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Abstract 

On the automotive industry, for the purpose of meeting customers’ expectations of comfort, great 

attention must be paid regarding the sound quality of the vehicle. Among the vast scope of sounds 

which can be heard inside the cabin of Internal Combustion Engine (ICE) passenger cars, the 

booming noise is considered a very annoying acoustic phenomenon. The assessment of the impact 

that this low frequency Noise, Vibration and Harshness (NVH) problem has on passengers’ 

comfort often relies on subjective evaluation methods. 

Throughout this dissertation, a method for evaluating the powertrain booming sensation 

in end-of-line applications was analyzed with the intention of creating a tool that can be used by 

the NVH engineer, minimizing the need of subjective evaluation methods. This method consists 

in the application of Neural Networks (NN) techniques such as Convolutional Neural Networks 

(CNN) to perform classification tasks on the spectrogram images of the raw sound signal 

experienced by the driver, in accelerating conditions. In order to generate the database for training 

the networks, modifications on digital twins of three cars were done to induce the presence of the 

booming sensation associated with the Engine Firing Rate (EFR). This was done in a fully 

automated way, creating a large variety of scenarios.  

Different CNN architectures were tested for the Yes/No classification of booming, 

reaching test accuracies around 95.5% on the best architecture. Later, these tests were also 

conducted for the YesSevere/YesMild/No classification of booming, in which the accuracies 

dropped around 2%. 
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Resumo 

Na indústria automóvel, com o objetivo de atender às expectativas de conforto dos clientes, 

grande atenção deve ser dada à qualidade sonora dos veículos. Dentre a vasta gama de sons 

existentes no interior dos automóveis com motor de combustão interna, o “booming” é 

considerado um fenómeno acústico muito incomodativo. A avaliação do impacto que este ruído 

de baixa frequência tem no conforto dos passageiros é dependente de métodos de avaliação 

subjetivos. 

Ao longo desta dissertação, foi desenvolvido um método para a avaliação da sensação de 

“booming” associado à cadeia cinemática para ser utilizado em aplicações de fim de linha. Desta 

forma, foi criada uma ferramenta que poderá ser utilizada por um técnico especializado, 

minimizando a necessidade de métodos subjetivos de avaliação. Este método consiste na 

aplicação de técnicas de redes neuronais convolucionais para realizar tarefas de classificação nas 

imagens correspondentes aos espectrogramas dos sons detetados pelo condutor, em condições de 

aceleração. Para gerar a base de dados a ser utilizada pelas redes neuronais, foram realizadas 

modificações aos sons gravados de três carros (gémeos digitais). Estas foram feitas para induzir 

a presença de “booming”. A criação da base de dados foi feita de uma forma automática, criando 

uma grande variedade de cenários. 

Para a classificação entre Sim/Não de “booming”, foram testadas diferentes arquiteturas de 

redes convolucionais, tendo-se atingido precisões de cerca de 95,5% na melhor arquitetura. 

Posteriormente, a mesma metodologia foi aplicada para a classificação entre 

SimSevero/SimLeve/Não, tendo-se registado uma queda de cerca de 2% nas precisões. 
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 INTRODUCTION 

The present document was composed by Pedro Miguel Gomes Leite, on the first semester of the 2020/2021 

academic year, as his dissertation work paper for obtaining a Master’s degree on Mechanical Engineering 

- Automation. It was a project developed in result of a partnership between Faculdade de Engenharia da 

Universidade do Porto and Siemens PLM Software. The student was supervised by Prof. António Ramos 

Silva as his advisor at Faculdade de Engenharia da Universidade do Porto and Eng Claudio Colangeli as 

his advisor at Siemens PLM Software. 

1.1 Framework 

As society becomes more aware of the impact that prolonged exposure to noise has in human health, one 

major concern has been to reduce the amount of sound emitted by man-made machines. One common 

environmental noise source is traffic. In this context, both the exterior and interior sound of a car poses as 

a crucial factor in the development process of a vehicle, not only to meet health requirements, but to align 

with customer expectations of comfort. Due to this, a lot of effort is put into improving interior acoustics 

of vehicles. 

Noise Vibration and Harshness (NVH) is defined as the study and modification of the noise and 

vibration characteristics of vehicles in the whole frequency range, and its effects on passengers’ 

perception. A common methodology of dealing with noise and vibration in cars is Transfer Path Analysis 

(TPA). It adopts a system analysis approach, where excitations produce responses through the transfer 

function of the system, from the noise and vibration source to the receiver. This allows the study of the 

possible ways of energy transfer from the various sources of excitation to a given target location, thus 

providing valuable insight into the mechanisms responsible for the problem (de Ponseele 2012).  

Even though noise and vibration can be objectively measured, the harshness evaluation requires 

other tools since it is considered a subjective quality, meaning the human sensation behavior changes from 

person to person, on a geographic and even on a more personal standpoint. Because of this, converting 

customer perception into objective measurements and to correlate them is often very challenging for NVH 

engineers.  

Despite the increasing electrification and hybridization of vehicles, the study of NVH problems on 

conventional Internal Combustion Engines (ICE) is still prevalent on our current time. In this category of 

vehicles, the engine is the system having the most impact on the overall acoustic scene (Siano and Panza 

2017).  
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Booming noise is an NVH issue which occurs at low frequencies, often caused by driveline 

resonances which get excited by the main engine orders (Wellmann et al. 2011). The evaluation of this 

phenomenon on end-of-line applications usually depends on subjective evaluations made by a jury test. 

To perform anomaly detection, Machine Learning (ML) techniques are commonly used. Recent 

progresses on a field of ML called CNNs have been achieved, especially in computer vision tasks. This is 

allowing the application of these models to a variety of fields. 

1.2 Objectives  

With the main objective of applying NN models for the classification of simulated NVH defects, the 

following tasks were performed along the way: 

 Gaining insight in the state of the art of data-driven methods applied in the NVH domain, 

and in NVH engineering in general; 

 Gaining skills in digital processing and ML; 

 Gaining skills in full vehicle sound synthesis techniques; 

 Further developing a booming sound simulator prototype to synthesize vehicle sounds with 

different booming scenarios, in a fully automated way, creating a diverse database; 

 Using a NN approach to perform classification tasks in a variety of scenarios. 
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1.3 Structure  

This work is divided into eight chapters. Chapter 1 gives the reader an introduction about the topics 

covered throughout the dissertation, contextualizing them in the field of Mechanical Engineering and in 

the current market. It also covers the main objectives of the dissertation. 

Chapter 2 allows the reader to obtain information about the booming noise, its general importance 

nowadays in the automotive industry and the analysis methods used to study this phenomenon. Information 

about ML algorithms, focusing on the CNNs is also given. This chapter also presents the state of the art 

of the booming noise, relating it with ML. 

Chapter 3 is about the vehicle sound decomposition, starting by presenting the experimental 

conditions of the used cars’ data. Then, the data was analyzed to assess the most predominant orders for 

decomposition. Finally, details about the decomposition process are also present. 

Chapter 4 exposes information about the vehicle sound synthesis approach. Details regarding the 

simulation of the booming noise in the sound synthesis are also addressed. 

Chapter 5 focuses on the implementation of CNNs for the classification of the booming noise. 

Different architectures are explored, and the results obtained are exposed. 

Chapter 6 presents a discussion of the obtained results. 

Chapter 7 concentrates in making conclusions regarding the work developed and the experimental 

results presented, as well as possible future topics to explore. 
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 STATE OF THE ART 

2.1 Booming noise 

Booming noise is one of the various noises which can be heard inside of a car. It occurs at low frequencies, 

below 200 Hz (Shin et al. 2009). Usually it is perceived as an annoying acoustic feature by the vehicle’s 

passengers, who define it as being like a continuous bass drum roll, a distant thunder sound or a deep 

resonant sound like an explosion (Zhen et al. 2011). This subjective phenomenon was revealed to affect 

more harshly people from Asian countries comparing to western countries in general (Toi, T, Isoyama, H, 

Ogu, Y, Saito, H, Hoshino, H, Ishikawa, M, et al. 2004). However, the booming experience even changes 

from person to person, making it difficult for NVH engineers to convert customer perception into objective 

measurements and to correlate them. There are different origins of booming noise in a vehicle (Mansinh 

et al. 2012), namely: 

 Engine excitation; 

 Excessive radiation from intake/exhaust systems; 

 Road excitation; 

 Wind fluctuation; 

 Etc... 

When coupled with the passenger’s cabin resonance, all of these cause the rise of pressure inside 

the car’s cabin, provoking discomfort on the passengers. Among all of these, the engine is the system 

having the most impact on the overall acoustic image in a vehicle powered by an internal combustion 

engine (Siano and Panza 2017). Therefore, the analysis of the booming noise caused by the engine 

excitation is very relevant for meeting costumers’ expectations of comfort.  

An engine downsizing trend has been noticed, resulting from a demand for more fuel-efficient 

powertrains and reduction of 𝐶𝑂2 emissions. The technologies emerging from this increase engine 

torsional excitations from the engine firing rate (Wellmann et al. 2011), which can be calculated by the 

expression (1): 

𝐸𝐹𝑅 =  
𝑁

60 ∙ 𝜀
∙ 𝑁𝑐𝑦𝑙  [𝐻𝑧]   (1) 

Where  𝐸𝐹𝑅 is the engine firing rate and 𝜀 is equal to 1 for a two-stroke engine and 2 for a four-

stroke engine. 𝑁 is the engine rotational speed in RPM (Revolutions Per Minute) and 𝑁𝑐𝑦𝑙 represents the 

number of cylinders. 
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Torsional Vibration 

Torsional vibrations are angular vibrations of an object, generally a shaft along its axis of rotation, 

and are created by time-altering torques. These fluctuations are superimposed on the steady rotational 

speed, causing its variation within a rotation cycle. In figure 1 it can be seen an example of a velocity 

profile of a 4-cylinder engine during a run-up test. Looking closely, 100 RPM fluctuations can be observed.  

 

 

In an ideal power transmission system using rotation parts, not only smooth torques lead to constant 

speed, but also the rotating plane of both ends of the transmission is the same. However, this is not the 

case for ICE, in which the engine generates rough torques, leading to an increase in torsional vibration of 

the crankshaft. 

