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Abstract: This work intends to briefly report the history and application 

of geochemical exploration techniques in the Iberian Pyrite Belt (IPB). 

The use of geochemistry in IPB for exploration purposes started in 

1950’s. Together with geophysics, the soil geochemical exploration 

surveys performed over several decades were responsible for important 

discoveries such as Carrasco and Feitais ore-bodies. However, the 

continuous development of analytical methods and the progress in data 

processing/modelling led to significant changes in the planning of 

sampling surveys, and their specific objectives, as well as in the accuracy 

of geochemical anomalies definition and corresponding interpretation. As 

a consequence, the number of samples involved in each survey was 

significantly reduced, but the chemical elements analysed with improved 

detection limits were considerably extended; additionally, geochemical 

anomalies were better resolved. Notwithstanding this evolution, data 

obtained in early soil geochemical surveys (notably by the Serviço de 

Fomento Mineiro) are still useful in the development of preliminary 

approaches at a regional scale. Over the years, many studies were made 

for exploration and environmental assessments, the most relevant of them 

reported in this chapter. Natural distributions of chemical elements were 

also identified in these studies as background (if pristine conditions are 

present) or baseline (depending how disturbed is the area covered by the 

sampling survey) values. Large part of IPB was, and still is, subjected to 

poly-metallic mineral exploration or mining, being also the focus of 

environmental evaluation and/or remediation projects on particular areas 

that, being the target of long-lasting human intervention, represent 

paradigmatic case-study examples. The exploration and exploitation 

works carried out by national and foreign private companies were, and 

still are, very important for innovative achievements in IPB along with 

copious contributions from the Portuguese R&D public institutions. 

Presently, LNEG possesses a vast quantity of geochemical data that can 

be provided for companies that wish to start their activity in the IPB; 

some of these datasets are compiled to a unique integrative map also 

presented in this work. Stream-sediments geochemistry, 

hydrogeochemistry and lithogeochemistry (of outcropping rock and drill-

core samples) represent also important sources of geochemical data in 

regional or detailed studies over specific target areas in the IPB. 

However, these techniques are beyond the scope of the present paper 

which aimed at providing a general overview of the importance of soil 

geochemistry studies in the current knowledge of the IPB.  

Keywords: Geochemical exploration, environmental impact, Iberian 

Pyrite Belt, mining taillings resources. 

 

Resumo: A geoquímica é aqui abordada através da história da sua 

utilização na Faixa Piritosa Ibérica (FPI) e correspondente influência na 

evolução do conhecimento sobre os recursos minerais, distribuição 

natural dos elementos químicos e avaliação ambiental desta importante 

província metalogenética. Ao longo do tempo usaram-se na FPI técnicas 

analíticas cada vez mais precisas para determinar a concentração de um 

número crescente de elementos químicos. As campanhas de prospecção 

geoquímica tornaram-se assim progressivamente mais dispendiosas, 

levando à redução do número de amostras colhidas e analisadas em cada 

expedição. Consequentemente, no início da década de 1990, foi 

abandonado o uso de redes densas de amostragem de solos, muitas vezes 

elaboradas segundo uma esquadria retangular, como prática de rotina em 

campanhas de prospeção estratégica e tática, desenvolvidas pelos serviços 

do Estado vocacionados para este tipo de estudos, nomeadamente o 

Serviço de Fomento Mineiro (SFM). Reconhece-se, no entanto, que 

mesmo com um número reduzido de elementos químicos e baixa 

resolução analítica, a elevada densidade de amostragem combinada com 

diversas técnicas de geofísica desempenhou papel crucial na descoberta 

de jazigos de sulfuretos maciços na FPI, como são exemplo as massas 

Carrasco e Feitais em Aljustrel. Presentemente, as atividades de 

prospeção são maioritariamente desenvolvidas por empresas mineiras 

com contratos de pesquisa outorgados pelo Estado Português. O 

Laboratório Nacional de Energia e Geologia (LNEG) é o atual depositário 

de uma vasta informação de estudos geoquímicos, com destaque para um 

grande volume de dados produzido pelo SFM e por empresas. As bases 

de dados do LNEG são frequentemente requisitadas para efeitos de 

reavaliação de setores estratégicos da província e, em alguns casos, para 

reprocessamento de dados e reanálise de amostras físicas existentes em 

arquivo. Estudos geoquímicos desenvolvidos em áreas específicas da FPI 

são apresentados sumariamente neste artigo, abordando a importância do 

mapeamento geostatístico multivariado e multifractal de dados de 

geoquímica, para além de contribuir para a definição dos fundos 

(concentrações) naturais dos elementos metálicos com interesse 

económico; isto é, procurando identificar critérios objetivos úteis à 

separação entre o fundo geoquímico, o nível de referência e a anomalia. 

Todos estes estudos revelam que as formações constituintes do Complexo 

Vulcano Sedimentar (CVS - Devónico Superior – Carbónico Inferior) são 

fontes de metais como o Cu, Zn e Pb, podendo haver ainda alguma 

contribuição das sequências de metassedimentos pertencentes ao Grupo 

Filito-Quartzítico (Devónico Médio - Devónico Superior) e ao Grupo do 

Chança (Devónico Superior). Após um período de intensa prospeção e 

pesquisa mineral até finais dos anos 90 seguiu-se cerca de uma década e 

meia de abrandamento desta atividade na Europa, a qual foi, na FPI, 

gradualmente substituída por estudos de diagnóstico ambiental, 

procurando responder a novas inquietações sociais e políticas. Alguns 

desses estudos são também abordados de forma sumária neste capítulo, 

salientando os que contribuíram para a identificação e caracterização dos 

principais centros mineiros da FPI, geradores de grande volume de 

resíduos mineiros e importante drenagem ácida. Salientam-se ainda os 

sítios da província onde a atividade mineira decorreu por longo período 

de tempo (ex. S. Domingos, Aljustrel, Lousal e Caveira), em épocas em 

que o impacto ambiental não fazia parte das preocupações sociais, 

políticas e económicas das empresas mineiras e das entidades 
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reguladoras. Nestes mesmos locais, e muito recentemente, como resposta 

