
DIVISION OF RENAL MEDICINE, DEPARTMENT OF 
CLINICAL SCIENCE, INTERVENTION AND TECHNOLOGY 

Karolinska Institutet, Stockholm, Sweden 
 

& 
 

CARDIOVASCULAR RESEARCH INSTITUTE MAASTRICHT, 
DEPARTMENT OF BIOCHEMISTRY 

Maastricht University, Maastricht, The Netherlands  
  

CHRONIC KIDNEY DISEASE – A CLINICAL 
MODEL OF PREMATURE VASCULAR 

AGING 

Lu Dai 

 

 
 



 

All previously published papers were reproduced with permission from the publisher. 
Published by Karolinska Institutet and Maastricht University. 
Printed by Universitetsservice US-AB, 2021 
© Lu Dai, 2021 
ISBN 978-91-8016-117-6 
 



CHRONIC KIDNEY DISEASE - A CLINICAL MODEL OF 
PREMATURE VASCULAR AGING 
THESIS FOR DOCTORAL DEGREE (Ph.D.)  

By 

Lu Dai 

The thesis will be defended in public at Maastricht University, Maastricht,  
May 6th, 2021at 14:00 

Promotors: 
 
Prof. Leon Schurgers, PhD 
Maastricht University 
Department of Biochemistry 
Cardiovascular Research Institute Maastricht 
 
Prof. Peter Stenvinkel, MD, PhD 
Karolinska Institutet 
Department of Clinical Science,  
Intervention and Technology 
Division of Renal Medicine  
 
Prof. Rafael Kramann, MD, PhD 
RWTH Aachen University 
Division of Nephrology and Clinical Immunology 
 
 

Assessment committee: 
 
Prof. Tilman Hackeng, PhD (Chair) 
Maastricht University 
Department of Biochemistry 
Cardiovascular Research Institute Maastricht 
 
Prof. Marc Vervloet, MD, PhD 
Amsterdam University Medical Center  
Department of Nephrology 
 
Asst. Prof. Sagar Nigwekar, MD, PhD  
Harvard Medical School 
Department of Medicine 
Division of Nephrology 
 
Prof. Peter Nilsson, MD, PhD  
Lund University  
Department of Clinical Sciences, Malmö  
 
Assoc. Prof. Sergiu-Bogdan Catrina, MD, PhD 
Karolinska Institutet 
Department of Molecular Medicine and Surgery 
 
Prof. Marc Hemmelder, MD, PhD 
Maastricht University Medical Center  
Department of Internal Medicine 
 

The research presented in this dissertation was funded with a grant from European Union's Horizon 
2020 research and innovation programme under the Marie Skłodowska-Curie grant (agreement No 
722609), INTRICARE 



CHRONIC KIDNEY DISEASE - A CLINICAL MODEL OF 
PREMATURE VASCULAR AGING 
THESIS FOR DOCTORAL DEGREE (Ph.D.)  

By 

Lu Dai 

The thesis will be defended in public at Von Behring, Alfred Nobels Allé 8 plan 9,  
Karolinska Institutet, Stockholm, May 18th, 2021 at 09:00 

 
 
Principal Supervisor: 
Prof. Peter Stenvinkel, MD, PhD 
Karolinska Institutet 
Department of Clinical Science,  
Intervention and Technology 
Division of Renal Medicine  
 
Co-supervisors: 
Assoc. Prof. Bengt Lindholm, MD, PhD 
Karolinska Institutet 
Department of Clinical Science,  
Intervention and Technology 
Division of Renal Medicine  
 
Dr. Abdul Rashid Qureshi, MD, PhD 
Karolinska Institutet 
Department of Clinical Science,  
Intervention and Technology 
Division of Renal Medicine  
 
Anna Witasp, PhD 
Karolinska Institutet 
Department of Clinical Science,  
Intervention and Technology 
Division of Renal Medicine  
 
 

 
 