Torsional vibration can cause various problems such as: 

1. Decrease in durability of components; 

2. Discomfort induced by vibrations that propagate to places like seats and pedals; 

3. Noise problems like gear whine and booming; 

4. Synchronization problems causing reduced performance and reduced fuel economy. 

When engine torsional vibrations propagate through the transmission, they excite the vehicle’s 

driveline. Structurally sensitive frequencies along the driveline may amplify these phenomena and create 

NVH related problems, like mentioned in item 3. In figure 2, typical driveline NVH problems are exposed. 

 

 

Figure 1, time vs. RPM of an engine run-up, courtesy of Siemens Industry Software.  
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Figure 2, typical driveline NVH problems, as presented by Wellmann et al. in (Wellmann et al. 2007). 

 

According to (Wellmann et al. 2007), driveline torsional vibration at the rear axle cause reaction 

forces of the axle housing mounts, which can induce noticeable driveline booming noise. 

However, the excitation from secondary components of the engine revolution also introduce noise 

in the cabin through engine mounts (Matsuyama and Maruyama 1998). Thus, several structural paths can 

cause booming noise through engine excitation, creating resonance effects and a rise of acoustic pressure 

on the passenger cabin. 

It is very important knowing the critical structural paths when trying to reduce a noise problem 

inside the car. For this analysis, TPA methods are usually applied. A review of TPA methods can be found 

in the literature (de Ponseele 2012), and some basic notions about this topic is presented next. 

 

Analysis methods for booming noise - Transfer Path Analysis 

The noise heard inside the vehicle cavity is the sum of the noises transmitted through multiple paths, 

from the sources to the receiver. The identification of where a certain noise comes from is not a simple 

challenge since the overall sound perceived by the passengers depends on the level and nature of the 

sources and on the way the structural and airborne loads find the target, through the vehicle (de Ponseele 

2012). The typical TPA system is consisted of: 

 Sources, which creates the input loads into the system. Typical vehicle sources include the 

vibration of the engine, tailpipe noise, intake noise, road inducted vibrations and radiated 

noise from vibrating panels; 

 Transfer path, which characterize how noise and vibration goes from the sources to the 

defined targets; 
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 Targets, which represents the location where it is desired to study noise and vibration. 

Targets are typically acoustical such as the acoustic pressure perceived by the passengers 

but can also be vibrational. 

Transfer paths can be considered either airborne or structureborne. In case of structureborne paths, 

the source imparts forces through a mechanical attachment to the structure. In figure 3, it can be seen a 

scheme of the propagation of structureborne noise from a source to the target. On the other hand, in a case 

of airborne paths, the source imparts forces acoustically. In figure 4, it can be seen a scheme of the 

propagation of airborne noise from a source to the target. 

 

 

Figure 3, Structureborne noise, courtesy of Siemens Industry Software. 

 

 

Figure 4, Airborne noise, courtesy of Siemens Industry Software. 

 

The booming noise is considered a structureborne noise. In the TPA analysis, the booming noise 

SPL (Sound Pressure Level) can be expressed by (2) (Wu et al. 2019): 

𝑝𝑘(𝜔) = ∑ 𝐹𝑅𝐹𝑖𝑘(𝜔) ∙ 𝐹𝑖(𝜔)

𝑛

𝑖=1

, 𝑖 = 1,2, … , 𝑛   (2) 
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Where: 

 𝑝𝑘(𝜔): interior noise at target 𝑘; 

 𝐹𝑅𝐹𝑖𝑘(𝜔): frequency response function of structural paths 𝑖; 

 𝐹𝑖(𝜔): structural load at path location 𝑖; 

 𝐹𝑅𝐹𝑖𝑘(𝜔) ∙ 𝐹𝑖(𝜔): contribution of structural paths 𝑖; 

 𝑛: number of structural paths. 

A car is a complex assembly of many subsystems and so the noise energy is transmitted to the target 

through multiple structures and spaces. Thus, the frequency response function for each transfer path can 

be expressed by (3) (Wu et al. 2019): 

𝐹𝑅𝐹𝑖𝑘(𝜔) = ∏ 𝐹𝑅𝐹𝑖𝑘𝑗(𝜔), 𝑗 = 1,2, … , 𝑚   (3)

𝑚

𝑗=1

 

Where 𝐹𝑅𝐹𝑖𝑘𝑗(𝜔) is the frequency response function of structural paths 𝑖 in subsystem 𝑗 and 𝑚 is 

the number of subsystems. 

In figure 5, a sketch map of vibroacoustic flow in a vehicle is shown to ilustrate the iteration between 

the multiple subsystems present in a car. 

 

Figure 5, sketch of different subsystems within a car, as presented by Wu et al. in (Wu et al. 2019). 

Firstly, in order to analyze the generation mechanism of booming noise, the identification of the 

transfer paths by which the vibration energy enters the vehicle cavity should be done through Experimental 

TPA. This well-established approach allows the estimation and ranking of individual noise or vibration 

contributions. By opting for method, in (Wu et al. 2019) the vibroacoustic energy in the transfer processes 

was quantitatively analyzed, for the study of booming noise in a minivan. It was concluded that the 

driveline torsional resonance carries large amounts of vibration energy to the rear suspension and causes 

a violent pitching vibration of the rear axle. This vibration energy is then transferred to the body and cavity, 

leading to the experience of booming noise by the passengers. 
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Analysis methods for booming noise – Spectrogram/waterfall analysis 

The spectrogram analysis is a straightforward way to visualize the presence of booming 

phenomena. It offers a visual representation of the spectrum of frequencies of a signal as it varies with 

time. There are several ways to generate a spectrogram, but the most common way is by applying the 

discrete STFT (Short-Time Fourier Transform) to the discrete time signal.  

The discrete STFT consists on the application of the FFT (Fast Fourier Transform) on overlapping 

windowed blocks of the signal. The FFT is an algorithm which performs the DFT (Discrete Fourier 

Transform) in a computationally efficient manner. The DFT performs a Fourier Transform on a discrete 

time block (Brunton and Kutz 2017). 

The discrete STFT can be calculated through the expression (4): 

𝑆𝑇𝐹𝑇{𝑥𝑛}(𝑚, 𝜔) ≡ 𝑋𝑘(𝑚) = ∑ 𝑥𝑛 ∙ 𝑤𝑛−𝑚 ∙ 𝑒− 
𝑗2𝜋𝑘𝑛

𝐿

𝐿−1

𝑛=0

    (4) 

Where: 

 𝑥𝑛: discrete time signal to be transformed 

 𝑤𝑛−𝑚: window function, commonly a Hann or Gaussian window 

 𝐿: length of the signal 

However, the uncertainty principle limits the ability to simultaneously attain high resolution in 

both time and frequency domains. On one hand, the time series is perfectly resolved in time, but provides 

no information about the frequency content. One the other hand, if a Fourier transform is applied to the 

time series, it perfectly resolves frequency content, but provides no information about when in time these 

frequencies occur (Brunton and Kutz 2017). Different time and frequency resolutions can be obtained by 

changing the properties of the window function. If a wide window is used, good frequency resolution is 

achieved at the cost of temporal resolution, while a narrow window has the opposite effect. 

Plotting the spectrogram to see the spectral and temporal pattern of time-varying sounds inside of 

a car’s cabin has been usually utilized for the characterization of the booming noise of an accelerating car 

(Siano and Panza 2017). Typically, on this analysis, the time axis is replaced by the crankshaft’s RPM axis 

to easily see the behavior of the different orders of the engine revolution. 

Orders assist in the analysis of noise and vibration of rotating components. Each element of a 

system contributes to the overall noise and vibration level of that system. Therefore, analyzing the orders 

assists in the identification of individual rotating components contribution to the overall level of noise and 

vibration. 

In figure 6, it is presented a system composed of two rotating shafts connected by a pulley with 

ratio 3 to 1.  
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Figure 6, system composed of two shafts and a pulley, courtesy of Siemens Industry Software. 

 

When shaft A rotates at a certain speed with a corresponding frequency, shaft B will rotate at 3 

times that speed and frequency, as indicated by the pulley ratio. Then, if shaft A accelerates, e.g. between 

600 and 6000 RPM (10 and 100 Hz), shaft B will accelerate between 1800 and 18000 RPM (30 and 300 

Hz). When plotting the three-dimensional plot with frequency, RPM and amplitude, a graph like the one 

on figure 7 can be created, where the orders are shown. In this example, amplitude can be a feature like 

pressure, acceleration, etc. Thus, the order number is a ratio of events per revolution relative to the first 

order, and the first order is selected by the RPM range used. If the RPM axis range was between 1800 and 

18000 RPM, the first order would refer to the shaft B rotation, and shaft A would be the 1/3 order.  

 

Figure 7, first and third order representation on three dimensional plot, courtesy of Siemens Industry Software. 
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Taking now the example of a 4-stroke combustion engine. As figure 8 shows, in one cycle, a 4-

stroke engine has one combustion event every two revolutions of the crankshaft. 

The engine orders are multiples of the rotating frequency of the crankshaft and can be calculated 

by the equation (5) (Panza 2015): 

𝑓0 = 𝑘 ∙
𝑁

60
  [𝐻𝑧]   (5) 

Where: 

 𝑁: crankshaft rotational speed in RPM 

 𝑘: order number 

 𝑓0: frequency of order 𝑘 

One cycle of a single cylinder of a 4-stroke engine consists of the intake, compression, power and 

exhaust. Since each stroke up and down corresponds to one revolution of the crankshaft, two revolutions 

of the crankshaft are needed for all four strokes to occur. Therefore, there is one combustion event for 

every two rotations of the crankshaft.  

Considering a 4-stroke engine with 4 cylinders, it has four combustion events for every two 

rotation of the crankshaft. This implies that the combustion order is the 2𝑛𝑑  engine order. 

One way to easily calculate the combustion order of an engine is by using equation (1). The EFR 

of a 4-stroke and 4-cylinder engine is equal to: 

𝐸𝐹𝑅 =
𝑁

60 ∙ 2
∙ 4 =

𝑁

30
 [𝐻𝑧]   (6) 

By equating equations (5) and (6), it can be concluded that the EFR also corresponds to the 2𝑛𝑑  

engine order.  

