αk‖dk‖ = 0 ⇐⇒ lim
k∈K

αk = 0,

for all dk ∈ Dk and for any infinite subsequence K.

If the globalization strategy is based on the use of integer lattices, strict rules
need to be followed for updating the stepsize parameter (see Assumption 2.6) and for
generating the points evaluated at the search step, which need to lie on an implicit
mesh (see Assumption 2.7).

Assumption 2.6. Let τ > 1 be a rational number and mmax ≥ 0 and mmin ≤ −1
integers. If the iteration is successful, then the stepsize parameter is maintained or
increased by considering αnew = τm

+

α, with m+ ∈ {0, . . . ,mmax}. If the iteration is

unsuccessful, then the stepsize parameter is decreased by setting αnew = τm
−
α, with

m− ∈ {mmin, . . . ,−1}.
Assumption 2.7. At iteration k, the search step in Algorithm 1 only evaluates

points in

Mk =
⋃
x∈Ek

{x+ αkDz : z ∈ N|D|0 },

where Ek represents the set of all points evaluated by the algorithm previously to
iteration k.

The first key result for establishing convergence can now be formalized in Theo-
rem 2.1, for both globalization strategies.

Theorem 2.1. (see [17]) Let Assumption 2.1 hold and consider a globalization
strategy based on integer lattices, thus under one of the Assumptions 2.3 or 2.4 com-
bined with Assumptions 2.6–2.7. Alternatively, consider a globalization strategy based
on imposing a sufficient decrease condition and let Assumptions 2.2, 2.5 hold.
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Algorithm 1 generates a sequence of iterates satisfying

lim inf
k→+∞

αk = 0.

Assumption 2.1 and the previous result ensure the existence of a convergent re-
fining subsequence of iterates.

Definition 2.2. A subsequence {xk}k∈K of iterates corresponding to unsuccess-
ful poll steps is said to be a refining subsequence if {αk}k∈K converges to zero.

Refining directions are associated with convergent refining subsequences and are
the keystone to establish the convergence of the algorithm.

Definition 2.3. Let x∗ be the limit point of a convergent refining subsequence
{xk}k∈K . If the limit limk∈K′ dk/‖dk‖ exists, where K ′ ⊆ K and dk ∈ Dk, and if
xk + αkdk ∈ Ω, for sufficiently large k ∈ K ′, then this limit is said to be a refining
direction for x∗.

In fact, the convergence of DMS is established for limit points of convergent
refining subsequences, assuming the density of the set of refining directions in the
Clarke tangent cone to Ω computed at these limit points [12], which is typically
accomplished by requiring the density in the unit sphere of the associated sets of
refining directions.

Definition 2.4. A vector d ∈ Rn is said to be a Clarke tangent vector to the set
Ω ⊂ Rn at the point x∗ in the closure of Ω if for every sequence {yk} of elements of Ω
that converges to x∗ and for every sequence of positive real numbers {tk} converging to
zero, there exists a sequence of vectors {wk} converging to d such that yk+tkwk ∈ Ω.

The Clarke tangent cone to Ω at x∗ (TClΩ (x∗)) is defined as the set of all Clarke
tangent vectors to Ω at x∗. Its interior is denoted as the hypertangent cone to Ω at
x∗.

Theorem 2.5. (see [17]) Consider a refining subsequence {xk}k∈K converging
to x∗ ∈ Ω. Assume that F is Lipschitz continuous near x∗ and that the hypertangent
cone to Ω at x∗ is nonempty. If the set of refining directions for x∗ is dense in the
Clarke tangent cone to Ω at x∗, then x∗ is a Pareto-Clarke critical point, meaning,

∀d ∈ TClΩ (x∗),∃j(d) ∈ {1, 2, . . . ,m} : f◦j(d)(x∗; d) ≥ 0.

If, in addition, F is strictly differentiable at x∗, then this point is a Pareto-Clarke-
KKT critical point, i.e,

∀d ∈ TClΩ (x∗),∃j(d) ∈ {1, 2, . . . ,m} : ∇fj(d)(x∗)
>d ≥ 0.