Chair:  
Assoc. Prof. Peter Barany, MD, PhD  
Karolinska Institutet 
Department of Clinical Science,  
Intervention and Technology 
Division of Renal Medicine  
 
Opponent: 
Prof. Marc Vervloet, MD, PhD 
Amsterdam University Medical Center  
Department of Nephrology 
 
Examination Board: 
Prof. Peter Nilsson, MD, PhD 
Lund University  
Department of Clinical Sciences, Malmö  
 
Assoc. Prof. Sergiu-Catrina Bogdan, MD, PhD 
Karolinska Institutet 
Department of Molecular Medicine and Surgery  
 
Prof. Marc Hemmelder, MD, PhD 
Maastricht University Medical Center 
Department of Internal Medicine 
 

 

 
 

 

 

 





 

 

ABSTRACT 
Patients with chronic kidney disease (CKD) are prone to develop an accelerated vascular aging 
phenotype characterized by vascular calcification (VC), a major culprit of cardiovascular 
complications and premature death. While VC has been recognized as an active 
pathophysiologic process with involvement of specific mediators and effectors, the co-
existence of traditional risk factors (i.e., high age, diabetes, hypertension, dyslipidemia), 
inflammaging stimuli and pharmacological interventions (e.g., phosphate binders, warfarin and 
statin therapy) adds to the complexity of the course and consequences of different types of VC 
(e.g., intima and media VC, micro- and macrocalcification) in the context of CKD. This work 
attempts to further explore the prognostic value, predictive markers as well as collateral 
therapeutic consequence of VC in uremic milieu.  

Study I explores the associations of the composites of coronary artery calcium (CAC) score, 
i.e., CAC density and CAC volume, with mortality risk in patients with CKD stage 5 (CKD 
G5). We found that while mortality risk increases with higher CAC score and CAC volume, 
CAC density shows an inverse-J shaped pattern, with the crude mortality rate being highest in 
the middle tertile of CAC density.  

Study II evaluates the overlapping presence of aortic valve calcium (AVC) and CAC and the 
prognostic value of AVC in CKD5 patients. We found a more common overlap of AVC and 
CAC in CKD G5 than that observed in general population. High AVC score is associated with 
increased all-cause mortality independent of presence of CAC, traditional risk factors and 
inflammation. 

Study III investigates phenotypic factors associated with the presence of biopsy-verified media 
VC in CKD G5 patients using the relaxed linear separability feature selection model. We 
identified through a mapping and ranking process, 17 features including novel biomarkers and 
traditional risk factors that can differentiate patients with media VC from those without. These 
results, if confirmed, may inform future investigations on media VC without the need of arterial 
biopsies. 

Study IV assesses the association of commonly prescribed phosphate binder sevelamer with 
gut microbial metabolites in CKD G5 patients. We found that sevelamer therapy associates 
with increased gut-derived uremic toxins and poor vitamin K status, suggesting potential trade-
offs of sevelamer therapy in CKD.   

Study V explores the plausible association between plasma dephosphorylated-uncarboxylated 
matrix Gla-protein (dp-ucMGP, a circulating marker of functional vitamin K deficiency), VC 
and mortality in CKD G5 patients. We found an independent association between high dp-
ucMGP levels and increased mortality risk that is not modified by presence of CAC and AVC 
in CKD G5.   
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1 INTRODUCTION 

1.1 CHRONIC KIDNEY DISEASE AND PREMATURE VASCULAR AGING 

Patients with chronic kidney disease (CKD) are characterized by an accelerated aging process, 
including multiple cardiovascular complications, muscle wasting, osteoporosis and frailty 
[1,2]. In particular, the arterial vasculature in CKD patients undergoes changes typical of aging 
and atypical of the chronological age [2,3]. This premature vascular aging phenotype, 
accompanied by progressive vascular calcification (VC), along with chronic inflammation, 
persistent oxidative stress and deficient anti-aging systems [2], is considered as a major culprit 
of unfavorable cardiovascular complications in CKD.  

