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Abstract 
Although nuclear medicine (NM) procedures are highly effective diagnostic tools, they have been 
contributing significantly, together with other medical diagnostic and therapeutic methodologies, 
to the increase in exposure to ionizing radiation in recent years. There is an urgent need to opti-
mize NM techniques, to maintain diagnostic quality at a minimum possible radiation absorbed 
dose. 68Ga-prostate-specific membrane antigen positron emission tomography/computed tomog-
raphy (68Ga-PSMA-11 PET/CT) imaging has rapidly gained notoriety in the NM field and, at the 
same time, personalized dosimetry studies using voxel-based methods have been performed. This 
study aimed to calculate the absorbed dose at the voxel level in the kidneys, liver, spleen, and red 
bone marrow, compare the results with other studies and draw conclusions regarding the safety 
of using 68Ga-PSMA-11 in NM clinics.  

Whole-body PET/CT images from six patients were acquired after a single 68Ga-PSMA-
11 injection. After registration of the CT and PET images, the target organs were manually seg-
mented in the CT and resampled to the PET voxel size. Voxel S-values were computed for spe-
cific tissues using the Monte-Carlo N-Particle transport 6.1 code. The absorbed dose rates were 
obtained by convolution of the PET activity images with the specific S-values of each tissue. A 
time integral was then applied to each distribution to account for all 68Ga decay. Statistical dose 
values were computed and compared with the available literature.  

Considering all the patients included in this study, the kidneys received the highest radi-
ation, with a mean overall absorbed dose of 0.0561 mGy/MBq and a median overall absorbed 
dose of 0.0499 mGy/MBq. In contrast, the red bone marrow received the lowest absorbed dose 
values (mean dose: 0.0015 mGy/MBq, median dose: 0.0013 mGy/MBq). The present study 
showed lower dosimetry values than the literature, resulting in deviations ranging from -38.1% 
(in the liver) to -91.3% (in the red bone marrow). 

The present study employs a voxel-based approach, which considers a non-uniform bio-
distribution of the radiopharmaceutical in the organs and leads to dosimetry estimates closer to 
the real ones. The reasonable low absorbed doses in the four organs herein studied is an argument 
in favor of using 68Ga-PSMA-11 in NM clinics. In the Future Work chapter, a more specific 
dynamic NM imaging methodology, taking into consideration the radiopharmaceutical pharma-
cokinetics, is presented.  

Keywords: Nuclear Medicine, Positron Emission Tomography, Voxel-based Dosimetry, Ab-
sorbed dose 
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Resumo 

Embora os procedimentos em medicina nuclear ( do inglês, Nuclear Medicine, NM) sejam ferra-
mentas de diagnóstico altamente eficazes, nos últimos anos têm contribuído de forma significa-
tiva, juntamente com outros meios de diagnóstico e terapêutica, para o aumento da exposição à 
radiação ionizante. Existe uma necessidade urgente de otimizar as técnicas de NM, o que implica 
manter a qualidade de diagnóstico com a mínima dose de radiação absorvida possível. A tomo-
grafia por emissão de positrões/tomografia computorizada com 68Ga acoplado ao antigénio de 
membrana específico da próstata (do inglês, 68Ga-prostate-specific membrane antigen positron 
emission tomography/computed tomography, 68Ga-PSMA-11 PET/CT) tem adquirido rapida-
mente notoriedade no campo de NM, e têm sido realizados estudos de dosimetria personalizada 
ao nível do voxel. Este estudo teve como objetivo calcular a dose absorvida ao nível do voxel nos 
rins, fígado, baço, e medula óssea vermelha, comparar os resultados com outros estudos e tirar 
conclusões relativamente à segurança da utilização do 68Ga-PSMA-11 nas clínicas de NM.  

Após uma única injeção de 68Ga-PSMA-11 foram adquiridas imagens de PET/CT de 
corpo inteiro em seis doentes. Após o registo das imagens CT e PET, os órgãos-alvo foram seg-
mentados manualmente no CT e reamostrados para o tamanho de voxel do PET. Os S-values ao 
nível do voxel foram obtidos para tecidos específicos usando a versão 6.1 do código de simulação 
Monte Carlo. As distribuições de taxa de dose absorvida foram calculadas através de operações 
de convolução das imagens de atividade PET com os S-values específicos de cada tecido. Uma 
integração temporal foi então aplicada a cada distribuição para contabilização de todos os decai-
mentos do 68Ga. Os valores estatísticos destas distribuições de dose absorvida nos órgãos em 
estudo foram depois calculados e comparados com a literatura disponível. 

Considerando todos os pacientes incluídos neste estudo, os rins receberam os valores 
mais altos de dose absorvida, com uma dose média global de 0.0561 mGy/MBq e uma dose ab-
sorvida mediana global de 0.0499 mGy/MBq. Por outro lado, a medula óssea vermelha recebeu 
os valores mais baixos de dose absorvida (dose média: 0.0015 mGy/MBq, dose mediana: 0.0013 
mGy/MBq). O presente estudo obteve valores dosimétricos inferiores aos da literatura, originando 
desvios que variaram entre -38.1% (no fígado) e -91.3% (na medula óssea vermelha).  

O presente estudo seguiu uma abordagem ao nível do voxel, que considera uma biodis-
tribuição não uniforme do radiofármaco nos órgãos e conduz a estimativas dosimétricas mais 
próximas das reais. As baixas doses absorvidas nos quatro órgãos aqui estudados é um argumento 
a favor do uso de 68Ga-PSMA-11 em clínicas de NM. No capítulo final deste trabalho, é apresen-
tada uma metodologia de aquisições dinâmicas mais específica que tem em consideração a far-
macocinética do radiofármaco. 

Palavras-chave: Medicina Nuclear, Tomografia por Emissão de Positrões, Dosimetria a nível do 
voxel, Dose absorvida 
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Introduction 

1.1 Context and Motivation 
Nuclear medicine (NM) is a medical specialty that uses radioactive isotopes to examine organ 

function and structure for diagnosis, therapy, and biomedical research. It plays an important role 

in modern medicine since it offers the potential to identify disease (appearance, progress, or re-

currence) in its earliest stages and, consequently, makes treatment more effective [1]. 

Hybrid technology – positron emission tomography/computed tomography (PET/CT) – 

combines the strengths of the two well-established image modalities. PET molecular imaging 

measures tumor metabolic activity, providing insight into biological processes, while CT high-

lights anatomical information about the tumor and its involvement in adjacent organs and vascu-

lature. PET/CT scanner hybrids facilitate localization and interpretation of tumors and metastases, 

treatment planning, and follow-up monitoring in a non-invasive way. Therefore, this imaging 

technology is established in clinical practice and has added significant value in the areas of neu-

rology, cardiology, and, especially, oncology [2].   

Labeling of prostate-specific membrane antigen (PSMA) with the 68Ga radionuclide leads 

to the formation of the 68Ga-prostate-specific membrane antigen (68Ga-PSMA-11) radiopharma-

ceutical. This radiotracer has been identified as the most promising radiopharmaceutical for im-

aging prostate cancer primary disease, recurrence, and metastasis [3]. There is an ongoing wide-

spread adoption of 68Ga-PSMA-11 PET/CT imaging in diagnosis, staging, and restaging of pros-

tate cancer in recent years. Despite being mainly used in patients with prostate cancer, there have 

been reports of its application in patients with other malignancies with increase PSMA expres-

sion.  

Regarding the imaging equipment, Philips Vereos Digital PET/CT is the first truly digital 

PET/CT scanner. This type of machine has higher temporal and spatial resolution than any analog 
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PET/CT commonly used in NM clinics. It offers improved detectability and characterization of 

malignancies for a fast, simple, and confident path staging and treatment monitoring [4]. Philips 

Vereos Digital PET/CT is available at the Champalimaud Foundation, and images from this scan-

ner were used in this study.  

Medical application of ionizing radiation is a massive and increasing activity globally. 

While the use of ionizing radiation in medicine brings tremendous benefits to the global popula-

tion, the associated risks due to stochastic (e.g., cancer) and deterministic (e.g., skin injuries) 

effects make it necessary to protect patients from potential harm. Thus, after almost 70 years of 

using radionuclides for diagnostic purposes, there is now a rapidly increasing awareness of the 

need to assess risk as soon as possible to ensure the safe use of radioactively labeled drugs in 

medical practice [5]. This fundamental change is being spurred on by the need for evidence-based 

medicine and the emerging interest in voxel dosimetry and personalized treatment. Procedures 

that utilize ionizing radiation should be performed in accordance with the As Low As Reasonably 

Achievable (ALARA) philosophy. This principle states that the radiation activity and consequent 

absorbed dose should be as low as possible for the patient, ensuring that tracer uptake in target 

structures is discernible [6]. This type of evaluation and the analysis of dose distribution in pa-

tients after administration of 68Ga-PSMA-11 are crucial for its adoption within multicenter trials. 

Therefore, a study on the absorbed dose received by patients and dose mapping is imperative, this 

being the motivation for this study. 

 

1.2 Objectives and dissertation plan  
The primary objective of this dissertation is to assess the whole-body absorbed doses of a set of 

patients from the NM Department of the Champalimaud Foundation, based on 68Ga-PSMA-11 

PET/CT imaging. With this goal in mind, statistical analysis of patient doses was computed from 

images acquired by a digital PET/CT – VEREOS-. Then, these values were compared with the 

data present in the literature.  

 The present dissertation has been structured to first cover (chapter 1) the current state-of-

the-art concerning PET/CT equipment, the use of 68Ga-PSMA-11 as a radiopharmaceutical in 

NM, the absorbed dose calculation using the Medical Internal Radiation Dose (MIRD) schema at 

the voxel level and its relevance in NM clinicals. In chapter 2, theoretical concepts of CT, PET, 

and hybrid PET/CT system, essential to medical image acquisition, are described. Afterward, the 

biological effects of radiation, internal voxel-dosimetry, and dose-volume histograms (DVHs) are 

described in chapter 3. In chapter 4, the materials and methods used for imaging processing and 

statistical analysis are presented. In the following chapter 5, the results are presented, including 
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the statistical analysis and evaluation of each organ absorbed doses and the respective DVHs. 

Lastly, the discussion and conclusions are addressed in chapter 6, including the limitations of the 

present study and possible directions for future works.  

 

1.3       State-of-the-art  
NM has gained more notoriety since the introduction of the first PET/CT scanner in 1998 [7]. 

PET/CT is now widely used in routine clinical settings for cancer diagnosis, staging and restaging, 

treatment planning, and treatment monitoring [8-12]. Moreover, it is used as a prognostic indica-

tor based on standardized uptake values (SUVs) [13]. Currently, almost 95% of new PET scanners 

sold are hybrid PET/CT scanners [14], and 90% of clinical workloads are for oncology research 

[15]. Studies have shown that interpretation of co-registered and fused PET and CT images leads 

to a 30% to 50% improvement in the observer confidence of lesion localization and a 4% to 15% 

improvement in the overall accuracy of staging/restaging by comparison with PET alone, CT 

alone, and visually correlated PET and CT [15-19]. 

Vereos PET/CT was unveiled in 2013 by Philips Healthcare as the first commercially 

available Food and Drug Administration-approved digital PET scanner [20]. Nguyen and his col-

leagues showed that this digital scanner provides better image quality, diagnostic performance, 

and accuracy than analog PET scanners [20]. These improvements result from the implementation 

of high-performance digital detectors and single-photon avalanche photodiodes with low-voltage 

complementary metal-oxide semiconductors. Additionally, improved system corrections and re-

construction parameters increase the spatial and time-of-flight (TOF) resolution [21, 22]. 

68Ga began to be clinically applied in the early 1960s in studies of the central nervous 

system [23]. However, this radioisotope only began to be clinically used in NM when coupled 

with PSMA inhibitors by Eder and his colleagues [24]. PSMA is a transmembrane protein ex-

pressed in several tissues, including the small intestine, proximal renal tubules, and salivary 

glands. Additionally, due to the neo-vascularization process, it may be found in a variety of 

malignancies, including intestinal, renal, lung, and breast cancers [25]. However, its expression 

is increased up to 10000-times in prostatic cancer cells [16, 26-30] and is a significant 

prognosticator for disease outcome [31]. 68Ga-PSMA-11 PET/CT is the most useful diagnostic 

tool for prostate cancer screening worldwide, as it offers excellent contrast between the tumor 

and the background, also known as the target-to-background ratio, leading to an improved 

detection rate of prostate cancer primary disease, recurrence, or metastasis [30, 32-35]. It has also 

been shown to detect lymph nodes, soft tissue, and bone metastases with high sensitivity and 

specificity [33] and has been used to aid decision making by confirming or eliminating the need 
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for biopsies [36-38]. Several studies have shown that 68Ga-PSMA-11 PET/CT detects with high 

accuracy primary prostate cancer, biochemical recurrence [39, 40], and metastases even at low 

prostate-specific antigen (PSA) levels [38, 41-43]. Moreover, two recent studies have shown that 
68Ga-PSMA-11 PET/CT performs better than bone scintigraphy in determining overall bone 

involvement in prostate cancer patients [44, 45]. In addition, a study by Grubmuller and his col-

leagues highlights the enhanced ability for 68Ga-PSMA-11 PET to detect distant sites of disease 

compared to standard imaging with CT only [46].  

Apart from natural background radiation, medical procedures are the largest source of 

exposure to ionizing radiation for the population [47]. Every day, more than 1000 000 NM 

diagnostic procedures are performed all over the world, increasing the exposure of populations to 

ionizing radiation and, consequently, increasing the absorbed doses by people [48]. This dramatic 

increase in the use of ionizing radiation in medical diagnostic practice has been the subject of 

several concerns, with the American College of Radiology (ACR) White Paper noting that “The 

rapid growth of CT and certain NM studies may result in an increased incidence of radiation-

related cancer in the not-too-distant future” [49]. The radiation exposure to the patient depends 

on the PET component of the PET/CT scanner image acquisition and processing features and the 

selection of an appropriate radiopharmaceutical and its activity [50]. Radiation dosimetry studies 

are essential to determine the relationship between absorbed dose and toxicity, characterize the 

safety and efficacy of radiopharmaceuticals, and choose a personalized treatment for each patient 

[51]. The ultimate goal is to perform examinations with the minimum possible radiation exposure 

without hampering the diagnostic purpose. Currently, as exposures are not subject to regulatory 

equivalent dose limits in the medical imaging field, radiation protection is underpinned by the 

concepts of justification and optimization [47, 52]. In its 1990 and 2007 recommendations, the 

International Commission on Radiological Protection (ICRP) stated as a principle of justification 

that “Any decision that alters the radiation exposure situation should do more good than harm” 

[53, 54]. A stronger position on the justification of medical exposures is expressed in the Interna-

tional Atomic Energy Agency (IAEA) 2007 Justification Consultation report, which states that 

the “good” (i.e., the benefits) should substantially outweigh the risks that may be incurred, in part 

because of the uncertainty of the risks [55]. Hence, all individual medical exposures should be 

justified in advance, taking into account the specific objectives of the exposures and the 

characteristics of the individual involved. Furthermore, according to the safety protocol known 

as ALARA, the dose should be kept “as low as reasonably achievable, economic, and social 

factors being taken into account” [6].  

 Internal absorbed doses from radiopharmaceuticals are usually calculated using the inter-

national dosimetry schema of the MIRD Committee of the Society of Nuclear Medicine for both 
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diagnostic and therapeutic purposes. This formalism was originally published in the MIRD Pam-

phlet No. 1 [56] in 1968 to reach standardization of the absorbed dose to whole organs, tissue 

subregions, sub-organ, and cellular levels. Internal radiation dosimetry at the voxel-level has been 

increasingly implemented since the traditional model of activity being uniformly irradiated and 

distributed in the organs no longer applies. Thus, Monte Carlo simulations are used to calculate 

absorbed dose rates per unit cumulated activity (expressed in mGy/(MBq∙s), also known as S-

values. These, together with the accumulated radiopharmaceutical activities, are employed in the 

absorbed dose calculation. The absorbed dose in various organs after the administration of the 

radiopharmaceutical under study, 68Ga-PSMA-11, can be consulted in several studies [57-61]. To 

calculate a tomographic (3D) map of the absorbed dose, the activity quantification in organs can 

be performed by delineating regions of interest (ROIs) in PET/CT images through segmentation. 

Manual segmentation of organs, such as the liver, stomach, spleen, and kidneys, is uncertain and 

difficult. However, Leong and his colleagues have shown that visual manual segmentation of 

PET/CT images is more accurate and reproducible than thresholding-based semiautomatic seg-

mentation methods [62, 63]. Furthermore, if registration of images is required during image pro-

cessing, rigid registration has shown to achieve good alignment between baseline and evaluation 

scans [64]. 
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Hybrid PET/CT system 

PET/CT is a non-invasive imaging modality that combines the possibility of obtaining detailed 

anatomical images, from CT, with the capability to obtain functional images from PET, all in one 

examination. This system has the advantage of allowing both the mapping of the distribution of 

radiotracers in the human body and acquiring anatomical information about the localization of 

the pathology on the same volume. Also, in PET/CT, CT data can be transformed into attenuation 

coefficients for PET through mathematical algorithms to provide quick photon attenuation cor-

rection with little noise. The hybrid PET/CT imaging system was introduced in clinical practice 

in 1998 and, since then, has been revolutionizing the clinical context due to the speed, conven-

ience, and precision with which this system obtains images of the objects under study [65].  

 

2.1       Computed Tomography 
CT is a conventional radiation technique that uses sophisticated x-ray technology to generate de-

tailed anatomical images. X-rays are high energy photons with energies ranging from 103 eV to 

106 eV and are produced in an x-ray tube [66].  