à necessidade conjunta de tratamento/valorização de resíduos e 

salvaguarda da segurança de abastecimento de matérias-primas minerais 

na Europa (reduzindo a sua dependência externa e fomentando o seu 

crescimento económico), outros estudos geoquímicos têm vindo a ser 

realizados. Estes visam a identificação de novas oportunidades e 

mercados para os resíduos mineiros históricos, considerando-os como 

recursos secundários de matéria-prima que, por vezes, contêm 

quantidades acessórias de metais escassos e valiosos, alguns 

especialmente importantes na manufactura de componentes da “alta 

tecnologia”. A prospecção geoquímica não se restringe à geoquímica de 

solos, muito embora o presente artigo lhe seja inteiramente dedicado por 

a mesma representar uma abordagem geral dos trabalhos desenvolvidos 

na FPI, ao longo de mais de meio século.  

Palavras-chave: Prospeção geoquímica, impacto ambiental, recursos em 

escombreiras mineiras, Faixa Piritosa Ibérica. 
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1. Introduction 

Geochemical exploration methods were applied for the first time in 
the Iberian Pyrite Belt (IPB) in 1954, shortly after the consolidation 
of their modern foundations (e.g. Hawkes, 1957; Hawkes and 
Webb, 1962). These regional-scale exploration surveys were 
carried out together with geophysical (gravimetric, magnetic and 
electric) inspections by the 1st “South Brigade” of the Serviço de 

Fomento Mineiro (SFM) and represented a significant progress in 
mineral exploration activities all over the country. At the same 
time, a dedicated laboratory was installed at the SFM facilities in 
Beja to enable an optimised processing of samples (soils and 
stream-sediments) and their analysis for base metals (mainly Cu, 
Zn and Pb) by colorimetric methods and complementary wet 
chemical analytical procedures (e.g. Borralho, 1970). 

The so-called strategic geochemistry surveys designed and 
performed by SFM in the nineteen fifties, as well as their 

extensions, were completed in the following two decades. They 
relied on regional, high-density stream-sediment (or soil) 
sampling grids to delimit anomalous sources potentially tracing 
the locus of ore-forming systems. Various regional geochemical 
maps were produced and interpreted at that time, providing ever 
improving images of the base metals distribution over large areas 
of the Portuguese mainland, in what concerns background values and 
confirmed geochemical anomalies (within the uncertainty limits 

imposed by the errors inherent to the analytical methods used).  
In a second detailing stage, positive geochemical anomalies 

overlaping with specific geophysical signatures were examined 
by means of thorough (tactic) exploration surveys, consisting of 
detailed geological reconnaissance coupled with systematic soil-
geochemistry and additional geophysical studies. For these 

refining surveys, soil samples were collected at the 100 m 100 

m (sometimes, 50 m 50 m) grid points used for gravimetric 

surveys. Outstanding results of this methodology in the IPB are 
the identification of Aljustrel-Carrasco and Feitais mineralised 
areas (Direcção Geral de Geologia e Minas, 1990). Later, as in 

many other regions around the World, other geochemical 
approaches (such as multi-element analysis and isotope 

geochemistry for soil, stream-sediments and rock samples) were 
gradually introduced, projected the mineral exploration in the 
IPB under a new light (e.g. Asarco, Billinton, Sociedade Mineira 

Rio Artezia geochemistry exploration surveys). During this 
period, the accuracy of the analytical methods was greatly 
improved and numerical procedures to handle ever increasing 
geochemical databases were introduced. As a result, mineral 
exploration became much more expensive, and there was a 
considerable reduction of the areas covered by new sampling 
grids. In fact, in the last two decades, systematic exploration 
surveys in the IPB were confined to commissioned areas and, 

with few exceptions, have been carried out by the industry in 
order to comply with State demands and legal obligations 
included in the exploration permits. All the exploration data 
produced since the fifties were deposited in the Portuguese 
Geological Survey. Presently, this role is fulfilled by the 
Laboratório de Geologia e Minas included in LNEG, which, upon 
request, will make available for perusal the vast database 
meanwhile accumulated. 

Old mining works were pursued under a superseded 
perspective (the supply paradigm) and left an important legacy of 
environmental problems largely responsible for the negative 
image commonly projected onto the mineral industry. A 
significant negative impact was observed in 1998 linked to the 
Aznalcollar mine dam rupture (Andalusia) and related extreme 
chemical impact in the downstream area, including the Doñana 
Natural Park. In the IPB, this is particularly conspicuous in 

places where long-term, although discontinuous, exploitation of 
sulphide ores took place leaving behind large accumulations of 
oxidizing sulphide-bearing mine wastes. Well known examples 
in Portugal are the S. Domingos, Aljustrel, Lousal and Caveira 
mines (e.g. Oliveira, 1977; Batista et al., 2000; Ferreira da Silva 
et al., 2005; Alvarez, et al., 2008; Mateus et al., 2008; Abreu et 
al., 2010; Candeias et al., 2011; Maia et al., 2012). Acid mine 
drainage, particulate dispersion from waste dumps and misuse of 
the mine waste materials by local authorities, are the main 

problems identified so far in these sites; they contribute to the 
physical-chemical dispersion of metals/metalloids and generate 
superficial anomalous haloes of variable magnitude unrelated to 
any mineralization of the country rocks (e.g. Matos and Martins, 
2006). In the last twenty years, the environmental impact of old 
mining works was extensively studied and created a powerful 
argument for the enforcement of a long set of high-demanding 
rules to be fulfilled by the mining industry all over the European 

