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Abstract: Leukaemia is a dysfunction that affects the production of white blood cells in the bone
marrow. Young cells are abnormally produced, replacing normal blood cells. Consequently, the
person suffers problems in transporting oxygen and in fighting infections. This article proposes a
convolutional neural network (CNN) named LeukNet that was inspired on convolutional blocks
of VGG-16, but with smaller dense layers. To define the LeukNet parameters, we evaluated dif-
ferent CNNs models and fine-tuning methods using 18 image datasets, with different resolution,
contrast, colour and texture characteristics. We applied data augmentation operations to expand
the training dataset, and the 5-fold cross-validation led to an accuracy of 98.61%. To evaluate the
CNNs generalisation ability, we applied a cross-dataset validation technique. The obtained accuracies
using cross-dataset experiments on three datasets were 97.04, 82.46 and 70.24%, which overcome the
accuracies obtained by current state-of-the-art methods. We conclude that using the most common
and deepest CNNs may not be the best choice for applications where the images to be classified
differ from those used in pre-training. Additionally, the adopted cross-dataset validation approach
proved to be an excellent choice to evaluate the generalisation capability of a model, as it considers
the model performance on unseen data, which is paramount for CAD systems.

Keywords: leukaemia classification; blood smear images; fine-tuning; CNN

1. Introduction

Leukaemia is one of the most dangerous diseases according to the American Cancer
Society (https://cancerstatisticscenter.cancer.org/#!/cancer-site/Leukemia (accessed on 1
March 2021)), with an estimate of 61,780 new cases and 22,840 deaths in 2019. This disease
has an unknown cause and affects the production of white blood cells in the bone marrow.
Due to the illness, young cells or blasts are produced abnormally, replacing healthy blood
cells, i.e., white blood cells, red blood cells and platelets. Consequently, the affected person
suffers from oxygen transport problems and infections. Among the forms of diagnosis of
leukaemia are the lumbar puncture, myelogram, blood count and flow cytometry. Samples
of blood smears with healthy and unhealthy leukocytes are shown in Figure 1.

Computer-aided diagnosis (CAD) systems aim to assist medical specialists by offering
information that help them on their diagnosis [1]. Usually, such systems apply image
processing and machine learning techniques to output diagnosis information, such as
classification into “healthy” or “unhealthy”, and “benign” or “malignant”. They use
annotated image tests, blood tests, biopsy results or other methods that are often available
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in datasets of known examples as input. Those systems are often employed to screen for
diseases, providing the first diagnosis or offering a second opinion based on previously
labelled examples [2].

(a) (b)

Figure 1. Samples of blood smears with (a) healthy and (b) unhealthy leukocytes.

One of the main issues in recent studies addressing medical imaging applications is the
lack of heterogeneity in the image datasets that are used to evaluate the methods [3]. The
used image datasets are often acquired using similar equipment, sampled from particular
populations and annotated by a limited group of specialists. Evaluation based on holdout
or cross-validation may be adequate to validate the performance of a method within a
dataset, but it is unclear how the method generalises for other datasets. Considering deep
learning methods, this is even more relevant, as it is known that models with sufficiently
large capacity may be able to specialise to the used training data and fail to generalise [4].
Although transfer learning methods were shown to be useful in many applications, there is
a relevant interest in studying how to choose the proper architecture and training strategies
that preserve the usefulness of built models within the same domain of application but with
changes, for example, as to the source of images, sensor, viewpoint and acquisition setup [5].
Therefore, there is a gap in the literature about guidelines for designing and evaluating
CAD systems that are consistent, robust and reliable to be used in clinical practice.

In this context, we propose LeukNet, which is based on a convolutional neural net-
work (CNN) that uses transfer learning concepts selected according to an extensive study
of architectures, advanced training strategies and an in-depth discussion of evaluation.
Therefore, a modified deeply fine-tuning (mDFT) method was employed in the training of
the proposed model. LeukNet was evaluated on 3536 images of blood smears belonging to
different sources, including hospitals and other institutions. Each dataset includes images
acquired under different conditions, dimensions, and characteristics of colour, contrast and
texture. The experimental results indicated the need for an evaluation protocol using a
leave-one-dataset-out cross-validation (LODOCV), where the test is carried in one dataset.
Additionally, the remaining datasets are used in the training process. This procedure is
performed until all datasets are tested individually. This ensures that the CNN is not
trained with any image of the datasets to be tested.

The remainder of the article is organised as follows. A description of related works is
given in Section 2 along with the contributions achieved with current work. In Section 3,
the material and methods used are described, including the proposed LeukNet solution.
In Section 4, the results and their discussion are presented. Finally, the conclusions and
perspectives for future work are given in Section 5.

2. Related Works and Contributions

Related works are discussed in this section regarding the image descriptor employed,
sample size, validation method and achieved accuracy.
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2.1. Handcrafted Features

Handcrafted features that have been often used to diagnose leukaemia from images
are based on colour, texture and shape information, such as in the works by Putzu et al. [6],
Vincent et al. [7], Patel and Mishra [8] and Singhal et al. [9]. The main drawback that
can be found in these studies is the small size of the image datasets used in the experi-
ments: Putzu et al. [6] used a database with 267 images and extracted features of shape,
colour and texture. They evaluated an SVM classifier with 10-fold cross-validation and
obtained 93.63% of accuracy. In Vincent et al. [7], the feature extraction process consisted
of combining characteristics extracted from the grey-level co-occurrence matrix (GLCM),
fractal dimension [10] and geometric attributes obtained from the segmentation of the
leukocytes and lymphoblasts. The authors reported an accuracy of 97.70% obtained using
a multilayer perceptron classifier in 100 images from the ALL-IDB1 database. Patel and
Mishra used handcrafted statistical features and evaluated a training/test holdout setting
made of 27 images. Singhal et al. [9] used a dataset of 260 images, which were described
using texture features and evaluated using k-fold cross-validation. In both studies, an
SVM-based classifier was used, achieving accuracies of 93.75 and 93.80%, respectively.

2.2. Deep Learning Models

Deep learning models have been increasingly used for computer-aided medical diag-
noses, such as for the diagnosis of cervical cancer [11], melanoma [12] and breast cancer [13].
The referred studies use CNNs due to their capacity of learning hierarchical representations,
from more general features in the first convolutional layers to more semantic features in
the last layers.

Deep learning-based systems in leukaemia diagnosis have obtained promising results
in recent years. For example, Thanh et al. [14] describe a CNN architecture for the diagnosis
of leukaemia, which is similar to AlexNet, with five convolutional layers and two dense (or
fully connected) ones [15]. The authors used the ALL-IDB 1 dataset (with 108 images) and
the following data augmentation operators: rotation, translation, blurring and histogram
equalisation, resulting in 1188 instances. By dividing the used dataset into training (70%)
and testing (30%), they achieved 96.6% accuracy.