Current clinical strategies aiming at counteracting VC are focused on controlling 
atherosclerosis and CKD - mineral bone disorders (CKD-MBD), using among others statin 
therapy, inhibition of calcium-phosphate depositions by employing phosphate binders, and 
calcimimetics, calcitriol, or vitamin D analogues while while vitamin K, magnesium, and 
crystallization inhibitors (e.g., pyrophosphate and sodium thiosulfate) are also being 
considered. Established and some emerging treatments have been evaluated in interventional 
studies, yet results are inconclusive and it remains ambiguous whether they are efficient in 
ameliorating VC progression in patients with CKD [4]. Additionally, although the unraveling 
of molecular targets of VC (e.g., intravenous myo-inositol hexaphosphate [5], serum- and 
glucocorticoid-inducible kinase 1 inhibitor [6] and apabetalone [7]) has brought either 
preclinical or clinical evidence for potential novel therapies of VC, no pharmaceutical 
treatments have so far proven to avert or thoroughly reverse VC progression in CKD.  

Recent data from the European Renal Association-European Dialysis and Transplant 
Association (ERA-EDTA) Registry on trends of excess mortality - in relation to the general 
population - among 280,075 adult patients who started kidney replacement therapy (KRT) 
between 2002 and 2015 indicate an overall improvement of survival that was most prominent 
in dialysis patients who showed a decrease in excess mortality risk per five years by 28% for 
atheromatous cardiovascular disease (CVD), 10% for non-atheromatous CVD and 10% for 
infections [8]. This may reflect developments in dialysis treatment as well as the introduction 
and implementation of guideline-recommended treatments to improve cardiovascular health in 
the CKD population. However, the implications and impact of these newer treatment strategies 
on ameliorating cardiovascular complications including vascular aging (e.g., atheroma and 
arteriosclerosis) in this population are not fully deciphered.  

It is plausible that the concurrence of traditional risk factors, CKD-MBD, gut dysbiosis, 
persistent oxidative stress, uremic inflammation and cellular senescence involved in the 
pathological VC process, together with the diverse consequent forms of VC may bewilder its 
actual clinical relevance and importance as a therapeutic target in the context of CKD. More 
profound knowledge of phenotypic features, clinical relevance and prognostic value of VC 
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remains to be clarified in this enigmatic scenario to develop and orientate efficient preventive 
and therapeutic strategies to counteract VC.  

1.2 VASCULAR CALCIFICATION IN CKD - A COMPLEX SCENARIO  

In CKD, premature VC can occur in different vascular layers (i.e., intima and media VC) 
distributed at divergent anatomical sites (i.e., different vascular trees) with distinct nature (i.e., 
microcalcification and macrocalcification). The divergent forms of VC obstruct the utilization 
of VC in risk prediction and adds complexity to its role in risk prediction and disease prognosis 
in clinical settings. The development of Agatston scoring as a semi-quantitative measure of 
coronary artery calcium (CAC) [9] has allowed screening, quantification and follow-up of large 
study groups to compute the presence and progression of atherosclerotic calcification, which 
was found to be a predictor of future CVD events beyond traditional Framingham risk score 
(FRS) [10]. However, the appropriateness of upweighting CAC for density has been questioned 
with emerging data indicating a disparate trajectory of CAC volume and density in CVD risk 
prediction in different populations [11–15].  

Moreover, the distribution of intima and media calcification may differ in different artery 
segments, e.g., with more limited media calcification but more prominent atherosclerotic 
plaques in coronary arteries. Given the possible profound media calcification in CKD, 
quantification of calcification at coronary artery sites represented by CAC may fail to give a 
full coverage of VC burden in CKD population. Since current imaging techniques are not able 
to differentiate between intima and media calcification, and it is uncertain whether intimal and 
medial layers of calcification are of equal weight in risk prediction, the prognostic value of 
CAC scoring of atherosclerotic plaque in CKD may not be as representative as observed in the 
general population. In addition, the nature of atherosclerotic calcification, i.e., micro- and 
macrocalcification, and the role of inflammation in the evolution of these two entities, largely 
remains to be illuminated. Taken together, the persistent uremic inflammation concomitant 
with other traditional and non-traditional risk factors may complicate the role of atherosclerosis 
in risk prediction, and the unequal susceptibility of intima and media calcification in different 
vascular segments could further challenge a holistic evaluation of VC in the context of CKD. 