Union (e.g. Mine Waste Directive, 2006/21/EC). This legal 
framework (designed to cope with the environmental problems 
posed by abandoned mines and to stall the need to spend large 
amounts of money to recover extant and future sites), together 
with a long period of low prices for many commodities, 
contributed to a significant investment decrease of the mining 
industry in the IPB. Signs of an inversion of this negative cycle 
started in 2005, and by 2009 the recovery was fully consolidated; 

by the end of 2012, the legal permits for mineral exploration in 
the IPB covered an area of about 2,500 km2. Chemical elements 
dispersion around abandoned mines may also create difficulties 
in soil and stream-sediments geochemical data interpretation due 
to the possible generation of false anomalies (i.e. spatial clusters 
of relatively high contents of a certain element, or a set of 
elements, tracing some kind of Human-disturbed source). 
Rehabilitated mining areas like Aljustrel and Lousal (EDM 

rehabilitation project) are characterized by waste movement and 
new exotic materials used in tailing covering (e.g. transported 
soils used in impermeable layers in the top of the Algares, 
Aljustrel mine sector). Indeed, false geochemical anomalies of 
target elements in soils and stream-sediments can be expected 
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due to heterogeneous spreading of materials from waste piles and 
tailings to areas outside the old mining sites. Such heterogeneous 
dispersion stems from differences in the geochemical behaviour 

of the elements involved, for instance formation of specific 
organo-metallic complexes. Furthermore, adsorption rates may 
vary as a function of changes in pH-Eh conditions and 
differential behaviour in presence of different soil clay minerals 
and Fe and Al oxide-hydroxides, organic carbon from microbial 
activity. These differences may also be the result of 
mineralogical and textural differences of the regolith. Therefore, 
to avoid this problem, geochemical collectors had to sample 

deeper soils and avoid high organic content alluvial sediments, as 
well as oxidised cups. The present paper intends to briefly report 
the history and application of geochemical exploration techniques 
in the Iberian Pyrite Belt.  

2. Natural geochemical distributions and their 

relationship to ore-forming systems  

The main purpose of any geochemical exploration survey is the 
detection of positive (multi-)element anomalies that trace the 
existence of natural sources enriched in mineral phases bearing 
those very same elements. Anomaly distribution is a simple 
portrait of the spatial compositional variation induced by the 

local or regional architecture of the geological substratum (which 
may host ore bodies of variable size, constitution and 
morphology) strongly deformed by the physical-chemical 
dispersion mechanisms occurring at each site. The compositional 
variability of the substratum may be of primary or secondary 
origin, but, whatever the case may be, the observed anomalies 
may either stand over their sources or appear somewhat displaced 
by surface mechanisms; anomaly location per se is thus an 
unreliable indication of the location of a mineralized rock 

volume, although worth being investigated. Despite of this, 
geochemical anomalies always indicate that in a location, which 
can be determined by careful geochemical observation and 
reasoning, there is a source of chemical elements that differs 
significantly from the surrounding country rocks. However, that 
source does not need to be an orebody and may be simply an 
accumulation of metal-bearing detritus acted upon by weathering 
and supergene physical and/or chemical dispersion of variable 

intensity. Mutual interaction of all these processes may thus lead 
to the formation of (sub-)superficial anomalies which represent 
derivative haloes that may be located far away from their original 
sources, due to the heterogeneous solubility of many (primary or 
secondary) mineral phases and subsequent selective mobility of 
many elements (Batista et al., 2012d). Special care must be taken 
whenever very old mining activities have brought large amounts 
of materials to conditions very far away from equilibrium and the 

mining works themselves are already largely obliterated and so 
difficult to recognise. For all these reasons, attention should be 
paid not only to the concentrations of the elements of interest 
(and associated pathfinders), but also to the conditions that may 
determine its chemical behaviour during dispersion processes 
(primarily, pH, Eh, solubility of salts, co-precipitation, sorption, 
formation of complexes and colloidal solutions). In addition, the 
influence of the geomorphic and meteorological features of the 

surveyed region should not be ignored, as they have a significant 
impact in critical attributes displayed by regolith/soil profiles and 
hydrological flows. In the Portuguese IPB sector, soils are mostly 
incipient and supported by an ill-developed regolith; the 
topography is dominated by soft rolling hills and plains locally 
disrupted by sharper peaks mainly due to differential erosion 
controlled by lithological and structural factors. Under a 
Mediterranean climate with an increasing influence of the 

Atlantic Ocean towards the West, the soils (mostly Leptosols) are 
potentially vulnerable to erosion and desiccation, hindering 
practices of intense arable farming. Nevertheless, the strong 

seasonal character of run-off, the landscape characteristics and 
the native vegetation cover impede, in general, considerable soil-
erosion. Near the western and southern Atlantic coast large areas 
are covered by forest (quercus, eucalyptus and pinus) that permits 
moderate soil preservation (e.g. Grândola, Cercal, Monchique 
and North Algarve mountains) (Pena et al., 2020). 

Anomaly separation requires an unambiguous identification 
of threshold values, which mark the upper and lower limits of 

“natural” variation (geochemical background) showed by a 
particular population of data (elements concentration). However, 
threshold determination is not a trivial task and in many common 
applications threshold values are set arbitrarily, although various 
procedures to quantify them objectively do exist (e.g. Hawkes 
and Webb, 1962; Granier, 1973; Tukey, 1977; Barbier et al., 
1979; Reimann et al., 2005). Conventional univariate and/or 
multivariate statistics, complemented by interpolation methods, 

are commonly used tools (e.g. Huber, 1981; Hampel et al., 1986; 
Rousseeuw and Leroy, 1987; Barnett and Lewis, 1994; Reimann 
and Filzmoser, 2000; Dutter et al., 2003). Alternative approaches 
involve multi-fractal models (e.g. Cheng et al., 1994, 1996; 
Gonçalves, 2001; Gonçalves et al., 2001; Jesus et al., 2013), 
which allow the prediction of local continuity of concentration 
values, particularly when variogram or correlogram analysis is 
not usable (Agterberg, 2012). The use of more than one media of 