 

Figure 8, one cycle of a 4-stroke combustion engine, courtesy of Siemens Industry Software. 
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 As mentioned in (Wellmann et al. 2011), there is an increase in torsional excitations from the EFR, 

which is correlated with booming noise occurring in the passenger’s cabin. Thus, analyzing the 2𝑛𝑑  engine 

order is a good approach to assess this phenomenon. In figure 9, it can be seen multiple spectrograms of 

acoustic pressure levels on different seats from run-up conditions in a diesel passenger’s car. These 

spectrograms were obtained from the raw acoustic pressure levels measured by microphones placed on 

the left ear position of the passengers. Orders 1,2, 4 and 6 of the engine revolutions are highlighted. As 

expected, the strongest amplitude peaks correspond to the 2𝑛𝑑  engine order, and this is where the booming 

noise is most likely to occur. It is also worth to note that, in this study (Siano and Panza 2017), there are 

no significant changes on the spectrums between the driver and the front passenger, as well as both rear 

passengers. However, as stated by Siano (Siano and Panza 2017), it is difficult to find a direct correlation 

between the results of the order analysis and the booming phenomenon, as the overall sound pressure level 

cannot sufficiently express the perceptual feeling.  

 In order to better understand the level of sound annoyance caused in the car’s cabin, some 

psychoacoustics-based indices can be rather used. 

 

 

Figure 9, spectrograms in engine run-up condition for front and rear internal microphones, as presented by D. 

Sianoa and M. A. Panza in (Siano and Panza 2017). 

 

Analysis methods for booming noise – Sound quality analysis 

NVH engineers often make use of psycho-acoustic metrics such as loudness, sharpness and 

roughness for obtaining a desirable frequency balance and sound level in the interior of a vehicle. This 



Convolutional neural networks application for the classification of powertrain booming 
noise on internal combustion engine passenger cars 

page 14 

 

Pedro Miguel Gomes Leite Dissertation for Master’s Degree 

 

approach is known for accurately describe the passengers’ pleasantness or annoyance sensations (Wang et 

al. 2014). 

Regarding the booming noise, loudness is considered the most important metric that accurately 

describes the sensation (Shin et al. 2009). Loudness represents the auditory perception character related to 

SPL, frequency content and duration of a sound, and is measured in sones. Several models can be used to 

calculate loudness, but for non-steady noises like those acquired in vehicle dynamic conditions, the Time-

Varying Zwicker Loudness is particularly useful (Siano and Panza 2017; Mitchell 1997). 

Many papers such as (Park and Lee 2012), (Hatano and Hashimoto 1996), (Hatano 1999) and 

(Hatano and Hashimoto 2000) tried to develop a metric which quantifies the booming sensation by using 

psychoacoustic metrics, having obtained good correlation between their results and subjective jury studies. 

More information about these papers is found on chapter 2.4. 

2.2 Machine Learning 

ML is a tool that makes machines mimic the learning process of humans in a way that allows them to 

transform information into knowledge and is regarded as one of the most influential and powerful 

technologies in today’s world. It is capable of perform a task without the need of receiving explicit 

instructions to do so, when provided with large datasets. In a certain way, it is a process which programs 

evolution in an algorithm, building models that give accurate predictions or find patterns in previously 

unseen data. The widely accepted formal definition of ML as stated by Tom M. Mitchell (Mitchell 1997) 

is: 

“A computer program is said to learn from experience E with respect to some class of tasks T and 

performance measure P if its performance at tasks in T, as measured by P, improves with experience E.” 

The dataset used on a ML problem is usually split into two subsets: training and test datasets. A 

predictive model or classifier is trained using the training data, and then the test data determine the model’s 

predictive accuracy (Priddy and Keller 2005). In order to reach high accuracies, these algorithms are based 

on statistics and mathematical optimization which is a process consisting in finding the minima or maxima 

of a function. One of the most popular optimization algorithms used in ML is called gradient descent. 

One way to classify a ML algorithm is by looking at the way it learns. In this aspect, there are three 

main learning algorithm classes: supervised learning, unsupervised learning and reinforcement learning. 

The class used during this dissertation is supervised learning. Next, it will be presented the differences 

between supervised and unsupervised learning. 

 

Supervised learning 

In this approach, the algorithm is assisted during the training, meaning the desired response is given 

for each input. As shown in figure 10, the learning system is exposed to the environment with a set of 

input features and then predicts a response. The “teacher” knows the desired outputs of the set of input 
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features, and by comparing that desired output with the response of the learning system, the learning 

systems updates itself (Priddy and Keller 2005). The goal is to develop a model capable of, in most cases, 

correctly predict the desired output of a set of data which the model has never seen before.  

These models can perform classification and regression tasks. In the former, the data labels are 

divided into a finite number of classes. For example, the evaluation of a car’s acoustic spectrum in the end 

of a production line can be classified into being acceptable or not acceptable. In the latter, the prediction 

is on a continuous interval, and its value may differ from the one on the training set labels. For example, 

the prediction of a car’s price based on a variety of characteristics such as mileage, model, engine size, 

interior style, etc. 

 

Figure 10, block diagram of supervised-learning model, as presented by Priddy and Keller in (Priddy and Keller 

2005). 

 

Unsupervised learning 

This class of learning algorithms is similar to the supervised one, as can be seen on figure 11. 

However, there is not the presence of a “teacher”, which knows the desired outputs of the training data, 

and there is also an extra block named adaptation rule. Based upon the adaptation rule and the system 

response, the parameters of the learning system are adjusted to obtain the desired performance (Priddy and 

Keller 2005). This way the algorithm can find a way to structure the data without the need of labeled input 

data. This process is typically done based on clustering methods, where training examples with alike 

properties are grouped into the same cluster. 

Examples of unsupervised learning algorithms include k-means, hierarchical clustering, principal 

component analysis and self-organizing maps. 
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Figure 11, block diagram of unsupervised-learning model, as presented by Priddy and Keller in (Priddy and Keller 

2005). 

2.3 Neural Networks 

NNs are a subset of ML, inspired by the structure of the human brain. In order to achieve this, it uses a 

multi-layered structed of algorithms which allows an enhancement in terms of power to represent more 

complex functions. The application of NN architectures like CNNs and Recurrent Neural Networks (RNN) 

have been applied in a variety of fields such as computer vision, defect detection, audio and speech 

recognition and bioinformatics. In figure 12, the panorama of CNNS relatively to NN, ML and Artificial 

Intelligence (AI) is shown.  

During this dissertation, 2D-CNNs are applied to classify acoustic spectrum represented on an 

image. Thus, an introductory explanation of these networks is given next. For the sake of brevity, 2D-

CNNs will be referred as CNNs. 

 

Figure 12, panorama of CNNs relatively to NN, ML and AI. 
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Convolutional Neural Networks 

CNNs are specialized artificial NN for processing data that has a grid-like topology, like time-series 

data and image data. They were inspired by the organization of animal visual cortex and their name comes 

from the employment of the mathematical operation of convolution, which is a specialized kind of linear 

operation (Goodfellow, Bengio, and Courville 2015). These networks have been a dominant method in 

computer vision tasks since the astounding results presented at the ImageNet Large Scale Visual 

Recognition Competition (ILSVRC) in 2012 (Russakovsky et al. 2015). However, CNNs can also 

successfully process 1D data arrays like signals and sequences, including language, and 3D data such as 

video or volumetric images (LeCun et al. 2015). 

The typical architecture of a CNN is composed of three types of layers: 

 Convolution layers; 

 Pooling layers; 

 Fully connected layers; 

The first two types of layers, convolution and pooling, perform feature extraction, while the fully 

connected layer maps the extracted features into final output. In a convolutional layer, a kernel is 

convolutionally multiplied across the layer’s input generating a feature map. After successfully training a 

CNN, the feature maps of the network will contain characteristics of the inputs which describes their 

features, leading to a better classification or regression accuracy.  

 In figure 13, it is possible to observe the process of calculation of a feature map’s unit through 

element-wise product between the input and the kernel, with posterior sum of the obtained matrix values. 

The kernel will scan all the input according to the stride number defined. This number determines how 

many “jumps” the kernel does in the input for each value of the output.  

 

Figure 13, convolution operation for calculation of a unit in the feature map, as presented by Yamashita et al. in 

(Yamashita et al. 2018). 

 

Another important parameter which must be taken in consideration is the presence or not of padding. 

Padding is an additional layer that can be added to a border of an image. If no padding is used, which can 

also be called valid padding, the feature map is going to have a size smaller than the input. That is the case 
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of the example given on figure 13. With this type of padding the values on the middle of the input will get 

covered more than once, in opposition to the values on the corners which will only get covered by the 

kernel one time. This results in loss of information and in the shrinking of the feature map. However, if 

padding is used, which can also be called same padding, the feature map is going to have the same size as 

the input. In order to achieve this, an additional layer of zeros is added to the borders of the input. 

Next, the outputs of the convolution operation are usually multiplied by a non-linearity. The most 

used functions for this are the sigmoid function and the Rectified Linear Unit (ReLU), and they can be 

seen in figure 14. These functions allow the introduction of non-linearity into the network, improving its 

performance. 

 

Figure 14, Sigmoid and ReLU functions. 

 

The pooling layer allows the merging of semantically similar features into one, calculating the 

maximum or the average of all values within the pooling kernel. This results in a reduction of the 

dimension of the feature maps. Contrarily to the convolution operation, in the pooling layers there are no 

learnable parameters. The kernel size, stride and padding are the only hyperparameters in pooling 

operations, similar to convolution operations (Yamashita et al. 2018). 

Finally, the output feature maps obtained in the last set of convolution plus pooling will serve as 

input to a set of fully connected layers which will allow a connection to the output, being it a classification 

or regression. Each fully connected layer is followed by a nonlinear function, such as ReLU (Yamashita 

et al. 2018). A sketch of an example of the described typical architecture can be seen on figure 15. Its is 

important to note that the connections and the architectures can vary.  

 

Figure 15, The structure of a CNN, consisting of convolutional, pooling, and fully connected layers, as presented 

by Saleh Albelwi and Ausif Mahamood in (Saleh Albelwi and Ausif Mahmood 2017). 
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After having the network architecture, the next step consists in training it. This is a process of finding 

the kernels in convolution layers and the weights in fully connected layers. These parameters must 

minimize the difference between the output predictions and the input labels. To achieve this the 

backpropagation and gradient descent algorithm is commonly used, where the learnable parameters are 

updated according to the value of the loss function. This function measures the compatibility between the 

output predictions and the input labels, and depending on the type of problem, the loss function used is 

different. While on regression problems the mean squared error is typically used, on classification 

problems it is commonly used the cross-entropy function. The main goal is to minimize the loss, and to 

achieve this it is usual to look at the gradient of the loss function and take the opposite direction in which 

the function has the steepest rate of increase with an step size determined by the hyperparameter named 

learning rate (Yamashita et al. 2018). In figure 16, a two-dimensional visualization of how the gradient 

descent algorithm works for a single weight is shown. The loss function is represented in the y-axis by the 

name of cost. 