CT records a tissue densities pattern, based on the attenuation coefficient of the tissues 

crossed by the x-ray beam. This means that by detecting the x-rays that pass through the 3-dimen-

sional patient volume (i.e., tomographically), attenuation and location are measured by the detec-

tors and used to reconstruct a 3D image. The higher the tissue’s attenuation, the brighter the tissue 

appears in the gray-scale image, and vice-versa. Hence, the bone appears as white on the digital 

detectors, while the lungs, mostly composed of air, appear dark in the image. 
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Since it was introduced in 1972 by the British engineer Godfrey Newbold Hounsfield, 

CT has revolutionized not only the diagnosis in radiology but the entire field of medicine [67]. In 

NM, CT has been growing with the introduction of the PET/CT systems. CT scanners currently 

used for clinical operations can achieve a spatial resolution of about 0.3 mm, and depending on 

the number of slices intended, two techniques are used to perform this exam: helical scan mode 

(patient bed moves continuously during the scan) and CT multislice (bed moves step-by-step 

during the scan) [68]. 

 

2.1.1       Photon interaction with matter 
When a photon (which may be an x-ray or a gamma ray) interacts with matter, it can transfer all 

or part of its energy to the medium. When this happens, it can promote the ionization or excitation 

of the constituent atoms of the absorbent material. Depending on the energy of the electromag-

netic radiation and the type of material, photons interact with matter by three dominant mecha-

nisms: photoelectric effect, Compton scattering, and pair production. Considering the range of 

energies produced by CT scanners, only the first two interactions will be analyzed in detail. 

The photoelectric effect involves the interaction of an incident photon with an orbital (gen-

erally inner shell) electron that has a similar but smaller binding energy than the energy of the 

incident photon. In this effect, the energy of the impinging photon is locally deposited, resulting 

in its total absorption, and the ionization of the atom occurs (Figure 2.1-A). While the photoelec-

tron is ejected with a kinetic energy equal to the difference of the incident photon and the electron 

binding energy, the residual atom is left in an excited state. Thus, characteristic x-rays, with en-

ergy equal to the difference in electron binding energies for the different electron levels, can be 

produced since the emitted electron left a free orbital. This orbital is then filled by a less bound 

and more energetic electron from the external orbitals (from the L or M shell).  

Compton scattering is an interaction in which an incident photon transfers part of its energy 

to an outer shell electron, ejecting it from the atom. A portion of the photon energy is transferred 

to the electron, causing a recoil and subsequent removal from the atom in a forward direction 

relative to the angle of the impinging photon. After the interaction, as the photon undergoes a 

change in direction, the remainder of the energy is transferred to this scattered photon that may 

travel to any direction between 0º and 180º. The scattering angle is proportional to the amount of 

energy lost (Figure 2.1-B) [69].  
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Figure 2.1: Illustration of the photoelectric effect and Compton scattering: A) The photoelectric effect, as 
illustrated, involves the total transfer of energy from the incident photon to an orbital electron, causing the 
ionization of the atom and consequently the formation of a free electron and a positive charged atom. Sub-
sequently, characteristic x-rays are emitted. B) In the Compton scattering interaction, the incident photon 
transfers part of its energy to an outer shell electron. While the electron is ejected, the photon is scattered 
at an angle proportional to the amount of energy lost. Adapted from [70]. 

 

2.1.2       Photon attenuation in matter 
As a result of the interactions between photons and matter, the number of detected photons de-

creases as the beam passes through this attenuator. More specifically, the intensity I of the de-

tected photons is expressed as: 

𝐼 = 𝐼"𝑒#$%                                                              (2.1) 

where 𝐼" is the number of source photons, 𝜇 is the linear attenuation coefficient, and 𝑥 is the 

thickness of the attenuator.  

 The linear attenuation coefficient depends on the energy of the incident photon and the 

average atomic number and thickness of the attenuator [69]. As a consequence, the images that 

CT scanners produce are gray-scaled maps of the spatially varying linear attenuation coefficients 

of the tissues since this coefficient is higher for dense tissue compared to soft tissue.   

CT pixel intensities are given in the Hounsfield unit (HU) scale and are simply attenua-

tion units measured by CT. The scale is defined so that the reference, water, has a value of 0 HU 

and air a value of -1000 HU [69]. The Hounsfield units are used to reduce energy dependence and 

are very important in medicine when it is necessary to find the type of tissue being examined. 

This unit is often employed in voxel-wise 3D absorbed dose calculations. 
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2.1.3       X-ray production 
An x-ray tube is a glass or ceramic vacuum tube composed of a cathode, an anode, an electronic 

focusing cup, a window, a filter, and a collimator (Figure 2.2). First, an electrical current is applied 

to heat the negative electrical potential, the cathode, so that electrons are emitted through thermi-

onic emission from a charged metal filament. Then, the electrons are accelerated toward the pos-

itive electrical potential, the anode, due to the high potential difference (between 25 and 150 kV& 

in diagnosis [71]) maintained by these two structures. The more heated the filament (i.e., filament 

current), the more electrons will be emitted, and the greater will be the electrical current that flows 

between the cathode and the anode (i.e., tube current). When the electrons, oriented by the elec-

tronic focusing cup, reach the anode target, the majority interact with outer-shell electrons of the 

anode, and their kinetic energy is lost as heat. Only approximately 0.2% of these electrons gener-

ate the emission of an x-ray by either characteristic or bremsstrahlung x-rays [65]. 

 

 

 

 

 

 

 

Figure 2.2: X-ray tube diagram in longitudinal section. The heated cathode emits electrons that are accel-
erated by the high potential difference between the cathode and anode. The electron stream is collected in 
the anode. The interaction of the electrons with the anode material produces characteristic and bremsstrah-
lung x-ray photons. This is the beam that interacts with the patient [72]. 

 

Characteristic x-rays are generated in electronic transitions in an atom. An electron, when 

decelerating, can collide with the electrons from the inner or outer layers shells of the anode 

atoms, causing ionization or excitation. If it has enough energy, the electron can even eject an 

electron. Consequently, a photon with an energy proportional to the difference between the initial 

and final energy states is released (i.e., characteristic x-ray photons with discrete energy values). 

On the other hand, bremsstrahlung x-rays are generated by electrons acceleration and posterior 

deceleration. This incidence happens when an electron interacts with the Coulomb electric field 

of a nucleus and is either deflected from its linear path or varies its velocity, irradiating radiative 

energy proportionally to its acceleration. The energy distribution of bremsstrahlung radiation is 

continuous and extends up to the energy of the incident electron, unlike characteristic x-rays, 

which exhibit a discrete energy spectrum. At the end of this process, this electromagnetic radiation 
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exits the tube through the window towards the patient’s body. A collimator, usually made of lead, 

is fixed to narrow the x-ray beam and avoid radiating tissues other than those under study. 

Due to the x-ray tube development, it was possible to construct the CT scanner, which 

emits radiation while revolving around the patient. The x-rays are later detected on the opposite 

side by detectors. The basic elements and operations involved will be discussed in the following 

section. 

 

2.1.4       Instrumentation 
The basic components of a CT scanner are an x-ray tube and a detector ring positioned around 

the patient’s bed, contained in a gantry. 

In most current scanners, data is recorded over a 360º path, and the x-ray source is moved 

mechanically in increments around the patient. The tube is turned on at each position, and the 

patient is exposed to a narrow (from 0.5 to 20 mm thickness) beam of x-rays. Consequently, 

multiple images, called projections, are collected and digitalized to be “back-projected” and cre-

ate transaxial slices.  

Within the past decade, the development of third-generation systems with multislice has 

changed the scope of CT technology (Figure 2.3). These “rotate-rotate” systems consist of a ro-

tating source and a rotating ring of detectors that move simultaneously around the patient. They 

accommodate larger multirow detector arrays that provide multislice acquisition capability and a 

greater irradiation volume of the patient. With these systems, it is possible to acquire several slices 

simultaneously, and subsequently, the acquisition time decreases to just 5-20 seconds to obtain 

full body images [71]. Consequently, the number of artifacts related to the patient’s movement 

decreases, providing a more well-defined image, and a shorter x-ray exposure is delivered to the 

patient, resulting in reduced absorbed dose values. Also, the field-of-view (FOV) is increased, 

contributing to the production of non-overlapping images. Some of the disadvantages include 

increased noise with decreased slide thickness, increased cost due to the increased number of 

detectors, and a possible increase in x-ray exposure when thin sections with high quality are in-

tended.  
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Figure 2.3: Illustration of a third-generation CT system with multislice. These scanners employ a “rotate-
rotate” geometry, in which both the x-ray source and the detector rotate about the patient. In a multislice 
system, the attenuation of the patient is measured by each detector that integrates a narrow multi-row de-
tector array [71]. 

 

Furthermore, newer CT scanners, introduced in the early 90s, acquire slices continuously 

as the bed advances uninterruptedly and are called helical scanners [65]. Consequently, new ad-

vantages, such as faster scanning times (a complete exam is performed in approximately 30 sec-

onds) and increased flexibility during data reconstruction, emerge [71]. 

The detectors used in CT scanners are mainly composed of solid ceramic scintillators, 

characterized by emitting a light distribution in response to x-rays. In these detectors, the incident 

radiation causes excitation of tightly bound electrons, which become free to migrate. An electric 

field is then applied to generate a flow of charge through the detector. The ceramic scintillators 

are coupled to photodiodes. These are semiconductors responsible for converting light photon 

energy into current or electrical pulses. The resulting signal is processed on specific computer 

software and converted into a density-weighted image (i.e., grayscale image calibrated in HU). 

 

2.2       Positron Emission Tomography 
PET is a biomedical functional imaging technique used to localize metabolic processes in a fast, 

whole-body, and non-invasive real-time quantitative assessment. PET applies coincidence 

detection to display the body’s biochemistry, depending upon the choice of the radiopharmaceu-

tical administered to the patient. 

This imaging modality has been widely used in diagnostic medicine and clinical pharma-

ceutical research. Its principal applications include oncology, cardiology, and neurology [2]. 

Since the early detection of metastases can have a massive impact on overall patient outcomes, 

peptide receptors with over-expression on tumor metastases have become promising biological 
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targets in nuclear oncology. In this module, the radiopharmaceutical 68Ga-PSMA-11 will be 

analyzed in detail. 

The advantages of this technique include high temporal resolution and sensitivity, and 

accurate detection and quantification of tracer, even in small size lesions. PET imaging also ena-

bles the quantification of radiopharmaceutical uptake kinetics, dynamic image reconstruction, and 

simpler dosimetry estimations. In the last decade, PET detectors and instrumentation have been 

developed into sophisticated clinical tools to improve diagnostic conditions, and PET scanners 

have been substituted for hybrid PET/CT scanners. However, the principal disadvantages are the 

added cost of the equipment and the short half-life of some of the most useful positron radiation 

emitters, whose synthesis is very costly and time-consuming [73]. 

Considering all these advantages and disadvantages, PET is one of the most precise im-

aging techniques currently in use, allowing physiology and pathology evaluations early in disease 

processes, individualize treatment selection, and planning and monitoring of treatment response. 

 

2.2.1       Radioactive decay 
Radioactive decay consists in the release of energy from the nucleus of an unstable atom through 

the emission of electromagnetic radiation or charged particles. It proceeds spontaneously at a 

given moment in time and is of a probabilistic nature. The radioactive decay can occur succes-

sively, generating a chain of disintegrations, until reaching a stable element, and it takes the form 

of an exponential decay function.  

Thus, the number of atoms (𝑁) decaying at a moment in time t is determined by the 

number of unstable radioactive nuclei at an initial time, 𝑁',	and the decay (probability) constant 

of the radionuclide 𝜆, as represented in Equation 2.2. 

𝑁(𝑡) = 𝑁'𝑒#()                                                    (2.2) 

The number of atoms decaying per time unit, after a time t, is called activity (𝐴), as 

defined in Equation 2.3, and is dependent on the activity presented initially 𝐴' and, as already 

mentioned, on the decay constant 𝜆. 

𝐴(𝑡) = 𝐴'𝑒#()                                                    (2.3) 

The SI unit of activity is the Becquerel (Bq). One becquerel equals one disintegration per second. 

In NM, the activity is often expressed in Megabecquerel (MBq), which corresponds to 106 Bq.  
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The decay constant 𝜆 is defined as the probability that one unstable radioactive nucleus, 

out of N, decays in a time unit. Each decay constant is dependent on its respective half-life 𝑇* +⁄  

and is given by:   

𝜆 = -. +
/! "⁄

= '.123
/! "⁄

                                                    (2.4) 

In radiation dosimetry calculations, the half-life included in the equations is the effective 

half-life. The effective half-life is defined as the period of time required for half of the unstable 

nuclei present to decay on average [74]. This half-life considers the disappearance of radioactivity 

from the body by two pathways: radioactive decay and biological clearance, this latter depending 

mainly on the patient’s hepatic and renal function. These pathways are considered in the physical 

half-life of the radionuclide 𝑇* +,&567⁄  and biological half-life of the radiopharmaceutical 

𝑇* +,89"-":⁄ , respectively, and are therefore incorporated in the effective half-life definition, as 

shown in Equation 2.5. It should be noted that although the physical half-life is known, the bio-

logical one may vary considerably, depending on the pharmacokinetics of the radiopharmaceuti-

cal and the presence of abnormal pathology [74]. The effective half-life range of commercially 

available radiopharmaceuticals varies from seconds to hours and should be similar in duration to 

the examination [74]. 
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Radioactive decay is divided into three categories: beta, gamma, and alpha. Considering 

the decay scheme of the radionuclide of interest in this study, 68Ga, which will be analyzed in 

Chapter 2.2.3, special attention will be given to the beta-plus and gamma decay.  

Beta decay is a type of nuclear decay in which an unstable nucleus transforms and ejects 

given particles to become more stable. Beta decay half-lives are quite variable and can be in the 

order of seconds or even thousands of years [75]. There are two types of beta decay: beta-minus 

and beta-plus. As previously stated, only the beta-plus will be studied in detail.  

 An unstable nucleus can undergo decay by positron (𝛽!) emission or electron capture to 

convert the excess of protons into neutrons. In the first process, a proton is converted into a neu-

tron and a positron; the latter can also be referred to as a positive beta particle. In addition, a 

neutrino is emitted. On the other hand, in electron capture, a nucleus absorbs one of its inner 

orbital electrons	(𝑒#), which combines with a proton, forming a neutron and a neutrino.  

Beta particles have a continuous range of energies, and due to their small mass, they are 

more penetrating than alpha particles (i.e., helium nucleus consisting of two protons and two 

neutrons) but less than gamma radiation [63].  
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Gamma rays are electromagnetic radiation emitted from an excited nucleus after a spon-

taneous nuclear decay, usually an alpha or beta decay (i.e., after a beta-plus emission from 68Ga). 

The process is as follows: after the emission of a particle in radioactive decay, the nucleus is left 

in an excited state. This excess energy is carried off as a gamma ray to conserve energy and leave 

the nucleus in a lower energy state. This emission is characteristic, and it is determined by the 

difference in energy between the initial and final transition levels within the nucleus. The number 

of protons and neutrons in the nucleus does not alter in this type of decay, therefore undergoing 

gamma decay does not change the structure or composition of the atom. Typical half-lives for 

gamma emission are very short, usually from 10-9 to 10-14 seconds [75]. 

 

2.2.2       Positron annihilation 
Positrons are not stable particles in matter, and while slowing down by transferring their energy 

through ionizing and excitation events in the medium, they can eventually be stopped within 10-

11 seconds [76]. Positrons combine with electrons by annihilation, originating two opposing di-

rected gamma rays with an energy of 511 keV each (Figure 2.4). These photons, which result 

from the combination of the electron and positron masses, are crucial in PET imaging.  

 

 

 

 

 

 

 

 

 

Figure 2.4: Illustration of the annihilation reaction. As a consequence of the beta-plus decay, a neutrino (𝛎) 
and a positron are emitted. This positron, when decelerating, combines with its antimatter: the electron. 
The combined mass is converted to energy in the form of two oppositely directed 511-keV gamma photons 
(𝛄) [77]. 

 

2.2.3       68Ga-PSMA-11 
During the last decade, the employment of 68Ga in NM has considerably increased since it is 

frequently used for effective and efficient diagnostics and personalized medicine. 
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This metallic radionuclide is produced from a 68Ge/68Ga generator system (Figure 2.5). 

Briefly, the equipment consists of a heavily shielded column constituted by a matrix (tin oxide 

matrix in most scientific institutions), on which the parent nuclide 68Ge is absorbed [78]. The 

daughter nuclide 68Ga is then eluted from the column with hydrochloric acid into a vacuum vial 

[78]. The availability, reliability, and purification steps of commercial generator systems allow 

the production of PET radionuclides at any time on demand without requiring a cyclotron on site. 

Also, and due to the long physical half-life of the parent radionuclide, 68Ge, of about 270.8 days 

[79], the generator can be used for up to one year, providing cost-effectiveness and convenience 

to the user. The 68Ga used to obtain the images present in this study was produced in the 68Ge/68Ga 

generator system available in the Nuclear Medicine-Radiopharmacology Department at the 

Champalimaud Foundation.  

 

 

 

 

 

 

 

 

 

Figure 2.5: Illustration of a heavily shielded 68Ge/68Ga generator system. The 68Ge is bound to the SnO2 

matrix present in the column. The 68Ga is eluted by drawing HCl through the column into the vacuum vial. 
Adapted from [77]. 