superficial compartments analysed at regional scale to separate 
anomalies was tested using a generalised multivariate regression 
called Partial Least Square Regression modeling the Y (bedrock 
chemical concentrations-independent variables) in X matrix (soil 
chemical concentrations-dependent variables) (Selinus and 
Esbenson, 1995). Another example of use of different media was 
successfully applied in the Neves Corvo mine region of the IPB. 
In this case, a multiple regression analysis in stepwise mode was 
applied to two sets of soil samples from the same sites, which 

were collected in different time periods and jointly analysed. In 
this case, multi-collinearity was overcome with mean comparison 
of populations to assure the independency of the X-matrix 
variables (Batista et al., 2012a). Multi-element anomaly 
separation and threshold computation using area-concentration 
multi-fractal models were recently used to investigate: (1) a wide 
Cu, Zn, Pb and Co dataset of 4,230 stream-sediment samples 
covering the whole South Portuguese Zone, where the IPB is 

included (Feliciano et al., 2008; Gonçalves and Mateus, 2019); 
(2) the Cu, Zn, Pb, Co, Cr and Ni concentrations in stream-
sediments collected in 1,034 sites by the Sociedade Mineira Rio 
Artezia Lda (SMRA), along an irregular grid covering the NE 
domain of IPB (Luz et al., 2012); (3) the Cu, Zn and Pb spatial 
distribution of contents in soils picked by SMRA in 4415 sites of 
regular grids extending across the NE domain of IPB (Luz et al., 
2013a); and (4) the Cu and Zn soil-geochemistry making use of the 

SFM database reporting concentration values for 13,000 sites (Luz et 
al., 2013b; Luz et al., 2015) located in the same IPB domains. Batista 
et al. (2001) and Batista (2003) used as threshold, in the soils of the 
Neves Corvo mine area, the first order anomalous values obtained 
from box-and-whisker plot, which is 

HQL 5.11
3
  

where 
13

QQH   and Q3 and Q1 correspond to the third and the 

first quartiles, respectively.  

Figure 1 contains a collection of soil Cu geochemical maps 
available for the IPB superimposed to a simplified geological 
map of Southern Portugal (Batista and Matos, 2016 and geology 
ad. Matos and Filipe Eds., 2013).  
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Figure 1. Collection of soil copper geochemical maps available for the IPB superimposed to a simplified geological map of Southern Portugal (Batista et al., 2016 and geology ad. 

Matos and Filipe Eds., 2013). Numbered colour scales correspond to the different surveys and the corresponding range of values represent a different campaign. 

Figura 1. Conjunto de cartas de Geoquímica de solos da FPI sobrepostas a uma carta geológica simplificada (Batista et al., 2016 e geologia ad. Matos and Filipe Eds., 2013). As 

escalas de cores numeradas correspondem a diferentes amplitudes de valores e a diferentes campanhas de prospeção. 

 

The copper geochemical maps result from data obtained by 

SFM [total base metals and Cu by cold extraction with dithizone, 
(C13H12N4S) and hot extractions where Cu and Zn were 
obtained with biquinoline (C18 H12N2)]. In the same maps, data 
obtained from recent surveys performed by industry are also 
plotted, representing Cu contents measured with modern 
analytical procedures (that include ICP methods), as 
demonstrated in the diagram of figure 2. Despite of differences 

found in concentration values, which reflect distinct analytical 

sensitivities and contrasting responses of the analytical methods 
used, it is always evident that geological formations belonging to 
the Volcano-Sedimentary Complex (VSC, Upper Devonian – 
Lower Carboniferous) display higher Cu contents than those of 
the Baixo Alentejo Flysch Group geological formations. These 
are represented by turbidite sediments. In detail, at Pomarão 
antiform structure (see Fig. 3), the SFM copper soil geochemistry 
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shows a clear anomaly associated with the VSC hematitic rich 
purple shales of the Borra de Vinho Formation. Similar 
correlation is observed at Cidrão and Serrinha IPB sectors (Matos 

et al., 2009); these are represented by turbidite sediments.  

Figure 2. Comparative diagram of Cu (mg kg-1) contents measured by colorimetry of 

cold extraction solutions (blue line; data compiled from LNEG archives) and by ICP-

OES following aqua regia extraction (red line) in the very same specimens (the latter 

using archived samples, about 20 years after the sampling survey). 

Figura 2. Diagrama comparativo de concentrações de Cu (mg kg-1) medido por 

colorimetria por extração a frio (linha azul; dados compilados do arquivo do LNEG) e 

por ICP-OES após extração com aqua regia (linha vermelha) nas mesmas amostras (as 

últimas utilizando as amostras de arquivo, cerca de 20 anos depois da campanha de 

amostragem). 

A systematic comparison of results from soil geochemical 
surveys with different aims shows that anomalies overlap, 
although they become better resolved when tighter sampling 

grids and more accurate analytical methods are used (Fig 4). 
Therefore, the main reasons for the success of strategic and tactic 
surveys conducted by SFM was definitively their dual 
geochemical/geophysical character and the very high sampling 
densities used for the geochemical sampling. 

Numerous prospects were identified with this internally 
consistent methodology, some of them including orebodies of 
variable geometry, dimension and grade, later confirmed by 

drilling (see the IPB exploration drill-holes location in Matos and 
Filipe Eds., LNEG 2013). Several exploration success examples 
can be referred in the Portuguese IPB sector, like the Serrinha 
Marateca region case study (LNEG surveys developed to Maepa 
Company; Matos et al., 2009; Ramalho and Matos, 2009) where 
sulphide veins were intersected by the SE11-01 Maepa drill-hole, 
in an exploration target zone defined by favourable geology 
(felsic VSC volcanics with silica + sericite alteration) + 

electromagnetic conductors + Cu, Zn, Pb, As and Mn soil 
geochemistry anomalies. Other positive example is the Valcôvo 
sector (Serra Branca region in the northern IPB; Castelo Branco 
and Sá, 1997; Luz et al., 2013a, b), where thrust fault-controlled 
sulphide mineralizations were intersected by the VC2 SMRA 
drill hole, following gravimetry + Cu, Zn, soil geochemistry 
anomalies. Other examples can be referred like drill-holes 
performed by SFM (Carvalho, 1979; Queiroz et al., 1989) and 

EMSC at Cercal area, which were planned to identify the sources 
of geochemical anomalies in favourable geological and 
geophysical scenarios. At Caveira mine area, the Cu/Zn soil 
geochemistry mapping shows the enrichment of Cu in the upper 
 
 

 

Figure 3. Copper distribution in the Pomarão Anticlinal formations. 