 

Figure 16, gradient descent implementation for a single weight. 

 

One common practice to increase computation efficiency and to guarantee a more stable 

convergence towards the global minimum is to use mini-batch gradient descent. This method splits the 

training dataset into small batches that are used to calculate model error and update model coefficients 

(Ruder 2017). In addition, there are several other algorithms which can improve gradient descent method, 

such as Stochastic Gradient Descent with momentum, RMSProp and Adam (Ruder 2017; Qian 1999; 

Kingma and Ba 2017). 

Since the number of weights in the fully connected layers can reach high values, biasing issues are 

likely to occur. In order to surpass this problem, new regularization techniques such as dropout (Srivastava 

et al. 2014) can be used. In this approach, a certain percentage of neurons is selected to be cancelled during 

a forward or backward pass. This removes co-dependency amongst neurons during training which curbs 

the individual power of each neuron leading to over-fitting of training data. 

Moreover, there are other techniques to improve the performance of the CNNs. One of them is batch 

normalization (Ioffe and Szegedy, n.d.), and it enables a faster and more stable training of the networks. 

This operation standardizes the inputs to a layer for each mini batch, causing a stabilization of the learning 

process and considerably reduce the number of training epochs required. One epoch is when the entire 

dataset is passed forward and backward only once through the neural network. 
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2.4 State of the art concerning booming and NN 

Nowadays the automotive industry is a very competitive business, and meeting costumer’s expectations 

of comfort is imperative for the success of a vehicle on the market. Booming noise is one of the various 

noises which can be heard inside the cabin of a diesel car, and it is perceived as an annoying acoustic 

feature. Therefore, a lot of research regarding the attenuation and classification of booming noise has been 

made. 

Several methods have been developed over time to identify and troubleshoot the causes of 

booming noise (Jha 1976). On a more recent study, Grupta attempted to understand the booming noise by 

analyzing structural and acoustic modes, achieving the reduction of noise levels as desired (Gupta, 

Gautam, and Jain 2014). Moreover, on (John Britto et al. 2016), a counter measure for booming was 

proposed after a root-cause analysis using modal analysis, operational deflection shapes, input point 

inertance and noise transfer functions. As a result, a methodology for booming noise analysis and 

countermeasure was framed.  

Active and passive control strategies can also be applied for reducing the booming noise. However, 

passive control methods lead to an increase in cost and weight of the vehicle and result in poor fuel 

efficiency, so active control methods are predominant in the literature. On (Hasegawa et al. 1992) it was 

developed the world's first active noise system for production vehicle implementation. Following that, 

several methods were also proposed for active control of booming noise. Examples of that are presented 

on (Inoue et al. 2004), (Lee and Nasiri 2007), (Oh, Kim, and Park 2002) and (Kang et al. 2016). 

As stated by (Shin et al. 2009) and (Siano and Panza 2017), a passenger in a vehicle is often more 

exposed to the booming phenomenon related to powertrain excitations than any other causes of booming. 

This noise occurs when pure or narrow band tones related to the engine firing frequency and its harmonics 

induce resonance effects on the passenger cabin, causing a prominent rise of the acoustic pressure. 

On (Wellmann et al. 2007), the authors pointed the driveline as a significance source of NVH in 

vehicles, which includes booming, and showed the degree of complexity involved in these issues. They 

used targeted test, Computer Aided Engineering and hybrid methodologies to solve those challenging 

problems. Later, part of that team published another paper (Wellmann et al. 2011) focusing on the booming 

noise caused by the driveline, concentrating on the influence of torsional vibration transmitted via the rear 

axle as structureborne noise, developing a time-domain TPA process to evaluate that. 

As stated by (Park and Lee 2012), almost all the research papers are more interested in the control 

of A-weighted sound level with a commercial sound level meter rather than the objective evaluation of 

booming sound quality using subjective parameters. Examples of these parameters are loudness, 

sharpness, roughness and fluctuation and they are often referred as psychoacoustic metrics. On (Hatano 

and Hashimoto 1996), a new objective measure called booming level was proposed to quantify the 

booming sensation of the passengers, based on the loudness of the sound. This model was then modified 

in (Hatano 1999) by the same authors, in order to achieve a higher correlation with the booming sensation. 

Later, on (Hatano and Hashimoto 2000), the same authors revised their model again and created the 

booming index, using the partial and overall loudness in the calculations. Despite this, there are still 

problems with these models as stated by (Shin et al. 2009). 
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Another sound quality index for booming noise was proposed in (Park and Lee 2012). Here, the 

psychoacoustic metrics loudness and sharpness were used as input parameters of an artificial neural 

network, having obtained a good correlation between the network’s output and the averaged subjective 

rate. In this study, synthesized booming noises were used, where the booming phenomenon was recreated 

by extracting the 2𝑛𝑑  engine order and re-synthesize it using a bell-shaped curve to simulate the booming 

sensation. The remaining 2𝑛𝑑 engine order amplitude content is a constant value. 

It is important to note that all the studies pointed until now that deal with the development of a 

metric to quantify the booming sensation, were done in Asian countries. It was revealed in (Toi, T, 

Isoyama, H, Ogu, Y, Saito, H, Hoshino, H, Ishikawa, M, et al. 2004) that the booming noise affects more 

harshly people from Asian countries comparing to western countries in general. 

There are more applications of NN on NVH analysis. One example of that is presented on (Stender 

et al. 2020), where CNNs were applied to detect brake squeal noise on spectrogram images. Very high 

accuracies were reached by using this approach, which shows the potential for this method in the detection 

of NVH issues. 

CNNs have been a significant tool when it comes to computer vision tasks, across various fields. 

The recent growth in interest in these networks led to the development of better network architectures. 

Examples of this include dropout (Srivastava et al. 2014) and batch normalization (Ioffe and Szegedy, 

n.d.). 

2.5 Motivation 

Taking into account the powertrain booming noise issue previously mentioned, it is important to 

point out the necessity of having a reliable booming detection strategy to perform end-of-line noise control 

in vehicles. 

This dissertation was developed as a second stage of a research and investigation project. In the first 

stage, a prototype was developed to simulate the booming noise on the 2𝑛𝑑  engine order and subjective 

studies were done to assess the classification metrics of the booming noise. In the second stage, further 

developments were made to the prototype, making it capable of generating a diverse database of booming 

scenarios, under different conditions, in a fully automated way. Further contributions to the project were 

made by applying CNNs to classify the synthesized sounds’ spectrograms. This will serve as tool to the 

NVH engineer in end-of-line production of cars, to help assess the existence of booming noise on the 

produced vehicle, without the need of extensive jury tests.Problem outline 

2.6 Problem Outline 

This dissertation has the main objective of applying NN models to classify powertrain booming 

noise on ICE passenger cars. As these models require large databases, and due to the lack of sufficient 

experimental data, synthesized vehicle sounds were generated from a small set of car sound recordings. 
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To synthesize these sounds there are two possible approaches. However, due to the nature of the 

experimental data, a top-down approach has taken to create the Sound Quality Equivalent (SQE) models, 

which will be then used to synthesize full vehicle sounds. In order to create these models by using the 

exposed approach, the car sound recordings need to be first decomposed into orders and broadband noise.  

Training the NN models requires a variety of booming scenarios on the training databases. To 

accomplish this, the SQE models were modified to include this aspect and a diverse database was then 

created.  

The problem which arose after the database creation was to find the best NN strategy to implement. 

While the best approach is to test different models and compare them, time limitations imposed on the 

conclusion of this dissertation forced the choice of a potential best solution. The different solutions are 

exposed on the next chapter, as well as the reasons for choosing a particular solution rather than the others. 

2.7 Alternatives evaluation 

Among the different kind of NN algorithms, the ones selected as having the most potential to reach 

better results for the problem in question were: 

 RNNs; 

 1D-CNNs; 

 2D-CNNs. 

RNNs are a powerful and robust tool mainly used for sequential data or time series. Algorithms like 

the Apple’s Siri and Google’s voice search use this type of networks, attaining great results. RNNs operate 

with an “internal memory”, remembering important things about the input they received, and in a way 

adding the immediate past to the present. 

Another strategy to evaluate one-dimensional sequences of data is by using 1D-CNNs. These 

models extract features from the sequential data and map them. Their structure and functioning are very 

similar to the 2D-CNN, although on 1D-CNNs the kernel only moves in one direction and has one 

dimension. An extensive analysis of 2D-CNNs is presented on chapter 2.3. 

As mentioned in chapter 2.1, an easy way to visualize the booming noise is by looking at the 

spectrogram images of the full vehicle sounds, using RPM in the Y-axis. Furthermore, spectrogram images 

have been previously used in the training of 2D-CNNs for the classification of other NVH defects, having 

obtained good results (Stender et al. 2020). Due to this, a more conservative approach was taken to solve 

the problem of this dissertation, so the application of 2D-CNNs was chosen.
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 VEHICLE SOUND DECOMPOSITION 

In this chapter, the sound decomposition strategy will be exposed. This step is necessary for the creation 

of digital twins of the measured cars, which will be used for the sound synthesis. Digital twins are digital 

representations of the cars’ sounds. 

Before decomposing the sounds, the experimental setup used for obtaining the sounds will be 

exposed, as well as the analysis of the data to evaluate which orders to extract in the sound decomposition. 

More details about all this will be presented next. 

3.1 Experimental setup 

In this dissertation, previously acquired operational measurements from different vehicles were used. This 

data was obtained as a result of multiple test campaigns done at different times. Several cars were used in 

these campaigns, although because of data limitations on some cars, the ones used on this dissertation are: 

 Ford Focus 

 Ford Mondeo 

 Opel Vectra 

All these vehicles have a 4 stroke ICE with 4 cylinders, which means their EFR is the 2𝑛𝑑  engine 

order, as calculated on chapter 2.1. 

The typical goals of these test campaigns include acquiring experimental data for: 

 Generation of SQE models of the vehicles; 

 Studying of coherence-based methods for the separation of structureborne and airborne 

noises contribution. 