 

 68Ga is not a pure positron emitter since it disintegrates 88.9% by positron emission (𝛽!) 

and 11.1% by electron capture into 68Zn [78]. As represented in Figure 2.6, the main 𝛽! decay 

(87.68%) is a pure positron emission directly to the ground (stable) level of 68Zn, with a maximum 

energy of 1.899 MeV [80]. A small fraction (1.2%) decays into an excited level of 68Zn, which 

decays to the ground level with the emission of a gamma photon of 1.077 MeV. This photon can 

be scattered in the patient and generate a lower energy gamma photon that possibly (and incor-

rectly) coincides with an annihilation photon (of 511 keV), leading to errors in the PET image. 

On the other hand, in the electron capture component, 8.94% of the decay is directly to the ground 

level and 1.8% to the first excited level. The remaining (0.4%) decays are into short-life excited 

levels that emit gamma photons of various energies, ranging from 0.227 MeV to 2.821 MeV [81], 

 
  



 

 

17 

with negligible probability to be detected in coincidence. It is also important to highlight the 

emission of characteristic x-rays and Auger electrons as a consequence of the decay by electron 

capture, a process already described in detail above. The energy released in this radioactive decay 

is equal to 2921.5 (18) keV [81]. 

Even though 68Ga has a relatively high positron energy, which can potentially lead to a 

lower resolution, the high fraction of positron emission is a significant advantage. Another ad-

vantage lies in its relatively short physical half-life of 67.77 (14) minutes, which results in im-

proved dosimetry, repeat imaging, and short duration exams [81]. 

 

 

Figure 2.6: Decay scheme of 68Ge and 68Ga. 68Ga decays 88.9% by positron emission (𝛃!) and 11.1% by 
electron capture (𝛆), producing 68Zn. Besides the emission of a 1.077 MeV gamma ray during the decay to 
the ground level of 68Zn, there are other weak gamma transitions.  

 

68Ga-labeled imaging agents used in NM have been recognized as a new class of 

radiopharmaceuticals. As the relatively short half-life of 68Ga is not compatible with ligands of 

slow pharmacokinetics, such as antibodies and glycoproteins, 68Ga-based peptides constitute a 

powerful tool in clinical imaging studies [80]. These are valuable in diagnosis, including 

visualization, staging, and detection of relapse, and in planning potential molecular radiotherapy 

procedures.  

In this study, the radiopharmaceutical employed is the Glu-NH-CO-NH-Lys-(Ahx)-

[68Ga-(HBED-CC)], also known as 68Ga-PSMA-HBED-CC or 68Ga-PSMA-11. This is a urea-

based PSMA-target radioligand inhibitor that has evolved as a promising radiopharmaceutical for 

imaging PSMA expression in vivo since its introduction in 2012 by Eder et al [24]. 

PSMA is a type II transmembrane glycoprotein encoded by the Folate Hydrolase 1 

(FOLH1) gene that was first detected on the human prostate cancer cell line Lymph Node 
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Carcinoma of the Prostate (LNCaP) [82]. This 750-amino acid surface marker with a molecular 

weight of 100 kD is relevant in prostate carcinogenesis and disease progression, glutamatergic 

neurotransmission, and folate absorption [83]. Because of its different roles, it has several names, 

the most common being glutamate carboxypeptidase II [84]. This folate hydrolase protein is 

overexpressed in 90-100% of prostate cancer cells and in other PSMA-expressing tissues such as 

kidneys, proximal small intestine, and salivary gland [85]. It is also expressed in tumor-associated 

angiogenesis as increased PSMA expression is found on the stroma adjacent to neovasculature of 

solid tumors and in other tumors such as glioblastoma, thyroid cancer, gastric, breast, renal, and 

colorectal cancer [86]. PSMA uptake has also been reported in many benign lesions such as 

retroperitoneal schwannoma, desmoid tumor, Paget’s disease of bone, sarcoidosis, sub-acute 

stroke, and bone fractures [86]. The degree of PSMA expression increases according to the stage 

and grade of the tumor and biochemical recurrence, allowing PSMA-imaging to account for 

prognosis. The dual nature of PSMA to act as a receptor protein and as an enzyme triggered the 

synthesis of PSMA-inhibitors of low molecular weight to be employed as nuclear imaging probes. 

  PSMA labeling with 68Ga is often performed with modular synthesis units in hot cells or 

shielded workspaces [87]. HBED-CC (N,N’ -bis[2-hydroxybenzyl] ethylenediamine-N,N’- 

diacetic acid) is the chelator that binds to the purified 68Ga on one end, forming a 

thermodynamically stable complex even at room temperature and with the target PSMA agent on 

the other to ensure concentration in the tissue of interest [83]. Once the ligand binds to the PSMA 

extracellular domain, it inhibits its enzymatic functions and is internalized into the cell by 

endocytosis [87]. The high accumulation of this radiopharmaceutical, even in small metastases, 

allows the detection of early metastatic lesions and the performance of staging, planning, and 

monitoring of therapeutic responses as well as evaluation of recurrence.  

This molecular probe targeting PSMA is an excellent agent for target imaging. It provides 

high diagnostic specificity and sensibility, high tumor-to-background ratios, and a favorable 

biodistribution with fast target localization and fast clearance from the body.  

 

2.2.4      Coincidence detection 
PET systems employ PET radiotracers, also known as radiopharmaceuticals, which incorporate a 

positron emitter into biologically active compounds. These biological complexes are administered 

to the patient by either injection or inhalation. Diagnostic information is derived from observing 

the distribution of the biological molecule, while the radionuclide enables the localization of the 

radiopharmaceutical and the assessment of the amount of radioactivity present. 
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As already mentioned in this manuscript, the positron emitted by the radionuclide decay 

subsequently annihilates with an electron in the medium after traveling a short distance. As men-

tioned in Chapter 2.2.2, two gamma photons with 511 keV, departing approximately 180º apart, 

are produced (Figure 2.7-A). The two coincident photons will be emitted from anywhere within 

the scanner FOV. Coincident detection of these annihilation photons is the basic principle for 

acquiring PET images. 

The TOF PET reconstructs the position of the annihilation events by measuring the time 

of arrival of each of the gamma photons at the opposing scintillation crystals within a resolving 

time. The time difference will be proportional to the difference in distances traveled by the two 

photons and can be used to calculate the position of the event along an imaginary line connecting 

the two detectors, called the line-of-response (LOR) (Figure 2.8-A). TOF resolution depends on 

the scintillator material, the photomultiplier tubes (PMTs), and the electronics [88]. A detailed 

description of PMT devices can be found in Chapter 2.2.5. Each time a detector pair acquires an 

annihilation event, the system assigns a count to the LOR (Figure 2.7-B). The storage of coinci-

dences detected in a PET system can be done in two different formats: the list-mode format and 

the histogram format [77]. These data are then used for iterative computed image reconstruction, 

which uses tomographic mathematical algorithms to identify the location of the annihilation event 

with high accuracy and produce 3D images of the ROIs. Moreover, it is possible to determine the 

amount of radiopharmaceutical present in some specific region since the number of coincidences 

detected in the respective LOR, in the absence of effects such as Compton scattering or photon 

absorption, is proportional to the radioactivity of the PET marker throughout that LOR.  

 

 

 

 

 

 

 

 

Figure 2.7: Illustration of the imaging principle of PET: A) After the annihilation of an electron-positron 
pair, two 511 keV gamma photons are emitted in opposite directions; B) When the two photons are simul-
taneously detected within a ring of detectors surrounding the patient, it is assumed that an annihilation event 
occurred on the so-called LOR connecting the two events (i.e., coincidence detection). The activity distri-
bution can be tomographically reconstructed by recording many LORs. Adapted from [89]. 

 



 

 

20 

The photons that provide correct information on the location of the decay (and electron-

positron annihilation) are those that penetrate without interaction, the so-called primaries. How-

ever, artifacts that may appear in the images result from photon absorption, random coincidences, 

scatter coincidences, and multiple coincidences. The probability of any of these phenomena oc-

curring is mainly governed by two parameters: the atomic composition and the tissue’s total thick-

ness along the photon trajectory. These interactions compromise the ability to accurately repro-

duce the radiotracers’ kinetics and spatial distribution in the human body. The latest PET scanners 

employ algorithms during image reconstruction for correcting for these events [77]. 

Photon attenuation is the loss of counts due to the absorption of photons by the patient 

before they arrive at the detector. Attenuation is the largest source of bias in PET due to the 

relatively high energy of the positron-annihilation photon and the use of coincidence detection 

[89]. This effect causes the appearance of non-uniformities in the images, mainly in annihilations 

that occur in the center, compared to those that occur in the periphery [77]. In current PET scan-

ners, the attenuation is mostly arithmetically compensated using transmission attenuation data 

from a CT x-ray source. X-ray photon energies are generally less than 140-keV, thus lower than 

the 511-keV annihilation photons [90]. Therefore, the linear attenuation coefficients measured 

with the x-ray must be scaled to the correct values before being used to correct the emission data 

for photon attenuation.  

Single events are registered when an unpaired photon from a non-annihilation gamma 

ray, or only one of the pair of annihilation photons, impacts the detector. The annihilation will 

not be registered as a coincident event and will not be counted. 

Scattered coincidence (Figure 2.8-B) occurs when one or both of the annihilation photons 

undergoes Compton scattering within the imaging FOV before reaching the PET detector, losing 

energy and changing direction. It is assigned a mispositioned LOR, which leads to misinterpreta-

tions in identifying the annihilation point. It is important to recognize that, as the density of tissue 

is approximately the same as that of water, it is assumed that the mean free path of a 511 keV 

photon is about 7 cm in human tissue [63]. Since the cross-section of the human body is much 

greater than 7 cm, the probability that many of the photons originated inside the human body are 

Compton scattered before they reach the detectors is high [63]. Also, as gamma photons’ scatter-

ing probability depends on the path they have to traverse inside the body before interacting with 

the detectors, this effect is higher on abdominal images than on brain images. Scatter causes a 

falsely increased count rate, so it is desirable to remove such counts. 

Random events (Figure 2.8-C) occur when two 511 keV uncorrelated gamma photons 

from two separate annihilation events interact with two opposing detectors within the system re-

solving time, and thus, are considered to have come from the same annihilation event. The other 
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two are lost. The probability of random events increases with increasing activity within the FOV 

and decreases as the resolving time decreases [77]. That’s why most PET systems employ scin-

tillators with faster response times. 

Multiple coincidence (Figure 2.8-D) occurs when more than two photons are simultane-

ously detected. This event is disregarded as it does not allow the formation of a single LOR [91].  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Scheme of events that may occur during PET acquisition for a complete ring of detectors. The 
black dots indicate the positron’s annihilation position, while the dashed line corresponds to the LOR. As 
indicated, (A) true, (B) scatter, (C) random e (D) multiple events are illustrated. Adapted from [92]. 

 

2.2.5      Instrumentation 
Current PET scanners are constituted by multiple rings of individual fast scintillator detector 

modules that axially surround the patient. Each block detector (Figure 2.9-A) of a PET equipment 

is characterized by small inorganic scintillator crystal arrays coupled to photodetectors [77]. Scin-

tillator detectors are the most common and successful mode for detecting 511 keV photons in 

PET imaging due to their high stopping efficiency, sensitivity, and energy resolution [63]. Lute-

tium oxyorthosilicate (LSO) and bismuth germanate (BGO) are the most used scintillation crys-

tals in PET scanners. These crystals have high densities and atomic numbers, which increase the 

probability of photoelectric and Compton interactions, respectively. However, the number of PET 

scanners with LSO crystals has been increasing because these crystals are associated with a higher 

light yield and a shorter decay time [63]. Consequently, the scintillation events necessary for 

image formation are obtained faster, and the patient’s exposure time is reduced. The photodetec-

tors used to convert the light photons into an electric signal can be divided into two categories: 
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semiconductor-based photodiodes and PMTs [63]. Although photodiodes possess high sensitivity 

for detecting low energy scintillation photons, PMTs are the most reliable technique since they 

lead to a very good signal-to-noise ratio (SNR) even for low light levels [63]. The photomultiplier 

(Figure 2.9-B) consists of a photosensitive cathode, several dynodes, and a collection anode [77]. 

In a more-in depth manner, the annihilation photons, by exciting the detectors’ crystals, produce 

visible (scintillation) light photons. This scintillation stimulates the ionization of the photocath-

ode, which emits electrons that are multiplied and accelerated (usually by a factor of 107) [93]. 

Then, at the anode, electrical pulses are generated. These outputs are amplified by preamplifiers 

and amplifiers and subsequently are converted into three signals, two of which give the spatial 

location of the scintillation, while the third represents the energy deposited in the crystal by the 

gamma ray. The pulse height analyzer processes the size of the third signal to determine if the 

energy of the photon reaching the crystal is within the range of values expected for the particular 

radionuclide, and the coincidence circuit determines if the signals occurred within the coincidence 

time window [88]. The resolving time of PET systems depends on the decay time of the selected 

crystal material, which is equal to 300 ns on BGO crystals and 40 ns in LSO crystals [63]. Con-

ventionally, each detector module comprises 169 crystals for 4 PMTs and is connected to a single 

electrical circuit that explores the scintillation light distribution of the four PMTs to determine 

the interaction position and the detection time interval [77]. 

 

 

Figure 2.9: Illustration of a block detector and a photomultiplier tube and its preamplifier and amplifier: A) 
Each detector module is usually composed of several crystals’ segments, coupled to four PMTs. The crys-
tals act as transducers, converting the gamma photons into light photons. The PMTs then convert the scin-
tillation light into electrical signals. The location of the site of impact is achieved by measuring the light 
detected in each PMT, which is stronger if it is closer to the site. Slits between crystals divisions direct the 
light photons towards the PMTs. B) The light photons that reach the photocathode cause it to emit electrons. 
These electrons cascade along the multiplier portion of the tube, successively striking each of the tube’s 
dynodes. The electric pulses generated at the anode are later amplified by preamplifiers and amplifiers. 
Adapted from [77]. 
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The spatial resolution of a PET scanner is defined as the minimum distance at which two 

radioactive sources can be placed so they can be individually distinguishable in the image [89]. 

The current technology using block detectors with crystals coupled to the PMTs achieves a spatial 

resolution of about 3 to 4 mm [94]. The higher the number of detectors per ring and the number 

of PMTs, the better the spatial resolution of the system [77]. On the other hand, the intrinsic 

spatial resolution of PET is dependent on the scintillation crystal dimensions, and small-sized 

crystals optimize the intrinsic resolution [88]. However, one of the factors that affects spatial 

resolution is the short distance that the positron travels before annihilating, resulting in an uncer-

tainty of the nuclear decay localization. In the particular case of the positron emitted by 68Ga, its 

range in matter is quite large and can vary between 2.9 mm and 10 mm [95]. Another effect that 

limits the spatial resolution of PET is due to the angular deviation (±0.25º at maximum) of the 

photons with respect to 180º [92]. This effect increases with the diameter of the detector ring [96]. 

Thus, by assuming that the photons are emitted simultaneously, in opposite 180º directions, the 

detectors miscalculate the localization of the positron emission. 

 

2.3       68Ga-PSMA-11 PET/CT 
68Ga-PSMA-11 PET/CT imaging is revolutionizing cancer management since its development in 

2013 [87]. This imaging modality is being incorporated into the routine clinical management of 

patients and has become a standard of care in the diagnosis, selective staging, and monitoring of 

therapeutic response of prostate cancer. Even though 68Ga’s positrons have a high range in tissue, 

the spatial resolution and diagnostic sensitivity of the state-of-the-art PET/CT are high compared 

to other techniques [96]. As seen, although the main focus in clinics is prostate cancer imaging, 

this radiopharmaceutical can be used to obtain images from other parts of the body where PSMA 

is expressed. In this work, the incorporation of 68Ga-PSMA-11 in the dual PET/CT system was 

to obtain images of potential metastases in the patient’s body and quantify the absorbed dose in 

the organs with higher uptake of this radiopharmaceutical.  

 

2.4       Instrumentation 
Commercially available whole-body fully integrated PET/CT equipment consists of a patient sup-

port system, a workstation to perform the reconstruction and visualization of the data, and a gantry 

where the PET and the helical CT are located separately. This type of scanner enables the patients 

to perform both diagnostics without their dislocation and accurately associate areas of high me-

tabolism with their anatomical location in one examination.  
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As the CT scanner is placed closer to the patient, the CT image is acquired in its entirety 

before acquiring the PET scan (Figure 2.10).  This CT image will later be used to correct gamma 

photon attenuation. After the patient passes through the two components, both anatomical and 

functional images are acquired at the same spatial referential and are co-registered to create a 

single fused image. This is performed on a workstation responsible for image acquisition and 

reconstruction that applies mathematical algorithms to analyze and view the images in three dif-

ferent planes: transverse, sagittal, and coronal.  

Two configurations of PET/CT scanners are used nowadays. Analog PET/CT is the most 

used equipment type, and it uses conventional PMTs coupled with crystal scintillators [20]. On 

the other hand, digital PET/CT employs an array of innovative scintillation detectors called sili-

con PMTs. The PET/CT equipment used in this project is the Philips Vereos Digital PET/CT 

system. This system offers better image quality, diagnostic confidence, and accuracy than analog 

PET/CT. Also, its better TOF resolution improves spatial resolution [4].  

PET/CT scanners hold a single patient bed, which allows the patient’s consistent posi-

tioning between acquisitions and reduces the risk of misregistration of the images. The patient 

handling system between the two rings of detectors was developed to adapt to the patient’s posi-

tion in each system separately [65]. The advantages of building a PET/CT system include better 

cost-effectiveness of the procedures and a more comprehensive clinical report. Furthermore, it is 

not necessary to move the patient to perform both scanners. 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Scheme of the PET/CT scanner. The entire CT is acquired first, followed by the PET scan. 
The images are co-registered to create a single image with both anatomical and functional information of 
the human body [65].  
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Internal Dosimetry 

The purpose of internal dosimetry, also known as dosimetry in NM, is to estimate the absorbed 

dose of ionizing radiation due to the administration of diagnostic or therapeutic radiopharmaceu-

ticals in the human body.  

