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Abstract With gradual decline of global finfish

resources, fisheries targeting cephalopods expanded.

Yet, the stock assessment and management practice

are frequently lacking, and existing ones often remain

poorly suited for cephalopod unique life-history. In

light of increasing ecological disturbances in marine

ecosystems worldwide, assessing exploited species’

status and response becomes vital for devising effec-

tive strategies that would ensure their sustainable

management. There is generally scarce understanding

of the way fisheries and other environmental stressors

exert their combined effects on cephalopods stock

dynamic and long-term resilience. To that end,

evolutionary-based population studies that inform on

identity, connectivity and adaptive potential of natural

populations present a unique opportunity for assessing

the viability of exploited cephalopod stocks. Such

studies have been revolutionized in the last decade by

proliferation of next generation sequencing technolo-

gies. They offer new avenues for expanding our

knowledge, especially on population structure and the

evolutionary responses to shifts in environmental

pressures. In this paper we elaborate on how deep

genomic insights into demographic and evolutionary

status of fished cephalopods could improve their stock

assessment and management practice. We also pro-

pose that the common octopusOctopus vulgariswould

be a suitable model species to test the power of

evolutionary tools to inform fishery scientists and

managers on biological questions relevant for their

sustainable exploitation.
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Status, trends and challenges to global fisheries

of cephalopods

Sustainable fishery management is a paradigm whose

main goal is to ensure continued biological produc-

tivity of exploited stocks (Garcia 2000). Roughly one

third of current major world stocks—composed

primarily of finfish species—are now considered

overfished (FAO 2020). Following the initial increase

in global catches after fisheries industrialization in the

mid-twentieth century, global fishery exploitation

rates peaked in the late 1980s, and remained

stable or declined since then (Worm et al. 2009;

FAO 2020). However, during the last two decades,

substantial efforts and studies have been directed
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towards conservation of the global fishery resources.

Improved management legislation and sound policies

targeting finfish stocks appear to have succeeded in

stabilizing their present-day exploitation in several

fishing regions around the world (Worm et al. 2009;

Cardinale 2011; Fernandes and Cook 2013). At the

same time, the gradual decline in global finfish

resources prompted the expansion of invertebrate

species fisheries (Anderson et al. 2011).

Traditional small-scale invertebrate fisheries

existed around the world for centuries, but in the last

decades those have rapidly expanded, and many new

fishery areas and practices have emerged (Anderson

et al. 2011; Eddy et al. 2017). In the last six years, new

record catches have been registered for three inverte-

brate groups—lobsters, shrimps and cephalopods

(FAO 2020). These days, with more than 10 million

tons caught annually, and accounting for about 14% of

global catches (Eddy et al. 2017; FAO 2020), inver-

tebrate fisheries represent an important socioeconomic

component of coastal communities. Furthermore, with

the gradual fishing down of food webs, there is an

evidence of invertebrate species replacing depleted

predator fish at higher trophic levels in marine

environment (Molfese et al. 2014; Rogers-Bennett

and Juhasz 2014). It is clear that invertebrates

economic and ecological role is becoming ever more

relevant for the subsistence of marine ecosystems that

are currently on the brink of collapse. If preserved and

properly managed, they will have the potential to form

the basis of ecosystem services provided by hopefully

recovering seas and oceans.

Yet, excluding few highly profitable species, inver-

tebrates fisheries received much less scientific and

management attention than most of the exploited

vertebrate species so far (Anderson et al. 2011; Eddy

et al. 2017). Consequently, for a majority of commer-

cially important invertebrates, accurate data on abun-

dance, population structure and connectivity is

lacking, and their stocks are neither effectively

assessed nor managed (Anderson et al. 2011; Eddy

et al. 2017). Cephalopods are a clear example of

invertebrates whose stocks are often inadequately

assessed or managed (Arkhipkin et al. 2020), despite

their global abundance and landings increasing since

1950s, peaking at 4.9 million tons in 2014, and

declining to approx. 3.6 million tons in 2017 and 2018

(FAO 2020, Fig. 1). Over the last years, Food and

Agriculture Organization of the United Nations (FAO)

has been frequently reporting on the urging situation

of the cephalopod fisheries, as simply and clearly

stated in their Market report from January 2019

Fig. 1 Landings of cephalopods andOctopus vulgaris from theMediterranean, and global landings of cephalopods (in tons), covering a

time period from 1950 to 2018 (FAO FishstatJ 2020)

123

Rev Fish Biol Fisheries

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



‘‘Supplies of both octopus and squid are getting

tighter. There is now an urgent need to improve the

management of these resources. Overfishing on the

high seas and in areas adjacent to national Exclusive

Economic Zones (EEZ) is becoming a serious prob-

lem. Demand is rising globally, and prices are going

through the roof.’’ (FAO 2019).

In this review we discuss the benefits of incorpo-

rating novel evolutionary genomic tools to inform

stock assessment and management of cephalopod

fisheries, with special consideration to some of their

specific life history traits (Arkhipkin et al. 2020) and

unresolved complex interactions of environmental and

fishery pressures with their population structure and

dynamic. We further suggest that the common octopus

(Octopus vulgaris Cuvier 1797) (Box 1) would be a

suitable model for evolutionary-based cephalopod

management.