Shafique et al. [16] employed a CNN to diagnose different subtypes of acute lymphoid
leukaemia (ALL). With four convolutional and three dense layers, the pre-trained AlexNet
model was fine-tuned with an augmented ALL-IDB 2 dataset with a total of 760 images.
The authors also evaluated the use of different colour systems as the input on CNN. The
proposed model obtained 99.50% of accuracy for diagnosis between normal and disease
images and 96.06% for the diagnosis of leukaemia subtypes. Similarly, Rehman et al. [17]
also proposed a CNN for ALL subtypes’ diagnosis. Based on the AlexNet architecture, the
authors adjusted the last layer to classify the L1, L2 and L3 subtypes and healthy leukocytes.
To validate their approach, the authors employed a holdout evaluation and compared the
results with the ones found in the literature.

Despite reporting an accuracy of 97.78%, previous studies outperformed their results,
such as the work proposed by Shafique et al. [16], which reached 99.50%. Loey et al. [18]
proposed a methodology based on the AlexNet architecture with fine-tuning to classify
normal and abnormal leukaemia slides. The authors used a database with 564 images,
which, after data augmentation, resulted in 2820 images. They obtained 100% of accuracy
using the proposed methodology; however, the two classes used in both training and
prediction belong to different databases. We believe that this fact contributed to obtaining
these excellent results.

Pansombut et al. [19] presented a CNN for diagnosing two ALL subtypes: pre-T
and pre-B. These subtypes have particular characteristics, and the use of deep learning
techniques allows for the creation of an automatic and effective system for their identifica-
tion. The proposed CNN has three convolutional layers for feature extraction, two fully
connected layers and a sigmoid classification layer with three output neurons. The authors
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validated their model using the holdout strategy, and the used dataset had 363 images. The
model obtained an accuracy of 81.74% in the experiments.

Ahmed et al. [20] studied two classifying leukaemia problems. The first problem was
the differentiation between images with leukaemia and without the presence of the disease.
The second one was the subclassification of leukaemia in ALL, acute myeloid leukaemia
(AML), chronic lymphocytic leukaemia (CLL) and chronic myeloid leukaemia (CML).
Therefore, the authors proposed a CNN with only two convolutional layers, two max-
pooling layers and two fully connected layers. Two databases—ALL-IDB and ASH [21],
totalling 903 images, were used in the experiments. A data augmentation technique was
applied to avoid overfitting, which led to an increase of eight times the original dataset
size. For the first experiment, the accuracies obtained were 88.50 and 81.74% in the first
and second problem, respectively.

2.3. Feature Extraction with CNNs

Feature extraction with CNNs has also been proposed in this area. For example, in the
methodology proposed by Vogado et al. [22], a CNN was employed for feature extraction
by considering the activation of the last fully connected layer of three CNNs. The authors
analysed the extracted characteristics and, due to the high dimensionality of the attributes
vector, they performed attributes selection using the gain ratio technique. The final size
of the characteristic vector was empirically established considering a balance between
accuracy and dimensionality. An SVM incorporating a radial basis function (RBF) with
standard parameters was used to classify the extracted vector. The validation methodology
used was the k-fold cross-validation.

In the work of Sahlol et al. [23], it is used deep features extracted from the VGG-19
architecture. The extracted characteristics were selected using the Salp Swarm Algorithm
(SESSA) and classified with an SVM. The authors evaluated the methodology in two
datasets: ALL-IDB 2, with 260 images and C-NMC, a competition database with 10,661 im-
ages. To validate the method, they used 5-fold cross-validation, resulting in 96.11% of
accuracy in the first dataset and of 87.9% in the second one, respectively.

Of these studies, only Vogado et al. [22] used more than two datasets for evaluation.
Moreover, it was possible to verify that the commonly used evaluation protocols are
the holdout and k-fold cross-validation within the same dataset, and when using CNNs,
holdout was the most used technique. Due to the relatively small size of the available
image datasets, one might question the convergence of the used classifiers and their ability
to generalise as the relationship between the number of instances used for training and
the complexity of the built model falls short in such scenarios [24]. When using the deep
learning paradigm, a commonly used approach is to choose the model that achieved
better performance in large datasets [25]. However, this may not be the case when it
comes to different domains and data from various sources, which may favour models
with a more restricted bias, demanding further investigation [5]. In this context, the use
of more datasets would allow for better evaluation of the systems and their robustness
in considering different sources of images. Thus, this article contribution is twofold:
(i) to propose a CNN architecture and training strategy for leukaemia diagnosis offering
extensive evaluation and discussion of the achieved results, and (ii) a novel evaluation
protocol using images from different public available sources.

3. Materials and Methods

Let X = {x1, x2, . . . , xn} be a set made of n labelled blood smear images and Y =
{y1, y2, . . . , yn} be a set where yi is a label indicating the presence (positive) or absence
(negative) of leukaemia. In this article, the design of a classification function, i.e., f :
X → Y, is investigated with the objective of learning a model that excels in terms of
generalisation for distinct image datasets. The classification function f is implemented
via a deep convolutional neural network. Therefore, the goal was to learn from a set of
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datasets D = {1, 2, . . . , k} gather from different sources k and still be able to obtain a model
that can efficiently classify unseen data.

An extensive study of architectures and training strategies was performed to design
network f to be used. As a result, transfer learning from five pre-trained architectures
and four fine-tuning techniques was employed. The impact of data augmentation in the
classification problem under study was also investigated.

3.1. Image Datasets

One of the challenges in building a medical aid system is the ability to accurately
diagnose from image datasets with distinct characteristics. To evaluate the generalisation
capability of the proposed model, 18 public datasets were used, which were then divided
into development and performance sets.

Through experimentation, we used the development set to define the ideal configura-
tion of the proposed model. This set was made of 17 datasets, totalling 3415 images, which
present heterogeneity in terms of colour, contrast, resolution and texture. Furthermore,
each of these datasets has a different balance ratio between classes, which helps to evaluate
the robustness of the proposed model.

The performance set is a novel dataset, acquired at the Federal University of Goiás
(UFG) in Brazil, referred to herein as the UFG dataset (https://hematologia.farmacia.ufg.
br (accessed on 1 March 2021)). This dataset has 121 images acquired using different
microscopes, with distinct characteristics of colour, texture and contrast. This is the first
article to report results using this image dataset.

From the datasets used in our experiments, only three datasets are class-balanced:
UFG, ALL-IDB1 and ALL-IDB2 [26], as indicated in Table 1. Some of them have images
with only one leukocyte per image, and others have multiple leukocytes per image. Only
the UFG and Bloodline datasets have these two kinds of images.