For a detailed analysis of the convergence results, using Clarke-Jahn calculus [30],
we refer the reader to [17]. We point out that the convergence results rely on the
algorithmic behavior at unsuccessful poll steps and hold independently of the initial-
ization, of the strategy adopted for selecting an iterate point, of the type of polling
strategy considered (complete or opportunistic) or of the definition of a search step.
The latter will be the subject of the current work and for that we will use quadratic
polynomial models.
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3. Polynomial Interpolation and Regression Models. In single objective
derivative-free optimization, polynomial interpolation models have been considered to
define derivative-free counterparts of trust-region methods. The best implementations
of algorithms belonging to this class include DFO [15] and NEWUOA [36].

Consider a quadratic polynomial model centered at the point xk:

m(x) = f(xk) + g>k (x− xk) +
1

2
(x− xk)>Hk(x− xk).

The gradient gk and the symmetric Hessian matrix Hk are determined by solving the
linear system corresponding to the interpolation conditions

m(yi) = f(yi), i = 1, . . . , p, (3.1)

where each yi represents a sample point for which the objective function has been
previously evaluated. The computation of a complete quadratic model requires a

sampling set of size q = (n+1)(n+2)
2 , corresponding to the solution of a determined

linear system. However, when p < q a minimum norm solution could be computed,
whereas, if p > q, regression techniques could be considered.

An important feature of underdetermined models is the balance between the num-
ber of points required for the corresponding computation (typically strictly between
n + 1 and (n + 1)(n + 2)/2) and the ability of incorporating curvature information.
The following result [15, Theorem 5.4][18] provides a general error bound for under-
determined quadratic polynomial interpolation models, built from Λ–poised sampling
sets (for a connection between this geometric condition and the condition number of
the corresponding linear system see [15, Theorem 3.14]).

Theorem 3.1. Let f be a continuously differentiable function with a Lipschitz
continuous gradient (and Lipschitz constant C∇f > 0) in the ball

B(xk; ∆k) = {x ∈ Rn : ‖x− xk‖ < ∆k} .

If the sample set Yk = {y1, . . . , yp}, with n + 1 < p < (n+1)(n+2)
2 , is ΛL–poised for

linear interpolation or linear regression then

‖∇f(y)−∇m(y)‖ ≤ CpΛL (C∇f + ‖Hk‖) ∆k, ∀y ∈ B(xk; ∆k)

|f(y)−m(y)| ≤
(
CpΛL +

1

2

)
(C∇f + ‖Hk‖) ∆2

k, ∀y ∈ B(xk; ∆k)

where Hk represents the Hessian matrix of the model and Cp is a positive constant
dependent on p.

Thus, a possible approach to build an underdetermined quadratic interpolation
model would be to minimize the entries of the Hessian matrix (considering the Frobe-
nius norm), subject to the interpolation conditions:

min 1
4‖Hk‖2F

s.t. f(xk) + g>k (yi − xk) + 1
2 (yi − xk)>Hk(yi − xk) = f(yi), i = 1, . . . , p.

(3.2)
This approach generates the so-called Minimum Frobenius Norm (MFN) models.
Requiring more about the geometry of the sample set, namely that it is Λ-poised

in the minimum Frobenius norm sense (see [15, Definition 5.6]), it is possible to show
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that the Hessian matrices of these models are bounded, as stated in [15, Theorem
5.7].

Theorem 3.2. Let f be a continuously differentiable function with a Lipschitz
continuous gradient (and Lipschitz constant C∇f > 0) in the ball B(xk; ∆k). If the
sample set Yk is ΛF –poised in the minimum Frobenius norm sense then

‖Hk‖ ≤ Cp,qC∇fΛF ,

where Hk represents the Hessian matrix of the model and Cp,q is a positive constant
depending on p and q.

These two results yield the following error bounds for MFN models:

‖∇f(y)−∇m(y)‖ ≤ CpΛLC∇f (1 + Cp,qΛF ) ∆k, ∀y ∈ B(xk; ∆k)

|f(y)−m(y)| ≤
(
CpΛL +

1

2

)
C∇f (1 + Cp,qΛF ) ∆2

k, ∀y ∈ B(xk; ∆k),

which allow us to conclude that MFN models correctly reproduce the accuracy of
first-order Taylor models.