Figura 3. Distribuição do cobre no anticlinal do Pomarão. 
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Figure 4. 1) low-density and high-resolution Cu-soil geochemical map (UTPIA project, 

Batista et al., 2010); 2) high-resolution Cu-soil geochemical map based on a 500x500 

m sampling grid (SFM) established over the Rosário-Neves Corvo Volcano-

Sedimentary structure prior to the discovery of the Neves-Corvo ore-system and 

analysed recently (Batista, 2003); 3) high-density (100 x 100 m) sampling grid (SFM) 

and low-resolution Cu-soil geochemical map over the same Rosário-Neves Corvo 

structure; 4) Cu-soil geochemical map ASARCO data from 1996 to the northwest of 

the same structure (ASARCO, Pacheco et al., 1996). 

Figura 4. 1) mapa de Cu em solos com baixa e elevada densidade (UTPIA project, 

Batista et al., 2010); 2) mapa de Cu de elevada resolução analítica em solos numa 

malha de 500x500 m (SFM) sobre a estrutura do Complexo Vulcano-Sedimentar 

Rosário-Neves Corvo anteriormente à descoberta do sistema mineralizante de Neves-

Corvo e analisados recentemente (Batista, 2003); 3) mapa de Cu de baixa resolução 

analítica e elevada densidade (100 x 100 m; SFM) sobre a mesma estrutura Rosário-

Neves Corvo; 4) Mapa de Cu em solos de área a noroeste da estrutura do Complexo 

Vulcano Sedimentar Rosário-Neves Corvo (ASARCO, Pacheco et al., 1996). 

 
Volcano-Sedimentary Complex units, represented by volcanic 
sediments, shales with nodules, purple shales, cherts and jaspers, 
black shales and important mafic intrusive and extrusive 
volcanics (Matos et al., 2015). The Zn data reflect the 
development of supergene enrichment with high concentration in 
areas close to gossan. According to these authors, at Caveira, the 

geology-gravity-geochemistry data combination used could 
correspond to a successful tool in predictive studies. 

Similar conclusions were reached through the re-assessment 
of the SFM and/or the SMRA Cu, Zn and Pb-soil geochemical 
data available for the NE domain of the IPB (Luz et al., 2013a, 
b). In these works, threshold computation and anomaly 
separation were carried out using the area-concentration multi-
fractal model. The resulting anomaly maps show that volcanic 

rocks represent the prevailing sources of Cu and, to a lesser 
extent, Pb. The main sources of Zn are associated with sediments 
of the Phyllite-Quartzite Group (IPB) and of the Gafo and Atalaia 
formations (Chança Group included in the Pulo do Lobo Terrane, 
PLT). It was also concluded that, in this region, the upper limit of 
background Cu, Zn and Pb values in soils derived from PLT 
metasedimentary sequences are of the order of 20, 55 and 20-30 
mg kg-1, respectively. Significant contributions from volcanic 

rocks, common in soils developed over the IPB Volcano-
Sedimentary Complex, modify the Cu-, Zn- and Pb-soil contents 
and thus the corresponding threshold values, which become 

scattered in the intervals 25-45, 40-60 and 20-90 mg kg-1, 
respectively. The lower limit of more significant Cu-, Zn- and 
Pb-soil anomalies are within the 30-50 mg kg-1, 90-115 mg kg-1 
and 45-60 mg kg-1 intervals, respectively, when metasedimentary 
provenance dominates, and within the 30-70 mg kg-1, 70-90 mg 
kg-1, and 33-100 mg kg-1 intervals when abundant volcanic-
derived components exist. Proximity to mineralized sediments 
and volcanics is indicated by Cu, Pb and Zn soil contents above 

ca. 100 mg kg-1, 120-150 and 250 mg kg-1, respectively. Most of 
the anomalies display strong anisotropy and structural control 
because their ultimate origin result from chemical changes due to 
syn- to late-orogenic metal re-distribution within rock-domains 
subjected to strong deformation and hydrothermal activity. 

In another study of elements concentration distribution in 
stream-sediments collected all over the NE domain of the IPB 
(Luz et al., 2012), anomalous Cu, Zn, Pb (as well as Cr) and Ni 

contents are usually confined to the 45-55 mg kg-1, 100-120 mg 
kg-1, 45-60 mg kg-1 and 55-70 mg kg-1 intervals, respectively, 
being around 30 mg kg-1 for Co. In these sediments, the regional 
threshold values are 20, 45, 30 and 15 mg kg-1 for Cu, Zn, Pb and 
Co, respectively. Anomalies in Cu, Zn, Pb, Co, Cr and Ni are 
delimited by first order local threshold values of 40, 94, 70, 21, 
37, and 42 mg kg-1, respectively. The most important anomalies 
are clustered to the ESE of the Trindade – Chança region, being 

also strongly confined. These anomalies reflect mixed 
contributions from country rocks, namely: i) volcanic units 
included in the Gafo Formation (Chança Group) and in the 
Volcano-Sedimentary Complex of the IPB, possibly 
complemented by metasediments belonging to the IPB Phyllite-
Quartzite Group; ii) diverse weathering products resulting from 
mining exploitation activities in the old S. Domingos and Chança 
mines (massive sulphides exploitations); iii) hydrothermal 
infillings of different fault zones; and iv) mafic volcanic rocks 

included in the Pulo do Lobo Formation. Finally, it should be 
noted that there is a strong compatibility between the threshold 
values referred to above and those reported by Feliciano et al. 
(2008) for a stream-sediments database covering the whole South 
Portuguese Zone; for a general re-assessment of this dataset see 
also Gonçalves and Mateus (2019). 