Cephalopods are keystone species and play an

important ecological role in many marine ecosystems

(Pierce et al. 2008; Gasalla et al. 2010; Eddy et al.

2017; de la Chesnais et al. 2019). Recently, a global

increase in the cephalopod abundance has been

reported, suggesting that their populations proliferated

Box 1 Biology, ecology, genetics and fisheries of the common octopus (Octopus vulgaris)

The common octopus is a large, muscular, merobenthic cephalopod species that inhabits continental shelf up to 250 m depth

(Silva et al. 2002; Norman et al. 2016). They have a fast, non-asymptotic growth rate (Giménez and Garcı́a 2002) and non-

overlapping generations (Smale and Buchan 1981). Spawning occurs all through the year, with seasonal peaks that vary among

different geographical regions (Norman et al. 2016; Follesa et al. 2019). The species has high fecundity (Silva et al. 2002), but

also experiences high natural mortality rates during juvenile planktonic (paralarvae) and settlement phases of their lifecycle

(Boyle and Boletzky 1996). Adults are benthic and confined to limited territories, as most individuals stay within 1 km of

foraging radius (Mereu et al. 2015; Arechavala-Lopez et al. 2019). Dispersal is therefore almost exclusively restricted to up to

60 days long planktonic paralarvae stage, which is predominately current-mediated and temperature-dependent (Villanueva

1995). However, recruitment success, development and growth are also strongly determined by environmental factors, primarily

the temperature, upwelling (food availability), and rainfall (salinity) (Sobrino et al. 2002; Pierce et al. 2008; Iglesias et al. 2016;

Garcı́a-Martı́nez et al. 2018), which makes octopus populations prone to sharp fluctuations in spatial and temporal abundance

(Boyle and Boletzky 1996). Indeed, environmentally-determined recruitment success has high predictive power of annual

octopus landings (Sobrino et al. 2020), and declining trends in octopus landings can sometimes be directly linked to yearly

temperature anomalies (Vargas-Yáñez et al. 2009).

Few cryptic species (morphologically similar, but distant species that are treated under the same name) were described within the

O. vulgaris species complex, and the existence of several more has been proposed (Söller et al. 2000; Leite et al. 2008; Amor

et al. 2014, 2017a; De Luca et al. 2014; Lima et al. 2017). Today the distribution of O. vulgaris sensu stricto is considered

limited to Mediterranean and the adjacent areas of Atlantic Ocean, while other O. vulgaris-like populations have been

provisionally divided into four O. vulgaris types, inhabiting areas of east coast of Central America, southern Brazil, South Africa

and eastern Asia (Norman et al. 2016; Amor et al. 2017b). However genetic evidence for such classification is still inconclusive

(Van Nieuwenhove et al. 2019), and just recently new species Octopus americanus was recognized in the western Atlantic

(Avendaño et al. 2020). Several studies reported additional genetic structuring of O. vulgaris populations across the Atlantic-

Mediterranean border, and between and within Mediterranean basins, where the species status is undisputed (Maltagliati et al.

2002; Cabranes et al. 2008; De Luca et al. 2016). Genetic subgrouping across smaller geographical scales has also been

documented, though the oceanographic, ecological, and/or anthropogenic parameters underlying such differentiation remain

largely unrecognized (Keskin and Atar 2011; Fadhlaoui-Zid et al. 2012; Melis et al. 2018).

O. vulgaris is considered the most important commercially harvested octopus species (Tsangridis et al. 2002; Norman et al. 2016;

Sauer et al. 2019), yet limited management and assessment practices pose a real threat to its overexploitation. Major challenges

to their wide-spread management are the octopus’ short life cycle, ambiguous species identification, and a population dynamics

extremely sensitive to environmental changes (Rodhouse et al. 2014). When looking in the example of Mediterranean, for which

a relatively large amount of fishery data is available, the landings of O. vulgaris stocks have shown a declining trend since 1980s
(Jereb et al. 2015; Quetglas et al. 2015; Sauer et al. 2019; FAO FishstatJ 2020) (Fig. 1). Common octopus fishery is not included

in quota regulations under the EU Common Fisheries Policy (Pita et al. 2015b), and laws and regulations governing the

management of octopus fisheries in the Mediterranean are generally implemented at regional levels (Arechavala-Lopez et al.

2019). Most countries enforce size limits on caught individuals, along with the restrictions on types and number of gears used, or

different seasonal bans (Pierce et al. 2010; Sauer et al. 2019). To the best of our knowledge, only one official assessment of O.
vulgaris stock was conducted so far in the Mediterranean. It employed stock production model based on the catch per unit effort

(CPUE) and landings data from the Balearic Islands area (STECF 2012), and showed that the analyzed stock was unsustainably

exploited (STECF 2013).
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in the environments where their main competitors,

finfish, have been severely depleted (Doubleday et al.

2016). However, other studies implied that the over-

exploitation of cephalopod stocks may already be

underway in several regions (Anderson et al. 2011;

Rodhouse et al. 2014; Meissa and Gascuel 2015; Sauer

et al. 2019). Maintaining the cephalopods fisheries at

sustainable levels particularly grows in importance in

the light of their high trophic positions, implying that

their population collapse might have the ecosystem-

wide consequences (Arkhipkin et al. 2020).