In [18] MFN models were successfully used to define a search step for single
objective directional direct search, by reusing previously evaluated points. In fact,
whenever more than n + 1 points have been evaluated, a MFN quadratic model was
computed and minimized in a trust-region,

B(xk; ∆k) = {x ∈ Rn : ‖x− xk‖ ≤ ∆k},

whose size was directly related to the stepsize parameter:

∆k = σk αk−1 max
d∈Dk−1

‖d‖, (3.3)

where Dk−1 was the set of poll vectors considered in the last iteration and σk took
the value 1 if the previous iteration was unsuccessful, or 2 otherwise. This ensured
the quality of the computed models, since a subsequence of the stepsize parameters
converges to zero.

Eventually, the number of available points, where the objective function has al-

ready been evaluated, will exceed p = (n+1)(n+2)
2 . In [18] two strategies have been

proposed to address this situation: discard some of the points and always compute a
determined quadratic interpolation model (with exactly (n + 1)(n + 2)/2 points) or
use regression quadratic models.

In fact, when p > (n+ 1)(n+ 2)/2, [15, Theorem 4.13] establishes the quality of
regression models as approximation to the real function. Once more, the geometry of
the sample set is ensured by a Λ-poisedness condition (see [15, Definition 4.7]).

Theorem 3.3. Let f be a twice continuously differentiable function with a Lip-
schitz continuous Hessian (and Lipschitz constant C∇2f > 0) in the ball B(xk; ∆k).

If the sample set Yk = {y1, . . . , yp}, with p > (n+1)(n+2)
2 is ΛR–poised for quadratic

regression then

‖∇2f(y)−∇2m(y)‖ ≤ C1
pΛR C∇2f ∆k, ∀y ∈ B(xk; ∆k)

‖∇f(y)−∇m(y)‖ ≤ C2
pΛRC∇2f ∆2

k, ∀y ∈ B(xk; ∆k)
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|f(y)−m(y)| ≤
(
C3
pΛRC∇2f +

C∇2f

6

)
∆3
k, ∀y ∈ B(xk; ∆k)

where Cip, i ∈ {1, 2, 3} are positive constants dependent on p.
According to the computational experience reported in [18], the regression variant

is recommended, but a maximum of (n + 1)(n + 2) points is allowed in model com-
putation. Whenever there are more points than the maximum number allowed for
building the model, the authors select 80% of the desired points from the ones nearest
to the current iterate, and the remaining 20% as the ones farthest, in an attempt of
preserving geometry and diversifying the information.

4. Defining a search step in DMS based on quadratic polynomial mod-
els. In this section, we extend the approach proposed in [18] to multiobjective direc-
tional direct search, by defining a search step in DMS. As in [18], previous evaluations
of the objective function will be used to build quadratic polynomial models for each
of its components fi, i = 1, 2, . . . ,m, which will be minimized inside a defined trust-
region, now in an attempt of finding new nondominated points.

At each iteration, the quadratic polynomial models are centered at the iterate
point xk, selected at the beginning of the iteration (see Step 1 of Algorithm 1). A cache
of previously evaluated points (not necessarily nondominated), denoted by Lcache, is
maintained and used for model computation. Points are selected in B(xk; θ∆k), with
θ ≥ 1 and ∆k = σkαk maxd∈Dk−1

‖d‖, with σk = 1
β1

. On one hand, the inclusion of
the parameter θ ≥ 1 allows a more diversification of points, again in an attempt of
conferring quality to the models. On the other hand, σk = 1

β1
ensures that after each

unsuccessful poll step, considering the update rule for the stepsize, when selecting the
same poll center in the new iteration, at least minimum Frobenious norm models will
be built, since all the feasible evaluated points at the unsuccessful poll step will be in
B(xk; ∆k).

Let mi define the quadratic polynomial model centered at xk, corresponding to
the objective function component fi, built as defined in the previous section:

mi(x) = fi(xk) + gik
>

(x− xk) +
1

2
(x− xk)>Hi

k(x− xk), i = 1, 2, . . . ,m. (4.1)

We note that mi could be a determined, an underdetermined MFN model, or an
overdetermined model built using regression techniques, depending on the number of
points available for model computation.