In the southern sector of the IPB different statistical 
methodologies combined with Pb isotopic studies were 

successfully applied in identifying the Pb sources in soils and 
Cistus ladanifer L. plants of the lower sector of the Guadiana 
River basin in both Portuguese and Spanish margins (Batista et 
al., 2013). Two geogenic and two anthropogenic sources of Pb 
were identified using Pb isotopes. Elevated Pb concentrations are 
mostly related to the occurrence of sulphide-rich ores, Volcano-
Sedimentary Complex formations and mining. These are often 
put in evidence by multiple regression analysis (MRA). 

Nevertheless, caution was needed in interpreting statistical and 
isotopic results; therefore, the combination of both techniques 
was important. Elements such as Ca, Na, Cu and As, show higher 
concentrations in soils developed over different siliclastic 
metasediments belonging to the IPB Phyllite-Quartzite Group. 
Lead is enriched in soils above felsic volcanic rocks from the IPB 
Volcano-Sedimentary Complex, which has been identified by the 
relationship between topsoil median values of different 

lithologies and grand subsoil median values. In the same soil 
samples, Fe, As, Co, Ni and Cr contents are depleted. 
Translocation of Pb to the aerial parts of plants is insignificant in 
all the three plant species analyzed (Cistus ladanifer L., Thymus 
vulgaris L., Lavandula stoechas L. ssp. luisieri), except near 
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mine sites, where lower pH of soil increases the Pb 
bioavailability (Batista, 2010). 

The use of multi-element analytical data obtained in a single 
survey can be quite helpful in recognizing pathfinders for a given 
metal target. Recent studies carried out in the Moitinhos, 
Garronchal and Zambujeira areas (Tab. 1) and reveal that Cu-soil 

anomalies can be roughly traced by several pathfinders. 
These were put in evidence by the analysis of Principal 

Components (PC) extracted through classical factorial analysis 
with Varimax rotation in order to maximize the variance and the 
application of the Kaiser criteria used to retain only eigenvalues 
above unity during PC extraction (Kaiser, 1960). The results, 
summarised in table 1, suggest that several elements may serve as 
proxies to anomalous bedrock Cu concentrations; however, the 
set of associated pathfinders will differ according to the 

composition of the bedrock and the local details of the processes 
that rule the selective chemical mobility of metals/metalloids in 
soil solutions and/or run-off and creek waters.  

3. Geochemical imprints of historical mining: 

environmental impact and the use of mining wastes as 

secondary resources 

The concept of “geochemical baseline” was officially introduced 
in 1993 (International Geological Correlation Program, IGCP 
Project 360) and refers to the variation of an element 
concentration in the superficial environment at a given time, 
therefore measuring the natural background and (diffuse) 
anthropic contributions (Salminen and Tarvainen, 1997; 
Salminen and Gregorauskiene, 2000). Geochemical multi-

element baselines are therefore needed to evaluate the present 
state of the surface environment, providing also guidelines and 
quality standards for environmental legislation and political 
decision-making, especially in the assessment of contaminated 
soils (Darnley et al., 1995; Salminen and Tarvainen, 1997; Baize 
and Sterckeman, 2001). In Portugal, the geochemical database is 
incomplete and varies significantly for different regions and 
geological backgrounds, since most of the data were collected for 

mineral exploration purposes and do not meet the requirements 
set up internationally for establishing national environmental 
baselines (Ferreira et al., 2001; Inácio et al., 2008). Nevertheless, 
in many cases, the available geochemical data sets can be used to 
build various local/regional reference baselines, even if only in a 
tentative or rough way. That seems to be the case of the SFM 
geochemical surveys carried out in areas with (very) low 
agriculture activity and characterized by ill-developed regoliths, 
as happens in the IPB main areas; in these conditions, there is not 

much difference between topsoils and subsoils (usually at about 
20-40 cm depth) provided that the fraction analysed is below 100 
mesh. In fact, the (regional) threshold values computed for the NE 
domain of the IPB (Luz et al., 2013a, b) are in good agreement 
with the topsoil Cu and Zn median contents reported in Galán et al. 
(2008) for the IPB/South Portuguese Zone (SPZ) in Spain (32 mg 

kg-1 and 78.5 mg kg-1, respectively). In the Spanish side of the SPZ, 
the highest median values of Cu (57.4 mg kg-1) were found in 
topsoils derived from the IPB felsic igneous rocks; again, this is 
compatible with conclusions drawn above concerning threshold 
variations in function of rock type prevalence.  

Mobility of chemical elements from soils to sediments 
resulting from upstream mines into the lower N-S sector of the 
Guadiana River Basin, located in southern Portugal and Spain, to 
the Atlantic Ocean was also studied. The geometric mean of Cu 

and Zn concentrations of soils and sediments was obtained in the 
same range of the previously presented concentrations (28 mg kg-1 
and 37 mg kg-1 Cu in soils and sediments, respectively; 65 and 79 
mg Zn kg-1 in soils and sediments, respectively). When 
relationships between upstream soils and downstream sediments 
are established, higher median values in upstream soils were 
observed for Co, Ni, K, Pb, Mn and Ti; on the contrary, Cu, Zn, 
Al, As, Ba, Br, Ca, Cr, Fe, Mg and Na contents are higher in 

downstream sediments. Lead was considered the less mobile 
element and Zn the highly mobile of the base metals in the lower 
Guadiana River (Batista et al., 2012d).  