Patagonian longfin squid (Doryteuthis gahi) and

Argentine shortfin squid (Illex argentinus) in the

Falkland Islands area are among some of the promi-

nent examples of regulated cephalopod fisheries

(Payne et al. 2006; Arkhipkin et al. 2015). Their stock

management relies on pre-recruit surveys and in-

season depletion-based assessments to meet targeted

spawning stock biomass (Agnew et al. 2005; Arkhip-

kin et al. 2020). However, this approach demands the

use of special equipment for preseason assessments,

and extensive daily data collection during season to

appraise and forecast stock population dynamics

(Rodhouse et al. 2014; Arkhipkin et al. 2020).

For many other cephalopod stocks assessments are

conducted within the scope of traditional age-based or

stock-recruitment models, which rely on the estimates

of spawning stock biomass, size-at-maturation, and

fishing mortality. Those estimates are used for

predictions of recruitment-mortality relationships,

which present one of the primary information sources

in implementation of sustainable fishing pressure in

finfish (Bourlat et al. 2013; Bernatchez et al. 2017).

Still, such point estimates are not only unsuited for

cephalopods unique life histories (Arkhipkin et al.

2020), but possess few drawbacks that drive them a bit

away from the biological reality. First, their spatial

framework is still largely based on the predefined geo-

political boundaries, and not realistic population

distributions. Second, they are mainly based on simple

life history traits and demographic parameters, often

considered as static over generations and extrapolated

from one to other stocks of the same species (King and

McFarlane 2003; Laugen et al. 2014). This simplified

view of stocks as demographic units ignores the ability

of populations to adapt in response to the environ-

mental pressures, as well as the possibility of anthro-

pogenic pressure affecting contemporary evolutionary

trajectories of populations, or even species (Reid et al.

2016; Ryu et al. 2018).

Improving stock-level knowledge

with evolutionary genetics

Exploring the evolutionary potential of exploited

stocks

In order to avoid detrimental effects when challenged

by the environmental alterations, populations may

recourse to three (mutually not exclusive) strategies.

They may respond with adjusting their phenotypes

(acclimation through phenotypic plasticity), or may

migrate to change their distribution. Lastly, they can

respond positively to the shifts in selective pressures at

the level of populations genomic background, i.e.

adapt. In fact, such adaptive biological responses do

exist in natural populations and may drive diverse

consequences on the level of stock dynamics (Laugen

et al. 2014; Kuparinen et al. 2017).

Evolutionary potential can be defined as the

capacity of natural populations to undergo such

microevolutionary adaptive changes (Eizaguirre and

Baltazar-Soares 2014). The net outcome of individual

responses to a given pressures dictates the viability of

the population in the course of generations (Lande

1988) (Box 2). On the top of the random mortality

inherent to early life stages of most marine species,

extrinsic pressures directionally select those who

survive and reproduce. This invokes further consider-

ation that population abundance and composition are

not only regulated by random mortality, but also by

selective mortality, which affects the genomic makeup

of future generations, and consequently their adaptive

potential (Conover et al. 2006). Hence, this microve-

olutionary perspective should be more comprehen-

sively incorporated into viewpoint of stocks being

solely passively ecologically driven (Conover and

Munch 2002).

Moreover, such evolutionary standpoint also con-

siders stocks to be connected through the exchange of

migrants (gene flow) at different degrees, which may

further mediate the processes of local adaptation and/

or population restoration in multifaceted ways (e.g.

Kawecki and Ebert 2004; Bay et al. 2017). Connec-

tivity also helps restoring fishery induced declines in

genetic diversity (Pinsky and Palumbi 2014).
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Resolving connectivity among marine stocks is thus

vital for assessing the overall evolutionary potential of

the species, and is in addition crucial for effective

design of marine protected areas (Palumbi 2003).

Understanding the evolutionary potential of fished

stocks is correspondingly becoming critical for assess-

ing their resilience to current and future external

pressures (Valenzuela-Quiñonez 2016). Evolutionary

potential can be appraised by a multitude of

approaches, but perhaps the most often used one is

to quantify and qualify the population genetic diver-

sity (Frankham 1996). This approach holds in the

assumption of positive correlation between genetic

diversity and population viability: populations with

high genetic diversity are expected to have higher

evolutionary potential (Frankham 1996; Fraser and

Bernatchez 2001).

The use of genetic tools is not new in fisheries

sciences, and over the decades a variety of genetic

markers (e.g. allozymes, microsatellites and mito-

chondrial DNA) have been used to analyze population

structure of commercially exploited marine species

(Ward 2000; Silva et al. 2019a). Those studies laid the

ground for important mapping of various fished stocks

(Hauser and Carvalho 2008; Ovenden et al. 2015).