Similarly to the single objective case, where the quadratic polynomial model is
minimized in an attempt of finding a point with a better objective function value, this
idea can be simply applied to the multiobjective context by independently minimizing
each model mi, in the considered trust-region B(xk; ∆k). However, it seems also
natural that the simultaneous minimization of a combination of the obtained models
for the different components fi of the objective function should also be considered, in
an attempt of finding new nondominated points.

The combined minimization of a subset of components of the objective function
can be stated in the following optimization problem:

min ζ

s.t. mi(x) ≤ ζ, i ∈ I
‖x− xk‖ ≤ ∆k

x ∈ Ω,

(4.2)
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where I ⊆ {1, 2, . . . ,m}.
This formulation corresponds to a weighted Chebyshev norm scalarization, for

the multiobjective minimization problem defined using the models of the different
components of the objective function. The Chebyshev norm approach produces weekly
efficient solutions for convex and nonconvex multiobjective optimization problems,
which could be the case of our models. Nevertheless, other approaches could be
taken for solving the derivative-based multiobjective optimization problem related to
the joint minimization of the models for the different components of the objective
function [10, 26, 42].

The number of components of the objective function to be jointly minimized
depends on the selection of the subset I. In fact, there are Cml = m!

l!(m−l)! possibilities

for each set of cardinality 1 ≤ l ≤ m. Therefore, different strategies can be defined
for this selection. Algorithm 2 details the proposed scheme, for a fixed iteration k.

Algorithm 2: Defining a Search step for DMS.

Initialization
Select a set of points from Lcache (according to the defined criteria to build
the quadratic polynomial models mi). Set l = 0.

For i = 1, 2, . . . ,m
Build the quadratic polynomial model corresponding to the component of
the objective function fi.

While l < m
Set l := l + 1, define J the set of all combinations of l quadratic polynomial
models taken from the total set of m models and set S = ∅.
For j = 1, 2, . . . , |J |

Compute the point sj , solution of problem (4.2) considering I as the
set composed by the polynomial models corresponding to combination
j. Update S = S ∪ {sj}.

Check for success
Evaluate F at each point in S and update Lcache. Compute Ltrial by
removing all dominated points (possibly using sufficient decrease,
depending on the globalization strategy considered) from
Lk ∪ {(zs;αk) : s ∈ S}. If Ltrial 6= Lk set Lk+1 = Ltrial, stop the cycle
loop while, declare the search step successful and skip the poll step.

The procedure initiates with the selection of a set of previously evaluated points
from the cache, inside B(xk; θ∆k), used for computing the m quadratic polynomial
models. The joint minimization of combinations of this set of models will be consid-
ered. Several strategies can be defined for it (and have been attempted).

Starting with the exploration of the lower level of combinations (l = 1), corre-
sponding to the individual minimization of the m models, potentiates the computation
of extreme points of the Pareto front, contributing to a better spread of solutions. The
level l is increased, the set of Cml combinations of l models is considered, the corre-
sponding minimization is performed, and finally the condition for success is tested.
The process is interrupted once that a given level of combinations of models generates
a new nondominated point or when level l = m has been reached, corresponding to
the joint minimization of the m models. Thus, an unsuccessful search step will corre-
spond to a total of 2m − 1 new function evaluations, which is acceptable, since m is
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usually relatively small.
As mentioned in Section 2, the convergence results of DMS hold independently

of the definition of a particular search step. Therefore, we can claim that at least
one limit point of the sequence of iterates generated by the proposed algorithm is a
Pareto-Clarke critical point.

5. Numerical Testing. The code was implemented in MATLAB and is freely
available (under a GNU Lesser General Public License) at

http://ferrari.dmat.fct.unl.pt/personal/alcustodio/BoostDFO.htm.
Since the proposed strategy respects to the definition of a search step for DMS, we

considered the default options of this code [17]. In particular, coordinate directions
are used for complete polling. For distinguishing the two versions, we will name our
proposal as BoostDMS.

Several strategies were defined and tested to select the points from Lcache to build
the quadratic polynomial models used in the search step (a maximum of (n+1)(n+2)
points is allowed). These included the size of the radius θ∆k of the ball centered at xk
where the points are considered and the percentage of points that should be chosen
from this ball. According to our computational results, 80% of the points are selected
in B(xk; 3∆k). The remaining 20% lie outside this ball, conferring diversity to the
quadratic models.