Samples from the 18 datasets, revealing distinct characteristics of colour, texture and
contrast, and different original resolutions, are shown in Figure 2. All images are in the
Red, Green and Blue (RGB) space and, due to the standard image input for ImageNet
pre-trained CNN’s, were resized to 224× 224 pixels. Although the image resizing leads
to loss of spatial information in the images, our experiments showed that CNNs could
find relevant features even in the reduced images, achieving good results as is shown later.
The leukaemia images (http://www.leukemia-images.com/ (accessed on 1 March 2021))
and MIDB (http://www.midb.jp/blood_db/db.php?lang=en (accessed on 1 March 2021))
datasets were obtained from the indicated URLs.

(a) ALL-IDB1 (b) ALL-IDB1
Cropped

(c) ALL-IDB2 (d) Leukocytes (e) Cellavision 1

(f) UFG (g) Bloodline (h) ONKODIN (i) Cellavision 2 (j) JTSC

Figure 2. Examples of blood smear images from the used datasets, from which one can confirm the
heterogeneity of the used images.

https://hematologia.farmacia.ufg.br
https://hematologia.farmacia.ufg.br
http://www.leukemia-images.com/
http://www.midb.jp/blood_db/db.php?lang=en
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Table 1. Summary of the image datasets used in the experiments.

Dataset Non-Pathological Pathological Total Ref.

ALL-IDB 1 59 49 108 [26]
ALL-IDB 1 (Crop) 0 510 510 [26]
ALL-IDB 2 130 130 260 [26]
Leukocytes 149 0 149 [27]
CellaVision 109 0 109 [28]
Atlas 0 88 88 -
Omid et al., 2014 154 0 154 [29]
Omid et al., 2015 0 27 27 [30]
ASH 0 96 96 [21]
Bloodline 0 204 204 [31]
ONKODIN 0 78 78 [32]
CellaVision 2 100 0 100 [33]
JTSC 300 0 300 [33]
UFG 57 64 121 -
PN-ALL Dataset 0 30 30 [34]
leukemia-images 0 140 140 link
MIDB Dataset 0 673 673 link
LISC Dataset 376 0 376 [35]

Total 1434 2102 3536 -

3.2. Data Augmentation

Usually, CNNs have millions of parameters and need a large amount of data to be trained.
Even to refine a small CNN, thousands of images are required. Faced with this challenge,
state-of-the-art methods applied data augmentation techniques to overcome it [36].

Data augmentation consists of creating a new set of images using variations of the
original images. The increase in data has the main goals of reducing the CNN overfitting
and improving the generalisation of the trained model [37].

The image development set used in this work is relatively balanced: it contains 1001
non-pathological and 1182 pathological images. Therefore, data augmentation was applied
equally in both classes.

Therefore, we used the random data augmentation technique provided by the Keras
API. The chosen rotation interval was 40º, while the vertical, horizontal, shear and zoom
translation interval was 0.2. We also used horizontal and vertical flip, as the nuclei images
do not have asymmetry. The reflection fill technique was applied to replace black pixels
resulting from the rotation and translation techniques. Finally, we normalised the image
pixels to 0 (zero) and 1 (one). The augmentation resulted in an image dataset 20 times
larger than the original one. Figure 3 shows results obtained by using these operations in
blood smear images.

Figure 3. Examples of the results of the data augmentation operations when applied to non-
pathological (left) and pathological (right) blood smear images.

3.3. Transfer Learning

The transfer learning technique that is often employed for convolutional networks uses
weights that are pre-trained in large datasets, such as the ImageNet Challenge dataset [38].
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This procedure decreases the requirement to retrain all parameters of the CNN from
scratch [39]; Figure 4 depicts this idea. Note that some layers are usually copied from
the pre-trained network, forming a base architecture, while other layers are randomly
initialised and customised to the task at hand.

Pre-trained weights

Transfer Learning

Fine-Tuning

1000-Output

2-Output

CNN

ImageNet

Blood Smear Imagens

Figure 4. The transfer learning and fine-tuning techniques used in the development of the proposed
CNN model.

Two approaches are often employed when using pre-trained weights. One approach
is to extract features as the activation maps of the pre-trained network layers, defining
those as feature vectors to be used as input to shallow classifiers, such as an SVM [40]. The
other one is to perform fine-tuning by creating a new classification layer. This approach
has a higher computational cost than the first one, as it is necessary to resume the CNN
training with the target dataset, adapting the desired model domain.

According to Tajbakhsh et al. [41] and Izadyyazdanabadi et al. [42], there are two types of
fine-tuning: shallow fine-tuning (SFT) and deeply fine-tuning (DFT). SFT consists of freezing
layers from the beginning of CNN, usually, the first convolutional layers, that are considered
more general and allow representations of shape, texture and colour. The top layers are often
domain-specific, carrying semantic content from the instance labels. Therefore, SFT provides
greater specialisation in the later layers, while keeping the first ones.

The DFT approach allows training the entire network, adapting even the first layers.
Although it has higher computational cost and requires larger amount of data, it can benefit
applications where the target domain differs from the one used to pre-train the weights;
for example, natural photographic images from the ImageNet dataset belonging to a very
distinct domain relative to blood smear images.

As an alternative to the SFT and DFT approaches, additional experiments, referred to
as modified shallow (mSFT) and deeply fine-tuning (mDFT), respectively, were developed
here. In those experiments, dense layers—prior to the output layer—were replaced with
new ones with smaller dimensionality (layers with 256, 512 and 1024 elements were
evaluated). This decreases the network’s number of parameters, allowing faster training
and making it less prone to overfitting. Figure 5 shows the operations of each fine-tuning
technique used in this study. These experiments were performed because one can consider
the used dataset as small. Note that previous studies reported that, for small datasets,
smaller network architectures achieve better results; in particular, for binary classification
and target domains that differ from those used for pre-training [5,43].
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Input Conv + Pool Fc Output

Pre-trained weights

Shallow Fine-Tuning (SFT)

Input Conv + Pool Fc Output

Pre-trained weights

Deeply Fine-Tuning (DFT)

Input Conv + Pool Fc Output

Pre-trained weights

Shallow Fine-Tuning Modified (SFTm)

Input Conv + Pool Fc Output

Pre-trained weights

Deeply Fine-Tuning Modified (DFTm)

Fc Fc

Fc Fc

Figure 5. Simplified illustration of each used fine-tuning technique. (The blue colour, predominant
in some layers, represents the freezing of parameters during the training, while the green colour
represents that the layer is retrained. The purple colour exists only in the mSFT and mDFT techniques
as the layers with these colours are not considered in the transfer learning and, therefore, their
parameters are initially randomly defined).