However, recent advances in the development of mass

parallel sequencing technologies, hence forth called

next generation sequencing (NGS) are revolutionizing

the amount of information extracted from the genetic

data (Mardis 2008). By producing thousands of

genomic markers, it is now possible to make infer-

ences on demographic and evolutionary status and

processes at the genome-wide level, which are further

corroborated by a more robust statistical support of the

analytical framework. Assessing a stock genomic

background expands information multi-fold: it can

help resolve taxonomic conflicts within species com-

plexes, it provides information on the identity of

particular stocks and connectivity among them,

informs on the effective population size, allows

estimation of genetic diversity—an indicator of pop-

ulation health, and permits the investigation of genetic

variants under selection ( Frankham 1996; Wang et al.

2016; Bernatchez et al. 2017; Valenzuela-Quiñonez

2016; Silva et al. 2019a, b). All these population

characteristics, absent in the traditional stock assess-

ment toolbox, augment our perception of the ways in

which environmental alterations, especially anthro-

pogenically-induced ones, can affect the stock

dynamics.

Successful implementation of sustainable fisheries

governance depends on reliable information on stock

identity and status (Hutchinson 2008). Failing to

recognize multi-species or multi-population composi-

tion of fished stocks can have long reaching conse-

quences and drive fishery collapse of undetected stock

Box 2 Interplay between environmental stressors, and genomic and phenotypic responses shapes contemporary stocks characteristics

Marine organisms are exposed to various environmental stressors, which often act in the combined, synergistic way, and evoke

different biological responses at the level of exposed populations (Fig. 2). Increased mortality, as a direct consequence of fishing

activities, or disease for instance, can quickly result in population decline. In a less dramatic way, stressors impact can cause

phenotypic and/or genomic change in a population. For example, when mortality occurs in non-random fashion, selection acts on

certain phenotypes. Changes in phenotypic characteristics are well documented among exploited populations, and many studies

have linked overfishing and climate change to migrations, earlier age and size at maturation, or decrease of fecundity in fishes

(Allendorf and Hard 2009; Kendall et al. 2009; Peer and Miller 2014; Heino et al. 2015; Uusi-Heikkiläa et al. 2017; Yamamoto

et al. 2018). Substantial changes in population size or connectivity to other populations, as well as selection toward adapted (or

sometimes in the case of anthropogenically induced selection, maladapted) phenotypes, result in genomic changes, i.e. shifts in
genetic diversity and differentiation. Those are subtler, but not less pervasive signatures of population alterations. The ability to

adapt to upcoming environmental change positively correlates with the genetic diversity within populations—evolutionary
potential. A decrease in population’s genetic diversity can therefore lead towards further population decline by reducing both the

individual fitness and evolutionary potential of the whole population (Allendorf et al. 2008). This is particularly common for

populations that are genetically isolated or well adapted to specific environments, as they tend to be less diverse within themselves

(Lawton et al. 2011). Limited connectivity or genetic specialization through the local adaptation make such populations particularly

endangered by changes in external stressors, and constrain their recovery potential. Alternatively, populations that are well

connected to others have a constant exchange of juveniles and migrants that ensures the infusion of new genetic material into the

population (Lawton et al. 2011). Connectivity to other populations may sometimes hamper local adaptive processes, but in its

positive context it enables spreading of adaptive variants and increases genetic diversity within populations, and thus plays a crucial

role in maintaining the populations stable in face of today’s rapidly changing environment.
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components (Momigliano et al. 2018 and references

therein). From a genetic perspective, the issue of

inferring the differentiation and connectivity of

marine stocks has always been linked to a lack of

resolution provided by commonly used genetic

methodologies (Waples and Gaggiotti 2006). This is

largely because the absence of firm barriers in marine

environment, combined with the planktonic juvenile

or highly migratory adult life stages, results in the vast

number of migrants in many marine species. When

such biology is coupled with low number of traditional

genetic markers used to assess population structure,

the statistical likelihood to capture genetic variants

that could serve as stock-specific diagnostic markers

sharply decreases. The mass production of genomic

markers via NGS appeared to fill in this information

gap (Nielsen et al. 2009), providing high resolution

detection of both weak neutral population structure

and the adaptive divergence in various commercially

important marine species (Valenzuela-Quiñonez

2016). Evolutionary genomics additionally propelled

the understanding of stocks migration patterns, and

allows individuals assignment even in mixed migrat-

ing lineages (Meek et al. 2016; Momigliano et al.

2017).

Exiting new studies are further accumulating on

environmentally-driven contemporary evolutionary

processes (Lescak et al. 2015; Benestan et al. 2016;

Baltazar-Soares et al. 2018; Lehnert et al. 2019). There

is increasing evidence that genomic adaptation occurs

in marine populations even in the face of the high gene

flow (Sanford and Kelly 2011; Tigano and Friesen

2016), and that selection readily acts even on a single

generation (Pujolar et al. 2014). Some prominent

examples with very clear management implications

include revealing of cryptic speciation in Australian

mullet (Mugil cephalus) and Baltic populations of

European flounders (Platichthys flesus), or existence

of distinct ecotypes in Atlantic and Mediterranean

stocks of anchovy (Engraulis encrasicolus) (Krück

Fig. 2 Interplay between environmental stressors, and genomic and phenotypic responses shapes contemporary stocks characteristics
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et al. 2013; Catanese et al. 2017; Momigliano et al.