Ionizing radiation is characterized by having a wavelength equal to or less than 10 nm or a 

frequency equal to or greater than 3 x 1015 Hz [97]. In most cases, energy deposition by ionizing 

radiation is a stochastic phenomenon. Therefore, at very low doses, an amount of energy sufficient 

to lead to cell mutation or death may be deposited in a target. Different types of radiation cause 

different amounts of damage even for the same quantity of energy deposited, with photons caus-

ing the least and heavy charged particles the most. Photons possess high penetration power and 

thus have few interactions with matter, which results in low energy absorption and a low absorbed 

dose to the tissues. On the other hand, heavy charged particles have a higher number of interac-

tions with tissue in a short distance, resulting in increased energy absorption. Consequently, the 

absorbed dose and tissue damage are higher. 

The paramount goal for the good use of the imaging techniques is to understand the level 

of toxicity from radionuclide administration and, thereby, deliver the most efficient diagnosis 

with a minimal level of adverse effects for the patient. Absorbed dose is the relevant quantity for 

evaluating the biologic effects of ionizing radiation emitted by administered radiopharmaceuticals 

[98]. The standardization of the absorbed dose estimates for diagnostic purposes ultimately in-

creases success in identifying correlations between calculated absorbed dose and the clinically 

observed effects, which must be established separately for each radiopharmaceutical and each 

patient subgroup. Since the absorbed doses in tissues are low for diagnostic NM procedures, the 

resulting stochastic risk of hereditary carcinogenic disease is correspondingly low or absent. 
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Nevertheless, further information is required to establish an accurate correlation between ab-

sorbed dose and toxicity, such as energy and particle type, linear energy transfer, and, more spe-

cifically, track structure [65]. 

There has been a growing interest in small-scale dosimetry at the voxel level, as well as in 

patient-specific dosimetry. In this project, internal dosimetry was conducted using the latest do-

simetry MIRD schema [99] at the voxel level. The voxel S-values approach enables fast and ac-

curate conduction of dosimetry calculations, in addition to the risk-benefit assessment of radio-

pharmaceuticals in clinical applications. Patient-specific radiopharmaceutical dosimetry requires 

two sets of information: patient-specific biokinetic data for the radiopharmaceutical of interest, 

obtained by administering a tracer dose to the patient and by using imaging techniques to develop 

an individual biokinetic model, and a 3D voxel phantom to perform simulations of radiation 

transport in anthropomorphic models to derive S-factors, employing the usual Monte Carlo ap-

proach.  

 

3.1      Absorbed dose  
Absorbed dose is the energy absorbed from ionizing radiation per unit mass of the tissue and is 

applicable to indirectly and directly ionizing radiations [98]. Indirectly ionizing radiation (typi-

cally photons) transfers its energy to secondary charged particles (electrons) that, consequently, 

transfer some of their kinetic energy to the tissues. On the other hand, if directly ionizing radiation 

(corpuscular radiation, typically electrons and beta particles) interacts with a material, ionization 

and excitation phenomena occur, and energy is deposited within that material. These two forms 

of energy deposition result in absorbed dose in tissues. 

Absorbed dose is a non-stochastic quantity defined by the International Commission on 

Radiation Units and Measurements (ICRU) Report 51 [100] as:                                                                                                

𝐷 = ;<=
;>
				                                                                  (3.1) 

where 𝑑𝜀 ̅is the mean energy imparted by ionizing radiation to the matter of mass dm. The sto-

chastic quantity imparted energy is the sum of all energy entering a volume of interest minus all 

the energy leaving the volume, taking into account any mass-energy conversion within the vol-

ume [98]. The absorbed dose unit is joule per kilogram (J/kg), also known as gray (Gy). In NM, 

the most common unit of absorbed dose is the miligray (mGy), which corresponds to 10-3 Gy. 

 In NM, absorbed doses are usually calculated to single target organs. The individual or-

gan absorbed doses can range over several orders of magnitude, depending on the administered 

radiopharmaceutical’s biokinetics. 
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3.2      Biological effects of radiation 

Biological systems are extremely sensitive to radiation, and the main target is the deoxyribonu-

cleic acid (DNA) chain. Ionizing radiation causes damage to tissues through ionization, either 

directly with the cell or indirectly with water, leading to free radicals [97]. Once damaged, the 

DNA will repair correctly or incorrectly or be so damaged that it will become non-functioning or 

die. Incorrect repair causes cancer and heritable genetic mutations, known as stochastic effects, 

whereas cell death leads to deterministic effects such as skin injuries and cataract formation [101]. 

Deterministic effects result from exposure to ionizing radiation, which, when in sufficient 

dose, causes cell damage or cell death, impairing the function of the irradiated organ or tissue. 

There is a threshold radiation dose below which deterministic effects are not seen, and as the 

absorbed dose value increases past this threshold value, the number of cells that die, and so the 

severity of the effect, increases [97]. Absorbed dose addresses deterministic effects [102].  

Stochastic effects involve the non-lethal modification of the exposed individual’s cell ge-

netic material and have no threshold value. They are characterized by a probabilistic nature; that 

is, the probability for the effect to occur depends on the dose of ionizing radiation. This modifi-

cation is conventionally considered to be DNA mutations in the cell nucleus when it is not 

properly repaired, which can lead to cancer in the individual if it occurs in a somatic cell. If it is 

in a germ cell, hereditary genetic abnormalities are another possible stochastic effect. As absorbed 

dose increases, the risk of observing these effects increases. However, the severity of the stochas-

tic effect is not related to the absorbed dose [97]. The dosimetric quantities equivalent dose and 

effective dose are used in comparative evaluations of potential risks of radiation-induced stochas-

tic effects to patients after NM procedures [97]. Equivalent dose is a dose quantity calculated for 

individual organs, adjusted to account for the effectiveness of the type of radiation. In contrast, 

effective dose considers the varying sensitivity of different organs and tissues to radiation [103]. 

Nevertheless, further analysis of these quantities is beyond the scope of this study.  

While unjustified and unnecessary exposures lead to risks due to stochastic effects, unin-

tended exposure of patients, which can arise from unsafe design or use of medical technology, 

can lead to deterministic effects [104]. The potential damage to health due to exposure to ionizing 

radiation causes a reduction in life expectancy and quality of life. The biological effects of radia-

tion are influenced by many factors, including the amount and rate of energy imparted to the 

tissue, the type of radiation emitted by the radionuclide, the cell and tissue type involved, and the 

age, gender, and sensitivity to radiation of each individual. 
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3.3      Voxel-based dosimetry  
The assessment of the absorbed dose at the voxel level, that is, at each voxel constituting an organ 

or tissue with dimensions ranging from hundreds of micrometers to a few centimeters [105], is 

becoming increasingly important when performing dosimetry in NM.  

The voxel approach considers the possible non-uniform activity distribution of the inter-

nally deposited radiopharmaceutical within the target organs, assuming that the distribution 

within each voxel is uniform. This constitutes an improvement over conventional organ-based 

dosimetry estimates. It enables a more accurate dosimetry performance, and it is extremely help-

ful in personalized medicine. Three computational methods are available to perform dosimetry at 

the voxel level: convolution with a Dose-Point Kernel (DPK), Monte Carlo simulations, and the 

voxel S-value approach based on the MIRD schema. Since the latter techniques are the ones used 

in this study, a special focus will be given in the following section (Chapter 3.3.1 and 3.3.2). 

The DPK method is an analytical convolution technique that describes the radial energy 

deposition around an isotropic point, characterized by being the site of emission of the radiation 

[106]. It involves the convolution of a dose point kernel and the activity distribution to consider 

the contributions from the surrounding point sources to the target voxel [107]. Since it is an ana-

lytical tool, it is computationally fast and is the most widely used voxel-based dosimetry ap-

proach. However, it does not consider the heterogeneity of the medium [106].  

 

3.3.1     MIRD S-values approach 
According to the MIRD approach at the voxel level, the estimation of the absorbed dose is de-

pendent upon two types of information: time-dependent or biokinetic factors, incorporated in the 

physical quantity cumulated activity, and time-independent or physical factors, incorporated in 

the S-values definition.  

The cumulated activity 𝐴<5	is equal to the number of decays that take place in a certain 

source voxel of a 3D activity distribution during the relevant time period [108]. The MIRD 

schema uses this term to represent the integral of activity over time, expressed as follows: 

𝐴<5 = ∫𝐴(𝑡)𝑑𝑡                                                          (3.2) 

The time-integration period is commonly chosen from the time of administration of the 

radiopharmaceutical until infinite time for long lived isotopes or until at least 10 times the isotope 

half-life for short-lived isotopes [99]. However, for a more accurate calculation, the integration 

period should be matched to the biological endpoint studied in combination with the time period 

in which the relevant absorbed dose is delivered [102]. Since the integral of any continuous curve 
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is equal to the area under the curve, the cumulated activity can be obtained directly by physically 

measuring the area under the time-activity curve that plots the effective disappearance of activity 

in each tissue or organ. 

 A voxel S-value is defined as the mean absorbed dose to a target voxel per radioactive 

disintegration (i.e., absorbed dose rate per cumulated activity) in a source voxel (Figure 3.1) 

[109]. This quantity depends on the type and energy of the radiations emitted, size, shape, and 

distance between the target voxel and the source voxel, and on the medium’s composition. In this 

approach, it is assumed that both the target and source voxels are contained in an infinite homo-

geneous tissue medium [102]. Since the S-values depend on the type of radionuclide, voxel size, 

and medium, it is necessary to recognize the decay scheme of the radionuclide in question, so all 

the radiations of interest and the electron and photon absorbed fractions, which are calculated 

according to the voxel size of interest, are considered. Equation 3.3 demonstrates how the ab-

sorbed dose to the target voxel k per disintegration in the source voxel h can be calculated. This 

definition includes a summation over all the transitions i per decay:  

𝑆?←5 =
∑ B*C*D*(F.←F&)/

>.
                                                      (3.3) 

where 𝑛9 is the number of nuclear transitions per nuclear transformation, 𝐸9 is the mean emitted 

energy per disintegration, 𝜑9(𝑣? ← 𝑣5) is the absorbed fraction of the energy emitted from the 

source voxel h that is absorbed in the target voxel k and 𝑚? is the mass of the target voxel. The 

SI unit of the S-value is Gy/(Bq∙s).  

 

 

 

 

 

 

 

 

Figure 3.1: Illustration of a source voxel and a target voxel. S-values are scored in grids of uniformly dis-
persed cubic voxels (target voxels), with the source voxel irradiating the surrounding ones isotropically. 
The centroid of the source voxel was assumed as the origin of the Cartesian system [110].  

 

For a more concise nomenclature, the MIRD schema also includes the specific absorbed 

fraction concept, which is defined as the absorbed fraction per unit mass of the target voxel. The 
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specific absorbed fraction for a target being irradiated by a source is the ratio of the absorbed 

fraction to the target voxel mass: F9(𝑣? ← 𝑣5) =
𝜑9(𝑣? ← 𝑣5) 𝑚?

E . The quantities 𝐸9 and 𝑛9 are 

usually expressed as: 𝑛9𝐸9 = ∆9, which is the mean energy of the nuclear transition i.  

Using these definitions, the final equation for the S-value is given by: 

𝑆?←5 = ∑ ∆9F9(𝑣? ← 𝑣5)H                                                      (3.4) 

The S-values are calculated from absorbed fractions using Monte Carlo techniques that 

employ voxel-based phantoms. These techniques describe the geometric and spatial effects of the 

dose distribution from the source to the target voxel.  

 The absorbed dose-rate is the amount of energy absorbed per unit time per unit mass of 

the material [111]. It varies depending on the activity and the S-values [112]. The activity varies 

with the 3D biodistribution of the radiopharmaceutical, the metabolism of the patient, and the 

radioactive decay of the radionuclide. Therefore, the activity in each organ varies with time. On 

the contrary, the time dependency of the S-values is neglected since the source and target masses 

remain constant throughout irradiation [102]. Considering that the amount of activity does not 

remain constant in the source voxel, the mean absorbed dose equals to the integral of the dose 

rate over the period of interest. Therefore, the mean absorbed dose in a given target voxel k in-

cludes the contribution not only of the n surrounding source voxels h but also of the target voxel 

k itself and can be calculated from the following equation: 

𝐷H? = ∫ �̇�?(𝑡)	𝑑𝑡 = ∫𝐴5(𝑡)	𝑆?←5	𝑑𝑡 =∑ 𝐴<5 ∙ 𝑆?←5B
IJ'                        (3.5) 

where 𝐴<5 is the time-integrated activity in the hth-voxel during the time interval of interest and  

𝑆?←5 is the S-value corresponding to a given combination of voxel target k and voxel source h.  

 The voxel S-value approach offers a convenient and simple method for voxel-based do-

simetry calculations. It can be implemented without the need for time-consuming efforts, unlike 

Monte Carlo simulations, and has advantages over DPK in that there is no need to convert spher-

ical coordinates to cartesian coordinates over the target volumes or perform intensive volume 

integrations [106]. However, the MIRD Pamphlet No. 17 [105] contains a limited number of 

radionuclides and voxel sizes. Since this approach requires knowledge of the S-values for each 

radionuclide used and for each specific voxel size, this constitutes a considerable limitation when 

using the S-values. Also, heterogeneities in the medium are not considered in this approach, and 

applicable cases are limited to lesions in homogeneous tissues such as liver cancer [106]. 
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3.3.2     The MCNP6.1 dosimetry code  
The stochastic Monte Carlo approach tracks particles generated by Monte Carlo engines and cal-

culates deposited energies at the voxel level. Electron Gamma Shower (EGS), Monte Carlo N-

Particle transport code (MCNP), Geant, and Penelope are commonly used Monte Carlo codes 

[113, 114]. This method is different from the other two voxel approaches already mentioned be-

cause it considers the inhomogeneities of the medium. Nevertheless, it requires extensive time 

and computational resources and is thus not the preferred technique in the clinical context.  

MCNP6.1â is a general-purpose Monte Carlo radiation transport code. Los Alamos Na-

tional Laboratory developed this versatile and straightforward code by merging the MCNP5â 

and MCNPXâ codes [115]. MCNP6.1 uses the ICRU Report 44 [116] and the National Institute 

of Standards and Technology (NIST) database [116] to define the density and elemental compo-

sition of the materials requested by the user.  

MCNP6.1 accounts for neutron, photon, electron, or coupled neutron/photon/electron 

transport within the energies involved in imaging techniques, resulting in a good option to per-

form dosimetry estimations for most radionuclides used in NM context [115]. In this study, only 

the photon and electron/positron transport processes were considered. For photons, the code ac-

counts for, but not only, incoherent and coherent scattering, absorption in pair production with 

local emission of annihilation radiation, and bremsstrahlung [115]. On the other hand, elec-

tron/positron transport processes account for angular deflection through multiple Coulomb scat-

tering and the production of secondary particles, including K x-rays, knock-on, Auger electrons, 

bremsstrahlung, and annihilation gamma-rays. A continuous-slowing-down model is used for 

electron transport that includes positrons, K x-rays, and bremsstrahlung radiation [115]. In 

MCNP6.1, a new single-event treatment coupled with the ENDF/B VI.8 database was developed 

for electron transport. This new method allows direct sampling of microscopic data distributions 

and, consequently, an accurate low-energy transport from 1 keV down to 10 eV [117]. 

Specific areas of application of this code include radiation protection and dosimetry, ra-

diography, and medical physics [115]. For internal dosimetry purposes, the decay schemes of the 

radionuclides are selected from ICRP Publication 107 [118], and considering the cross-section 

data for the respective range of energies, the emitted particles are monitored. These particles suf-

fer interactions and lose energy until they are finally completely absorbed or escape the material 

(phantom or patient). Their average behavior, which depends on the output chosen by the user, is 

then examined. The most frequently requested outputs are particle current, particle flux, and en-

ergy deposition. In this study, Salvatore di Maria (PhD Researcher at C2TN, IST, Universidade 

de Lisboa) [119] performed the voxel S-values calculations with the MCNP6.1 Monte Carlo code. 
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3.3.3     Dose-volume histogram  
The mean absorbed dose in internal dosimetry may be a poor representation of the voxel-wise 

dose distribution in tissues due to the non-uniform activity distribution of the administered radi-

opharmaceuticals. Hence, DVHs have gained greater prominence in radionuclide dosimetry stud-

ies. These provide a mathematical framework for dose organ profile summarization and analysis 

on a per-patient basis [112]. 

DVHs describe the absorbed dose values in all voxels throughout the entire segmented 

ROI. No anatomically relevant location information is considered, as all voxels comprising a 

structure are considered to be of equal dosimetric and biological importance [112]. In a DVH, the 

x-axis corresponds to the level of the absorbed dose received by a voxel, and the y-axis corre-

sponds to the volume (absolute in ml or cc, or relative in percentage) receiving a specific absorbed 

dose value [120]. There are two categories of histograms: differential DVH (dDVH) and cumu-

lative DVH (cDVH). While the dDVH displays the volume (in the y-axis) of a structure that has 

received a specific absorbed dose (in the x-axis), the cDVH shows (in the y-axis) the percentage 

of volume that has received at least that value of absorbed dose (in the x-axis) [121].  

Overall statistical information provided by the DVHs includes maximum dose, minimum 

dose, median dose, and mean dose. The cDVH is the most employed histogram when evaluation 

of key dosimetry issues are performed [121]. For instance, the mean dose is determined as the 

area under the cDVH normalized to the range [0,1] along the volume axis. Additionally, the me-

dian dose in the cDVH is the dose corresponding to the percentage of volume equal to 50%. 