Some recent studies were also performed in the Neves-Corvo 
area to evaluate element cumulative enrichment in soils due to 
mining activities (Batista et al., 2012a). Soil samples collected by 
SFM in the early seventies (henceforth referred to as the first 
survey), preserved in the LNEG archive, were re-analysed, along 

with a new set of samples collected in the same locations (from 
now on referred to as the second survey) about 10 years after the 
beginning of Neves-Corvo exploitation (1988). Multi-element 
content distributions were characterised, including independent 
variables such as those revealing similar central tendency values 
(median, mean and mode) that may trace specific lithological 
sources: Al, Ca, Fe and Mn labelled as zero or one in samples 
derived from the Baixo Alentejo Flysch Group and/or the IPB 

Volcano-Sedimentary Complex, respectively. Further data 
analysis (stepwise regression modelling) of Cu contents 
displayed by soil samples from an undisturbed area of the first 
survey performed allowed a clear detection of the fingerprints of 
various parental rocks, within and around the area where the 
Neves-Corvo mine was built some years later. However, the 
separation between natural and mining-induced Cu 
concentrations was not clear-cut when samples belonging to the 

Area 

(% variance explained in  

the 1
st
 and 2

nd
 axis) 

Total elements used in PCA 
Correlated with the occurrence of Cu (> 0.7) and 

PC extraction using Kaiser criteria 

Moitinhos 

(62%) 

As, Ba, Co, Cr, Cu, Fe, Mg, Mn, Ni, P, Pb, Rb, S, 

Sc, V, Zn 
(axis 2) As, Cu, Pb, Zn 

   

Garronchal 

(54%) 

Cu, Pb, Zn, Ni, Co, As, Fe, Mn, Ba, Cr, V, Al, Sr, 

Nb, Sc 
(axis 1) Cu, Ni, Co, Fe, Mn, V, Al 

Zambujeira 

(64%) 
Cu, Pb, Zn, Ni, Co, As, Fe, Mn, Ba, Cr, V, Al, Nb (axis 1) Cu, Zn, Ni, As, Fe, Cr, Al 

Table 1. Factorial analysis of PC extraction and identification of the Cu possible pathfinders in each area after re-processing data obtained in surveys conducted by ASARCO 

(Pacheco et al., 1996) and SMRA (Mora, 2001) 

Tabela 1. Análise factorial de extração em CP e identificação de possíveis indicadores do Cu em cada área após reprocessamento de dados obtidos em campanhas conduzidas por 

ASARCO (Pacheco et al., 1996) e SMRA (Mora, 2001). 
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second survey were used in the previously calibrated model; 
indeed, background maps of the second survey maps still show 
signs of Cu contents due to mining activity instead of the 

background record only. Therefore, residual maps show a smaller 
area of mining-induced concentrations (Batista et al., 2012a).  

Despite of the difficulty in discriminating unambiguously the 
contribution of old mining works to geochemical anomalies in 
soils and stream-sediments that may also originate in the bedrock 
natural enrichment in the same elements as those liberated 
artificially, many studies have been developed in the IPB with the 
objective to search for innovative criteria and/or alternative 

methods to respond to such problem (e.g. van Geen et al., 1997; 
Freitas et al., 2004; Batista et al., 2007; Abreu et al., 2008; 
Álvarez-Valero et al., 2008; Durães et al., 2008; Abreu et al., 
2010; Pérez-López et al., 2010; Luís et al., 2011; Santos et al., 
2012, 2014). All these studies are fundamental for the analysis of 
risk assessment related to abandoned mining sites, contributing 
also to the appraisal of the net balance between active 
intervention (in order to mitigate/remediate the environmental 

impact) and natural attenuation processes. 
According to the conclusions of a recently completed project 

regarding “Abandoned Mines” (Santos Oliveira, 1997; Santos 
Oliveira et al., 2002; Matos and Martins, 2006; EDM and DGEG 
Report, 2011), the way how large mines operating in the IPB in 
the past were decommissioned led to environmental impacts of 
different nature and magnitude (mostly dependent on the 
methods used in ore exploitation and processing, as well as on 

the dimension, composition and stability of mining residues). 
Aljustrel, São Domingos, Lousal and Caveira were identified as 
the leading problematic places, with evidence for intense long-
term acid mine drainage (AMD), along with other impacts on the 
surface environment which create numerous difficulties in the 
design of remediation strategies. At São Domingos and Aljustrel, 
different materials deposited along the main streams and in the 
dump areas trace the historical evolution of ore processing in 
those sites, while seepage waters indicate variable pH-Eh 

conditions (Tab. 2).  
These acid waters promote the precipitation of a suite of 

minerals in response to the cyclic nature of wet/dry weather, such 
as copiapite, jarosite, melanterite, iron (hydr)oxides (e.g. 
Gonçalves et al., 2007; Abreu et al., 2010; Maia et al., 2012). 
High concentrations of Cu, Pb, Zn, As, Sb in accumulated mining 
residues and As, Cd, Cu, Hg, Pb, Sb and Zn in seepage waters of, 
for instance, São Domingos, are the result of differential 

chemical mobility in the course of a very long time of oxidation 
and hydrolysis experienced by sulphide ores, slag and other 
metal-bearing residues deposited since mine closure in various 
piles distributed over a significant area (Matos and Martins, 
2006; Batista, 2000; Alvarez-Valero et al., 2008; Abreu et al., 
2010; Mateus et al., 2011; Batista et al., 2012b). 

 
Table 2. Areas (m2) of mining wastes and affected by AMD in IPB mines and 

downstream AMD length (after Abreu et al., 2010). 

Tabela 2. Áreas (m2) afetadas por DAM em minas da FPI e comprimentos de DAM a 

jusante da exploração (após Abreu et al., 2010). 

 

Wastes Caveira Lousal Aljustrel S. Domingos 

Mining wastes 217103 66294 675046 1696384 

AMD 1239 21383 284085 273250 

Downstream 

AMD                       3.3 km              5 km              17 km                    10 km 

 

Given their particular compositional attributes or incipient 
exploitation, the environmental impacts related to Chança and 
Montinho (South from massive pyrite), as well as to Ferragudo, 

Balança and Cercal (Fe-Mn oxides), are considerably smaller 
(Alvarenga et al., 2002; Abreu et al., 2012; Matos and Martins, 
2006). Moreover, the longevity of the abandoned state which is 
for instance the case of Brancanes, where mining closed in the 
beginning of the 20th century, may also stabilize the 
environmental signature of the pollutants in what soil-plant 
uptake is concerned (Batista et al., 2007). 