3.4. Evaluated Architectures

CNN architectures designed for the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [38] were explored in this study. Most of these CNN architectures are
tailored to perform well in the ImageNet Challenge dataset, which has 1.4 million images
containing 1000 categories of objects found in natural scenes. Indeed, the better a deep
learning architecture performs on such a dataset, the better it transfers for other datasets of
natural images, as verified by Kornblith et al. [25]. However, the same does not necessary
happen for image datasets from other domains, such as from biomedical imaging, with
fewer images for fine-tuning, as well as lower number of classes to classify, as it was
demonstrated, for example, by Araujo et al. [43] and dos Santos et al. [44].

Thus, we choose sequential networks such as VGG-16 and VGG-19 [45], because
these networks facilitate changes in the architecture structure, and residual and inception-
based networks, as these networks presented better results in the ILSVRC. ResNet50 [46],
InceptionV3 [47] and Xception [48] have fewer parameters than VGGNets, but have deeper
architectures, as indicated in Table 2, where the architectures are presented in terms of
year of publication, topological depth of the network (including batch normalisation and
activation layers) and number of parameters.

Table 2. Characteristics of the evaluated deep learning models.

Model Topological Depth Number of Parameters Year

VGG-16 23 138,357,544 2014
VGG-19 26 143,667,240 2014
ResNet50 168 25,636,712 2015
InceptionV3 159 23,851,784 2016
Xception 126 22,910,480 2017

In the mSFT and mDFT approaches, the initial size of the fully connected layers was
based on Zang et al. [49], who studied cervical cancer images, which are similar to those
for leukaemia diagnosis, and employed layers with dimensionality of 1024 and 256.

To evaluate the Inception architectures, the mSFT and mDFT approaches were used
because when we fine-tuned InceptionV3, we added a new layer of global average pool-
ing and a dense layer with 1024 elements with ReLu activation. For Xception, a dense
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layer with 128 elements was added. The output layer is the same as that presented in
sequential architectures.

In the ResNet model, the same process as to InceptionV3 was performed. In the mSFT,
only the added layers were trained, and the previous ones were frozen. On the other hand,
in mDFT, all parameters were allowed to be fine-tuned.

3.5. Cross-Dataset Methodology

Fine-tuning was applied in the pre-trained CNN architectures to allow the model to
classify images of blood slides. To evaluate the robustness of this architecture, experiments
using all indicated datasets were performed. To evaluate classifiers, cross-validation is often
used in different versions: k-fold, leave-one-out and holdout, where k-fold cross-validation
is one of the method mostly used to validate CAD systems [6,9,22].

According to Diaz-Pinto et al. [50], CNNs take into account only the raw pixel infor-
mation to classify images. Therefore, it is expected that the accuracy will be significantly
affected when the model receives an image from a different dataset as input from those
used in training or validation. This situation happens due to the changes in the images
resulting from their origin and acquisition conditions. Therefore, methods that well classify
images of a dataset will not necessarily succeed with images of other datasets. Thus, a
critical procedure to evaluate the classifier performance is to use images obtained from
distinct datasets.

We consider that k-fold cross-validation within a given dataset does not simulate a
real scenario’s conditions because, when applying folding division, similar examples from
the same dataset are likely to be present in both training and test sets. Furthermore, the
use of k-fold cross-validation enables the classifier to be trained with examples from the
same image dataset. Thus, leave-one-dataset-out cross-validation (LODOCV), a validation
for systems that operate on several datasets from different sources, was employed un this
study. Therefore, considering that the number of datasets available is d, d− 1 datasets were
used for training, and the method was evaluated on the unseen dataset. This procedure
was repeated until all datasets were individually tested, which ensured that none of the
images in a dataset were presented in both training and testing.

As shown in Table 1, 15 of the 18 datasets contained images from a single class. Thus,
only the datasets with both classes’ images were used in the test step in LODOCV: ALL-
IDB 1, ALL-IDB 2 and UFG datasets. For example, in the first experiment, ALL-IDB 1
was used as a test set, while the other 17 datasets were used in training. This process was
repeated for ALL-IDB 2 and UFG datasets.

4. Experiments

The results obtained from the experiments performed were evaluated in terms of accu-
racy (A), precision (P), recall (R), specificity (S) and Matthews correlation coefficient (MCC) [51]
(The used image databases and the developed codes are available at: https://git.io/JOCYu
(accessed on 1 March 2021)). Because the new layers were trained from randomly initialised
weighs, five runs were performed to compute mean and standard deviation of the evalu-
ation metrics. The results were compared against those of the eight state-of-the-art meth-
ods, including standard feature extraction methods for colour, shape and texture [6], and
CNN-based methodologies [22]. All experiments were carried out on a PC with a 3.6 GHz
Intel®Xeon™processor, 24 GB of RAM, and a NVIDIA TITAN XP 12 GB graphics card.

4.1. Models and Fine-Tuning Evaluation

An ablation study was conducted to define the base architecture of the proposed
model and the training methodology. Through validation by LODOCV, the development
set was evaluated along the experiments using the ALL-IDB 1 and ALL-IDB 2 datasets.
As already mentioned, this validation methodology was selected because it provides a
more critical evaluation than k-fold cross-validation, simulating the actual training and
testing conditions.

https://git.io/JOCYu
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In the following experiments, the hyperparameters were empirically defined, follow-
ing literature standards for training CNNs, and maintained constant in all experiments.
The defined learning rate was 0.001, while the weight decay was 0.0001. The size of the
mini-batch was defined as 32, and the binary cross-entropy was used as the loss function.

Table 3 presents the results obtained using the VGG-16 architecture. All fine-tuning
approaches archived accuracy over 79% in the ALL-IDB1 dataset. However, among them,
it was observed that the mDFT approach achieved the best results for both datasets.

During the training phase, it was verified that the lower loss does not always lead
to the best accuracy, as well as the opposite. We obtained lower results in the ALL-IDB 2
dataset relative to the ALL-IDB 1 dataset. This ALL-IDB performance was due to the type
of image classified: this dataset contained only one leukocyte per image, while ALL-IDB 1
has several. The presence of numerous leukocytes in the slide may denote the existence of
the disease, thus facilitating its classification.

Table 3. Results obtained using the VGG-16 architecture according to 50 epochs (best values in bold).