2017). Moreover, unlike traditional genetics, genomics

enables direct link to particular environmental factors

underlying population dynamics and structuring. Cer-

tain environmental characteristics, such as tempera-

ture or salinity, have been found correlating with

genomic variants and driving adaptive divergence in

the European hake (Merluccius merluccius), Atlantic

herring (Clupea harengus), and Atlantic cod (Gadus

morhua) (Limborg et al. 2012; Milano et al. 2014;

Wenne et al. 2020). Similar seascape genomic studies

revealed an adaptive population differentiation related

to environmental variables in invertebrates with long

lived pelagic larvae: American lobster Homarus

americanus, greenlip abalone Haliotis laevigata, oys-

ter Crassostrea virginica, and tabletop corals Acrop-

ora hyacinthus (Bay and Palumbi 2014; Benestan et al.

2016; Sandoval-Castillo et al. 2018; Bernatchez et al.

2019).

This ongoing environment-evolution interplay is

especially gaining on its importance in the wake of

today’s rapid global environmental change (Halpern

et al. 2015) (Fig. 2). Estimating the adaptive potential

of marine stocks therefore becomes crucial nowadays

as marine populations are increasingly exposed to

variety of human induced selective stressors, e.g.

ocean acidification that impacts development of early

stages (Frommel et al. 2012), overfishing that drives

fisheries-induced evolution towards earlier maturation

(Heino et al. 2015), pollution that hampers individual

fitness and reproduction (Islam and Tanaka 2004), or

global warming that affects population dynamics and

distribution (Free et al. 2019). In that context,

traditional fisheries management practice that per-

ceives stocks as static, geopolitically defined entities is

becoming increasingly challenged to incorporate the

perspective of fishery stocks as evolutionary units.

Why is the evolutionary toolbox needed

in cephalopod fisheries?

Decrease in competition and predation from over-

fished finfish species, coupled with short generation

time and plastic life history characteristics of cepha-

lopods, appear to be at least partly responsible for the

global increase in their abundance (Doubleday et al.

2016). In general, cephalopods have long been con-

sidered resilient ecological opportunists, quick to

recover from exploitation or oscillations in natural

conditions. While some authors argue that short lived

invertebrate species are rather sensitive to environ-

mental alterations but resistant to overfishing (Kompas

and Chu 2018), cephalopods might be an exception to

the rule due to their high trophic levels (Meissa and

Gascuel 2015). Observed large spatial and temporal

fluctuations in cephalopod catches could thus actually

be masking local collapses of some species caused by

overfishing (Rodhouse et al. 2014). Indeed, in species

with discrete generations, overfishing exerts immedi-

ate effects on the recruitment of the following

generation (Pierce and Guerra 1994).

When mortality increases due to fishing pressure,

populations evolutionary response includes shift

toward earlier size at maturation to rapidly enhance

population growth (Dunlop et al. 2015). The faster the

life history, the smaller window remains open for such

an adaptive response. Indeed, models show that in

species with fast life histories population genetic

background is less affected, but such evolutionary

constrains also increase the possibility of fishery-

induced population collapse at high harvesting rates

(Nusslé et al. 2016). Substantial decrease of size at

maturation was already observed for fished popula-

tions of giant squid (Dosidicus gigas) upon El Niño

event in the Gulf of California (Hoving et al. 2013),

which persisted for subsequent generations. Authors

hypothesize the main role of phenotypic plasticity, and

this phenomenon is usually mentioned in a context of

being the main, if not only, contemporary adaptive

process in cephalopods in some other studies (e.g.

Repolho et al. 2014; but see van der Vyver et al. 2016).

Nevertheless, phenotypic plasticity does not preclude

genomic evolution—in nature those processes often go

hand by hand, and in terms of affecting the evolution-

ary trajectories they interact in multiple ways (Pfennig

et al. 2010). The important role of environmental

selection in shaping the cephalopod genomic and

phenotypic variability at larger evolutionary scale

cannot be disputed (Lindgren et al. 2012; Ritschard

et al. 2019). Heritability estimate of a trait provides

information on the relative contribution of direct

environmental vs. genetic effects to the phenotypic

variance, and is usually used to distinguish between

plastic and genetically adaptive responses. Yet, to the

best of our knowledge, such studies on cephalopod

main life history traits haven’t been made to this point,

aside from the study reporting on significant heritabil-

ity of antipredatory behavior in dumpling squid,
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Euprymna tasmanica (Sinn et al. 2006). The relative

contribution of phenotypic plasticity and genetic

adaptation underlying morphological divergence of

cephalopod populations, alongwith its implications for

fishery management, have been previously dis-

cussed—for example in the case study of Chokka

squid Loligo reynaudii (van der Vyver et al. 2016) or

Patagonian longfin squid D. gahi (McKeown et al.

2019). However, the role of local adaptation in

cephalopods has still not been widely investigated.

Morse et al. (2018) recently observed distinct signa-

tures of adaptive genomic differentiation in the Aus-

tralian holobenthic blue ring octopusesHapalochlaena

maculosa, and Strugnell et al. (2017) reported envi-

ronment as important driver of genetic population

structuring of the Antarctic octopod species.