For minimizing the different models, two solvers were considered, depending on
the level l of combinations of the objective function components. When 1 < l ≤ m,
function fmincon.m from MATLAB was used to solve problem (4.2). As initialization
we have provided the feasible point [xk ζ]>, with ζ = max{fi(xk) : i ∈ I}. If l = 1,
corresponding to the individual minimization of each model, function trust.m from
MATLAB was used, providing xk as initialization, for coherency with what was done
in the single objective case [18]. In this last situation, the minimization only considers
the constraint representing the trust region. The resulting point is projected on the
hyper-rectangle defined by any bounds, and feasibility is checked for the remaining
constraints defining the feasible region.

As test set, we used the collection of 100 bound constrained multiobjective opti-
mization problems, where the number of variables, n, is an integer between 1 and 30,
and with a number of components of the objective function m = 2, 3, or 4, available
at http://www.mat.uc.pt/dms.

The proposed algorithm was compared with the original version of direct multi-
search DMS [17], which does not consider any particular definition of a search step,
and with the recent implicit filtering algorithm MOIF [13] proposed for multiobjective
derivative-free optimization with box constraints. Excluding the initialization, which
will be detailed in Section 5.2 jointly with the numerical results, all parameters have
been set to the default values for both solvers (according to [17] and [13], respectively).

All results described in this section have been obtained by allowing a maximum of
20 000 function evaluations or a minimum value of 10−3 for the stepsize hk in MOIF
(see [13]) or for the stepsize parameters αk for all the points in the list, in the case of
DMS or BoostDMS.

5.1. Metrics and profiles used for solver comparison. Solvers comparison
uses purity and spread metrics, as defined in [17], and also the hypervolume indica-
tor [43, 44].

The purity metric measures the quality of the Pareto front computed by a given
solver in terms of capability of generating nondominated points. Let S be the set of
solvers and P be the set of problems to be tested. Let Fp,s denote the approximation
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to the Pareto front computed for problem p ∈ P by solver s ∈ S. Let Fp also denote an
approximation to the true Pareto front of problem p, now calculated by first forming⋃
s∈S Fp,s and then removing from this set any dominated point. The purity metric,

for problem p ∈ P and solver s ∈ S, is defined by the ratio t̄p,s =
|Fp,s∩Fp|
|Fp,s| , which

takes values between zero and one. Higher values of t̄p,s indicate a better Pareto front
in terms of the percentage of nondominated points.

However, the purity metric is not enough to access the quality of an approximation
to the Pareto front of a given problem, since points could be concentrated in a given
region. Spread metrics try to quantify how well distributed are the nondominated
points across the Pareto front. Since we are interested in computing the complete
Pareto front, spread metrics need to first consider the computation of ‘extreme points’
in the objective function space Rm (for a detailed explanation on how to compute these
‘extreme points’ see [17]). The spread Γ attempts to measure the maximum size of
the ‘holes’ of an approximated Pareto front. Let us assume that solver s ∈ S has
computed, for problem p ∈ P, an approximated Pareto front with N points, indexed
by 1, 2, . . . , N , to which we add the ‘extreme points’ mentioned above and indexed
by 0 and N + 1. The metric Γp,s > 0 for problem p ∈ P and solver s ∈ S is given by

Γp,s = max
j∈{1,...,m}

(
max

i∈{0,...,N}
{δi,j}

)
, (5.1)

where δi,j = (fj(xi+1) − fj(xi)) (assuming that the objective function values have
been sorted by increasing order for each objective j).

The second spread metric (proposed in [21] for m = 2) measures how well the
points are distributed in the computed Pareto front. The concept was generalized
in [17] for higher dimensional objective spaces and its computation, for problem p ∈ P
and solver s ∈ S, is given by:

∆p,s = max
j∈{1,...,m}

(
δ0,j + δN,j +

∑N−1
i=1 |δi,j − δ̄j |

δ0,j + δN,j + (N − 1)δ̄j

)
, (5.2)

where δ̄j , for j = 1, . . . ,m, represents the average of the distances δi,j , i = 1, . . . , N−1.
Finally, the hypervolume indicator is also commonly used to measure the quality

of different Pareto fronts, due to its favorable properties [44]. Given a reference point
Up ∈ Rm, that is dominated by all points belonging to the approximations computed
for the Pareto front of a given problem p ∈ P, the hypervolume indicator measures
the volume of the portion of the objective function space that is dominated by the
computed approximation to the Pareto front of the problem and is limited by the
upper corner Up (for two-objective minimization problems, the hypervolume can be
seen as the area of the surface that lies above the Pareto front and below the reference
point Up). Therefore, the hypervolume indicator for some approximation to the Pareto
front Fp,s of problem p ∈ P, computed by solver s ∈ S, considering the reference point
Up ∈ Rm that is dominated by all the points in Fp,s is defined as:

HVp,s = V ol{y ∈ Rm| y ≤ Up ∧ ∃x ∈ Fp,s : x ≤ y} = V ol

 ⋃
x∈Fp,s

[x, Up]

 ,

where V ol(.) denotes the Lebesgue measure of a m-dimensional set of points and
[x, Up] denotes the interval box with lower corner x and upper corner Up.
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The above definition clearly indicates that the rigorous computation of the hy-
pervolume is time-consuming. In fact, it is well-known that there is no algorithm to
compute the hypervolume indicator in a time polynomial in the number of components
of the objective function (unless P = NP) [11, 32]. In this work, for its computation
we considered the approach proposed in [27]. The reference point Up ∈ Rm, for prob-
lem p ∈ P, was selected as a point that is dominated by all points belonging to the
different approximations to the Pareto front of problem p ∈ P, computed by each of
the solvers. Coordinate j of Up, u

p
j ∈ R, j = 1, 2, . . . ,m, is defined as:

upj = max

{
fj(x) : x ∈

⋃
s∈S

Fp,s

}
,

where again Fp,s represents the approximation to the Pareto front of problem p ∈ P,
computed by solver s ∈ S. Moreover, the hypervolume value, computed for the Pareto
front Fp,s and denoted by HVp,s, was scaled, according to the following procedure.
For j = 1, 2, . . . ,m, let

lpj = min

{
fj(x) : x ∈

⋃
s∈S

Fp,s

}

and

rpj = upj − l
p
j .

We define HVp,s :=
HVp,s

Πm
j=1r

p
j

, which means that all the values of HVp,s will lie in [0, 1].

Results on the different metrics will be reported using performance profiles [24].
Performance profiles are depicted by a plot of a cumulative distribution function
ρ(τ), representing a performance ratio for the different solvers. Let tp,s denote the
performance on the problem p ∈ P of the solver s ∈ S, assuming that lower values of
tp,s indicate better performance. The performance ratio is defined by

ρs(τ) =
1

|P|
|{p ∈ P : rp,s ≤ τ}|,

with rp,s = tp,s/min{tp,s̄ : s̄ ∈ S}. Thus, the value of ρs(1) represents the probability
of the solver s winning over the remaining ones. On the other hand, solvers with the
largest probabilities ρs(τ) for large values of τ are the most robust (the ones that
solve the largest number of problems in P).

Since for purity and hypervolume larger values indicate better performance, when
computing performance profiles for these two metrics, we set tp,s = 1/tp,s as proposed
in [17].

5.2. Numerical Results. Two types of numerical tests were conducted, de-
pending on the initialization considered. In the first case, Latin hypercube sampling
was used for generating three sets of initializations for each problem in the collection.
Each of these three sets of initializations comprised one, five, or ten feasible points,
respectively. The combination of each problem in the collection with one particular
set of initializations corresponded to one instance in the test set to be considered (in
a total of 300 instances).

Figures 5.1 and 5.2 correspond to the results obtained by DMS and BoostDMS
algorithms, for the four metrics considered, reported using performance profiles. It

13



is clear the advantage of BoostDMS over DMS in terms of purity, both for efficiency
and robustness. Regarding hypervolume, and the spread metric Γ, we can also see
gains in terms of efficiency, when comparing BoostDMS against DMS.
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Fig. 5.1: Comparing BoostDMS and DMS based on performance profiles of the
purity and hypervolume metrics. Initializations were generated with Latin hypercube
sampling.
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Fig. 5.2: Comparing BoostDMS and DMS based on performance profiles of spread
metrics Γ and ∆. Initializations were generated with Latin hypercube sampling.