1.3 CLINICAL RELEVANCE AND PROGNOSTIC VALUE OF VC COMPONENTS   

The presence of VC is a common outcome of different types of vessel wall injury resulting 
from numerous stimuli and cellular insults, such as oxidative stress and inflammation. The 
consequent diverse forms of VC might be considered as a reflection of the heterogeneous VC 
pathogenesis on a cellular level. In the clinical setting, it is therefore crucial to differentiate the 
phenotypic features and clinical spectrums of VC, as to better understand the clinical relevance 
of VC and to improve interventional strategies. 

In the early stages of atherosclerosis, initial hydroxyapatite deposition in response to pro-
inflammatory stimuli induces the formation of microcalcification nuclei, which can in turn 
exacerbate the progression of inflammation and calcium precipitation, causing propagation of 
vessel impairment [16]. Ultimately, this vicious interplay promotes plaque rupture as a result 
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of the progressive thinning of the fibrous cap and the detrimental mechanical effect of 
microcalcification [17]. Nevertheless, if an adaptive and repairing response prevails, vascular 
smooth muscle cells (VSMCs) would undergo osteogenic phenotypic differentiation and 
mineralization, prompting the formation of macrocalcification, which can stabilize the plaque 
by acting as a barrier restricting the spread of inflammation [16]. Postmortem analysis of 
coronary artery biopsies from victims of acute myocardial infarction presented more extensive 
VC than those from non-cardiac victims, and the extent of VC was less advanced in unstable 
than in stable plaques, suggesting an inverse correlation between calcium deposition and cap 
inflammation [18].  

From a histological perspective, calcifications are defined as microcalcification (³0.5 µm, 
typically <15 µm in diameter), speckled calcification (£2 mm), collectively referred to as 
“microcalcification” or spotty calcification based on the granular pattern of calcium deposition, 
fragmented calcification (2-5 mm), and diffuse calcification (³5 mm segment of continuous 
calcium) or “macrocalcification” based on the sheet-like conformation of the calcified tissue. 
The last three histological classifications correspond to the radiographic categories as speckled, 
fragmented, and diffuse calcification, respectively. The earlier stages of microcalcifications or 
spotty calcification may be associated with risks of plaque rupture. In cases of sudden coronary 
death, 65% of acute plaque ruptures were characterized by exclusive speckled calcification and 
over 50% of thin-cap fibro atheroma showed either an absence of calcification or speckled 
calcification by computed tomography (CT) imaging [19]. Additionally, routine lipid lowering 
strategies (i.e., statin use) targeting CAC have yielded conflicting results, with previous studies 
suggesting an impact on CAC regression and contemporaneous data indicating rather the 
opposite [20–22]. Of note, while CAC progression might be attributed to plaque development 
into a more unstable morphology with accumulative spotty and focal calcifications, CAC 
progression in the context of lipid lowering treatment might be pertinent to a shift towards 
plaque stabilization with a more stable fibro-calcific morphology [23].  

This CAC paradox may be attributed to the limitation of conventional CT whereby micro-
calcification nodules smaller than 15 µm and speckled calcification <0.5 mm are undetectable 
and classified as “absent” in the radiographic examination, which may also partially explain 
the inconclusive results regarding the predictive value of CAC components (i.e. CAC density 
and volume). While CAC volume was found to be positively and CAC density negatively 
associated with CVD events across all levels of CAC volume, as well as multiple strata of other 
risk factors in general population [13], Bellasi et al. [14] reported a positive association among 
plaque density and risk of all-cause mortality in hemodialysis (HD) patients, implying that high 
density calcium by conventional CT does not illuminate a favorable plaque stabilization in the 
context of CKD. The prognostic value of CAC components in uremia is further explored in 
Study I. The prevalence of calcification at different vascular sites and the prognosis of aortic 
valve calcium (AVC) is further investigated in Study II. 