While it has been hypothesized that elevated sea

temperatures helped drive the observed global increase in

cephalopod abundance (Doubleday et al. 2016), popula-

tions models also suggest that a rise in sea temperature

could quickly turn initial exponential growth of octopus

populations into a sharp decline (André et al. 2010).

Experimental research further suggests that temperature

rise mimicking predicted ocean warming accelerates

embryonic development, but decreases survival of octo-

pus early life stages (Repolho et al. 2014).

More importantly, population genetic variation

generally does not recover from a decrease as quickly

as the population size (Sonsthagen et al. 2017), and

such loss can affect the fitness and evolutionary

potential of the population in the long-term (Spielman

et al. 2004). It is also essential to note that synergistic

determinantal impact of overfishing combined with

environmental stressors, such as ocean warming, is not

anymore just some hypothetical worst-case scenario.

The scientific evidence started to build up on such

multifaceted ecological interactions (Hamilton et al.

2000; Harley et al. 2006; Pershing et al. 2015; Free

et al. 2019). Modeling of fishery and environmental

data on 150 commercially exploited populations

revealed that combination of overfishing, fast growth

and environmental variation substantially increases

the probability of population collapse, which, notably,

becomes even more likely in the case of delayed

management responses (Pinsky and Byler 2015). The

link between fast life history and the strength of the

global warming impact on fished stocks has also been

recently confirmed by Free et al. (2019). And last, but

not the least, global change exerts its fishery relevant

effect due to declining ecosystem diversity, decreased

resilience of exploited stocks, and temperature depen-

dent distribution shifts (Perry et al. 2005; McCle-

nachan et al. 2019). Such distribution shifts have been

already documented for cephalopod species, including

the octopuses (Ramos et al. 2018).

The understanding of population connectivity pat-

terns is considered a prerequisite for sustainable

management of exploited species (McKeown et al.

2019). Again, the applicability of evolutionary

genomic approach to resolve such question in

cephalopods is starting to become evident. A recent

genome-wide study, for instance, helped identify a

clinal species pattern among the already mentioned

blue ringed octopus populations along the coast of

Australia, with gene flow observed among the neigh-

boring populations (Morse et al. 2018).

Overall, there is an obvious lack of understanding

of the interferences of fisheries and environmental

alterations onto the cephalopod population dynamic.

Simultaneously, assessment methods and regulation

practices remain maladapted for their unique life-

history traits. The current situation hence calls for

implementation of novel tools in evaluating the status

of exploited cephalopod stocks. In that regard,

genomic studies are uniquely suited to provide us

with necessary in-depth knowledge on the wild

populations, which is crucial for sustaining the

viability of exploited stocks. In fact, the scientific

framework proposed here has a great potential to fill in

already identified knowledge gaps, and to aid address-

ing three out of the six major challenges cephalopod

research is facing nowadays, namely: assessing

cephalopod adaptation to environmental alterations,

intensifying genetic research, and to design novel

trajectories in the fields of cephalopod fisheries and

conservation (Xavier et al. 2015). Given all the above,

we propose several interconnected ways evolutionary

genomics can facilitate resolving some of the biolog-

ical uncertainties that impede sound managing of

cephalopods stocks.

Common octopus as a model for incorporating

evolutionary perspective in cephalopod fisheries

management

We propose here that the common octopus, with the

scarce knowledge on species boundaries and popula-

tions structure, accumulated data on stock abundance
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driven by environmental factors, rarely assessed or

managed stocks, and for which strong indication of

unsustainable fishery practice already exist (Box 1,

Fig. 1), would be a suitable model to test changing the

paradigm of cephalopods fisheries approach by incor-

porating evolutionary perspective in their assessment

and management (Box 3).

How to make straightforward use of evolutionary

genomics in cephalopod fishery assessment

and management?

Define management units which correspond

to biological reality

Evolutionary genomics provides insights that can aid

in resolving taxonomic conflicts, stock identification

and structure, as well as their connectivity, i.e.

dispersal patterns and migration, which all have

clear-cut management implications.

Identity at the species level

Cryptic species are common in many cephalopod groups

(e.g. Bello 2019; Avendaño et al. 2020; Fernández-

Álvarez et al. 2020; Tang et al. 2020; Xu et al. 2020).

Such morphologically similar species often differ in life

history traits and phenology (such as age-at-maturation

or spawning period), which are commonly used in stock

assessment and management (Domı́nguez-Contreras

et al. 2018; Arkhipkin et al. 2020). Correct species

identifications thus bear direct management conse-

quences. To that end, regional or cooperative worldwide

genomic analysis on the specific cephalopod species

complex of interest could provide information on stocks

taxonomic identity using even a limited number of

samples per population (Tang et al. 2020).

Structure and connectivity at the population level

Population structure of most fishery important cephalo-

pods is complex and often still unresolved (Rodhouse

et al. 2014; Arkhipkin et al. 2020), and specific life

history traits and phenotypic plasticity of cephalopods

hamper the application of traditional tools in population

Box 3 Why use the common octopus as a model for introducing evolutionary management in cephalopod fisheries?