DVHs are extremely used to describe the non-uniformity of the voxel-wise absorbed dose 

distributions. A truly uniform absorbed dose distribution would produce a dDVH that shows a 

single sharp peak and a step function on a cumulative DVH. In the latter, and according to the 

theoretical concepts applied in dose distributions in external radiotherapy and brachytherapy, the 

greater the extent of the curve plateau, the smaller the difference between the minimum and max-

imum dose values, the greater the slope of the cDVH curve and the more uniform the uptake in 

the structure. On the other hand, if the plateau extent is close to zero, the minimum dose and the 

cDVH slope are also close to zero, which results in a highly non-uniform dose distribution in the 

organ, and the standard deviation (SD) is often higher than the mean. 
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Materials and Methods 

4.1      Patient dataset 
The dataset used in this study is composed of 6 male patients who underwent whole-body 68Ga-

PSMA-11 PET/CT between December 2015 and October 2020. The patients were referred for 

imaging for restaging of prostate cancer. Patients’ characteristics are registered in table 4.1.  

The exams were conducted at the NM Department of the Champalimaud Clinical Centre 

(CCC) in a Philips Vereos Digital PET/CT scanner. The data were collected after the patients’ 

written informed consent and subsequently de-identified to ensure their confidentiality. During 

their first consultation, all patients signed an informed written consent form allowing the use of 

their data, specifically imaging data for research and educational purposes. This consent form was 

approved by the Ethics Committee of the CCC. 

Table 4.1: Characteristics of the patients included in the dataset. 

Characteristics Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 

Age (years) 70 79 67 74 64 88 

Height (cm) 165 167 172 177 178 168 

Weight (kg) 86 76 62 88 84 82 

Body mass 
index (kg/m2) 

31.6         27.3 21.0 28.1 26.5 29.1 

 

4.2     Radiolabeling and purification of 68Ga-PSMA-11  
68Ga was obtained from a Good Manufacturing Practice (GMP)-compliant 68Ge/68Ga generator 

from iThemba Labs in use at the NM Department of the CCC. Cationic 68Ga (68Ga (III)) was 

4 
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eluted with 3.8 mL of 0.6 M HCl and with a b-SnO2 inorganic separation resin matrix. It was then 

postprocessed with ethanol/HCl solution according to a method described in the literature [122, 

123]. 

68Ga-PSMA-11 was synthesized as previously published [24]. Radiochemical purity was 

tested by instant thin-layer chromatography (ITLC) (catalog ID SGI0001, Agilent Technologies) 

using 77.7 g/L of ammonium acetate in a 50:50 solution of H2O and methanol as a mobile phase.  

Labeling reactions were executed using the iQSâ 68Ga Fluid Labeling Module (ITG) and 

the 68Ga Peptide Radiolabeling Kit (ITG, Germany) at 95ºC for five minutes as previously pub-

lished [124]. Elution with ethanol was performed after purification of the radiopharmaceutical 

with 30-mg 18C cartridges. The final product was dissolved in NaCl 0.9% with subsequent sterile 

filtration in a sterile flask. 

 

4.3      Image acquisition and reconstruction 
Each patient received on average 1.8 MBq/kg of 68Ga-PSMA-11 intravenously while on the scan-

ner, as recommended in the European Association of Nuclear Medicine (EANM) and the Society 

of Nuclear Medicine and Molecular Imaging (SNMMI) procedure guideline [125]. The adminis-

tered activities to the six patients in MBq are summarized in table 4.2. 

Table 4.2: Administered activities to the patients included in the dataset.  

Administered 
activity 

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 

A' (MBq) 87.69 109.15 120.99 181.30 172.05 162.80 

 

Thereafter, for patients 1, 2, and 3, two-time sets of whole-body PET/CT images were 

obtained in supine position, while for patients 4, 5, and 6, three-time sets were acquired under the 

same conditions. Considering the first subset of patients, the first image acquisition started ap-

proximately 60 ± 10 min post-injection, according to the EANM/SNMMI procedure guideline 

and current standard practice [125, 126], and the second scan started approximately 90 ± 15 min 

post-injection. The acquisition time was 25 min for the first scan and 10 min for the second. On 

the other hand, for the second subset of patients, the first acquisition started approximately 30 ± 

10 min post-injection, whereas the second and third scan started approximately 60 ± 5 min post-

injection and 90 ± 10 min post-injection, respectively. The acquisition time was 20 min for the 

first scan, 25 min for the second, and 10 min for the third. All patients voided after each scan, as 

recommended in the EANM/SNMMI procedure guideline [125].  
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As mentioned above, all image acquisitions were performed on a Philips Vereos PET/CT 

scanner. This system is TOF capable and has full 3D PET capabilities together with a CT for 

attenuation correction, image fusion, and anatomic correlation. For each bed position, an acqui-

sition time of 70 seconds with a 16.4-cm FOV was applied. Emission data were corrected for 

decay, random events, attenuation, and scatter. As image reconstruction was applied with default 

clinical parameters, the scanner was not used at its maximum capability. Iterative image recon-

struction was based on the ordered subsets expectation maximization (OSEM) algorithm with 3 

iterations and 15 subsets to reconstruct 441 transaxial slices of 144×144 voxels with 4×4×4 mm3. 

These transaxial images were reformatted into coronal and sagittal images to facilitate image in-

terpretation. 

 

4.4      Image processing 
After reconstruction, all CT and PET images of each patient were de-identified, and the respective 

Digital Imaging and Communications in Medicine (DICOM) files were converted to the Neu-

roimaging Informatics Technology Initiative (NIfTI) format for simpler and more efficient pro-

cessing. This conversion was performed, and the images were prepared for 3D visualization and 

further processing on the 3D Slicer 4.10.2 open-source software platform (https://www.slicer.org) 

[127], as shown in figure 4.1. 

Figure 4.1: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of a patient’s PET/CT image in the 3D Slicer software. The colormap shown is the ‘PET-Rainbow’ in 
the 3D Slicer. The color scale was adjusted to vary between black (areas with no intensity/tracer uptake) at 
227.33 and white (areas with maximum intensity) at 34020.2.  
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4.4.1     Image co-registration  
PET and CT images from the same session were hardware co-registered. However, misalignments 

between PET and CT images of different acquisitions were observed due to patient and bed mo-

tion.  

 Image registration was performed for all patient images using the 3D Slicer software. The 

aim was to align each evaluation PET/CT (“moving image” in Slicer) with the image coordinate 

system of the baseline PET/CT (“fixed image” in Slicer) from the first acquisition. Rigid trans-

formations were performed since only rotations and translations were applied. Image registration 

was based on the CT images due to the exquisite anatomic details and image resolution. First, the 

evaluation CTs were registered to the baseline CT, with the help of landmarks and different color 

schemes. Then, the resulting transformation matrices were applied to transform the evaluation 

PETs to be baseline imaging PET/CT space (Figure 4.2).  

Figure 4.2: Landmark Registration in the 3D Slicer software. In this example, the fixed image corresponds 
to the first acquisition CT (green color), while the moving image corresponds to the second acquisition CT 
(red color). The colormap shown comes from the application of the color module ‘Grey’ in the 3D Slicer, 
followed by a green and red coloring to facilitate visualization of the final superimposed image. The visible 
landmark (L-12) in the two CT images corresponds to one of the 12 landmarks used in the image registra-
tion illustrated in this example. 

 

4.4.2     Image segmentation  
The organs of interest were segmented based on the CT component of the PET/CT images using 

the 3D Slicer software, with the support of a human anatomy obtained from the literature [128]. 

3D ROIs were manually separately delineated, slice by slice, to create the masks for each organ. 
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Manual segmentation was performed on CT images due to their better spatial resolution, allowing 

an easier distinction between tissues with different linear coefficients.  

As already mentioned in this study, the 68Ga-PSMA-11 radiopharmaceutical has a 

heterogeneous biodistribution in organs. Of all its target regions, those considered for the 

absorbed dose calculation were the liver, spleen, kidneys, and red bone marrow. These structures 

were chosen due to their biology, function, and presence in the radiation dosimetry literature. 

While the liver and spleen present a relatively intense radiopharmaceutical uptake and are 

sensitive to irradiation, the kidneys have an intense uptake due to the radiopharmaceutical 

biological elimination process. The red bone marrow was also considered, despite its 

segmentation being time-consuming and demanding because it encompasses many cell 

multiplication processes and comprises stem cells that are very sensitive to the effects of 

irradiation [129]. In the elderly, the red bone marrow is found mainly in flat bones, such as the 

cranial diploë, sternum, ribs, body of cervical, thoracic, lumbar and sacral-coccygeal vertebrae, 

ilium, and in the cancellous bone material at the epiphyseal ends of the long bones [130]. All 

these structures were included in this study. However, as the upper limbs were not fully included 

in the image acquisitions, only the lower limbs’ long bones (femur and tibia) were segmented.  

As an example, the following figures 4.3 and 4.4 show the results of the manual segmentation of 

the kidneys and red bone marrow. 

 

Figure 4.3: Mask created from manual segmentation of the kidneys in the axial (R), coronal (G), and sagittal 
(Y) slices of a patient CT image. A 3D view (1) of the obtained segmentation is also represented. The 
‘Grey’ colormap was selected in Slicer. The color scale was adjusted to vary between black (low-density 
tissues) at -135 and white (high-density tissues) at 215.   
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Figure 4.4: Mask created from manual segmentation of the red bone marrow in the axial (R), coronal (G), 
and sagittal (Y) slices of a patient CT image. A 3D view (1) of the obtained segmentation is also repre-
sented. The ‘Grey’ colormap was selected in Slicer. The color scale was adjusted to vary between black 
(low-density tissues) at -135 and white (high-density tissues) at 215.   

 

4.4.3     Image resampling  
A resampling operation was performed to transpose the masks obtained in the CT-based segmen-

tation to the voxel size of the PET images. 

The following specifications were selected in Slicer: nearest neighbor interpolation and 

pixel type binary. The nearest neighbor interpolation replicates the pixel value of the pixel located 

at the shortest distance. It is the simplest, fastest, and most efficient interpolation method appli-

cable to masks [131].  The binary pixel type was also selected since for the calculation of the 

absorbed dose, the voxel values inside the mask needed to be equal to 1 and outside equal to 0. 

 

4.4.4     Image calibration 
The PET images and the masks were loaded into the MATLAB R2020a 

(https://www.matlab.com) [132] software from MathWorks®. The functions of the “Tools for 

NifTI and ANALYZE image” MATLAB package were used to manipulate these images.   

During the reconstruction of the PET/CT images, the radiopharmaceutical concentration 

is corrected for radioisotope decay.  Consequently, as the radioisotope decays over time, the re-

sulting activity concentration is less than that indicated by PET images. Equation 4.1 shows the 

correction formula applied to the PET images (see Chapter 2.2.1). For the first subset of patients, 
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this formula was employed for t=30 min (using the PET image from the first scan) and t=75 min 

(using the PET image from the second scan), while for the second subset of patients, the times 

implemented were t=15 min (using the PET image from the first scan), t=45 min (using the PET 

image from the second scan) and t=75 min (using the PET image from the third scan). These 

times were chosen since they correspond to the intermediate moments between the beginning of 

each of the three image acquisitions. The 68 min half-life for 68Ga was used in expression 4.1 (see 

Chapter 2.2.3). 

𝐴KLM_O"PPQOR = 𝐴KLM_9.9R9S- 	× 	𝑒
# ,0 "
1! "⁄

)
= 𝐴KLM_9.9R9S- 	× 	2

# 2
34	6*0               (4.1) 

Then, the calibrated activity concentration images (in Bq/ml) were multiplied by the 

voxels’ volume (and by the factor 10-6) to obtain the voxel-wise images calibrated in activity 

(MBq). This was needed because the S-values were expressed in mGy/MBq·s. 

 

4.5      S-values kernel  
To obtain the S-values, simulations were performed by Salvatore di Maria (PhD Researcher at 

C2TN, IST, Universidade de Lisboa) [119] using the MCNP6.1â (https://www.mcnp.lanl.gov) 

[115] Monte Carlo radiation transport code through an Intel Core i770 CPU @ 3.6 GHz (16 GB 

RAM) device. 

The S-values for the 68Ga radionuclide and cubical voxels of 4×4×4 mm3 were computed 

for the following tissue materials: soft tissue and red bone marrow. The density and elemental 

composition of the materials were collected from the ICRU Report 44 [116] for the red bone 

marrow and from the NIST database [116] for the soft tissue.  

The S-values were derived for an octant with dimension equal to 25×10×10 and isotropic 

4 mm voxels for the materials mentioned above. For each simulated radiation spectrum, the emit-

ting source was placed at the central cubic voxel. A spherical irradiation distribution (diameter 

equal to 4 mm) was chosen for this radioactive source.  

To have a compromise between the accuracy of results and computational time, the cutoff 

energies were set to 250 eV and 1 keV for electrons/beta-plus radiation and photons, respectively. 

This means that particles outside their respective ranges of energy were terminated so that the 

computation time was not spent following them. A total number of 108 interactions and a maxi-

mum uncertainty of 5% were selected, resulting in a computational time spanning from some 

hours to some days, depending on the simulated radiation spectrum (e.g., high energy beta radia-

tion was more time-consuming than low energy Auger electrons). The decay scheme of the 68Ga 

was chosen [118], and the total energy deposited in the target voxel was tallied, the absorbed 
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fraction was calculated, and the S-values, indexed to the integer 3D coordinates of the target voxel 

(i,j,k), were obtained (see Chapter 3.3.1). The most peripheral voxels with the lowest S-values 

(e.g., the ones coming from low energy Auger electrons) were discarded since their influence on 

the results would be minimal, and the final S-values were acquired for an octant composed of 64 

voxels and dimension equal to 4×4×4.  

To validate the results obtained with MCNP6.1, simulations were performed for the 90Y 

radionuclide and soft tissue. 90Y was chosen since it is widely used in NM, and therefore, there 

are several S-values studies for this radioisotope. The simulation results were then compared with 

validated data present in the literature, obtained with the EGSnrc Monte Carlo program [110]. A 

radial comparison was made, only for the indexes k=0,1,2,3,4 and 5, and for voxels of 2.21 mm 

and 4.42 mm. Considering the decay scheme of 90Y, beta radiation, X-rays, Auger electrons, and 

internal conversion electrons were simulated. However, since the beta radiation had a signifi-

cantly higher yield (i.e., number of ejected particles per type of decay), it was the only form of 

decay considered in this validation. The results can be consulted in Appendix A (Table A.1 and 

Table A.2). The agreement seemed reasonable for the first four voxels in the two voxel sizes, and 

then the difference increased, as expected. However, up to the voxel k=3, the deviations were 

reasonable, in the order of 3%, and therefore still acceptable in the 2 cases: 9% (k=3 with 2.21 

mm) and 17% (k=2 with 4.42 mm). It was important to notice that the contribution of this third 

voxel (k=3) to the central voxel (k=0) was already minimal, of about 0.3% (with 2.21 mm) and 

0.0005% (with 4.42 mm).  Thus, it was assumed that the simulation results were correct, and the 

S-values obtained for the 68Ga were later used.   

In addition to beta-plus decay, 68Ga has other decay forms with other radiation emissions: 

Auger electrons, X-rays, and gamma photons. To obtain a realistic S-value for each voxel, a 

weighted sum was performed with the contribution of all yield decays. The following conversion 

factor was used to convert the units of the outputs of the MCNP6.1 code from MeV/g/particles to 

mGy/MBq/s: 

𝐶𝐹 = 𝑦𝑖𝑒𝑙𝑑 × 1.6 × 10#T × 101                                    (4.2) 

where the yield component differs depending on the type of decay (Annex I), 1.6×10-7 is the 

conversion factor from MeV/g to mGy, and 106 is the MBq unit (1 Bq=decay/s). 

The following Equations 4.3 and 4.4 describe the formulas applied to calculate the S-

values and the respective uncertainties. It is important to note that the dimension dim is equal to 

4 in this particular case since the indexes ranged from 0 to 3.  
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𝑆H,U,V = ∑ U0.889𝑆8QRS*,7,. + 0.411𝑆SW:QP*,7,. + 0.569𝑆XPS67*,7,. + 0.0359𝑆:SYYS*,7,.[
;H>#*
H,U,VJ'  (4.3) 

 

𝜎+H,U,V = ∑ ](0.889𝜎8QRS*,7,.)
+ + (0.441𝜎SW:QP*,7,.)

+ + (0.569𝜎XPS67*,7,.)
+ +;H>#*

H,U,VJ'

(0.0359𝜎:SYYS*,7,.)
+^                                               (4.4) 

Since the irradiation geometry was spherical, the S-values in voxels positioned at an equal 

distance from the central voxel were expected to be equal. However, due to the uncertainties of 

the simulated values, the S-values were not exactly symmetric. Thus, for each set of voxels posi-

tioned an equal distance to the center, the mean value of the respective S-values was calculated 

and assigned to all symmetric voxels. This smoothing operation was performed to obtain a better 

accuracy of the absorbed dose values. All the S-values used in this work can be consulted in 

Appendix A (Table A.3 and Table A.4).  

The S-values for the two tissue materials (soft tissue and red bone marrow) were recorded 

in a text file and then imported into the developed MATLAB code and used in this study. This 

data was rearranged into one octant with 4×4×4 voxels, and then a 7×7×7 kernel was generated 

for each of the two tissues by symmetrically filling in the remaining seven octants. 

 

4.6      Absorbed dose 
 
4.6.1     3D absorbed dose distribution 
The convolution of the voxel S-kernels (mGy/MBq·s) and the PET activity maps (MBq) resulted 

in voxel-wise absorbed dose rate distributions (mGy/s), as already mentioned in Chapter 3.3.1. 