Aside from intima calcification and atherosclerosis, patients with CKD display a typical pattern 
with media calcification characterized by pathological deposition of hydroxyapatite in the 
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medial layer of the arteries [24]. Media calcification is centered around VSMC calcification 
that shares similarities with developmental osteogenesis/chondrogenesis [25]. Under 
physiological conditions, an endogenous defensive system would protect VSMCs from 
phenotypic transdifferentiation and ectopic calcification. Multiple lines of evidence indicate 
that the uremic milieu (e.g. uremic toxins retention and other pathological cellular stress) 
triggers key pathways of VSMCs calcification and induces tissue damage via various 
modifications in proteins and DNA [26–29]. The inhibitory defense pathways, which tend to 
be suppressed in CKD by factors such as hyperphosphatemia, hypercalcemia, 
hyperparathyroidism and hypomagnesemia, with coexistence of inflammation and oxidative 
stress,  are further challenged to counteract the VC burden [28,30]. Media calcification causes 
arterial stiffness, a hallmark of early vascular aging (EVA), and the extent of media 
calcification can be taken as an estimation of biological vascular age. This is in line with the 
notion that CKD may serve as a clinical model of EVA whereby cellular senescence is possibly 
involved in the VC process [31].  

As mentioned previously, media calcification also accounts for cardiovascular comorbidity and 
mortality in CKD, similar with intima calcification. However, the exact causality between 
media calcification and poor clinical outcome remains to be established as most of the clinical 
research conclusions are based on observational studies. Well-designed prospective follow-up 
studies are warranted to illustrate whether the progression of media calcification is crucial in 
determining clinical outcomes. However, such studies have been hampered by the lack of 
specific and valid imaging and quantification techniques of media calcification. Clinical 
investigations have focused most often on coronary arteries and the aortic arteries, where both 
media and atherosclerotic calcification can occur in parallel.  

While carotid-femoral pulse wave velocity (PWV) has been considered as an established 
marker of arterial stiffening [32,33] and a reflection of media calcification, it is a functional 
measurement rather than a direct quantification of calcification. Precise quantification of media 
calcification can only be achieved from arterial beds exclusively devoid of atherosclerosis, 
where media calcification takes place with high sensitivity. The research exploration of 
mammograms in breast arteries has provided new insights into the detection of media 
calcification as atherosclerosis does not occur in breast arteries [34]. According to 
mammographic data, it was recently shown that the progression of media calcification in breast 
arteries accelerated significantly in advanced CKD, and diminished to control levels after 
kidney transplantation [34]. While this might indeed provide a novel and easy method to 
evaluate the presence and progression of media calcification, these studies were conducted in 
a small sample of female patients, and the validity in large-size cohorts of CKD patients 
including men remains to be testified. In fact, no fundamental breakthroughs have been made 
in the diagnosis (i.e., visualization of the extent and severity of media calcification) or 
therapeutics that directly target media VC.  

Hence, aside from expanding mechanistic knowledge in preclinical studies, advanced data 
analysis methodology and machine-learning algorithms including integrating biomarkers, 
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mechanistic and imaging data so as to predict and to diagnose the presence of media 
calcification and more importantly, to discover novel therapeutic targets, are urgently needed. 
In Study III, we attempt to explore the predictive features of media calcification using an 
advanced statistical model. 