1. Unresolved taxonomic status, lack of data on stock identity and connectivity

The common octopus is one of the most ubiquitous and exploited octopus species in the world. There is accumulated knowledge

of their biology, and the species has successfully been used in experimental ecological studies. However, ambiguous species

identification, along with lack of data on population structure and connectivity across different spatial scales, hamper accurate

stock definition, and pose a real threat of their ill management.

2. Environmental sensitivity drives population dynamics

High environmental dependence of all developmental stages makes common octopus populations sensitive to ecological

perturbations, but also implies an important role of adaptive processes in their genetic makeup, their dynamics, and future

viability. Deeper understanding of the interactions between overfishing, environmental stress and population trajectories

becomes crucial these days, when market demands and global change threaten their existence in a cumulative manner.

3. Unsustainably fished populations and lack of stock assessment data and management measures

While fishery practice is more than ever turning towards cephalopods, stock assessment data on common octopus are scarce and

uncomplete. Consequently, management decisions cannot be built upon the relevant scientific information. Moreover, for many

exploited stocks, management measures are either completely lacking or are inadequate. Evident decline of O. vulgaris stocks in
the Mediterranean Sea emphasizes their vulnerability to overfishing, and underlines the urging need to resolve the main drivers

affecting their abundance, manage currently unregulated octopus populations, and adjust existing assessments methods and

management practice.

4. Shared major life history traits with many cephalopods

High trophic position and important role of common octopus in ecosystem functioning, their main life history traits e.g. fast

growth, short life span and semelparity, environmentally-driven development, and population dynamic are typical for many

other cephalopod species (with a distinct exception of highly migratory behavior of adult squids). That indicates that the lessons

learned on the O. vulgaris as a model for evolutionary-based management have potential for a wide-reaching and cross-specific

tailored implementation.
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estimations (McKeown et al. 2019). However, genomic

approaches offer readily employed tools to identify

distinct stocks even in cases where traditional genetic

tools show no structure (Vendrami et al. 2017). That

would allow recognizing the mismatches between

biological stocks and assessment and management units

that can cause population decline (Pita et al. 2015a;

Casey et al. 2016; Gonçalves da Silva et al. 2020; Mejı́a-

Ruı́z et al. 2020; Timm et al. 2020). If panmictic

metapopulation is harvested differently in two or more

geopolitical areas, those management practices will have

interconnected effects, and new data indeed shows that

catches of transboundary species decline faster (Pala-

cios-Abrantes et al. 2020). In that case, cooperative and

shared management scheme between the geopolitical

entities is recommended (Cardinale et al. 2017). Like-

wise, genomic tools can aid in detection of mixed stocks

(Mullins et al. 2018). This has further practical reper-

cussions as joint assessment and management of unrec-

ognized mixed stocks hampers obtaining accurate

information on each of the stock status (Grewe et al.

2015), and might ultimately drive the overfishing of one

of the stocks (Benestan 2019). Moreover, in the case of

highly migratory squid species, genomic data could

enable monitoring of migrations and correct identifica-

tion of stocks independent of their geographical or

temporal presence, or could facilitate locating spawning

grounds. High resolution insights into connectivity of

explored stocks can provide fishery assessment and

management with information on stocks recruitment

patterns, source-sink dynamics and demographic (in)de-

pendence, and thus indirectly also on the long-term stock

resilience due to replenishment upon local environmen-

tal perturbations (Waples and Naish 2009; Cisneros-

Mata et al. 2019; Silva et al. 2019b; Cheng et al. 2020;

Lee and O’Malley 2020; Mejı́a-Ruı́z et al. 2020; Timm

et al. 2020). In addition, obtained fine scale patterns of

stock connectivity can be very useful in designing spatial

management tools (Katsanevakis et al. 2011; Domı́n-

guez-Contreras et al. 2018).

Account for adaptive processes

Two clear practical implications emerge from com-

prehensions on the interplay of environmental factors

and their selective force driving genomic adaptation

that could be extracted from cephalopods seascape

genomic studies:

Recognizing adaptive population divergence

Environmental pressures (e.g. salinity or temperature)

can drive population differentiation hidden from the

resolution of traditional neutral genetic markers (for

references see ‘‘Exploring the evolutionary potential

of exploited stocks’’ section), and such insights have

direct effects on stock definition issues elaborated

under ‘‘Structure and connectivity at the population

level’’ section. In species with limited dispersal

abilities locally adapted populations can be then

pinpointed, which brings on direct management

implications (Berry et al. 2020).

Understanding the impacts of environmental

variation on cephalopod stocks dynamic

Detecting genomic adaptive patterns can further help

resolving an important question that still remains open

for many cephalopod taxa: the relative role of plastic

and genetic processes underlying phenotypic patterns

and population abundance, but can also elucidate the

role of particular environmental factors and the

strength of their transgenerational effect. Although

immediate implementation of such knowledge is still

challenging, it will aid in understanding the way

environment shapes cephalopods stock dynamic.

Experimental genomic studies could also be con-

ducted to infer larval sensitivity to specific environ-

mental variables (Pespeni et al. 2013), which would

deepen our understanding of ecological barriers to

their dispersal and warn on the consequences of

environmental alterations on the levels of stock

differentiation and abundance.