Decommissioning of the mining area of Aljustrel took place 

during the past decade and considerably reduced the production 
of AMD towards the surrounding areas. The works done included 
dam construction and diverted water channels to minimize the 
interaction of acid waters with rain waters and consequent 
overflow to nearby creeks, as it occurs in the area of the old 
mining dumps, or in the area of the current ore processing plant. 
However, the natural flow of the acid pools from the old mining 
dumps still occurs to the Água Forte stream, a 10 km long stream 

that runs northwards to the Roxo stream. Two kilometres 
downstream its source in the acid pools, this stream receives 
organic-rich, high pH-low Eh, municipal wastewater that causes 
a substantial perturbation in an otherwise environmental 
dangerous but stable acid drainage system (Candeias et al., 2010; 
Maia et al., 2012). Once again, the wet/dry weather cycles are 
fundamental to understand the dynamics of this system. The main 
effects of the municipal wastewater in the flow of the acid water 

are pH neutralization, dilution and induced Fe precipitation with 
a noticeable dissolved As reduction (Maia et al., 2012). However, 
the mixture of mine acid water and municipal wastewater only 
occurs in the rainy season, and most of the year the latter organic-
rich water input is the single most important contributor to the 
flow in the Água Forte stream. Therefore, the point where waste 
water enters the stream channel becomes a site where the active 
reductive dissolution of Fe oxy-hydroxides and hydroxysulfates 
occurs, with the consequent release of several transition metals, 

and a lowering of the pH to values similar to those contributed by 
the acid waters at the same spot (Maia et al., 2012). Such 
example is an excellent reminder of the importance of 
understanding the complexity and dynamic nature of AMD 
systems associated with environmental impact studies. In the last 
couple of years the risk experienced by “advanced” economies in 
raw-materials supply increased significantly, thus compelling the 
reinforcement of several political initiatives (some of them 

already started in 2006/07) endorsing the access to new mineral 
deposits and/or alternative sources for a long list of critical 
metals. In this framework, the European Union official strategy 
highlights the importance of recycling and reusing not only the 
manufactured residues by also wastes resulting from the (present-
day and old) exploitation works. This new concept of by-product 
(often known as “secondary resources”) is increasing in Europe, 
and important mines located here are now introducing efficient 

practices of recycling in their smelters, reprocessing mining 
wastes with lower grades or searching for products distinct from 
the ones obtained previously. In the IPB this kind of evaluation is 
still incipient, but the potential is vast, considering the existing 
volumes of residues of variable composition distributed in 
several old mine centres. Some studies were already performed to 
evaluate the potential use of slags piled up in São Domingos 
(Pinto et al., 2007; Mateus et al., 2011; Batista et al., 2011). 

Milled pyrite samples collected in São Domingos and Aljustrel 
were also examined and compared (Batista et al., 2011, 2012c), 
after the detection of interesting Re concentrations in these kind 
of waste at Achada do Gamo (São Domingos mine; Figueiredo et 
al., 2012). A preliminary geochemical evaluation of the potential 
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demonstrated by mining residues piled up in the Caveira mine 
was reported in Mateus et al. (2008). Considering the available 
volume of wastes, the São Domingos mine presents the best re-

mining scenario in the Portuguese IPB sector, being evaluated by 
Conasa Company in the 1990’s. Based on the Conasa data 
inferred mineral resources of 2.38 Mt of non-conditioned 
volumes, with an average grade of 0.77 g/t Au and 8.26 g/t Ag in 
the considered 11 waste piles and six landfill bodies with an 
average gold grade above 0.5 g/t, totaling a metal content of 
59,489 oz t Au and 633,488 oz t Ag (Vieira, 2015; Vieira et al., 
2015; Vieira et al., 2016). According to these authors if the 

global waste piles are considered (including the mine wastes 
located in the urban area of the São Domingos village) the 
inferred mineral resource could achieve to 4.0 Mt with an 
average grade of 0.64 g/t Au and 7.30 g/t Ag, corresponding to a 
metal content of 82,878 oz t Au and 955,753 oz t Ag. 

4. Concluding statement 

Geochemistry was, and still is, an expensive technique, although 
essential in mineral exploration and in assessments of 
environmental impacts. Indirect approaches, such as those 
involving geophysics, together with geochemical methods, led to 

fruitful results in mineral exploration all through the IPB since 
the beginning of systematic exploration practices. As a result of 
successive, although intermittent, exploration works carried out 
all over the years, the geochemical data archived in LNEG are 
quite significant and always played an important role in 
evaluation studies regarding the mineral exploration potential of 
many regions. Moreover, previous exploration geochemistry 
works combined with petrography and mineralogical reports 

from geologists, employed by public institutions and companies, 
represent a remarkable heritage of the Portuguese State, 
contributing to significant improvements in the geological 
knowledge of the national territory and its economical/social 
relevance. Supported on this knowledge, the continuous 
exploration for new deposits in IPB and/or complementary ways 
to perform their characterisation and economic evaluation can be 
made: by enhancing resolution with modern geochemical 

techniques (such as increasing the quality control and the number 
of analysed elements, isotope analysis, and high resolution 
analytical geochemistry at the micro and nano scale) and/or 
application of advanced numerical data processing. This 
knowledge also represents a starting point for other studies 
searching mitigation or remediation solutions especially if metal 
recovery technologies are an option to be developed in the future. 
Geochemical studies are not confined to soil geochemistry 

surveys. Stream sediments geochemistry, hydrogeochemistry, 
and lithogeochemistry of outcropping rock and drill-core samples 
represent also important sources of data in regional or detailed 
studies over specific target areas. These techniques are beyond 
the scope of the present chapter which aimed at providing a 
general overview of the importance of soil geochemistry studies 
in the current knowledge of the IPB. 
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