Approach A (%) P (%) R (%) S (%) MCC (%)

ALL-IDB 1

SFT 79.07 ± 2.13 79.76 ± 7.95 74.29 ± 9.42 83.05 ± 9.28 58.52 ± 4.05
mSFT 81.67 ± 2.01 90.03 ± 8.37 68.16 ± 6.71 92.88 ± 6.93 64.41 ± 4.73
DFT 96.48 ± 1.21 95.97 ± 1.31 96.33 ± 3.35 96.61 ± 1.20 92.96 ± 2.44
mDFT 97.04 ± 1.21 96.42 ± 2.45 97.14 ± 1.83 96.95 ± 2.21 94.07 ± 2.36

ALL-IDB 2

SFT 72.46 ± 2.15 72.68 ± 5.55 73.38 ± 7.33 71.54 ± 8.99 45.42 ± 4.69
mSFT 78.15 ± 0.01 76.49 ± 0.04 82.61 ± 0.09 73.69 ± 0.08 57.33 ± 2.77
DFT 66.08 ± 7.37 63.83 ± 7.42 75.85 ± 13.92 56.31 ± 14.24 33.80 ± 14.7
mDFT 82.46 ± 0.02 77.59 ± 0.04 92.30 ± 0.08 72.61 ± 0.09 66.96 ± 4.96

The results obtained by the VGG-19 architecture are presented in Table 4. From the
data shown in this table, one can verify that DFT archived better accuracy, recall and MCC
rates. However, mDFT, as in the VGG-16 case, obtained high rates compared with the other
approaches, with 96.95% and 96.30% precision and specificity, respectively.

Table 4. Results obtained using the VGG-19 architecture according to 50 epochs (best values in bold).

Approach A (%) P (%) R (%) S (%) MCC (%)

ALL-IDB 1

SFT 87.78 ± 0.77 91.35 ± 4.74 81.22 ± 6.52 93.22 ± 4.32 75.84 ± 1.36
mSFT 81.11 ± 1.92 81.30 ± 6.72 77.55 ± 11.45 84.07 ± 8.00 62.70 ± 3.31
DFT 97.04 ± 0.41 95.98 ± 0.04 97.55 ± 0.91 96.61 ± 0.00 94.04 ± 0.85
mDFT 94.81 ± 1.40 96.30 ± 2.37 92.24 ± 4.87 96.95 ± 2.21 89.71 ± 2.69

ALL-IDB 2

SFT 73.23 ± 2.22 74.27 ± 4.02 71.69 ± 5.26 74.77 ± 6.54 46.70 ± 4.44
mSFT 75.31 ± 1.37 72.83 ± 3.62 81.69 ± 8.35 68.92 ± 8.12 51.61 ± 3.07
DFT 75.77 ± 5.10 71.65 ± 5.95 86.62 ± 8.24 64.92 ± 10.40 53.33 ± 10.37
mDFT 79.62 ± 6.31 77.54 ± 8.53 85.38 ± 9.53 73.85 ± 12.93 60.43 ± 12.61

The results obtained using InceptionV3 and Xception are presented in Tables 5 and 6,
respectively. From these tables, one can realise that the mDFT technique was more effective
than the mSFT technique. When comparing the accuracy obtained by the two architectures,
Xception achieved better results in both datasets. However, when we compared those
outcomes with the ones obtained using sequential architectures, there was a decrease in
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performance. Therefore, we concluded that this was because these architectures deal better
with greater complexity in terms of the amount of data and classes than the other ones.

Table 5. Results obtained using the Inception V3 architecture according to 50 epochs (best values
in bold).

Approach A (%) P (%) R (%) S (%) MCC (%)

ALL-IDB 1

mSFT 45.74 ± 7.90 42.29 ± 8.03 59.59 ± 26.15 34.24 ± 22.08 −8.37 ± 17.55
mDFT 65.56 ± 9.79 58.47 ± 17.18 73.92 ± 16.99 60.91 ± 19.90 35.54 ± 15.81

ALL-IDB 2

mSFT 54.92 ± 6.64 52.96 ± 4.45 84.62 ± 13.62 25.23 ± 9.87 13.82 ± 15.65
mDFT 58.38 ± 3.09 56.95 ± 2.42 70.00 ± 12.38 46.77 ± 11.66 17.60 ± 6.40

Table 6. Results obtained using the Xception architecture according to 50 epochs (best values in bold).

Approach A (%) P (%) R (%) S (%) MCC (%)

ALL-IDB 1

mSFT 72.59 ± 6.76 84.48 ± 12.96 53.06 ± 20.10 88.81 ± 12.26 47.07 ± 11.54
mDFT 77.41 ± 8.65 69.40 ± 9.76 94.69 ± 3.10 63.05 ± 18.11 60.33 ± 12.01

ALL-IDB 2

mSFT 59.31 ± 6.11 58.59 ± 5.89 71.85 ± 13.26 46.77 ± 23.12 18.94 ± 12.02
mDFT 64.92 ± 2.60 63.58 ± 2.54 70.31 ± 7.06 59.54 ± 6.45 30.21 ± 5.25

Finally, Table 7 presents the results obtained using ResNet50. This architecture did not
originally have convolutional layers, so for fine-tuning, fully connected layers were added
at the end of their structure. The achieved results were superior to the ones obtained by
the Inception architecture. It is possible to observe that in the ALL-IDB 2 experiments, this
architecture obtained an accuracy of 69.46% and a MCC of 40.65%, which are higher than
the ones obtained by InceptionV3 and Xception. Similar to other architectures, the mSFT
technique was still inferior to the mDFT. Therefore, we believe that both ResNet and other
Inception-type architectures work best when fully retrained. Note that from the results
obtained with mSFT with ALL-IDB1, it was possible to conclude that ResNet50 could not
correctly generalise the classes, classifying all the examples in just one class. This caused a
decrease in the average accuracy and recall, and a value of 0 (zero) as to the MCC metric.

Table 7. Results obtained using ResNet50 according to 50 epochs (best values in bold).

Approach A (%) P (%) R (%) S (%) MCC (%)

ALL-IDB 1

mSFT 52.78 ± 4.14 9.07 ± 20.29 20.00 ± 44.72 80.00 ± 44.72 0
mDFT 87.96 ± 2.70 91.59 ± 8.56 82.04 ± 4.42 92.88 ± 8.08 76.39 ± 5.50

ALL-IDB 2

mSFT 46.08 ± 8.77 16.05 ± 23.06 26.00 ± 43.36 66.15 ± 47.61 −7.84 ± 17.54
mDFT 69.46 ± 6.26 66.96 ± 7.05 80.31 ± 10.17 58.62 ± 16.71 40.65 ± 12.17

LeukNet was designed after analysing the previously described results, where VGG-
16 and VGG-19 architectures achieved the best outcomes, with similar values for the mDFT
approach in the ALL-IDB2 dataset. Therefore, the Student’s t-test [52] was performed to
statistically compare the results at a significance level of 5%. From the test performed, it
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was possible to conclude that the results were equivalent. Therefore, VGG-16 was selected
due to its smaller number of trainable parameters.