1.4 THERAPEUTIC STRATEGIES, GUT MICROBIAL METABOLISM AND VC 

Current clinical strategies targeting VC or aiming at improving clinical outcomes linked to VC, 
range from lipid-lowering drugs, management of CKD-MBD, to inhibition of calcium 
phosphate deposition. Hyperphosphatemia, one of the most common metabolic disorders in 
CKD, seems to be amplified in advanced CKD and associates with adverse clinical outcome 
across all stages of the disease [35,36]. Even without predominant hyperphosphatemia and 
hypercalcemia, the phosphate and calcium load tends to drive VC in both CKD and in the 
general population [37]. Also, in combination with elevated parathyroid hormone levels and 
frequent use of calcitriol, phosphate overload and hyperphosphatemia may further induce 
development of kidney and parathyroid glands resistance to fibroblast growth factor 23 
(FGF23), eventually resulting in a paradigm of hyperphosphatemia, excessive FGF23 levels 
and secondary hyperparathyroidism in advanced CKD. The direct or indirect role of FGF23 in 
VC development has been discussed and it remains to be determined whether FGF23 acts as a 
protective or detrimental factor in uremic calcification [38–41]. Targeting FGF23 alone is 
clearly not an optimal strategy to combat VC as the pathophysiologic trajectory is still elusive. 
Phosphate binders targeting hyperphosphatemia, which also reduce FGF23 levels, hence 
become a cornerstone in improving clinical outcome in uremic patients.  

Currently, both sevelamer hydrochloride and sevelamer carbonate are used in clinical practice 
and are first-line phosphate binders in many dialysis units [42]. Despite not being fully 
established, some randomized clinical trials suggested that compared with calcium-containing 
phosphate binders,  sevelamer ameliorated VC progression and conferred a survival benefit in 
HD patients [43,44]. However, sevelamer treatment may have trade-offs. First of all, both 
experimental and clinical data have indicated that sevelamer may bind essential nutrients, such 
as vitamin D and K [45–47]. Secondly, gastrointestinal symptoms are common among 
sevelamer users, albeit the underlying pathophysiology is poorly addressed. Thirdly, 
depositions of mucosal sevelamer crystals along the gastrointestinal tract [48–50] can alter the 
influx of minerals and nutrients and influence the transit time in the colon. Altogether, they 
may induce gut dysbiosis, ultimately resulting in an increased generation of toxins originating 
from protein and choline fermentation. It is worth noting that like sevelamer, many 
pharmaceutical agents often have gastrointestinal side effects, yet the role of the gut 
microbiome in these processes is rarely examined. Along the recent increased awareness of 
drug-microbiome interactions [51], the association between sevelamer use and gut microbial 
metabolism is explored in Study IV. 
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1.5 VITAMIN K AND VC 

The role for vitamin K in VC has been fairly well established in preclinical studies, mainly 
through carboxylation of vitamin K-dependent protein matrix Gla protein (MGP), which is 
primarily synthesized and secreted by VSMCs [52]. Preceding work on MGP biology was 
conducted in a knockout mouse model, where MGP-deficient mice developed extensive 
calcification both in arteries and cartilage within two months [53]. MGP inhibits VC in vivo 
[53–55], possibly by a direct binding with hydroxyapatite in the arterial walls [56] and by a 
downregulation of the activation of bone morphogenetic proteins [57,58]. Activation of MGP 
requires two post-translational modifications, including serine phosphorylation and γ-
glutamate carboxylation [59,60]. Vitamin K serves as a cofactor of MGP carboxylation by 
converting glutamate residues into γ-carboxyglutamate [59,61]. Vitamin K deficiency, thus 
limits the carboxylation of MGP in VSMCs, leading to a subsequent high secretion of 
dephosphorylated uncarboxylated MGP (dp-ucMGP). High circulating dp-ucMGP levels, as a 
marker of functional vitamin K deficiency, have been linked with mortality in various study 
subjects, including patients with CVD [62–64], CKD [65–67], diabetes[68], as well as in the 
general population [69,70]. Whether this association can be attributed to its role in inhibiting 
VC is being debated. The association between vitamin K status and VC from observational 
studies are equivocal [71–75].  Results from the recent K4Kidneys trial revealed that 12-month 
vitamin K2 supplementation generally failed to improve parameters of vascular health in 
patients with CKD [76]. Given the multifaceted etiology of VC, it is plausible that one single 
intervention is insufficient to rescue VC process and the exact weight of vitamin K in VC 
progression is to be elucidated. 