The tests were done on proving grounds, allowing the test of the vehicles on optimal road conditions 

and uniform asphalt surface. For example, in the Ford Focus case, tests were carried out in the Aldenhoven 

Test Center, managed by the University of Aachen, in Germany. In figure 17, it can be seen a sketch of 

this test center. In table 1, it is shown more details about the track. 
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Figure 17, proving ground in Aldenhoven Test Center. 

 

Table 1 – Test track details. 

Surface Asphalt 

Length of straight [m] 2 x 400 

Length lane 1 / 2 / 3 [m] 2074 / 2097 / 2120 

Width lane 1 / 2 / 3 [m] 3.75 / 3.75 / 4 

Radius north / south curve [m] 186.5 / 113.5 

Maximum free cornering speed in lane 3 north / 

south curve [km/m] 

117 / 96 

 

The typical test matrix includes: 

 Runups in every gear; 

 Coast down; 

 Constant speed; 

 Rundown; 

 Free-drive recordings. 

However, the only data available for this dissertation corresponds to the runup condition on gear 2 

with 100% throttle, for every car mentioned. Amongst the many different sensors used, the ones relevant 

for this dissertation are: 



Convolutional neural networks application for the classification of powertrain booming 
noise on internal combustion engine passenger cars 

page 25 

 

Pedro Miguel Gomes Leite Dissertation for Master’s Degree 

 

 Microphone recordings in the car cabin with a binaural headset in the driver’s seat; 

 Tachometer for measuring the rotational speed of the motor. 

3.2 Data analysis 

After obtaining the data from the different cars, the next step consists in analyzing it to assess the most 

relevant orders for vehicle sound decomposition. This process was accomplished by using a software 

develop by Siemens Industry Software called Simcenter Testlab. This program provides a full suite of 

integrated testing, analytics and modeling tools covering a wide range of test needs. 

Taking the example of the Ford Focus, the data acquired by the tachometer can be seen on figure 

18. On figure 19 and 20, it is presented the variation of amplitude in time on the microphone placed at the 

left and right ears of the driver, respectively. Comparing these curves, no major differences can be 

observed, so only the signals for the left ear microphone will be analyzed. This was expected since on 

(Siano and Panza 2017) no significant changes were observed on the spectrograms between the driver and 

the front passenger, as previously shown on chapter 2.1. The same conclusion can be made for the Ford 

Mondeo and Opel Vectra. 

 

Figure 18, time vs. RPM of Ford Focus. 

 

Figure 19, time vs. amplitude of Ford Focus (left side). 
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Figure 20, time vs. amplitude of Ford Focus (right side). 

 

Having the experimental data provided by the tachometer and the left ear microphone, it is now 

possible to plot the spectrograms of all vehicles. These plots are presented on figures 21, 22 and 23, 

corresponding to Ford Focus, Ford Mondeo and Opel Vectra, respectively. Most of the high amplitude 

content is located at low frequencies, and the amplitude peaks are distributed on: 

 Engine orders represented by straight diagonal lines. It is possible to easily observe the 

different orders on the spectrograms by moving the black diagonal lines;  

 Frequency blocks below 50 Hz. This corresponds to broadband noise, and it is outside the 

scope of this dissertation. 

It is worth to note that the dominant order with the strongest peaks corresponds to the 2𝑛𝑑  engine 

order for all vehicles, especially at low RPM regimes. Moreover, the most significant peaks occur in the 

Ford Mondeo and Opel Vectra, between 1350 and 2000 RPM, approximately. Therefore, from an initial 

analysis, this is where it is most likely to observe the presence of booming phenomena in these 

measurements.  

To help this study, several kinds of filters were applied to the sounds, making it easier to isolate 

certain parts of the spectrograms and listen to the resulting sounds. Firstly, a high-pass filter was 

implemented to eliminate the low frequency background noise with high amplitudes. Then, order-stop and 

order-pass filters were implemented to evaluate the influence of the engine orders. From the subjective 

point of view of the author of this dissertation, there is indeed presence of booming noise on the low RPM 

range caused by the 2𝑛𝑑  engine order in the Ford Mondeo and Opel Vectra. However, further studies must 

be done to confirm this assumption. 

One of the main goals of this data analysis on Simcenter Testlab is to choose the most relevant 

orders for vehicle sound decomposition, which was accomplished by looking at the spectrograms and 

select those orders.  
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Figure 21, spectrogram of Ford Focus for driver’s left ear microphone. 

 

Figure 22, spectrogram of Opel Vectra for driver’s left ear microphone. 

 

Figure 23, spectrogram of Ford Mondeo for driver’s left ear microphone. 
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3.3 Sound Decomposition 

The sound decomposition was done by using a software developed by Siemens Industry Software called 

Simcenter Vehicle Sound Simulator. This program can be used for several applications, such as: 

 Drive vehicles virtual prototypes and frontload NVH studies to the early stages of the 

design; 

 Define a vehicle library for benchmarking and sound target definition; 

 Evaluate new components for existing vehicles and compare alternative configurations;  

 Evaluate interior and exterior sound design and noise enhancement.  

In this dissertation, the program was used in order to create vehicles libraries by decomposing the 

cars’ sounds into orders and broadband noise. For this, an order tracking algorithm based on the Time 

Variant Discrete Fourier Transform (TVDFT) (Blough, Brown, and Vold 1997) was applied, extracting 

the orders from the vehicles sounds, and thus separating tonal and broadband noise components. 

After the extraction of the selected orders, the results can be exported to Simcenter Testlab. Figure 

24 and 25 shows the extracted orders of Ford Mondeo and Opel Vectra, where it was considered the 

possibility of the occurrence of booming noise at the low RPM range. The high amplitude red curve 

corresponds to the order 2. On figure 26 and 27, the broadband noise on Ford Mondeo and Opel Vectra 

are shown. 

 

Figure 24, extracted orders of Ford Mondeo. 

 

Figure 25, extracted orders of Opel Vectra. 



Convolutional neural networks application for the classification of powertrain booming 
noise on internal combustion engine passenger cars 

page 29 

 

Pedro Miguel Gomes Leite Dissertation for Master’s Degree 

 

 

Figure 26, broadband noise in Ford Mondeo. 

 

Figure 27, broadband noise in Opel Vectra. 

It is relevant to note that in the RPM ranges in which the presence of booming noise is likely to 

occur, there is a sudden increase on order 2 pressure amplitude, dominating the entire vehicle sound. In 

these regions, the order 2 curve assumes a bell-shaped curve.  
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 VEHICLE SOUND SYNTHESIS 

Having the vehicle sounds of runup conditions on gear 2 and 100% throttle decomposed into orders and 

broadband noise, the next step consists in using the decomposed sounds for the creation of SQE models, 

with consequent vehicle sound synthesis for the generation of a large database to train ML models. Since 

the goal of the networks is to classify booming noise, a variety of booming phenomena must appear on the 

training sets. In order to accomplish this, booming noise has to be modeled during the sound synthesis. 

This was achieved by the development of a program in MATLAB 2019 which created SQE models and 

synthesize vehicle sounds from those models, in a fully automated way, having the possibility of inducing 

booming noise on the main engine orders. This program is also able to plot the spectrograms of the created 

sounds, which will be inputted on the CNNs. 

4.1 SQE model creation 

A Sound Quality Equivalent (SQE) model uses a limited set of experimental recordings and/or numerical 

simulations in order to synthesize a realistic vehicle sound in operational conditions, forming a digital twin 

of the car. For that, the sound data is organized in numerical blocks containing the vehicle sounds for 

several driving conditions. This is exemplified in figure 28, where each block corresponds to a certain 

condition. 

 

Figure 28, blocks organization on SQE model, courtesy of Siemens Industry Software. 

 

There are two main approaches for the creation of SQE models: 

1. Top-down: It is assumed that the vehicle sound is composed by tonal contributors called 

engine orders and the remaining contributors reveal a broadband behavior in amplitude and 

a random nature in phase. This approach is based on the application of algorithms for the 

separation of tonal and broadband noise components from sound recordings of full vehicles 
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tested in operational conditions. This methodology can be seen on figure 29. The 

components obtained can then be modified to include, for example, booming noise on the 

synthesized vehicle sounds; 

2. Bottom-up: This approach is based on techniques for combining spectral information about 

tonal and broadband noise contributions extracted for components tested in benches or 

numerically simulated. 

 

Figure 29, Total sound decomposed into orders and broadband noise, courtesy of Siemens Industry Software. 

 

As already stated in chapter 4.3, in this dissertation the top-down approach has been adopted. One 

of the main benefits of this approach is that a single measured sound can be decomposed into its component 

parts without the need for measuring road, wind and powertrain noise separately. Moreover, this method 

allows to use sound modification tools to vary the contributions of each source and finally to re-synthesize 

the whole vehicle sound from the separate contributions for any driving condition. 

It is also important to point out that the SQE models created for the different cars can only synthesize 

sounds from gear 2 with 100% throttle, with an RPM range approximately between 1300 and 4600 RPM. 

This is the case because the measured data obtained corresponds to those operational conditions. 

 

4.2 Mission profile definition 

After having the SQE model created for a certain car, the following step consists in the definition of the 

mission profile. Different mission profiles correspond to different runup conditions, and the program 

generates them randomly from RPM and time condition anchors given as input. In table 2, it is shown an 

example for the RPM and time conditions inputted in the program. 
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Table 2 – Example of mission profile anchors. 

 Time [s] RPM 

Start 0 1050 

Finnish 6.5 4570 

 

Using this as input conditions, random velocity profiles can be generated, creating different runup 

conditions. This will help making a diverse database because when synthesizing the vehicle sounds, the 

orders and broadband noises in the SQE models will follow these profiles, always generating different 

vehicle sounds for the imposed conditions. Moreover, using different profiles simulates real conditions, 

where the runups performed by the driver are always slightly different. 

On figure 30 are represented examples of different mission profiles, using the profile anchors in 

table 2. It is important to note that the Y-axis represents the RPM and the X-axis represents the time. 

  

 

Figure 30, examples of generated mission profiles with profile anchors of table 2. 
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4.3 SQE model manipulation 

Now that the SQE models and the mission profiles were created, it is necessary to manipulate the SQE 

models to include the possibility of generating booming noise on the synthesized vehicle sounds. To 

achieve this, modifications on the engine orders were made to simulate the booming noise and to create a 

diverse database. These modifications will be exposed next. 