BoostDMS was additionally compared to MOIF algorithm, considering the test
set formed by the previous described 300 instances. Results are reported in Figures 5.3
and 5.4. For any of the four metrics considered, BoostDMS clearly outperforms MOIF
in terms of efficiency. Regarding robustness, the two algorithms present similar results,
with exception for the purity metric, where BoostDMS shows a clear advantage over
MOIF.

However, in the works where DMS and MOIF were originally proposed, the au-
thors of each code suggested specific ways of initializing the algorithms that corre-
sponded to the best performance of each solver (see [17] and [13], respectively). In par-
ticular, MOIF algorithm was initialized with the barycenter of the problem bounds,
whereas DMS was initialized with n equally spaced points on the line connecting
the lower and upper bounds of each problem (the variant referenced as DMS(n,line)
in [17]). These are the defaults considered for the second numerical tests conducted.
In the case of BoostDMS, given the close connection to DMS, we considered exactly
the same initialization for the two solvers.
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Fig. 5.3: Comparing BoostDMS and MOIF based on performance profiles of the
purity and hypervolume metrics. Initializations were generated with Latin hypercube
sampling.
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Fig. 5.4: Comparing BoostDMS and MOIF based on performance profiles of spread
metrics Γ and ∆. Initializations were generated with Latin hypercube sampling.

Figures 5.5 and 5.6 report the comparison between BoostDMS and DMS algo-
rithms, again using performance profiles for the four metrics considered. BoostDMS
clearly outperforms DMS in terms of efficiency for purity, hypervolume, and Γ metric.
The results are very close in terms of robustness, with advantage of BoostDMS for
purity.
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Fig. 5.5: Comparing BoostDMS and DMS based on performance profiles of the purity
and hypervolume metrics. Both solvers were initialized with line sampling.
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Fig. 5.6: Comparing BoostDMS and DMS based on performance profiles of spread
metrics Γ and ∆. Both solvers were initialized with line sampling.

Regarding the comparison between MOIF and BoostDMS, Figures 5.7 and 5.8
depict the corresponding performance profiles. The conclusions are similar to the
previous ones. BoostDMS outperforms MOIF in terms of efficiency for any of the
four metrics considered. In fact, reading the values of the curves for τ = 1, we can
observe that BoostDMS is able to attain the best purity, hypervolume, and spread
Γ for approximately more 20% of problems than MOIF. This difference is of 15% in
case of ∆ metric. Regarding robustness, the results are similar for the two solvers,
with exception of purity, where BoostDMS again presents a better performance than
MOIF.
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Fig. 5.7: Comparing BoostDMS and MOIF based on performance profiles of the purity
and hypervolume metrics. BoostDMS was initialized with line sampling and MOIF
with a single point.

The reported results show that the definition of a search step based on quadratic
polynomial models can be helpful in identifying nondominated points, allowing us
to conclude that BoostDMS is a competitive alternative to both MOIF and DMS
algorithms.

6. Conclusions. In this paper we improved the DMS algorithm proposed in [17]
to solve multiobjective derivative-free optimization problems, by defining a particular
implementation of a search step based on the computation of quadratic polynomial
interpolation or regression models. Models are built by reusing points where the
objective function has been previously evaluated, during the course of the optimiza-
tion. This approach extends to the multiobjective case the use of minimum Frobenius
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Fig. 5.8: Comparing BoostDMS and MOIF based on performance profiles of spread
metrics Γ and ∆. BoostDMS was initialized with line sampling and MOIF with a
single point.

norm quadratic models or regression techniques, proposed in [18] for single objective
directional direct search. The new variant of DMS, which considers the definition
of a search step based on quadratic polynomial models, is named as BoostDMS and
is freely available for use (under a GNU Lesser General Public License). Conver-
gence results hold, given the independence of the definition of the search step in DMS
(see [17]). Numerical results, considering the comparison with the original imple-
mentation of DMS and with another recent algorithm proposed for the same class of
problems, support the effectiveness of the proposed strategy. Possible avenues for re-
search include the parallelization of the algorithm and different approaches for solving
the derivative-based minimization problem associated with the models of the different
components of the objective function.
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[18] A. L. Custódio, H. Rocha, and L. N. Vicente, Incorporating minimum Frobenius norm
models in direct search, Comput. Optim. Appl., 46 (2010), pp. 265–278.