In addition, a large body of epidemiological studies suggests that vitamin K is involved in age-
related disease phenotypes other than vascular health. Results from the he Health, Aging and 
Body Composition Study (Health ABC) indicated that vitamin K deficiency was associated 
with diminished lower-extremity function over 4-5 years of follow-up [77]. The prospective 
Longitudinal Aging Study Amsterdam (LASA) cohort study showed that a lower baseline 
vitamin K status (indicated by higher dp-ucMGP levels), was associated with a higher frailty 
index score among the elderly with 13-year follow-up [78]. Though the underlying mechanism 
behind these associations has not been clearly illustrated, the epidemiological evidence 
suggests a beneficial role of vitamin K above its role as a nutritional supplement or remedy. 
Vitamin K deficiency is prevalent in CKD and progresses with the decline of renal function 
[65,74,79,80]. Given the role of vitamin K insufficiency in VC and age-related disease, it would 
be interesting to evaluate the association between vitamin K status, VC, and overall clinical 
outcome in CKD - a paradigm of profound aging process. This issue is further examined in 
Study V. 
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2 RESEARCH AIMS 
The overall aim of the present thesis is to expand our understanding of risk factors and clinical 
relevance of vascular calcification in CKD. 

More specifically, the objectives were to: 

• Investigate the prognostic value of atherosclerotic calcification, represented by CAC 
density and CAC volume, and the role of AVC in risk stratification in patients with 
advanced CKD (Study I and II) 
 

• Identify and characterize risk factors associated with histologically verified media 
calcification in arterial biopsies obtained from patients with advanced CKD (Study III) 
 

• Study the possible link between sevelamer use and gut microbial metabolism in patients 
with advanced CKD (Study IV) 
 

• Explore the plausible associations between vitamin K deficiency, vascular calcification, 
and all-cause mortality in patients with advanced CKD (Study V) 
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3 PATIENTS AND METHODS 
The work presented in this thesis has been conducted using data from three cohorts of patients 
that have been/are collected and coordinated by the Division of Renal Medicine, Karolinska 
University Hospital at Huddinge, Stockholm, Sweden and from one cohort of patients at 
University Hospital Leuven, Belgium. At the Karolinska University Hospital, Huddinge, 
patients with CKD were enrolled in the following studies: the prospective MIA study of 
incident CKD stage 5 (CKD G5) patients started in 1994 with ongoing recruitment and follow-
up; MIMICK 2 study of prevalent peritoneal dialysis (PD) patients initiated in 2008 with a 
median follow-up of 32 months; and the prospective Kärltx (RTx-LD) study of living donor 
kidney transplant recipients commenced in 2009 with ongoing patient recruitment and follow-
up. At University Hospital Leuven, data were obtained from kidney transplant recipients who 
had consented to participate in a prospective kidney allograft biopsy program. Hence, the 
patient material was processed using post hoc analysis of collected data. The number of patients 
included and the primary parameters or clinical endpoints in the different sub-studies of this 
thesis are summarized in Table 1. 

Table 1. Cohort information and main investigation in each study. 

 Study I Study II Study III Study IV Study V 

N 296 259 152 423 493 

Cohort      

   MIA* 107 94 - - 270 

   MIMICK2* 55 53 - - 82 

   Kärltx * 134 112 152 76 141 

  Leuven cohort # - - - 347 - 

Age, years 
(median) 

55 55 46 54 55 

Male, % 67% 67% 66% 66% 66% 

Primary 
parameters or 
clinical endpoint 
(if applicable) 

Total CAC, 
CAC density, 
CAC volume; 

all-cause 
mortality 

AVC, CAC, 
all-cause 
mortality 

Baseline 
clinical 
features; 

media VC 

Sevelamer use, 
IndS, pCS, 

TMAO, PAG, 
dp-ucMGP 

Dp-ucMGP, 
CAC, AVC; 

all-cause 
mortality 

* Cohorts based and established at Karolinska University Hospital, Stockholm, Sweden; #Patients from 
University Hospital Leuven, Belgium.  