According to Kornblith et al. [25], the best-performing architectures on ImageNet
can provide better feature extraction and fine-tuning. However, the authors observed
this fact only in photographic datasets. In datasets with fine-grained images, the effects
of pre-training with ImageNet were considered small. The current study indicated that
the features obtained from ImageNet are not adequately transferred to such datasets.
According to Sipes et al. [53], leukaemia images are considered fine-grained images. This
fact explains why the results achieved by VGG-16 and VGG-19 were superior to the ones
obtained by the other CNNs.

Additionally, a running time analysis as to the CNNs training and classification of an
image was conducted. Table 8 presents the results obtained for the evaluated architectures.
This analysis was limited to refined models through mDFT because these models presented
the best results in the classification.

Table 8. Running time analysis for training (in minutes) and classification of an image (in seconds).

Model Training Time (Min) Classification Time (Image/s)

ALL-IDB 1

VGG-16 34:43 0.0050
VGG-19 38:08 0.0055
InceptionV3 36:03 0.0111
Xception 40:26 0.0101
ResNet 38:08 0.0166

ALL-IDB 2

VGG-16 35:28 0.0038
VGG-19 34:45 0.0041
InceptionV3 31:96 0.0065
Xception 38:00 0.0057
ResNet 37:05 0.0083

Regarding the training time, the Inception V3 network was the fastest (32 min) and
Xception the slowest (over 40 min). The running time to classify a single new image was in
the order of 0.01 s or less for all the networks under comparison. In practice, all running
times can be considered similar as a training under one hour and a classification under
0.01 s mean no restriction as to the practical application of the proposed methodology.

4.2. Proposed Model: LeukNet

The final LeukNet model uses a VGG-16 convolutional backbone, with new dense
layers with lower dimensionality, and a training strategy based on transfer learning with
mDFT. Experiments varying the size of the fully connected layers were also performed
to find the best compromise between accuracy and loss (Table 9), which showed that the
highest accuracy was achieved with 1024 and 256 neurons.

Figure 6 depicts the output of some of LeukNet’s convolutional filters as heat maps. It
can be seen in this figure that the CNN excludes the background and defines the cytoplasm
and leukocyte nucleus as regions of interest. However, the nuclei region (regions in yellow
tone in the figure) is considered to be the most crucial region for classification in the
application addressed here.

To demonstrate the generalisation ability of the proposed model, a validation exper-
iment was conducted using a random set containing 25% of the available images, and
its accuracy and loss throughout the epochs were computed. Note that models tend to
overfitting when they cannot generalise for a new set.
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Table 9. Results obtained using different dimensionalities for the LeukNet’s fully connected layers
(best values in bold).

Fc Layers A (%) P (%) R (%) S (%) MCC (%)

ALL-IDB 1

512–256 94.81 ± 2.41 93.92 ± 2.50 94.69 ± 3.09 94.91 ± 2.07 89.55 ± 4.88
1024–256 97.04 ± 1.21 96.42 ± 2.45 97.14 ± 1.83 96.95 ± 2.21 94.07 ± 2.36
1024–512 93.14 ± 3.73 92.95 ± 7.62 92.65 ± 3.09 93.55 ± 7.89 86.57 ± 6.85
1024–1024 93.70 ± 1.65 91.79 ± 3.11 94.69 ± 1.82 92.88 ± 3.03 87.43 ± 3.18

ALL-IDB 2

512–256 71.53 ± 4.97 70.91 ± 4.20 74 ± 13.98 69.07 ± 9.90 43.95 ± 9.90
1024–256 82.46 ± 0.02 77.59 ± 0.04 92.30 ± 0.08 72.61 ± 0.09 66.96 ± 4.96
1024–512 71.84 ± 3.64 77.84 ± 12.16 67.53 ± 17.09 76.15 ± 23.46 47.17 ± 6.66
1024–1024 69.15 ± 2.11 69.91 ± 4.94 69.23 ± 9.41 69.07 ± 11.52 38.93 ± 3.73

Figure 6. Heatmap of some LeukNet’s convolutional filters output.

Figure 7 presents the obtained accuracy and loss ratio of the training and validation
sets over the training epochs. One can observe that the results achieved in the validation
set decrease with training, which characterises a good generalisation capacity [36]. From
the results, it is possible to conclude that there was no overfitting during training. We
attribute this fact to the decrease in complexity provided by the mDFT and data augmenta-
tion techniques.

(a) (b)

Figure 7. Training and validation accuracy (a) and training and validation loss (b) versus number of
training epochs.

The best-built model has five convolutional blocks and two fully connected layers.
After each convolutional block, max pooling is employed. The first two blocks have only
two convolutional layers, while the remaining ones have three layers. The first block has
64 filters with size 3× 3. From the second block on, the number of filters is doubled to 128,
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and after the convolution, the pooling operation reduces the filter size. Finally, the last two
convolutional blocks have the same number of filters. Figure 8 shows the final structure of
the proposed model.
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Figure 8. Detailed structure of the proposed CNN after the fine-tuning.

To define the size of the two fully connected (FC) layers, the effect of the number of
neurons was investigated, varying from 1024 to 256 at FC1 and FC2. To avoid overfitting,
dropout (dp) was also employed after each fully connected layer with rates of 0.5 and 0.6,
respectively. As we are dealing with a binary classification problem, the output layer has
one neuron with the sigmoid activation function.

The stochastic gradient descent (SGD) optimisation algorithm was employed with
a batch size of 32 and for a total of 50 epochs. Therefore, we used 0.001 and 0.8 for the
learning rate and the momentum, respectively. The loss function used during fine-tuning
was the binary cross-entropy to allow computing the gradients at each iteration.

Figure 9 shows examples of LeukNet activation maps for the two classes under study.
In this figure, it is possible to identify which regions are used to differentiate healthy
images from those with leukemia. In the shown activation maps, blue tones mean low
activation and indicate that the correspondent regions are of little importance for the
final classification; in contrast, red tones are associated to the most critical regions for the
final classification.

(a)

(b)

Figure 9. Examples of activation maps for blood slides of (a) healthy and (b) unhealthy images.

The number of leukocytes varies in the input images, causing LeukNet to generate
different activation map patterns as shown in Figure 9. Furthermore, as it is trained using
different datasets, the proposed model can adapt to different characteristics.

Interpretation is still a challenge in CNNs, but activation maps indicate that LeukNet
gives more importance to regions containing disease patterns, as one can see, especially, in
Figure 9a. From Figure 9, note that leukocytes and lymphoblasts are highlighted in the
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activation regions. Additionally, note that the number of leukocytes and their shape are
considered essential aspects in detecting leukemia.

4.3. Beyond CNN Results with a Features Space Analysis

In order to go beyond the results obtained by fine-tuning the CNNs, we carried out
two additional analyses using the features spaces formed by two models. In particular, the
goal was to compare the models in terms of the linear separability of the feature spaces
generated by the layer before the network classifier (output layer). Because we employed
a linear SVM, which has strong learning guarantees, better results would favour models
with better generalisation capabilities [24].