This convolution operation was performed in the MATLAB software. Conceptually, the 

convolution operation can be described as follows: the kernel slid through the PET image, and 

the absorbed dose rate was calculated for each central target voxel through the activity 

contribution of the surrounding source voxels and the target voxel itself. After calculating the 

absorbed dose rate in the first target voxel, the kernel continued the scanning process to another 

voxel, and so on for all the voxels in the PET image (Figure 4.5).  
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Figure 4.5: Convolution operation of the voxel S-kernel with the PET image. The output of this operation 
is the voxel-wise absorbed dose rate distribution. The voxels of the kernel and the PET image’s voxels must 
have the same size, which was 4 mm cubic voxels in this study. Adapted from [133].  
 

Equation 4.5 shows how the dose rates for each target voxel were calculated. While the 

S-kernel coordinate system was (ii,jj,kk), (i,j,k) was PET’s coordinate system. dim1, dim2, and 

dim3 were the PET dimensions in the i,j, and k directions, respectively. For each target voxel, 

dim-1 voxels in each of the three directions are required for its dose calculation. Consequently, 

the application of this methodology for the dose rate calculation creates a voxel frame composed 

of zeros. In this study, a frame with a thickness of 3 voxels in each direction was produced, but it 

did not alter the precision in quantifying the absorbed dose in the ROIs. 

�̇�H,U,V =

∑ ∑ ∑ ∑ _	𝑆99!Z9Y,[[!Z9Y,??!Z9Y ∙;H>#*
HH,UU,VVJ#(;H>#*)

;H>3#(;H>#*)
VJ;H>

;H>+#(;H>#*)
UJ;H>

;H>*#(;H>#*)
HJ;H>

																																																																																										𝐴9!99,[![[,?!??`                                            (4.5) 

The absorbed dose was obtained by the temporal integration of the absorbed dose rate, as 

explained in Equation 3.5 of Chapter 3.3.1. To calculate the integral over time, a function was 

created in MATLAB. Equations 4.6 and 4.7 show how the total absorbed dose distributions, de-

pendent on the type of tissue under study, were calculated for the first and second subsets of 

patients, respectively. The integration limits were defined as 0 min, 45 min, and 75 min (in ac-

cordance with Chapter 4.4.4) and infinity, as recommended in MIRD Pamphlet No. 21 [102]. 

Considering the first subset of patients, with two acquisitions, �̇�* is the dose rate calculated using 

the PET image from the first scan corrected for 30 min and �̇�+ is the dose rate calculated using 

the PET image from the second scan corrected for 75 min (see Chapter 4.4.4). On the other hand, 

since patients from the second subset have three acquisitions,  𝐷′̇ *	is the dose rate calculated using 

the PET image from the first scan corrected for 15 min, 𝐷′̇ +	is the dose rate calculated using the 
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PET image from the second scan corrected for 45 min and 𝐷′̇ 3	is the dose rate calculated using 

the PET image from the third scan corrected for 75 min (see Chapter 4.4.4).  

𝐷9,[,? = ∫ �̇�**,7,.
T\
' + ∫ �̇�+*,7,.

∝
T\                                             (4.6) 

𝐷9,[,? = ∫ 𝐷′̇ **,7,.
^\
' + ∫ 𝐷′̇ +*,7,. +

T\
^\ ∫ 𝐷′̇ 3*,7,.

∝
T\                                    (4.7) 

After estimating the voxel-wise absorbed dose distributions, the absorbed dose values in 

the ROIs were calculated. The binary masks and the absorbed dose distributions were simultane-

ously traversed. If the voxel value of the mask was equal to 1, the correspondent dose value was 

stored in that voxel position and also in a column vector. Otherwise, the voxel value was assigned 

to 0. It is important to reinforce that the estimation of each absorbed dose distribution differed 

depending on the segment considered. For the liver, spleen, and kidneys, only the dose distribu-

tions calculated for the soft tissue material were employed. The same notion was applied for the 

red bone marrow and red bone marrow kernel.  

 

4.6.2     Dose-volume histogram 
The SlicerRT open-source radiotherapy extension in the 3D Slicer software was used to obtain 

the cDVHs in each organ [134].  

The mean, median, and SD were the statistics analyzed in these graphics. The first two 

statistics were assessed as described in Chapter 3.3.3, whereas the SD was obtained directly from 

the 3D Slicer platform. 

No comparison was made with DVHs present in the literature since each histogram is 

unique for a specific combination of patient and organ. Thus, these cDVHs were obtained only to 

visually corroborate the statistical results acquired through the methodology described in the pre-

vious section.  

 

4.6.3     Dosimetry analysis  
The column vectors filled with the voxel dose values were used for the statistical analysis in the 

MATLAB software. The mean, median, minimum, maximum, and SD were calculated for each 

segment. Table 4.3 shows the expressions of the statistics employed, considering D the absorbed 

dose values in the segments’ voxels and N the number of voxels in the vector. 
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Table 4.3 – Implementation of the statistics used in this study. 

Statistics Methods* 

Mean	
 𝐷H =

1
𝑁
b𝐷(𝑖)
_

H

 

Median The 50th percentile of D. 

Minimum The minimum intensity value of D. 

SD 

 𝜎` = c
1

𝑁 − 1
	b(𝐷(𝑖) − 𝐷H)+
_

HJ*

e

*
+

 

Maximum The maximum intensity value of D. 

*D is the set of absorbed dose values in the segments’ voxels and N is the number of voxels in the vector. 

 

The dose statistics in mGy were then divided by the administered activity (which differed 

from patient to patient) to obtain dose values in the mGy/MBq unit as in the literature.  

 

4.6.4     Statistical analysis 
Data were compared to values reported in the literature. Detailed dosimetry data were available 

for liver, spleen, kidneys, and red bone marrow from the studies by Asfhar-Oromieh et al. [57] 

and Pfob et al. [58]. In the studies conducted by Green et al. [59] and Demirci et al [60], only the 

mean absorbed dose values are presented. Furthermore, a study by Sandgren et al. [61] disclosed 

median, minimum, and maximum dose values.  

Graphical data comparisons, based on the mean, median, and SD, were used in this study 

for an overall comparison of the results for all segments.  

The range was calculated so that the variability of the mean and median dose values was 

measured for each organ, while the deviation was computed to compare the values obtained in 

this work with the values present in the literature. The following equation shows the formula 

employed in the calculation of the deviation: 

𝐸a(%) =
b8#b9
b9

× 100                                                     (4.8) 

where 𝐷K is the dose value estimated in the present study, and 𝐷c is the dose in the literature. The 

latter was chosen as reference since the objective was to compare the obtained values with the 

values already published and, therefore, these were considered as the reference for the present 

work.  
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Results 

5.1      3D absorbed dose distributions 
As a result of the convolution of the activity images with the S-values, absorbed dose distributions 

were obtained for each selected organ of each patient (Figure 5.1–Figure 5.6). To facilitate the 

visualization of anatomical structures, CT images were overlaid with an opacity of 40%. Only the 

axial slices are shown in these figures. The coronal and sagittal slices and the 3D perspectives can 

be consulted in Appendix B (Figure B.1–Figure B.24). Since the purpose of obtaining these im-

ages was to visually study the absorbed dose distribution in the patients’ organs, there is a color 

scale subtitled with the respective dose values in mGy. As a consequence of the variability of the 

absorbed dose distributions in the four organs and in the six patients, the color scales were adapted 

on a case-by-case basis. Consequently, it is easy to identify regions with higher and lower ab-

sorbed doses through the contrast of colors associated with higher values (white) and lower values 

(black).  

 

5 
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Figure 5.1: Four axial slices of the absorbed dose distributions in the kidneys, liver, spleen, and red bone 
marrow of patient 1. The scalar bar located on the right in the four images is expressed in mGy. 

 

Figure 5.2: Four axial slices of the absorbed dose distributions in the kidneys, liver, spleen, and red bone 
marrow of patient 2. The scalar bar located on the right in the four images is expressed in mGy.  
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Figure 5.3: Four axial slices of the absorbed dose distributions in the kidneys, liver, spleen, and red bone 
marrow of patient 3. The scalar bar located on the right in the four images is expressed in mGy. 
 

Figure 5.4: Four axial slices of the absorbed dose distributions in the kidneys, liver, spleen, and red bone 
marrow of patient 4. The scalar bar located on the right in the four images is expressed in mGy. 
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Figure 5.5: Four axial slices of the absorbed dose distributions in the kidneys, liver, spleen, and red bone 
marrow of patient 5. The scalar bar located on the right in the four images is expressed in mGy. 

 

Figure 5.6: Four axial slices of the absorbed dose distributions in the kidneys, liver, spleen, and red bone 
marrow of patient 6. The scalar bar located on the right in the four images is expressed in mGy. 
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5.2      Dose-volume histograms  
The following figures show the results of the step explained in Chapter 4.6.2. Considering all the 

patients included in this study, the cDVHs of the selected organs can be found in Figures 5.7 to 

5.12. 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Cumulative dose-volume histogram of patient 1, including the kidneys, liver, spleen, and red 
bone marrow.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Cumulative dose-volume histogram of patient 2, including the kidneys, liver, spleen, and red 
bone marrow.  
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Figure 5.9: Cumulative dose-volume histogram of patient 3, including the kidneys, liver, spleen, and red 
bone marrow.  

 

 

 

 

 

 

 

 

 

 

 
Figure 5.10: Cumulative dose-volume histogram of patient 4, including the kidneys, liver, spleen, and red 
bone marrow.  
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Figure 5.11: Cumulative dose-volume histogram of patient 5, including the kidneys, liver, spleen, and red 
bone marrow.  

 

 

 

 

 

 

 

 

 

 

 
Figure 5.12: Cumulative dose-volume histogram of patient 6, including the kidneys, liver, spleen, and red 
bone marrow.  
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As explained in Chapter 4.6.2, the mean, median and SD dose values in the kidneys, liver, 
spleen, and red bone marrow of the six patients enrolled in this study were determined from the 
analysis of the cDVHs presented above and are exhibited in the following table (Table 5.1). 

 

Table 5.1: Mean, median and SD dose values in mGy obtained from the analysis of the cDVHs of the 
six patients. 

Organ Statistics Patient 1 
(mGy) 

Patient 2 
(mGy) 

Patient 3 
(mGy) 

Patient 4 
(mGy) 

Patient 5 
(mGy) 

Patient 6 
(mGy) 

Kidneys Mean 6.114 4.519 11.495 5.632 8.642 7.421 

 Median 7.143 4.891 13.889 5.945 9.932 8.051 

 SD 2.886 3.770 3.828 2.458 4.899 2.677 

Liver Mean 0.679 1.703 1.408 1.785 2.154 1.921 

 Median 0.912 1.870 1.924 2.167 2.462 2.367 

 SD 0.307 0.408 0.372 0.712 0.510 0.556 

Spleen Mean 0.577 0.875 0.660 1.610 2.777 2.022 

 Median 0.899 1.083 1.246 1.875 3.910 2.283 

 SD 0.250 0.328 0.243 0.780 0.960 1.343 

Red bone 
marrow 

Mean 0.065 0.115 0.143 0.271 0.259 0.365 

 Median 0.063 0.100 0.200 0.191 0.353 0.348 

 SD 0.054 0.079 0.119 0.132 0.147 0.490 

 

Furthermore, by analyzing the cDVHs presented, it is possible to verify that the theoret-

ical concept that relates the extent of the curve plateau with the standard deviation and irradiation 

uniformity/non-uniformity cannot be applied. In this work, using diagnostic studies with radioi-

sotopes, the objective is to analyze the absorbed dose distributions in the total volume of the 

organs and not in specific lesions. These dose distributions possess a more non-uniform nature, 

and therefore, the shape of the cDVH curve has a greater impact than the extent of the plateau in 

the study of the uniformity/non-uniformity of radiopharmaceutical uptake in the organs of inter-

est.  

With these cumulative dose-volume histograms, it was possible to analyze the dose dis-

tribution in the patient’s organs simultaneously. In the following chapter, the absorbed dose val-

ues used for comparison with the dose values present in the literature are shown.  
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5.3      Dosimetry Results  
The dosimetry results for the patient cohort are reported in Table 5.2 and Figures 5.13 to 5.16.  
Table 5.2: Results of the dosimetry study expressed in mGy/MBq. The mean, median, minimum, maxi-
mum, and SD were calculated for the organs under study, considering each patient individually and the six 
patients simultaneously (last column on the right).  

Organ Statistics* Patient 
1 

(mGy/
MBq) 

Patient 
2 

(mGy/
MBq) 

Patient 
3 

(mGy/
MBq) 

Patient 
4 

(mGy/
MBq) 

Patient 
5 

(mGy/
MBq) 

Patient 
6 

(mGy/
MBq) 

Overall Ab-
sorbed Dose 
(mGy/MBq)

** 

Kidneys Mean 

Median 

Minimum 

Maximum 

0.0737 

0.0779 

0.0037 

0.1529 

0.0393 

0.0406 

<0.0010 

0.1229 

0.1121 

0.1140 

0.0160 

0.2039 

0.0316 

0.0322 

0.0014 

0.0939 

0.0590 

0.0545 

0.0115 

0.2908 

0.0490 

0.0495 

0.0042 

0.0992 

0.0561 

0.0499 

<0.0010 

0.2879 

 SD 0.0338 0.0338 0.0331 0.0138 0.0286 0.0172 0.0367 

Liver Mean 

Median 

Minimum 

Maximum 

SD 

0.0082 

0.0082 

<0.0010 

0.0960 

0.0044 

0.0165 

0.0169 

0.0012 

0.0322 

0.0041 

0.0137 

0.0141 

0.0019 

0.0446 

0.0034 

0.0112 

0.0109 

0.0015 

0.0609 

0.0041 

0.0142 

0.0144 

0.0020 

0.0281 

0.0031 

0.0135 

0.0139 

0.0019 

0.0404 

0.0037 

0.0132 

0.0126 

<0.0010 

0.0962 

0.0046 

Spleen Mean 0.0069 0.0093 0.0084 0.0107 0.0212 0.0149 0.0114 

 Median 0.0071 0.0099 0.0082 0.0103 0.0216 0.0134 0.0102 

 Minimum <0.0010 0.0016 0.0030 0.0020 0.0051 0.0026 <0.0010 

 Maximum 0.0183 0.0188 0.0265 0.0521 0.0462 0.0715 0.0718 

 SD 0.0029 0.0033 0.0023 0.0045 0.0061 0.0085 0.0064 

Red 
bone 

marrow 

Mean 

Median 

Minimum 

Maximum 

SD 

<0.0010 

<0.0010 

<0.0010 

0.0113 

<0.0010 

0.0014 

0.0012 

<0.0010 

0.0130 

<0.0010 

0.0017 

0.0014 

<0.0010 

0.0162 

<0.0010 

0.0015 

0.0014 

<0.0010 

0.0048 

<0.0010 

0.0021 

0.0019 

<0.0010 

0.0184 

<0.0010 

0.0022 

0.0018 

<0.0010 

0.1003 

0.0016 

0.0015 

0.0013 

<0.0010 

0.1009 

0.0013 

* According to the specifications of the Philips Vereos Digital PET/CT, the maximum quantitative uncer-
tainty of activity is 5% and the maximum uncertainty of the S-values is, as already mentioned, 5%. Thus, 
the uncertainty of these dosimetry statistical values will never be less than 5%.  

** These absorbed dose values were calculated for each organ considering the voxel-wise absorbed dose 
distributions of the six patients. 
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Figures 5.13 to 5.16 show the dosimetric variability of the six patients, which is well 
characterized by the statistical mean, median, and SD values in each of the four organs under 
study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Mean±SD and median absorbed dose values in the kidneys of the six patients. The SD dose 
value of each patient corresponds to the value positioned in front of the respective bar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: Mean±SD and median absorbed dose values in the liver of the six patients. The SD dose value 
of each patient corresponds to the value positioned in front of the respective bar. 
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Figure 5.15: Mean±SD and median absorbed dose values in the spleen of the six patients. The SD dose 
value of each patient corresponds to the value positioned in front of the respective bar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: Mean±SD and median absorbed dose values in the red bone marrow of the six patients. The 
SD dose value of each patient corresponds to the value positioned in front of the respective bar. 

 

The kidneys were the organs with the highest mean and median dose values in all patients, 

while the red bone marrow was the structure with these lowest values. Of the four organs, the 
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spleen and the liver were the organs with intermediate dose values, both of which showed a sig-

nificant dose difference in the first and second subsets of patients. In the second subset, the mean 

dose values in the spleen were equal (patient 4) or higher (patients 5 and 6) than the liver values, 

a tendency that was not seen in patients 1, 2, and 3. The red bone marrow presented the lowest 

SD value, so it can be concluded that the dose distribution in this organ is more uniform than the 

dose distributions in the other organs. On the other hand, the kidneys presented the most non-

uniform dose distribution since the SD is higher than that observed in the liver, spleen, and red 

bone marrow.   

 

5.4      Comparison with previous studies 
Table 5.3 shows the mean and median absorbed dose values and the SD per administered activity 

computed in this work and in previously published literature considering the same organs under 

study. It is important to note that the data published by Afshar-Oromieh et al. [57] and Pfob et al. 

[58] include the mean, median, and SD dose values, while Green et al. [59] and Demirci et al. 

[60] only report mean dose values and Sandgren et al. [61] only median dose values.  

 

Table 5.3: Comparison between this study and previously published data regarding the mean, median, and 
SD dose values. 

Organ Statistics This 

work 

(mGy/

MBq) 

Afshar-

Oromieh et 

al. [57] 

(mGy/MBq) 

Pfob et al. 