 

Low frequency random fluctuations 

Having in mind the creation of a diverse database, low frequency random fluctuations can be 

induced on the extracted orders. This also simulates the different values of orders’ amplitude that can be 

obtained on different runups. In figure 31, it is presented different cases of the evolution of the amplitude 

of order 2 in time. While the blue curve represents the original order, the orange curve stands for the 

modified order.  

Although some spikes can be noticed in the beginning and/or end of the RPM axis, they can be 

ignored since the studied RPM range is from 1500 to 4230 RPM, as will be seen later. It is also worth to 

note that depending on the random fluctuation applied, the modified order can be very similar to the 

original one, as seen on a) and c), or substantially different, as seen on b). 

  

a) Ford Focus b) Ford Mondeo 
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c) Opel Vectra 

Figure 31, examples of modified order 2 with low frequency random fluctuations. 

 

Hann window 

To model the rise in acoustic pressure on order 2, which can be perceived as booming noise by the 

passengers when it dominates the total sound pressure, it was introduced a Hann window in the order’s 

curve. This function is defined by having an amplitude of 1 unit, as well as length of N + 1, where N is the 

number of samples in the X-axis. This is illustrated on figure 32. 

The width of the Hann window is defined by dRPM which is a randomly generated number, being 

then multiplied by a randomly generated gain called G. The range of values of these metrics is shown on 

table 3. Furthermore, this window will be applied to the RPM range between 1500 and 4230 RPM, which 

is the studied RPM range. 1500 RPM was arbitrarily defined as the minimum value because below that, 

the high amplitude content on the order 2 can be associated with the powerfulness of the vehicle, and it is 

not perceived as a bad sound quality. 4230 RPM was chosen as the maximum value due to synthesis 

limitations. 
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Figure 32, Hann window with 100 samples. 

 

Table 3 – Range of G and dRPM values. 

 G dRPM 

Minimum value 0 0 

Maximum value 1.5 560 

 

In figure 33, several examples of the order 2 manipulation with Hann windows are presented. On 

a), the Hann window was introduced around 1800 RPM, creating a sudden increase in the pressure 

amplitude of order 2, which will dominate the total vehicle sound, and will probably induce booming 

noise. The situation on b) is a bit different because while G has a high value, the dRPM is very low. Most 

likely, this does not correspond to booming. A phenomenon which recreates a similar curve is, for 

example, a road bump. On c), a low amplitude window does not change the order profile very 

significatively. 
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a) Ford Focus. b) Ford Mondeo. 

 

c) Opel Vectra. 

Figure 33, examples of order 2 curves after the manipulation to incluce the Hann window. 

 

Smoothing order 

The program has the option to apply a function called smoothing order. This function is capable of 

smoothing the orders curves, creating more uniform curves. In figure 34 a), it is shown in orange the curve 

which results from the application of the smoothing function on order 2 of the Ford Focus, while the curves 

for the Ford Mondeo and Opel Vectra are shown on b) and c), respectively. 

By combining the smoothing order function with random low frequency fluctuations, the plots on 

figure 35 can be obtained. While on a) and b) the smoothed order is significatively changed by the random 

fluctuations, on c) the order curve is more similar to the one on figure 34 c). 
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a) Ford Focus. b) Ford Mondeo. 

 

c) Opel Vectra. 

Figure 34, order 2 smoothed curves without random low frequency fluctuations. 
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a) Ford Focus. b) Ford Mondeo 

 

c) Opel Vectra 

Figure 35, smoothed order 2 with random low frequency fluctuations. 

 

Analyzing these graphs, it can be concluded that smoothing an order with random fluctuations will 

cause a more homogeneous acoustic pressure profile, as it eliminates the low amplitude dips as well as the 

majority of the bell-shaped natural phenomena which resembles the Hann window that will be induced. 

This results in the elimination of the likely occurring booming noise in the low RPM range of the Ford 

Mondeo and Opel Vectra, as discussed on chapter 4.2. Cases like the one seen on figure 31 a) are also 

removed, where the random fluctuations accentuate the bell-shaped curve and possibly cause the booming 

sensation.  

Figure 36 shows the results of introducing a Hann window on the smoothed order 2 with random 

fluctuations. When taking this approach, the induced booming is always prominent, going above the 

average sound level. This will possibly be advantageous when training the CNNs, making them look for 

the booming sound at medium and high amplitudes. 
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Now that the SQE model has been manipulated to include all the possibilities exposed until now, it 

is necessary to define a metric to classify the booming noise. As already mentioned, the work on this 

dissertation is the continuation of a project. On the first stage of this project, subjective studies were done 

to classify the booming noise. By using the same approach regarding the application of a smoothing 

function and a Hann window defined by G and dRPM, it was concluded that a window with G higher than 

0.5 and dRPM higher than 280 RPM, simultaneously, was perceived as booming by the subjects. These 

will be the metrics used in this dissertation.  

  

a) Ford Focus. b) Ford Mondeo. 

 

c) Opel Vectra. 

Figure 36, smoothed order 2 with low frequency random fluctuations after the manipulation to include the Hann 

window. 
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4.4 Sound Synthesis 

For the sound synthesis, the manipulated SQE model from the orders and the SQE model of the broadband 

noise are used for synthesizing the full vehicle sound under the conditions imposed by the mission profile. 

First, a synthesis frequency must be chosen considering it has to be higher than two times the value of the 

highest frequency present on the signal which will be synthesized, according to the Nyquist theorem. Since 

higher frequency components can be observed on the broadband noise, compared to the orders, the 

maximum frequency value must be assessed. By doing this study, it was chosen a synthesis frequency of 

44100 Hz. 

It is worth to note that when synthesizing the broadband noise, a “Narrow Band” synthesis approach 

(Sarrazin, Colangeli, and Janssens 2013) was taken. While the details of this method are outside the scope 

of this dissertation, it can be said that it induces random fluctuations on the broadband noise. 

On figure 37, an example of synthesized orders and broadband noises can be seen. The blue curve 

corresponds to the orders, while the orange curve corresponds to the broadband noise. Combining the two 

sounds, the plot on figure 38 is obtained. 

 

Figure 37, amplitude pressure of synthesized orders and broadband noises. 

 

Figure 38, amplitude pressure of synthesized full vehicle sound. 
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 CNN IMPLEMENTATION 

In this chapter, the synthesized sounds, manipulated to include the smoothing function with random 

fluctuations and a Hann window, will be pre-processed to create their spectrogram images. Then, the 

resulting images will serve as input to train CNNs. The training of the networks will be done by using 

synthesized sounds with smoothing orders because the studies done to create the classification metrics, G 

and dRPM, also included the smoothing function. Details about the architectures used as well as the 

hyperparameters and the number of training cases generated will also be exposed.  

These networks will be used to perform two types of classification tasks: Yes/No classification and 

YesSevere/YesMild/No classification. Further details about these classifications can be found on chapter 

6.1. Later, the networks will be tested to try to classify sounds synthesized without the application of the 

smoothing function. Everything presented in this chapter was done in MATLAB 2019. 

5.1 Pre-processing 

Once the vehicle sounds have been synthesized, some pre-processing work must be done in order to 

transform the time signal data into spectrogram images, which will serve as input to the CNNs. 

 While plotting the spectrogram images, some concerns must be addressed in order to reach better 

results in the CNNs classification: 

1. The Y-axis of the spectrograms must be the engine RPM instead of the time. This will make 

evident the engine’s order 2, where the booming noise is induced; 

2. All the spectrograms must have the same RPM and amplitude color scales. This is necessary 

because the metrics to classify the booming noise were defined in those scales. As already stated, 

the RPM range is between 1500 and 4230 RPM, with a resolution of 15 RPM which is the RPM 

resolution of the extracted orders. The amplitude color scale of the spectrograms is between 60 

and 105 dB. These values were selected after analyzing the amplitude content of order 2 in all 

cars; 

3. The frequency axis can exclude high frequency components. Since the main orders’ profiles are 

focused on the low frequency end of the spectrum, it is beneficial for the classification algorithms 

to be fed with that low frequency content, having less data to analyze and derive features from. 

In figure 39, examples of the resulting spectrograms are presented. For each car, the image on the 

left corresponds to the presence of booming noise, while the image on the right does not. As it is 

exemplified in the Ford Focus spectrogram images, there are many examples where it is difficult for the 

human eye to correctly evaluate the presence of booming noise by looking at the spectrogram images. 

Implementing a CNN will be beneficial to better classify this phenomenon.  
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a) Ford Focus b) Ford Mondeo 

                                                                  

c) Opel Vectra 

 

Figure 39, spectrograms of synthesized full vehicle sounds. 

 

Now that it is possible to generate a diverse database for the input data, the next step consists in 

making sure that the database has an evenly distributed number of cases for each classification class. In a 

first instance, the classification was between Yes or No, referring to the presence or not of booming noise. 

Later, the classification problem was expanded, including YesMild, YesSevere and No. This divides the 

Yes classification into two domains, according to the degree of booming.  

As already exposed on chapter 5.3, the conditions for the Yes classification of booming are: 

𝑌𝑒𝑠 ∶  𝑑𝑅𝑃𝑀 > 280 ∧  𝐺 > 0.5 
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All the other cases correspond to a No classification. Regarding the YesMild, YesSevere and No 

classification, the conditions imposed for the classification were arbitrarily chosen by the author of this 

dissertation. The goal was to evaluate the performance of the networks when an extra class was created. 

The conditions for the YesMild and YesSevere classification of booming are: 

𝑌𝑒𝑠𝑀𝑖𝑙𝑑 ∶  𝑑𝑅𝑃𝑀 > 280 ∧  0.5 < 𝐺 < 1 

𝑌𝑒𝑠𝑆𝑒𝑣𝑒𝑟𝑒 ∶  𝑑𝑅𝑃𝑀 > 280 ∧  1 < 𝐺 < 1.5 

All the other cases correspond to a No classification. With this in mind, measures were taken to 

make sure that evenly distributed databases were created. 

5.2 Architectures layout and hyperparameters 

As mentioned before, a supervised learning approach was applied, meaning that the networks know the 

input’s labels while training. The CNNs used are very similar to the ones on figure 15, where a set of 

convolutional and pooling layers are used, and when the last pooling layer is reached, a set of fully 

connected layers lead to the final outputs. The difference lies on the addiction of a dropout layer after the 

last pooling layer, and batch normalization after each convolutional layer. 