The analyses were performed according to two scenarios. The first scenario consisted
of validation with LODOCV using feature extraction with pre-trained VGG-16 on ImageNet
and fine-tuned VGG-16. The second one used databases tested in LODOCV (ALL-IDB 1
and ALL-IDB 2) individually as input for the k-fold cross-validation with a k value equal to
5. Both experiments used the same pre-trained models for feature extraction.

For the model pre-trained with ImageNet and those refined with DFT and SFT tech-
niques, the output vector had 4096 features. Therefore, to analyse the intrinsic dimen-
sionality in the data, a principal component analysis (PCA) was applied to reduce the
vector to its 100 principal components. Table 10 presents the results obtained by the two
performed analyses.

Table 10. Feature space analysis performed with VGG-16 architecture as descriptor and a Linear
SVM as classifier (best values in bold).

LODOCV k-Fold

Approach Num. of Features A (%) P (%) R (%) Kappa A (%) P (%) R (%) Kappa

ALL-IDB 1

SFT 100 63.88% 56.75% 85.71% 0.3017 98.14% 96.07% 100% 0.9627
mSFT 256 75.00% 100% 44.89% 0.4709 96.29% 100% 91.83% 0.9247
DFT 100 59.25% 52.68% 100% 0.2362 99.07% 98% 100% 0.9813
mDFT 256 87.96% 86.00% 87.75% 0.7575 91.66% 95.45% 83.04% 0.8571
ImageNet 100 68.51% 59.49% 95.91% 0.3962 97.22% 96% 97.95% 0.9440

ALL-IDB 2

SFT 100 60.38% 58.18% 73.84% 0.2076 88.07% 86.66% 90% 0.7615
mSFT 256 55.38% 54.54% 64.61% 0.1076 76.15% 77.86% 73.07% 0.523
DFT 100 51.92% 51.06% 92.30% 0.0384 94.23% 93.89% 94.61% 0.8846
mDFT 256 73.84% 75.83% 70.00% 0.4769 85.00% 84.21% 86.15% 0.7
ImageNet 100 49.61% 49.68% 60% −0.007 87.69% 87.69% 87.69% 0.7538

From the results in Table 10, it is possible to realise that in experiments with multiple
datasets (LODOCV experiment), mDFT provided a superior linear separability of the data.
However, for only one dataset (k-fold cross-validation experiment), the DFT showed better
results. The advantage of mDFT in the first experiment was that it restricts dense layers in
dimensionality (from 4096 in the original model to 256 in the proposed model), making
the model robust to images from different datasets. The DFT uses a larger output, and it
consequently has more “degrees of freedom” in the pre-trained model, which can cause
overfitting in datasets used for fine-tuning, reducing the accuracy in an experiment with
multiple datasets.

This analysis confirms previous findings which indicate that models with a more
restricted bias, i.e., in terms of their space of admissible functions, may transfer better for
different domains [4] in comparison to the same domain, which in the case of the widely
used ImageNet dataset are mostly natural images and photographic data [25]. Furthermore,
it is clear how a high k-fold cross-validation measure obtained by using an off-the-shelf
CNN model, e.g., trained in ImageNet, is severely impacted when using a more realistic
scenario concerning the different source and target datasets, which indicates the importance
of transfer learning [54].
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In addition to the classification experiments, we also visualised the feature spaces
using a t-SNE projection, with the respective decision boundaries estimated to the 2D case,
both for ALL-IDB 1, Figure 10, and ALL-IDB 2, Figure 11. From these figures, it is possible
to note how the decision boundaries show good feature spaces with good discrimination
capability. Furthermore, it is clear how ALL-IDB2 is a more challenging dataset, and that
the mDFT tends to produce a space that better separates the classes compared to the greater
classes overlap shown in DFT and spaces without fine-tuning, Figure 11.

(a) no fine-tuning (b) DFT (c) mDFT

Figure 10. ALL-IDB 1 dataset visualisations using t-SNE projection in 2D along with the estimated
decision boundaries using Linear SVM classifiers for different feature extraction methods: (a) no
fine-tuning, (b) DFT and (c) mDFT.

(a) no fine-tuning (b) DFT (c) mDFT

Figure 11. ALL-IDB 2 dataset visualisations using t-SNE projection in 2D along with the estimated
decision boundaries using linear SVM classifiers for different feature extraction methods: (a) no
fine-tuning, (b) DFT and (c) mDFT.

An additional experiment was performed to better understand which features were
used by the CNNs to separate the classes. Thus, from the union of the 18 datasets (totalling
3536 images), 80% of the images were randomly selected to form a training set, and the
remaining 20% were used as the test set. Figure 11a illustrates the visual attributes that
contributed to the classification using the t-SNE. Some of these attributes are the number
of leukocytes per slide, the colour and zoom. However, in Figure 12b, one can also observe
that it is impossible to separate the set linearly, requiring a more sophisticated prediction
function, such as that provided by LeukNet.

4.4. Discussion

An interesting discussion in the classification and segmentation of medical pathology
images is related to colour normalisation. In [55], the authors evaluated the influence of
colour normalisation in the classification of lymphoma images and concluded that the
best classification rate was obtained with features extracted from the images, i.e., without
colour normalisation. Another study [56] evaluated the impact of colour normalisation in
convolutional neural network-based nuclei segmentation in blood smear images, and it
was concluded that, despite the colour variability in the original images, the used CNN
model could effectively segment the nuclei presented in the original images. Thus, in this
study, we chose not to apply colour normalisation strategies.
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(a) (b)

Figure 12. T-SNE visualisation with the represented points (a) and the division of classes (b)
(0 = pathological and 1 = non-pathological).

The results presented in Section 4.1 were obtained using the LODOCV strategy;
however, other studies do not use this validation strategy. Thus, k-fold cross-validation,
with k = 5 in all of the 3536 images from the available 18 datasets, was applied to compare
the results of the proposed approach with the ones obtained by state-of-the-art methods.
Table 11 presents the results achieved by the approaches under comparison; the indicated
accuracy values for the state-of-the-art methods were gather from their original articles.

Table 11. Comparison between the results obtained by the proposed method and the ones obtained
by state-of-the-art methods (best values in bold).