Use genomic tools as add-on in stock assessment

and monitoring

At the point of many cephalopod fisheries being

extensively harvested, evolutionary genomic research

could be effectively mounted for assessing effective

population size or even to reconstruct multi-genera-

tional population trajectories (temporal stock

dynamic) using one-time sampling point (Lehnert

et al. 2019; Marandel et al. 2020). The resulting data

could be used by fishery scientists to apprehend the

sensitivity of cephalopod stocks to overfishing and

environmental disturbance, and inform the
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management of particular stock’s current and future

risk of decline, as well as to pinpoint management

units of special concern.

That said, we also need to underlie that the

conversion of the scientific findings into usable

knowledge and its implementation into management

practice occurs across the science-policy interface

through complex social interactions (Nguyen et al.

2018). This is by no means a straightforward path. In

the case of evolutionary genomics, the gap in

communication grows even larger. That’s not only

because the research is occasionally conducted to fit its

own purpose, but also due to applicable knowledge

sometimes being stated in specific scientific jargon,

not readily understandable even to fishery scientists.

However, several frameworks have been proposed to

efficiently implement population genomics insights

into management and conservation practice that rely,

among others, on early exchange of ideas, building of

professional relationships, effective communication,

and mutual learning among all involved scientists and

policymakers (Domingues et al. 2018; Holderegger

et al. 2019; Bernos et al. 2020; Hohenlohe et al. 2020).

Conclusion and future perspectives

With the wealth of supporting scientific studies and

available tools, scientists and authorities alike are

starting to recognize the need for inclusion of evolu-

tionary perspective into fisheries management,

although the wider implementation of such methods

is still proving to be challenging (Waples et al. 2008;

Shafer et al. 2015; Casey et al. 2016; Baltazar-Soares

et al. 2018). Nevertheless, there are some promising

examples of management implementing evolutionary-

based tools in fisheries monitoring around the globe.

Genomic tools have, for instance been used to inform

conservation and management of the Atlantic salmon

(Aykanat et al. 2016; Bradbury et al. 2018) and cod

(Dahle et al. 2018; Sinclair-Waters et al. 2018), as well

as Chinook salmon in Alaska (Larson et al. 2014).

Prominently, stock assessments incorporating esti-

mates of genetic variability have become the norm in

regulating multiple salmon stocks in the north-east

Pacific (Dann et al. 2013; Flagg 2015), whose fisheries

collapsed in the 700s. Furthermore, in accordance with

the precautionary approach, fishery management’s

focus should ultimately be on utilizing evolutionary

insights for preservation of the viability of all

exploited stocks, not just in an attempt to rescue

obviously depleted ones.

NGS methods can be readily applied to obtain

reliable information on populations genomic diversity

and divergence in exploited marine species lacking

existing genomic resources (e.g. Benestan et al. 2016).

However, newly available annotated genome assem-

blies of two spotted octopus Octopus bimaculoides

(Albertin et al. 2015), Hawaiian bobtail squid

Euprymna scolope (Belcaid et al. 2019), elusive giant

squid Architeuthis dux (da Fonseca et al. 2020), and

long arm octopus Octopus minor (Kim et al. 2018),

along with draft genome of O. vulgaris (Zarrella et al.

2019), promise to make further genomics research on

cephalopod populations even more straightforward.

Additionally, singular abilities like extensive RNA

editing with selective advantage, and even linked to

temperature adaptation, have been recently verified in

octopuses (Garrett and Rosenthal 2012; Liscovitch-

Brauer et al. 2017), opening new avenues to extend our

understanding of acclimation and adaptation in

cephalopods. As world fisheries continue to shift their

focus towards cephalopods, and invertebrates in

general, the lack of data on their stock identity,

connectivity and evolutionary potential is the biggest

constraint fishery management now faces. Hence,

wider implementation of evolutionary based tools in

cephalopod fisheries promises to facilitate their sus-

tainable exploitation and to improve our understand-

ing of their adaptive abilities in today’s changing and

threatened marine ecosystems.
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MR, Liu B, Mariátegui L, Marin W, Medina A, Miki K,

Miyahara K, Moltschaniwskyj N, Moustahfid H, Nab-

hitabhata J, Nanjo N, Nigmatullin CM, Ohtani T, Pecl G,

Perez JAA, Piatkowski U, Saikliang P, Salinas-Zavala CA,

Steer M, Tian Y, Ueta Y, Vijai D, Wakabayashi T, Yam-

aguchi T, Yamashiro C, Yamashita N, Zeidberg LD (2015)

World squid fisheries. Rev Fish Sci Aquac 23:92–252.

https://doi.org/10.1080/23308249.2015.1026226

Arkhipkin AI, Hendrickson LC, Payá I, Pierce GJ, Roa-Ureta
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Matsumura S, Nusslé S, Urbach D, Baulier LC, Boukal DS,

Ernande B, Johnston FD, Mollet F, Pardoe H, Therkildsen
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Uusi-Heikkiläa S, Sävilammia T, Ledera E, Arlinghausc R,

Primmer CR (2017) Rapid, broad-scale gene expression

evolution in experimentally harvested fish populations.

Mol Ecol 26:3954–3967. https://doi.org/10.1111/ijlh.

12426
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