 The dropout technique was used with the goal to eliminate overfitting, which was being observed 

in an initial training phase of the networks. Batch normalization was applied since it is a well establish 

technique, making the training more stable and allowing the use of higher learning rates, accelerating the 

training process. 

 The used activation functions on the convolutional layers and the outputs were the ReLU and 

Softmax, respectively. The Softmax activation function is similar to the sigmoid function, but instead of 

producing independent probabilities, the probabilities produced sum up to 1 by design.  

 Max pooling was defined as the pooling strategy because it selects the brighter pixels of an image. 

This is ideal for the present study, as the booming noise is associated with high amplitude pressures, which 

will be represented by brighter pixels on the spectrogram images.    

Using CNNs algorithms implies the manipulation of other several parameters, being the learning 

rate one of them. This parameter can interfere with both training speed and accuracy. If it is too low, it not 

only causes a lower training speed, because of the slow update of the weights and bias, but it also can get 

the training stuck in a local minimum instead of the intended global minimum. However, if it is too high, 

the system may never converge, and the global minimum will not be found. One way to allow high learning 

rates, but still guaranteeing convergence is to apply a learning rate decay. As the names suggests, the 

learning rate will decrease throughout the training, according to the learning rate decay period. 

There are a multitude of other parameters which can be tuned in order to try to obtain the best 

accuracy possible. However, considering that extreme values of those parameters are not used, there are 

no significant changes on the performance of the networks by slightly alter the parameters. This means 

that after finding a good balance of the parameters, there is no need for further tuning them.  
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The parameters used are exposed on table 4. The gradient descent method used was the stochastic 

gradient descent with momentum. 

Table 4 – Hyperparameters values. 

Momentum 0.9 

Learning rate 0.001 

Learning rate decay 0.1 

Learning rate decay period 10 

Mini-batch size 32 

Convolution kernel size 3 x 3 

Number of filters on convolutional layer n  8 × 2𝑛−1 

Padding same 

Convolution stride 1 

Max pooling kernel size  2 x 2 

Max pooling stride 2 

Dropout 50% 

L2 regularization coefficient 0.0001 

 

Choosing the appropriate number of convolutional layers is an important step to guarantee higher 

accuracies, bearing in mind that: 

1. A low number of layers may lead to a low training accuracy, as the low complexity of the 

networks might not be able to correctly apprehend all the scenarios; 

2. A high number of layers may cause overfitting to the data and increase both the 

computational cost and time. The overfitting of the networks to training data leads to a good 

accuracy during the training phase (meaning all the scenarios were learn), although this 

accuracy will drop considerably on the test phase, when evaluating unseen scenarios, 

implying that there’s a lack of capability to generalize the predictions on unseen data. 

This facet will be explored on the upcoming chapters. 
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5.3 Number of training cases 

Before trying to find the suitable number of convolutional and fully connected layers, a study about the 

number of training cases to generate must be done. For this, a simple architecture was used, with just 3 

convolutional layers and 1 fully connected layer, which connects the last max pooling operation with the 

outputs. This study was done only with the Yes and No classification. 

First, 1250 cases were created, of which 1000 cases were for training and 250 for testing. This means 

that 80% of the generated was used for training. The distribution of number of cases for each class is 

evenly distributed, in both train and test sets. In figure 40, it is plotted the accuracy and loss curves, 

corresponding to the training of the referred case. On the accuracy plot, the light blue curve refers to the 

evolution of the training accuracy, the dark blue curve to the smoothed training accuracy and the black 

curve to the test accuracy. On the loss plot, the orange curve corresponds to the evolution of the training 

loss, while the black curve to the test loss.  

In this the training session, 100 epochs were done, as in each epoch all 1000 cases were analyzed. 

Each iteration corresponds to one pass through a mini batch. 

 

Figure 40, accuracy and loss curves for 1250 cases. 

 

It can be observed that even with the regularization applied, there is still presence of overfitting. 

Therefore, the next step consists in adding more training data so that the network cannot memorize the 

input data, bringing the two curves together. For this, 12500 cases were generated, of which 10000 cases 

were for training and 2500 for testing. As before, this means 80% of the data will be used for training. 
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Also, the distribution of number of cases for each class is evenly distributed, in both train and test sets. In 

figure 41, it is plotted the accuracy and loss curves for this case.  

In this training, only 10 epochs were done because to do a correct comparison between 1000 and 

10000 training cases, the algorithms must do the same number of iterations, as can be seen on the figures 

presented. 

Analyzing the content of figure 41, it is immediate to note that the train and test curves are now 

closer together. Therefore, the problem of overfitting from before was eliminated. Moreover, the accuracy 

also increased. Because of all of this, the studies done on the next chapters use 10000 training cases. 

It is also worth to note two more aspects: 

1. Although the train and test curve are still developing, the number of iterations done is 

enough to compare the two different cases, as the curves are relatively stable; 

2. On both cases, the test accuracy curve presents several periodic valleys. The reason for this 

lies on the use of mini batches for training. However, this is not relevant since the learning 

rate has decay, resulting in increasingly smaller valleys with training.  

 

Figure 41, accuracy and loss curves for 12500 cases. 
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5.4 Test results 

With the number of training cases defined, the next phase is to try to find a suitable number of 

convolutional layers. For this, it was evaluated the influence of increasingly change the number of 

convolutional layers. 

In order to do this study, the mean of the accuracy of 5 tests was calculated for 10 epochs for each 

case. The number of epochs for each test was 10 because with that number of epochs the networks are 

stable enough in order to allow a comparison between networks, as can be seen on figure 41. The obtained 

results are presented on figure 42. 

 

Figure 42, minimum, maximum and mean values of test accuracy represented for each number of convolutional 

layers. 

 

By analyzing the results, the most promising architecture was revealed to have 6 convolutional 

layers. The test accuracy mean value presents an increase from three to 6 convolutional layers, decreasing 

when 7 convolutional layers are used. It is important to note that the accuracy mean value of a certain 

number of convolutional layers is very close to the accuracy maximum value of the previous layer, except 

on layer 7, in which the accuracy mean value is close to the accuracy minimum value of the previous layer. 

This indicates that choosing 6 convolutional layers is the best option for the present case. 

Since there are some fluctuations on the accuracy value of the selected architecture and because the 

test accuracy curve seems to be still increasing, to calculate the final accuracy 30 epochs were done. An 

example of a test conducted in these conditions is presented on figure 43. It can be seen that there is 

presence of overfitting, and the test accuracy does not reach higher values than before. 
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Figure 43, Accuracy and loss curves for the Yes/No classification with 30 epochs. 

 

As already stated, all the test results presented are for the Yes/No classification of booming. To 

evaluate the YesMild/YesSevere/No classification, a similar strategy was taken. Since this classification 

focus on the same parameters as the Yes/No classification, but with a higher degree of complexity, 6 

convolutional layers was the training starting point, and the evaluation of higher number of convolutional 

layers was also done. The obtained results are presented on figure 44. 

By analyzing the results, the most promising architecture was revealed to have 6 convolutional 

layers. As before, since there are some fluctuations on the accuracy value of the selected architecture and 

because the test accuracy curve seems to be still increasing, to calculate the final accuracy 30 epochs were 

done. An example of a test conducted in these conditions is presented on figure 45. It can be seen that 

there is presence of overfitting, and the test accuracy does not reach higher values than before. 
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Figure 44, minimum, maximum and mean values of test accuracy represented for each number of convolutional 

layers.  

 

 

Figure 45, Accuracy and loss curves for the YesSevere/YesMild/No classification with 30 epochs. 
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5.5 Test results on non-smoothed orders 

Until now, both the training and test sets were created using the smoothing function. In this chapter, 

the results of testing with non-smoothed orders are presented. The networks used for testing were the ones 

presented on the last chapter, so the training was still done using the smoothing function. The goal is to 

evaluate the performance of training with smoothed cases and testing with non-smoothed cases. First, for 

the Yes/No classification, the results are shown on table 5.  

Table 5 – Results of the accuracy on non-smoothed cases for each network. 

Network Number of 

convolutional 

layers 

Number of 

epochs 

 Accuracy on 

smoothed cases 

Accuracy on non-

smoothed cases 

1 3 10 94,20 % 84,51 % 

2 4 10 94,76 % 84,78 % 

3 5 10 95,72 % 86,11 % 

4 6 10 96,20 % 85,25 % 

 

By looking at network 3, which performed the best on the non-smoothed cases, a study of the 

accuracies of individual cars was done to try to understand why the accuracies decreased in the non-

smoothed cases. The results are shown on table 6. It is immediate to note that the accuracy on non-

smoothed Ford Focus cases is substantially higher that the other cases. 

Table 6 – Accuracy of network 4 non-smoothed cases for each car. 

Network Accuracy on 

non-smoothed 

cases 

Accuracy on non-

smoothed Ford 

Focus cases 

Accuracy on non-

smoothed Ford 

Mondeo cases 

Accuracy on non-

smoothed Opel 

Vectra cases 

3 86,11 % 93,37 % 81,33 % 83,73 % 

 

Now for the YesMild/YesSevere/No classification, the same study was done, and the results are 

presented at table 7. 
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Table 7 - Results of the accuracy on non-smoothed cases for each network. 

Network Number of 

convolutional 

layers 

Number of 

epochs 

 Accuracy on 

smoothed cases 

Accuracy on non-

smoothed cases 

6 6 10 93,44 % 70,34 % 

7 7 10 92,92 % 78,16 % 

 

By looking at network 7, which performed the best on the non-smoothed cases, a study of the 

accuracies of individual cars was done. The results are shown on table 8. It is immediate to note that the 

accuracy on non-smoothed Ford Focus cases is substantially higher that the other cases. 

Table 8 – Accuracy of network 7 on non-smoothed cases for each car. 

Network Accuracy on 

non-smoothed 

cases 

Accuracy on non-

smoothed Ford 

Focus cases 

Accuracy on non-

smoothed Ford 

Mondeo cases 

Accuracy on non-

smoothed Opel 

Vectra cases 

7 78,16 % 90,54 % 69,01 % 75,05 % 

 

5.6 Results validation 

In this section, an evaluation of the cases that were misclassified is done. This study will focus on the test 

databases with smoothing and non-smoothing orders, for the Yes/No classification of booming. So, the 

network 4 will be used for the smoothed databases, and network 3 will be used for non-smoothed 

databases.  