Work Number of ImagesValidation Technique A(%)

Handcrafted Features

Putzu et al. [6] 267 k-fold 93.63
Vincent et al. [7] 100 holdout 97.70
Patel e Mishra [8] 27 holdout 93.75
Singhal et al. [9] 260 k-fold 93.80

Deep-Learning-based systems

Thanh et al. [14] 1188 holdout 96.60
Shafique et al. [16] 760 holdout 99.50
Rehman et al. [17] 330 holdout 97.78
Loey et al. [18] 564 holdout 100
Pansombut et al. [19] 363 holdout 81.74
Ahmed et al. [20] 903 k-fold 88.25

Feature extraction with CNNs

Vogado et al. [22] 1268 k-fold 99.76
Sahlol et al. [23] 260 and 10.921 k-fold 96.11 and 87.90

LeukNet 3536 k-fold 98.61

First, from Table 11, it is possible to verify that the number of images used in all
competing methods is inferior to those presented in our experiments. Several authors used
feature extraction techniques based on texture, shape and colour [6–9]. These methods
achieved accuracies of 93.63, 97.7, 93.75 and 93.80%. The use of a single dataset and
the accuracy obtained in the experiments proposed by these methods expose the lack of
robustness compared with other state-of-the-art approaches.
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Among the works based in deep learning techniques, Shafique et al. [16], Rehman
et al. [17] and Pansombut et al. [19] proposed solutions for the classification of leukaemia
subtypes. With the use of shallower and less complex CNNs, the authors were able to deal
with small databases without compromising the CNN training as they did not use data
augmentation techniques.

Thanh et al. [14], Ahmed et al. [20] and Loey et al. [18] tackled the classification
between leukaemia and healthy images, as in this work. According to the results obtained
by the proposed model using the image development set, it can be concluded that more
complex architectures, i.e., with a higher number of parameters, produced better success
rates in tests like LODOCV, and are more challenging than k-fold cross-validation and
holdout. Among the previously mentioned studies, only Thanh et al. [14] presented an
architecture with high complexity. However, in terms of architecture depth, LeukNet
presents a more extensive set of convolutional filters, which allows the extraction of more
feature maps.

Among the mentioned studies, Vogado et al. [22] presented experiments in more
than two datasets: eight of the 14 that were used in this work. Among the best results,
we observed that both Loey et al. [18] and Vogado et al. [22] obtained results superior to
LeukNet. However, we must emphasise that Loey et al. [18] performed tests where the
classes are represented by two homogeneous databases, which justifies the high accuracy
obtained. Because Vogado et al. [22] was the only group to use the k-fold method for
cross-validation, we compared our method with theirs in more detail below.

Table 12 presents the comparative result of the proposed method and the one of
Vogado et al. [22]. In this experiment, we performed twenty k-fold cross-validation execu-
tions (k = 5) on 3415 images from 17 image datasets (the UFG dataset was separated for a
second experiment). For comparison purposes, an experiment of training the VGG-16 from
random weights is described.

Table 12. Comparison between the proposed method (LeukNet) and the method suggested by
Vogado et al. [22] with k-fold cross-validation in all 3415 images of the used 17 datasets.

Approach Accuracy (%) Precision (%) Recall (%) Specificity (%) MCC (%)

Vogado et al. [22] 92.79 92.90 92.80 92.22 -
VGG-16 * 98.64 ± 0.43 98.66 ± 0.36 99.19 ± 0.50 98.02 ± 0.54 97.34 ± 0.008
LeukNet 98.61 ± 0.53 98.69 ± 0.47 99.24 ± 0.44 98.07 ± 0.69 97.45 ± 0.009

* Without transfer learning.

Vogado et al. [22] used eight of the seventeen datasets used in this study. Comparing
the results presented in Tables 11 and 12, the competing method shows lower accuracy after
inclusion of new images. In particular, the ASH, Bloodline and ONKODIN datasets are
composed of images with distinct resolutions, textures and different colour characteristics.
According to the results shown in Table 12, one can observe that using the Student’s t-test
with a significance level of 5%, the results of VGG-16 and LeukNet can be considered
equivalent, and both are superior to the competing method.

To demonstrate the generalisation capacity of LeukNet, Table 13 shows average results
of applying the models generated by the previous experiment in an external dataset as a
test set. The UFG set is a novel dataset, which was never used in previous studies, and is
particularly challenging for three reasons: (1) the dataset is formed up of images acquired
by different microscopes, and according to different resolutions and lighting conditions
(2) has complete slide images and images with only one leukocyte, and (3) among all the
datasets used in this study, the UFG dataset is the one with the highest diversity within the
leukemia class, since it has examples of images with ALL, AML, CLL and CML subtypes.
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Table 13. Comparison of the proposed model with the method suggested by Vogado et al. [22] by
Leave-one-dataset-out cross validation in the UFG dataset (best values in bold).

Approach Accuracy (%) Precision (%) Recall (%) Specificity (%) MCC (%)

Vogado et al. [22] 52.06 49.90 52.10 47.70 -
VGG-16 * 65.94 ± 6.85 66.06 ± 7.26 79.37 ± 12.90 50.87 ± 26.40 32.12 ± 13.11
LeukNet 70.24 ± 5.51 70.54 ± 8.62 80.31 ± 15.17 58.94 ± 22.24 42.32 ± 10.31

* Without transfer learning.

From Table 13, one can conclude that the three approaches obtained lower results
when compared to those obtained by the k-fold cross-validation. However, the decay of
the proposed model was more moderate (from 98.61 to 70.24%) than that of VGG-16 (98.64
to 65.94%) and that in [22] (from 92.79 to 52.06%). This result suggests that LeukNet can
generalise better than the methods in the literature. Thus, it can be concluded that this
superior generalisation is due to the use of larger data and the precise definition of the
convolutional neural network parameters as was conducted in this study.

5. Conclusions

This work presented a novel CNN architecture and training strategy to diagnose
leukaemia in blood smear images. Several architectures, fine-tuning schemes and parame-
ters were studied to define the proposed model. This allowed us to develop a model for
diagnosis that is more precise and robust than the methods presented in current state-of-
the-art works.

From the comparisons performed against previous studies, some conclusions may be
drawn as to the computational leukaemia diagnosis from images. First, fine-tuning may be
more efficient than off-the-shelf feature extraction. Second, CNNs with more representa-
tions through feature maps perform better in cross-dataset experiments. Furthermore, the
choice of the fine-tuning technique is essential for the correct definition of CNN parameters.
As for blood sample images belong to a different domain to those used to pre-train the
layers, the adjusting of all of the layers is preferable.

The use of the LODOCV evaluation demonstrated the need for more challenging exper-
iments towards a better generalisation capability, allowing a model to perform satisfactorily
even on an unseen dataset. New studies are needed to investigate the feature represen-
tations learned by LeukNet, when compared to pre-trained models or even handcrafted
features. Future work may also investigate the use of generative adversarial networks
in increasing data availability; particularly, these networks can generate heterogeneous
images that sufficiently represent the original distribution. Finally, the evaluation of the
computational results by additional experts would be crucial for the routine use of the
proposed model.
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