[19] R. Datta and R. G. Regis, A surrogate-assisted evolution strategy for constrained multi-
objective optimization, Expert Systems Appl., 57 (2016), pp. 270–284.

[20] C. Davis, Theory of positive linear dependence, Amer. J. Math., 76 (1954), pp. 733–746.

[21] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic
algorithm: NSGA-II, IEEE T. Evolut. Comput., 6 (2002), pp. 182–197.

[22] S. Deshpande, L. T. Watson, and R. A. Canfield, Pareto front approximation using a hybrid
approach, Procedia Comput. Sci., 18 (2013), pp. 521–530.

[23] , Multiobjective optimization using an adaptive weighting scheme, Optim. Methods
Softw., 31 (2016), pp. 110–133.
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rithm for the hypervolume indicator, in Proceedings of the 2006 Congress on Evolutionary
Computation (CEC’06), IEEE, 2006, pp. 1157–1163.

[28] J. Handl, D. B. Kell, and J. Knowles, Multiobjective optimization in bioinformatics and
computational biology, IEEE-ACM T. Comput. Bi., 4 (2007), pp. 279–292.

[29] D. Hirpa, W. Hare, Y. Lucet, Y. Pushak, and S. Tesfamariam, A bi-objective optimization
framework for three-dimensional road alignment design, Transport. Res. Part C: Emerging
Technol., 65 (2016), pp. 61–78.

[30] J. Jahn, Introduction to the Theory of Nonlinear Optimization, Springer-Verlag, Berlin, Ger-
many, 1996.

[31] T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by direct search: New perspectives
on some classical and modern methods, SIAM Rev., 45 (2003), pp. 385–482.

[32] R. Lacour, K. Klamroth, and C. M.Fonseca, A box decomposition algorithm to compute
the hypervolume indicator, Comput. Oper. Res., 79 (2017), pp. 347–360.

[33] G. Liuzzi, S. Lucidi, and F. Rinaldi, A derivative-free approach to constrained multiobjective
nonsmooth optimization, SIAM J. Optim., 26 (2016), pp. 2744–2774.

[34] K. Miettinen, Nonlinear Multiobjective Optimization, International Series in Operations Re-
search & Management Science, Springer US, New York, USA, 1998.

[35] P. S. Potrebko, J. Fiege, M. Biagioli, and J. Poleszczuk, Investigating multi-objective
fluence and beam orientation IMRT optimization, Phys. Med. Biol., 62 (2017), pp. 5228–
5244.

[36] M. J. D. Powell, Developments of NEWUOA for minimization without derivatives, IMA J.
Numer. Anal., 28 (2008), pp. 649–664.

18



[37] G. P. Rangaiah and A. Bonilla-Petriciolet, eds., Multi-Objective Optimization in Chemical
Engineering: Developments and Applications, John Wiley & Sons, Chichester, United
Kingdom, 2013.

[38] R. G. Regis, Multi-objective constrained black-box optimization using radial basis function
surrogates, J. Comput. Sci., 16 (2016), pp. 140–155.

[39] J.-H. Ryu and S. Kim, A derivative-free trust-region method for biobjective optimization, SIAM
J. Optim., 24 (2014), pp. 334–362.

[40] W. I. Thacker, J. Zhang, L. T.Watson, J. B. Birch, M. A. Iyer, and M. W. Berry,
Algorithm 905: SHEPPACK: Modified Shepard algorithm for interpolation of scattered
multivariate data, ACM Trans. Math. Software, 37 (2010), pp. 1–20.

[41] J. Thomann and G. Eichfelder, A trust-region algorithm for heterogeneous multiobjective
optimization, SIAM J. Optim., 29 (2019), pp. 1017–1047.

[42] M. M. Wiecek, M. Ehrgott, and A. Engau, Multiple Criteria Decision Analysis, Springer,
New York, USA, 2016, ch. Continuous multiobjective programming, pp. 739–815.

[43] E. Zitzler and L. Thiele, Multiobjective optimization using evolutionary algorithms – A com-
parative case study, in Parallel Problem Solving from Nature - PPSN V: 5th International
Conference Amesterdam, The Netherlands, A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P.
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