On figure 46, it is shown a scatter plot with 30 random misclassified cases of network 4. The 

horizontal black line represents the boundary condition for G, while the black vertical line represents the 

boundary condition for dRPM. Most points are located near those boundary conditions, especially close 

to the orange dot, which is just a reference point. The dots form a “L” shape on the boarders of the top 

right square because that is the region separating the Yes/No classification. No critical misclassification 

was observed. On figure 47, the histogram of number of classes in different RPM ranges is presented. The 

x-axis represents the RPM where the Hann window starts. More than half of the misclassifications 

occurred in the low RPM range. 
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Figure 46, network 4 misclassifications examples. 

 

 

Figure 47, histogram of number of classes in different RPM ranges in network 4. 

 

On figure 48, it is shown a scatter plot with 30 random misclassified cases of network 7. In this 

case, although there is still a concentration of points around the boundary conditions, the points are much 

more scattered, and some critical misclassifications were made. On figure 49, the histogram of number of 

classes in different RPM ranges is presented. Half of the misclassifications occurred in the low RPM range. 
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Figure 48, network 7 misclassifications examples. 

 

 

Figure 49, histogram of number of classes in different RPM ranges in network 7. 
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 DISCUSSION 

In this dissertation, digital twins of three cars were manipulated to induce Hann windows with 

different amplitudes and lengths in an RPM range from 1500 to 4230 RPM, creating several booming 

scenarios. On chapter 4.2, was considered the presence of booming in the experimental data of the Ford 

Mondeo and the Opel Vectra. By analyzing the decomposed orders, high amplitude peaks characterized 

by bell-shaped curves on the 2𝑛𝑑  engine order were observed on the RPM range experienced as booming. 

On (Siano and Panza 2017), similar conclusions were made about the relation between shape and 

amplitude of order 2 curve and the presence of booming noise. Other studies like (Park and Lee 2012) also 

assumed a bell-shape curve as a good indicator of booming noise, since in their study booming noise was 

synthesized by applying a bell-shaped curve to the engine order 2. Therefore, Hann widows are included 

on the SQE models to try to resemble that bell-shaped curve. 

Other modifications were made to the engine order 2 before synthesizing the sounds, such as 

including low frequency random fluctuations on the engine orders, as well as using a smoothing function. 

On (Park and Lee 2012), a simplistic approach has taken while synthesizing the engine order 2. As 

mentioned, the authors included a bell-shaped on engine order 2 to simulate the booming sensation, but 

the remaining content of that order has the same pressure amplitude. 

Full vehicle sounds were synthesized using the modified cars’ models, and then the resulting sounds 

were plotted into spectrogram images, with an RPM axis instead of a time axis. This allowed the generation 

of a diverse database containing different booming scenarios, which were used to train a CNN. On (Park 

and Lee 2012), NNs were also used to evaluate the booming noise. However, the authors took a different 

approach. Their pre-processing work before feeding the NNs was to apply algorithms to extract 

psychoacoustic metrics and then train the networks to calculate a booming index. The work on this 

dissertation has a simpler pre-processing process since only the spectrograms of the sounds were plotted. 

Another difference between the two works lies on the fact that, in their work, the jury tests done to create 

the NNs labels were continuous values characterizing the booming index, turning their problem into a 

regression problem. In this dissertation, the jury tests only allowed to do a classification task.  

This approach was taken even though the results obtained by using CNNs to evaluate spectrogram 

images have not been as good as the ones obtained for visual images (Wyse 2017). This lies on the fact 

that machine vision techniques are being applied in order to do machine hearing. Unlike visual images, 

sounds are not static objects and they arrive as a sequence of air pressure. This can cause many problems 

for CNNs to analyze spectrogram images. However, the classification metrics used in this dissertation for 

the assessment of the booming noise are clearly visually present on the spectrograms, when the RPM axis 

is used. Moreover, CNNs have been applied to classify other NVH problems, such as on (Stender et al. 

2020), and good results have been obtained. 

The chosen solution was proven to be effective for classifying the simulated booming noise on the 

spectrogram images, since high accuracies were reached for the classification of Yes/No and 

YesSevere/YesMild/No, respectively. 
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In chapter 6.3, the number of training cases was chosen by observing the overfitting with 1000 

training cases, so 10000 cases were studied, and the overfitting disappeared. However, this study was done 

for only 10 epochs. In chapter 6.4, when 30 epochs were done on the best networks’ architectures, a minor 

overfitting can be noticed. Therefore, if more training data was generated, there is potential for the 

classification to reach even higher accuracies. This aspect is presented on figures 43 and 45.  

When analyzing figures 43 and 45, it can also be observed that high accuracies were reached for 

both classification tasks, as already stated. The higher accuracy corresponding to the classification of 

Yes/No was expected, since the classification of YesSevere/YesMild/No is very similar but with extra 

boundary conditions of the same nature. Moreover, due to this similar boundary conditions, both 

classification tasks have the same number of convolutional layers on the optimized network, even though 

the YesSevere/YesMild/No classification is more complex. 

The accuracies of the networks, trained on smoothed orders, drops significantly when testing with 

non-smoothed databases. This can be explained as being a tunnel vision effect, where the networks are 

good at classifying a certain type of data, but when small variations are tested, the accuracies decrease 

substantially. It is worth to note that the drop in accuracy for the Ford Focus case was minimal comparing 

to the Ford Mondeo and Opel Vectra cases. It can be argued that one reason for that are the higher 

amplitude pressures on the low RPM range of Ford Mondeo and Opel Vectra, comparing to the Ford 

Focus. Those high pressures appear brighter in the spectrogram images, making the assessment of the 

booming noise in low RPM ranges more difficult. The histogram on figure 49 supports this since most 

misclassifications occurred at a low RPM range. This phenomenon can be observed even with the 

application of a smoothing function, as seen on figure 47, because the amplitudes at low RPMs are still 

relatively high. As discussed on chapter 4.2, there are possible occurrences of booming noise at low RPM 

ranges in Ford Mondeo and Opel Vectra which can also induce errors in the classification of these cars.  

One of the reasons the smoothing function was included was to eliminate the natural order non-

linearities which occur at low pressure amplitudes, in order to do an effective training of the CNNs. 

Therefore, one of the causes for the accuracy drop on non-smoothed cases could be the network 

misclassifying those non-booming order non-linearities. This phenomenon is amplified when the low 

frequency random fluctuations create cases like the one on figure 31 a). 

 Sometimes the presence of booming noise at low RPM ranges can be associated with the 

powerfulness of the vehicle, not being perceived as an annoying acoustic feature. Having this in mind, it 

can be said that good results were obtained, even in the tests with non-smoothing orders. 
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 CONCLUSION 

7.1 Conclusions 

Several conclusions can be made be made on the research and work developed throughout this dissertation. 

Firstly, a statement must be made regarding the success accomplished by algorithm implementation with 

the purpose of booming noise detection/classification, using CNNs as the chosen NNs approach, to 

evaluate full vehicle spectrogram images. 

 During this work, it was found that NVH engineering is a complex topic since the human 

perception of sounds is subjective, which makes it difficult to evaluate the impact that the many different 

sounds heard inside a car’s cabin have in the costumer’s comfort. It was also seen that, in vehicles moved 

by an ICE, the booming noise is one of the most annoying acoustic features, and well define metrics to 

classify this noise still do not exist. 

 Throughout this dissertation, an effective way to generate a diverse database of booming scenarios, 

in a fully automated way, was created. It has been concluded that a good way to simulate the booming 

noise is by including a bell-shaped curve on the engine order 2 profile. To achieve this, Hann windows 

with different lengths and amplitudes were added in an RPM range from 1500 to 4230 RPM.  

It is acknowledged that, by using modified digital twins to include booming scenarios, there is not 

the risk of scarcity of data since they can augment synthetically the database. This has been proven to help 

reaching high accuracies in the booming classification tasks. 

The Yes/No classification of the booming noise reached higher accuracies than the 

YesSevere/YesMild/No, which was expected since the metrics used to define these classifications are very 

similar. The high accuracies reached in both cases confirms that the mathematical complexity of the CNN 

approach is sufficient to correctly classify the booming noise defined metrics. 

All the training of the CNNs was done with the application of a smoothing function on the vehicle 

engine orders, better isolating the booming event. However, when testing with non-smoothed cases, a 

decrease in accuracy has been noticed, which means that the CNNs can extract order features quite well.  

It was also concluded that many misclassifications occurred at the low RPM range because of the high-

pressure amplitudes in that regime, in both smoothed and non-smoothed cases.  
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7.2 Future work 

In order to continue the work done on this dissertation, the following topics should be considered for future 

works: 

 Develop the SQE models to include more gear and throttle conditions, as well as a higher RPM 

range. This way, a more diverse database can be created, expanding the classification tasks to a 

broader spectrum; 

 Use the generated database to perform regression tasks. For example, the output of the regression 

model can give information about the RPM location of the booming event, as well as the 

parameters G and dRPM; 

 Train the networks with the matrices used for generating the spectrograms. The goal is to avoid 

losing information by turning those matrices to RGB matrices; 

 Increase the RPM resolution of the spectrograms. This is beneficial to reach even higher 

accuracies, by narrowing the grey area of the failed classifications; 

 Train networks to do classification of the booming phenomenon not only on order 2 but for any 

order number; 

 Take a hybrid approach to train the networks, combining smoothed with non-smoothed orders; 
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ANNEX A – BOOMING JURY TESTS 

In this annex, it will be exposed some details about the study done on booming perception by a Anastasia 

Patras (Siemens Industry Software), prior to the realization of this dissertation.  

 A jury test, in which a group of people rate sounds, is used to ascertain the exact combination of 

metrics needed to fully understand the perception of a product’s sound quality. The goal of the jury test 

done was to study the perception of booming inside of a car. 

 Two cars were used in this study, and 36 different sounds were evaluated in gear 2 and 100% 

throttle conditions. The study was divided into three different tests with the following goal: 

 Test 1: Access the amplitude threshold for the booming noise perception; 

 Test 2: Access the maximum RPM duration for the booming noise perception; 

 Test 3: Access the minimum RPM duration for the booming noise perception. 

The study was attended by 26 people. The percentages of people who work in the NVH field and 

their age is presented on figure 50. The results obtained for the three tests done are presented on figures 

51, 52 and 53. 
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Figure 50, statistics about the participants. 

 

 

Figure 51, test 1 results. 
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Figure 52, test 2 results. 

 

Figure 53, test 3 results. 
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