[58] 

(mGy/MBq) 

Green et al. 

[59] 

(mGy/MBq) 

Demirci et 

al. [60] 

(mGy/MBq) 

Sandgren et 

al. [61] 

(mGy/MBq) 

Kidneys Mean 0.0561 0.2620 0.1220 0.410 0.4130 0.2460  

 Median 0.0499 0.2925 0.1210   0.2400 

 SD 0.0367 0.0984 0.0444    

Liver Mean 0.0132 0.0309 0.0214 0.0395 0.0294  

 Median 0.0126 0.0305 0.0207   0.0530 

 SD 0.0046 0.0042 0.0032    

Spleen Mean 0.0114 0.0446 0.0428 0.0581 0.0388  

 Median 0.0102 0.0423 0.0413   0.0460 

 SD 0.0064 0.0209 0.0185    
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Red 

bone 

marrow 

Mean 0.0015 0.0092 0.0139 0.0103    0.0120  

 Median 0.0013 0.0092 0.0081        0.0150 

 SD 0.0013 0.0003 0.0136    

 

Figures 5.17 to 5.20 show the mean, median, and SD absorbed dose values in the kidneys, 

liver, spleen, and red bone marrow, computed in the present work and in other literature studies. 

The variability of the absorbed dose values in the organs under study is shown in these figures. 

Considering the SDs of the first three studies, the present work presented less variability of the 

dose values in the spleen and similar variability in the kidneys and liver. On the other hand, in 

this study, less variability in the red bone marrow was obtained when compared to the work by 

Pfob et al. [58], but higher variability was found when compared to the data published by Afshar 

et al [57].   

Figure 5.17: Comparison between this study and the previously published data regarding the mean, median, 
and SD dose values in the kidneys. The SD dose value of each study corresponds to the value positioned in 
front of the respective bar. 
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Figure 5.18: Comparison between this study and the previously published data regarding the mean, median, 
and SD dose values in the liver. The SD dose value of each study corresponds to the value positioned in 
front of the respective bar. 

 

Figure 5.19: Comparison between this study and the previously published data regarding the mean, median, 
and SD dose values in the spleen. The SD dose value of each study corresponds to the value positioned in 
front of the respective bar. 
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Figure 5.20: Comparison between this study and the previously published data regarding the mean, median, 
and SD dose values in the red bone marrow. The SD dose value of each study corresponds to the value 
positioned in front of the respective bar. 

 

The following tables (Table 5.4, 5.5, and 5.6) show the range and deviation in terms of 

the mean and median dose values. The range was computed to measure the variability of the mean 

and median values in this study and in the literature for each organ. The deviation between the 

dose values calculated in this study and in previous studies was also computed. 

 

Table 5.4: Range in terms of the mean and median dose values in the kidneys, liver, spleen, and red bone 
marrow. 

Organ RangeMean (mGy/MBq) RangeMedian (mGy/MBq) 

Kidneys 0.0561–0.4130 0.0499–0.2925 

Liver 0.0132–0.0395 0.0126–0.0530 

Spleen 0.0114–0.0581 0.0102–0.0460 

Red bone marrow 0.0015–0.0139 0.0013–0.0150 
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Table 5.5: Deviation in terms of the mean dose values in the kidneys, liver, spleen, and red bone marrow, 
considering the studies by Afshar-Oroemieh et al. [57], Pfob et al. [58], Green et al. [59] and Demirci et al. 
[60] as references.  

  ERMean (%)   

Organ Afshar-Oromieh 
et al. [57] 

Pfob et al. 

[58] 

Green et al. 
[59] 

Demirci et al. 
[60] 

Kidneys -78.5 -53.3 -86.3 -77.6 

Liver -58.1 -38.1 -67.5 -55.2 

Spleen -75.6 -74.4 -81.0 -71.8 

Red bone marrow -83.7 -89.3 -85.0 -87.5 

 

Table 5.6: Deviation in terms of the median dose values in the kidneys, liver, spleen, and red bone marrow, 
considering the studies by Afshar-Oroemieh et al. [57], Pfob et al. [58], and Sandgren et al. [61] as refer-
ences.  

  ERMedian (%)  

Organ Afshar-Oromieh et al. [57] Pfob et al. [58] Sandgren et al. [61] 

Kidneys -83.1 -59.2 -79.6 

Liver -60.0 -42.9 -77.4 

Spleen -76.2 -75.6 -78.3 

Red bone marrow -85.9 -83.9 -91.3 

 

In all studies, the kidneys received the highest absorbed doses, in contrast to the red bone 

marrow, which received the lowest absorbed dose values, compared to the other organs. The five 

literature studies exhibited similar mean and median dose results, particularly in the red bone 

marrow and liver, whereas the kidneys were the organs with the highest variability in terms of 

mean and median dose values. However, compared to previous studies, the dosimetry results in 

the present work for the four organs were lower, which can be observed in Figures 5.17 to 5.20 

and Tables 5.5 and 5.6. A plausible explanation for these deviations is that the authors performed 

the dosimetry calculations at the compartment level and not at the voxel level, as in the present 

study. Consequently, a uniform distribution of the radiopharmaceutical in the organs was consid-

ered, resulting in an overestimation of the absorbed dose values. 
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Discussion and Conclusions 

6.1      Discussion 
Since the introduction of 68Ga-PSMA-11 for PET imaging, PSMA-PET/CT has spread rapidly to 

many institutions. The aim of the present study was to perform internal radiation dosimetry esti-

mates of six prostate cancer patients who underwent 68Ga-PSMA-11 PET/CT in the Nuclear Med-

icine-Radiopharmacology Department at the Champalimaud Foundation. Subsequently, the re-

sults were compared with the available data in previous studies. The target organs included in this 

study were the kidneys, liver, spleen, and red bone marrow.  

Since the innovation of this work is the dose calculation at the voxel level, the MIRD S-values 

approach at the voxel level was employed. For patients 1, 2, and 3, two sets of PET/CT images 

were acquired per patient, while for patients 4, 5, and 6, three sets were obtained per patient. 

PET/CT acquisitions were performed on a Philips Vereos PET/CT scanner. All PET images of 

each patient were registered in the same coordinate space and calibrated for radioisotope concen-

tration at the time of image acquisition. The organs of interest of each patient were manually 

segmented based on CT images, and the masks were resampled to the PET voxel size. Afterward, 

the convolution of the S-kernels, obtained using the MCNP6.1 Monte Carlo Code, with the PET 

activity maps, resulted in absorbed dose rate distributions, which were subsequently time-inte-

grated to take into account all radioisotope decays. The voxel-wise absorbed dose distributions in 

the organs of each patient (Figures 5.1–5.6) and the cDVHs (Figures 5.7–5.12) were successfully 

obtained. In addition, the mean, median, minimum, maximum, and SD of the absorbed dose val-

ues were also calculated (Table 5.2 and Figures 5.13–5.16). Afshar-Oromieh et al. [57], Pfob et 

al. [58], Green et al. [59], Demirci et al. [60] and Sandgren et al. [61] were the studies found in 

the literature and used here for comparison with the obtained results (Table 5.3 and Figures 5.17–
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5.20). For this purpose, the range and deviation in terms of mean and median dose values were 

calculated for the four organs (Tables 5.4–5.6). 

The voxel-wise absorbed dose distribution in the kidneys of patient 2 (Figure 5.2) shows that 

the dose values in the voxels of the left kidney were much lower compared to the values in the 

right kidney. In addition, the blue curve of the cDVH of patient 2 (Figure 5.8), referring to the 

kidneys, presents an irregular shape. After the study of the PET images, it was found that this 

patient had practically no radiopharmaceutical uptake in the left kidney since this is a non-func-

tioning kidney. This loss of function was due to a progressive obstruction of urine flow at the 

junction of the left ureter with the bladder, which can lead to a functional recovery reaction by 

the contralateral kidney. For this reason, the absorbed dose values in the kidneys of patient 2 were 

not lower than the absorbed dose values in the kidneys of the remaining patients. 

Regarding the six patients of this study, the kidneys received the highest absorbed doses, with 

a mean overall absorbed dose of 0.0561 mGy/MBq and a median overall absorbed dose of 0.0499 

mGy/MBq. Thus, the kidneys were the critical organs in this study, which was expected due to 

the biological process of elimination of the radiopharmaceutical. The tracer uptake in the liver 

resulted in a significant mean absorbed dose from 68Ga of approximately 0.0132 mGy/MBq and 

a median absorbed dose of 0.0126 mGy/MBq. This is less than the kidneys, but the second highest 

organ dose. The third organ with the highest dose was the spleen, receiving an estimated mean 

dose of 0.0114 mGy/MBq and a median dose of 0.0102 mGy/MBq. Of all organs, the red bone 

marrow received the lowest absorbed dose values (mean dose: 0.0015 mGy/MBq, median dose: 

0.0013 mGy/MBq). This means that none of the patients included in this study had metastasis 

with intense foci of PSMA or hyperactivity in the red bone marrow, the latter possibly induced 

by medication. Considering all the patients and organs, the SDs at the voxel level were: red bone 

marrow (SD=0.0013 mGy/MBq), liver (SD=0.0046 mGy/MBq), spleen (SD=0.0064 mGy/MBq), 

and kidneys (SD=0.0367 mGy/MBq). Thus, it is possible to infer that the dose distribution in the 

red bone marrow was more uniform, followed by the distribution in the liver, spleen, and kidneys.  

The spleen was the organ that showed the highest variability of results obtained after two 

acquisitions at 60 and 90 min p.i. (mean dose: 0.0069–0.0093 mGy/MBq, median dose: 0.0071–

0.0099 mGy/MBq) and three acquisitions at 30, 60, and 90 min p.i. (mean dose: 0.0107–0.0212 

mGy/MBq, median dose: 0.0103–0.0216 mGy/MBq). This was expected since the spleen is a 

fundamentally vascular organ and, consequently, does not show a permanent accumulation of the 

radiopharmaceutical over time as the remaining organs. There are two possible explanations for 

the fact that the radiopharmaceutical uptake was higher at 30 min p.i., compared to 60 and 90 min 

p.i. Either the radiopharmaceutical counts in the spleen peaked during the vascular phase at 30 
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minutes and then decreased, or the counts accumulated up to 30 minutes, and then an organic 

retention plateau was reached.  

The mean absorbed doses in the liver and red bone marrow were lower in patient 1, compared 

to the other five patients. Since this patient has no clinical history to justify these results, such 

dissimilarity may be due to the fact that the administered radiation activity to this patient (87.69 

MBq) was lower than the activities administered to the remaining subjects, which varied within 

the range of 109.15 MBq to 181.30 MBq. Other explanations for the low absorbed dose values in 

the liver are related to liver failure and deficiencies in the liver blood flow (whether provided by 

the hepatic artery or portal venous blood), which decrease the uptake of the radiopharmaceutical 

by the liver and the percentage of radioactive activity reaching this organ, respectively.  

As already mentioned, patient 3 had two image acquisitions at different times, separated by 

an interval of 37 minutes. His high absorbed dose in the kidneys, compared to the dose in the 

same organ in the remaining patients, may be due to differences in the urine excretory pattern 

during those 37 minutes.   

Earlier studies [57-61] have also observed that the kidneys are the organs obtaining the high-

est mean and median absorbed doses. However, the absorbed dose values in the kidneys found in 

this study (mean: 0.0561 mGy/MBq, median: 0.0499 mGy/MBq) are not in line with the estima-

tions by Afshar-Oromieh et al. [57] (mean: 0.2620 mGy/MBq, median: 0.2925 mGy/MBq), Pfob 

et al. [58] (mean: 0.1220 mGy/MBq, median: 0.1210 mGy/MBq), Green et al. [59] (mean: 0.4130 

mGy/MBq), Demirci et al. [60] (mean: 0.2460 mGy/MBq) and Sandgren et al. [61] (median: 

0.2400 mGy/MBq). In fact, the mean and median dose values in the kidneys presented the highest 

variability (RangeMean=0.0561–0.4130 mGy/MBq, RangeMedian=0.0499–0.2925 mGy/MBq), 

demonstrating the discrepancy of results that exist in the literature and in the present study for 

this organ. Comparing the results of this study with the literature, the deviations were high and 

ranged from -53.3% (ERMean, Pfob et al. [58]) to -86.3% (ERMean, Green et al. [59]). No correlation 

between the obtained results and the renal function of each patient was attempted. It is known 

that renal function can vary significantly from patient to patient and even more when dealing with 

primary prostatic disease. The length of disease duration may also play an important role.  

The liver dose values were the closest to those in the literature. The absorbed doses in the 

liver obtained in this study (mean: 0.0132 mGy/MBq, median: 0.0126 mGy/MBq) are in agree-

ment with the results by Afshar-Oromieh et al. [57] (mean: 0.0309 mGy/MBq, median: 0.0305 

mGy/MBq), Pfob et al. [58] (mean: 0.0214 mGy/MBq, median: 0.0207 mGy/MBq), Green et al. 

[59] (mean: 0.0395 mGy/MBq), Demirci et al. [60] (mean: 0.0294 mGy/MBq) and Sandgren et 

al. [61] (median: 0.0530 mGy/MBq). The ranges of mean and median absorbed dose values were 

0.0132–0.0395 mGy/MBq and 0.0126–0.0530 mGy/MBq, respectively, and the maximum and 
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minimum deviation values were -77.4% (ERMedian, Sandgren et al. [61]) and -38.1% (ERMean, Pfob 

et al. [58]), respectively.  

The spleen results were similar to the liver results already discussed. However, there was an 

increase in the variability of the absorbed dose values (RangeMean=0.0114–0.0581 mGy/MBq, 

RangeMedian=0.0102–0.0460 mGy/MBq) and in the maximum and minimum deviations (-81.0% 

(ERMean, Green et al. [59]) and -71.8% (ERMean, Demirci et al. [60]).   

As in this study, the literature also reports the red bone marrow as the organ with the lowest 

mean and median absorbed doses. The dosimetry results in the red bone marrow present the low-

est variability, compared to the values in the other three organs (RangeMean=0.0015–0.0139 

mGy/MBq, RangeMedian=0.0013–0.0150 mGy/MBq). However, in this organ, there is a higher de-

viation of results between those obtained in this study and those in the literature, reaching a devi-

ation of -91.3% (ERMedian, Sandgren et al. [61]) in one of the cases.  

There is a tremendous variability of the absorbed dose per organ, per patient, and per author. 

This variability can be explained by several factors. First, previous studies employed compart-

ment or organ dosimetry methods, which consider a uniform biodistribution of the radiopharma-

ceutical. Afshar-Oromieh et al. [57], Pfob et al. [58], Green et al. [59], and Demirci et al. [60] 

used the software OLINDA/EXM for the calculations, whereas Sandgren et al. [61] utilized the 

software IDAC-Dose 2.1. In another way, the present study employed a voxel-based approach, 

which leads to dosimetry estimations closer to the real ones since it considers a non-uniform 

biodistribution. In addition, Pfob et al. [58] employed the PET/MRI imaging technique in their 

study. These differences resulting from the varied applied methodologies lead to uncertainties of 

a systematic nature. Second, this study was based on two or three image acquisitions per patient, 

while Green et al. [59] studied three acquisitions per patient, Pfob et al. [58] and Sandgren et al. 

[61] four acquisitions, and Demirci et al. [60] five acquisitions per patient. Knowing that multiple 

acquisitions better mimic the biopharmaceuticals and pharmacokinetics of radiopharmaceuticals, 

the variability in the number of images per patient also leads to differences in the obtained results. 

Third, other explanations will most likely be related to multiple variables, such as the patient’s 

intrinsic radiopharmaceutical pharmacokinetics, malfunction of the organs, administered activity, 

and excretion pathways. The pharmacokinetics of the radiopharmaceutical is dependent on the 

pharmacokinetics of the tracer and on the half-life of the radionuclide (physical, biological, and 

effective) and differs with the radiopharmaceutical, from patient to patient and from organ to 

organ. Variability of the absorbed doses may also be related to the existence of organs that did 

not perform their expected function at the time of image acquisition. Furthermore, the adminis-

tered activity differs from patient to patient, and it may not be the same as the activity measured 

in the syringe before the procedure. In this regard, it is usually assumed that all the activity 
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measured in the syringe is injected into the vein and not outside. Additionally, it is also assumed 

that the residue in the syringe is similar at all times. However, this may not happen and conse-

quently can affect the dosimetry calculations.  Finally, there are different excretion pathways of 

the radiopharmaceutical, such as renal and hepatobiliary, which can influence the dose results, 

especially in the kidneys. Fourth, it is also important to realize that unavoidable inter-scanner 

variability may also lead to differences in the absorbed dose calculation studies since it makes 

comparing, exchanging, and combining results more challenging.  

 

6.2      Conclusions 
68Ga-PSMA-11 is currently the most commonly used PSMA-targeting agent under investigation 

due to its high expression in prostate cancer cell lines as well as its potential prognostic value in 

patients with prostate cancer [28]. However, knowledge of the clinical safety and whole-body 

radiation dosimetry of this agent is crucial for its adoption in clinical institutions. In this study, it 

was found that 68Ga-PSMA-11 was safe and well tolerated and that no pharmacological side ef-

fects were observed in a limited number of patients after its intravenous injection. The absorbed 

dose values obtained in the present study yield less radiation exposure compared to other studies 

(although comparisons between different works that employed different methodologies are lim-

ited), which is an additional argument in favor of the use of 68Ga-PSMA-11 for human imaging 

in clinical practice.  

 

6.3      Limitations  
This study faced some limitations that could lead to differences between the absorbed dose ob-

tained in the present work and in the literature. First, since a time-consuming imaging protocol is 

needed for dosimetry calculations, only a limited number of six patients could be included, and 

the patient population was rather heterogeneous. Second, only two or three image acquisitions 

were performed, respectively, for the first and second subsets of patients. Consequently, the pa-

tients’ kinetics were not fully captured, resulting in a less accurate dosimetry. Third, the S-values 

used in dose calculation in this study were neither organ- nor patient-specific. Fourth, the data 

present in this retrospective study, obtained with a PET scanner combined with a low-dose CT, 

were compared with previous studies that employed other imaging modalities, such as PET/MRI 

and other dosimetry calculation approaches.  
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 6.4      Future work 

For future perspectives, there are several projects that can be conducted. A good starting point 

would be to obtain patient- and organ-specific S-values, taking into account Monte Carlo simu-

lations based on CT images of each patient, instead of merely considering the standard tissue 

composition. Furthermore, regarding the paired organs, it is also important to highlight the need 

to quantify the absorbed dose in each organ individually. For example, for the kidneys, it would 

be interesting to calculate the absorbed dose in the two independent kidneys and in their junctions 

with the excretory system. Then, the incorporation of a technology in the image reconstruction 

equipment, which would calculate the patients’ absorbed dose distributions, would be an ad-

vantage in NM clinics. 

The study of the cumulative absorbed dose of patients submitted to multiple exposures 

during their lifetime is one of the main projects to consider in the future. In fact, cumulative 

radiation exposure from multiple radiological procedures may put some individuals at signifi-

cantly higher risk of stochastic and deterministic effects. Thus it is very important to follow the 

history of radiological exposure of individuals, including the dose per examination and the num-

ber of examinations.  However, no country currently has a radiation dose tracking program at the 

national level to track medical radiation procedures, although efforts have been made by several 

organizations [135]. In fact, IAEA is working to include dose information in Electronic Health 

Records (EHRs) [104].  

Patient dose information is found in the form of structured dose reports as standardized 

by the Integrated Health Enterprise (IHE) [136]. These data are typically found on the DICOM 

header of the patient’s image files that are usually available on Picture Archiving and Communi-

cation System (PACS) servers [137]. Interoperability of several health information systems is the 

goal, and in some imaging modalities, dose tracking is currently possible. However, it is lacking 

for NM procedures. While in CT, standard reference quantities such as dose length product (DLP) 

or volume computed tomography dose index (CTDIvol) are sufficient to estimate organ absorbed 

dose, in NM, the reference dose quantity (activity) alone is of lesser value [138]. Doses are de-

pendent on the type of the radiopharmaceutical used, the quantity of administered activity, and 

the patient-specific biokinetics of uptake and clearance from each organ. Moreover, patient radi-

ation exposure begins prior to and continues beyond the imaging time.  

Model-derived dose coefficients can be used to estimate radiation doses from NM proce-

dures. Such dose coefficients, which can be found in ICRP Publication 17 [139] and ICRP Pub-

lication 53 [140] for a variety of radiopharmaceuticals, can be multiplied by the administered 
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activity in order to provide estimates of organ doses. However, while activity- and radiopharma-

ceutical-specific, these estimates cannot reflect the biokinetics and habitus of patients.  

 As future work, a possible solution is to build a dosimetry model that incorporates not 

only activity and radiopharmaceutical information but also measures of patient-specific biokinet-

ics and functional parameters of different organs. It would be a personalized medicine model in 

which the specific biodistribution of radiopharmaceuticals, the anatomical constitution of pa-

tients, and the functioning of organs would be called into question. The main objective would be 

to model the biokinetic behavior of radiopharmaceuticals in multiple subjects and extrapolate the 

absorbed dose distribution from the administered activity in each patient. Additionally, and if 

there is a relation in the way different organs react to radiation, a secondary model for obtaining 

dose in an organ from the dose information of another organ would be another important point in 

these futuristic dosimetry studies. First, the same quantity of radiopharmaceutical would have to 

be injected in several patients. The sample of patients would have to differ in age and index body 

mass in order to study the influence of body habitus in dose calculation. Also, extensive scanning 

for each patient would be required, from the moment of injection of the radiopharmaceutical until 

the moment the radiopharmaceutical is completely excreted, which depends on its effective half-

life. Further, and since the volume of some organs, such as the bladder, changes over time, CT 

images would only be acquired in the first and last acquisitions, and virtual CTs would be recon-

structed for all other PET image acquisition moments. After the construction of the model, tests 

using images of new patients would have to be performed to analyze its effectiveness in person-

alized medicine studies. This model has not yet been created since it is quite challenging to find 

patients who are willing to undergo several exams spaced in time, in addition to the fact that this 

whole process would be expensive for research institutions.  
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Appendix 1 – S-values 

Throughout the appendix, scientific notation was adopted when the absolute value of the results 

or uncertainties was close to zero.  

A radial comparison between the results obtained by the MCNP6.1 and EGSnrc programs 

was performed to validate the S-values presented by the MCNP6.1 software. The S-values for the 

radionuclide 90Y and soft tissue, considering its beta decay component, for voxels of 2.21 mm 

and 4.42 mm are presented in tables A.1 and A.2, respectively.  

 

Table A.1: S-values for the 90Y radionuclide, 2.21 mm voxels, and soft tissue, obtained by the EGSnrc and 
MCNP6.1 Monte Carlo programs. Since this was a radial comparison, only the k-index related to each 
voxel’s spatial position was altered.  

i j k  S-value (EGSnrc) S-value (MCNP6.1) 

0 0 0  3 3.1±1.2×10-4 

0 0 1  0.57 0.55±9.9×10-4 

0 0 2  0.07 0.073±3.8×10-4 

0 0 3  0.01 0.011±1.4×10-4 

0 0 4  7.52×10-4 0.0011±4.3×10-5 

0 0 5  1.25×10-5 2.6×10-5±5.5×10-6 

 

 

 

A 
 



 

 

82 

Table A.2: S-values for the 90Y radionuclide, 4.42 mm voxels, and soft tissue, obtained by the EGSnrc and 
MCNP6.1 Monte Carlo programs. Since this was a radial comparison, only the k-index related to each 
voxel’s spatial position was altered. 

i j k  S-value (EGSnrc) S-value (MCNP6.1) 

0 0 0  0.69 0.72±7.2×10-4 

0 0 1  0.09 0.094±4.7×10-4 

0 0 2  0.002 0.0025±7.1×10-5 

0 0 3  3.11×10-6 3.2×10-6±1.5×10-6 

0 0 4  7.83×10-7 4.9×10-7±2.6×10-7 

0 0 5  4.70×10-7 9.9×10-7±5.1×10-7 

 

Tables A.3 and A.4 represent the S-values for the 68Ga radionuclide, 4 mm voxels, and 

for the soft tissue and red bone marrow materials. These octants with dimension 4×4×4 are con-

stituted by 64 elements and were obtained from a weighted sum of the S-values of the following 

radiations: beta-plus, Auger electrons, X-rays, and gamma rays. All rounded values were rounded 

by excess.  

 

Table A.3: S-values for the 68Ga radionuclide, cubical voxels of 4×4×4 mm3, and soft tissue.  

i j k S-value (mGy/MBq·s) 

0 0 0 0.83±5.4×10-5 

0 0 1 0.11±0.0078 

0 0 2 0.0021±0.0017 

0 0 3 2.8×10-4±0.0087 

0 1 0 0.11±0.0078 

0 1 1 0.026±4.7×10-4 

0 1 2 9.6×10-4±0.0025 

0 1 3 2.5×10-4±0.013 

0 2 0 0.0021±0.0017 

0 2 1 9.6×10-4±0.0025 

0 2 2 3.2×10-4±0.0062 

0 2 3 1.9×10-4±0.024 
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0 3 0 2.8×10-4±0.0089 

0 3 1 2.5×10-4±0.010 

0 3 2 1.9×10-4±0.020 

0 3 3 1.4×10-4±0.064 

1 0 0 0.11±0.0080 

1 0 1 0.026±4.7×10-4 

1 0 2 9.6×10-4±0.0025 

1 0 3 2.5×10-4±0.012 

1 1 0 0.026±4.7×10-4 

1 1 1 0.0075±9.0×10-4 

1 1 2 5.6×10-4±0.0034 

1 1 3 2.3×10-4±0.017 

1 2 0 9.6×10-4±0.0025 

1 2 1 5.6×10-4±0.0035 

1 2 2 2.8×10-4±0.0083 

1 2 3 1.8×10-4±0.026 

1 3 0 2.5×10-4±0.013 

1 3 1 2.3×10-4±0.014 

1 3 2 1.8×10-4±0.024 

1 3 3 1.3×10-4±0.091 

2 0 0 0.0021±0.0017 

2 0 1 9.6×10-4±0.0025 

2 0 2 3.2×10-4±0.0063 

2 0 3 1.9×10-4±0.024 

2 1 0 9.6×10-4±0.0025 

2 1 1 5.6×10-4±0.0035 

2 1 2 2.8×10-4±0.0087 

2 1 3 1.8×10-4±0.034 
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2 2 0 3.2×10-4±0.0067 

2 2 1 2.8×10-4±0.0086 

2 2 2 2.1×10-4±0.015 

2 2 3 1.5×10-4±0.041 

2 3 0 1.9×10-4±0.020 

2 3 1 1.8×10-4±0.026 

2 3 2 1.5×10-4±0.046 

2 3 3 1.1×10-4±0.053 

3 0 0 2.8×10-4±0.0085 

3 0 1 2.5×10-4±0.011 

3 0 2 1.9×10-4±0.025 

3 0 3 1.4×10-4±0.041 

3 1 0 2.5×10-4±0.013 

3 1 1 2.3×10-4±0.013 

3 1 2 1.8×10-4±0.026 

3 1 3 1.3×10-4±0.091 

3 2 0 1.9×10-4±0.024 

3 2 1 1.8×10-4±0.026 

3 2 2 1.5×10-4±0.0053 

3 2 3 1.1×10-4±0.091 

3 3 0 1.4×10-4±0.053 

3 3 1 1.3×10-4±0.091 

3 3 2 1.1×10-4±0.064 

3 3 3 8.8×10-5±0.064 

   

Table A.4: S-values for the 68Ga radionuclide, cubical voxels of 4×4×4 mm3, and red bone marrow. 

i j k S-value (mGy/MBq·s) 

0 0 0 0.82±5.8×10-5 

0 0 1 0.11±0.0079 
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0 0 2 0.0019±0.0014 

0 0 3 2.8×10-4±0.0053 

0 1 0 0.11±0.0078 

0 1 1 0.025±4.4×10-4 

0 1 2 8.7×10-4±0.0020 

0 1 3 2.5×10-4±0.0070 

0 2 0 0.0019±0.0014 

0 2 1 8.7×10-4±0.0020 

0 2 2 3.2×10-4±0.0041 

0 2 3 1.9×10-4±0.013 

0 3 0 2.8×10-4±0.0055 

0 3 1 2.5×10-4±0.0062 

0 3 2 1.9×10-4±0.012 

0 3 3 1.4×10-4±0.022 

1 0 0 0.11±0.0080 

1 0 1 0.025±4.4×10-4 

1 0 2 8.7×10-4±0.0020 

1 0 3 2.5×10-4±0.0065 

1 1 0 0.025±4.4×10-4 

1 1 1 0.0070±8.2×10-4 

1 1 2 5.4×10-4±0.0025 

1 1 3 2.3×10-4±0.0080 

1 2 0 8.7×10-4±0.0019 

1 2 1 5.4×10-4±0.0025 

1 2 2 2.8×10-4±0.0051 

1 2 3 1.8×10-4±0.014 

1 3 0 2.5×10-4±0.0066 

1 3 1 2.3×10-4±0.0083 
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1 3 2 1.8×10-4±0.013 

1 3 3 1.3×10-4±0.046 

2 0 0 0.0019±0.0014 

2 0 1 8.7×10-4±0.0020 

2 0 2 3.2×10-4±0.0041 

2 0 3 1.9×10-4±0.011 

2 1 0 8.7×10-4±0.0020 

2 1 1 5.4×10-4±0.0025 

2 1 2 2.8×10-4±0.0051 

2 1 3 1.8×10-4±0.015 

2 2 0 3.2×10-4±0.0042 

2 2 1 2.8×10-4±0.0052 

2 2 2 2.1×10-4±0.0094 

2 2 3 1.5×10-4±0.029 

2 3 0 1.9×10-4±0.011 

2 3 1 1.8×10-4±0.014 

2 3 2 1.5×10-4±0.023 

2 3 3 1.1×10-4±0.037 

3 0 0 2.8×10-4±0.0052 

3 0 1 2.5×10-4±0.0065 

3 0 2 1.9×10-4±0.013 

3 0 3 1.4×10-4±0.023 

3 1 0 2.5×10-4±0.0065 

3 1 1 2.3×10-4±0.0082 

3 1 2 1.8×10-4±0.015 

3 1 3 1.3×10-4±0.035 

3 2 0 1.9×10-4±0.012 

3 2 1 1.8×10-4±0.015 
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3 2 2 1.5×10-4±0.025 

3 2 3 1.1×10-4±0.064 

3 3 0 1.4×10-4±0.032 

3 3 1 1.3×10-4±0.037 

3 3 2 1.1×10-4±0.091 

3 3 3 9.3×10-5±0.091 
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Appendix 2 – 3D absorbed dose distributions 

Figures B.1 to B.24 represent the absorbed dose distributions in the kidneys, liver, spleen, and red 

bone marrow. In these figures, axial, coronal, and sagittal slices are presented, as well as 3D 

perspectives.  

 

Figure B.1: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the kidneys of patient 1 in the 3D Slicer software. The scalar bar 
located on the right in the three images is expressed in mGy.  
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Figure B.2: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the liver of patient 1 in the 3D Slicer software. The scalar bar located 
on the right in the three images is expressed in mGy.  
 

 

 

Figure B.3: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the spleen of patient 1 in the 3D Slicer software. The scalar bar 
located on the right in the three images is expressed in mGy.  
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 Figure B.4: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the red bone marrow of patient 1 in the 3D Slicer software. The 
scalar bar located on the right in the three images is expressed in mGy.  
 

 

 

Figure B.5: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the kidneys of patient 2 in the 3D Slicer software. The scalar bar 
located on the right in the three images is expressed in mGy.  
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Figure B.6: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the liver of patient 2 in the 3D Slicer software. The scalar bar located 
on the right in the three images is expressed in mGy. 

 

 

 

Figure B.7: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the spleen of patient 2 in the 3D Slicer software. The scalar bar 
located on the right in the three images is expressed in mGy. 
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Figure B.8: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the red bone marrow of patient 2 in the 3D Slicer software. The 
scalar bar located on the right in the three images is expressed in mGy. 

 

 

 

Figure B.9: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the kidneys of patient 3 in the 3D Slicer software. The scalar bar 
located on the right in the three images is expressed in mGy. 
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Figure B.10: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the liver of patient 3 in the 3D Slicer software. The scalar bar located 
on the right in the three images is expressed in mGy. 

 

 

 

Figure B.11: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the spleen of patient 3 in the 3D Slicer software. The scalar bar 
located on the right in the three images is expressed in mGy. 
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Figure B.12: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the red bone marrow of patient 3 in the 3D Slicer software. The 
scalar bar located on the right in the three images is expressed in mGy. 

 

 

 

Figure B.13: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the kidneys of patient 4 in the 3D Slicer software. The scalar bar 
located on the right in the three images is expressed in mGy. 
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Figure B.14: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the liver of patient 4 in the 3D Slicer software. The scalar bar located 
on the right in the three images is expressed in mGy. 

 

 

 

Figure B.15: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the spleen of patient 4 in the 3D Slicer software. The scalar bar 
located on the right in the three images is expressed in mGy. 
 

 

 

 

 

 



 

 

97 

Figure B.16: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the red bone marrow of patient 4 in the 3D Slicer software. The 
scalar bar located on the right in the three images is expressed in mGy. 

 

 

 

Figure B.17: Representative axial (R), coronal (G) and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the kidneys of patient 5 in the 3D Slicer software. The scalar bar 
located on the right in the three images is expressed in mGy. 
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Figure B.18: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the liver of patient 5 in the 3D Slicer software. The scalar bar located 
on the right in the three images is expressed in mGy. 

 

 

 

Figure B.19: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the spleen of patient 5 in the 3D Slicer software. The scalar bar 
located on the right in the three images is expressed in mGy. 
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Figure B.20: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the red bone marrow of patient 5 in the 3D Slicer software. The 
scalar bar located on the right in the three images is expressed in mGy. 

 

 

 

Figure B.21: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the kidneys of patient 6 in the 3D Slicer software. The scalar bar 
located on the right in the three images is expressed in mGy. 
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Figure B.22: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the liver of patient 6 in the 3D Slicer software. The scalar bar located 
on the right in the three images is expressed in mGy. 

 

 

 

Figure B.23: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the spleen of patient 6 in the 3D Slicer software. The scalar bar 
located on the right in the three images is expressed in mGy. 
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Figure B.24: Representative axial (R), coronal (G), and sagittal (Y) orthogonal slices as well as the 3D view 
(1) of the absorbed dose distribution in the red bone marrow of patient 6 in the 3D Slicer software. The 
scalar bar located on the right in the three images is expressed in mGy. 
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Annex 1 – Radiation yields assessment 

The ICRP 107 database [124] was used to obtain the spectra and radiation yields of radionuclides. 

These constituted the input data for the MCNP6.1 Monte Carlo simulations. This annex presents 

a screenshot of the program where different forms of radiation emitted during the 68Ga decay, and 

the respective number of ejected particles per type of decay (yield) are reported. This yield com-

ponent was employed in the S-values weighted sum calculation.  
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