3.1 SUBJECTS 

The Malnutrition, Inflammation and Atherosclerosis (MIA) cohort is a patient cohort 
consisting of incident patients with CKD G5 (GFR<15 ml/min) sampled close to the start of 
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KRT at the Department of Renal Medicine, Karolinska University Hospital, Stockholm, 
Sweden. Patients are further followed up till death or transplantation. Patients were invited to 
attend additional visits after one year and two years on dialysis. This ongoing prospective 
cohort study started in 1994, and a descriptive protocol has been reported previously [81]. The 
study exclusion criteria were: age below 18 years, clinical signs of acute infection, active 
vasculitis or liver disease at the time of recruitment, or unwillingness to participate in the study. 
In the MIA study, patients have a median age of 56 years at inclusion, 63% are male, 36% have 
CVD and 30% have diabetes. Causes of CKD were chronic glomerulonephritis in about 22% 
of patients, diabetic nephropathy in about 26% of patients, autosomal dominant polycystic 
kidney disease (ADPKD) in about 12% patients and other or unknown etiologies in about 40% 
of patients. The vast majority of patients started dialysis therapy (either HD or PD) shortly after 
enrollment. Most patients were prescribed with commonly used drugs in CKD, e.g., phosphate-
and potassium-binders, diuretics, erythropoiesis-stimulating agents, iron substitution and 
vitamin B, C and D supplementation. In addition, 97% of patients received antihypertensive 
treatment (62% were prescribed with angiotensin-converting enzyme inhibitors and/or 
angiotensin II receptor antagonists (ACEi/ARB), 64% with beta blockers and 52% with 
calcium-channel blockers) and 28% of the patients used statins. The Swedish Ethical Review 
Authority approved the study (Dnr 2016/1470-31/4). This cohort constitutes the patient 
materials included in Studies I, II and V. 

The Mapping of Inflammatory Markers in Chronic Kidney Disease 2 (MIMICK2) is a 
cohort consisting of prevalent patients undergoing PD at Karolinska University Hospital at 
Huddinge and Danderyds Hospital, Stockholm, Sweden. This study originally aimed at 
investigating the variability of inflammatory parameters in prevalent PD patients over time. 
Recruitment of patients occurred from March 2008 through April 2011. The median age of 
patients is 64 years, 68% are males, 29% have CVD and 24% have diabetes. Causes of CKD 
were chronic glomerulonephritis in about 14% of patients, diabetic nephropathy in about 12% 
of patients, polycystic kidney disease in about 6% patients and other, or unknown etiologies in 
about 68% of patients. The Swedish Ethical Review Authority approved the study (Dnr. 
2007/1663-31) 

The Kärltx cohort is a prospective study cohort consisting of living donor kidney transplant 
(LD-RTx) recipients. Since March 2009, CKD patients undergoing LD-RTx at the Department 
of Transplantation Surgery of the Karolinska University Hospital are invited to participate in 
this study, which is designed to deepen the knowledge on inflammatory markers and proteins 
that affect bone turnover and vascular calcification in CKD patients. Blood and urine are 
collected prior to the transplantation procedure as well as at follow-up after 12 and 24 months. 
Artery biopsies and biopsies from fat and muscle are obtained from patients during the 
transplant surgery. Samples are utilized for a wide range of analyses, including assessment of 
biomarkers of inflammation, metabolism and atherosclerosis, as well as tissue staining and 
DNA and RNA assays. In addition, the vascular tissue undergoes histopathological 
examination to assess the degree of media calcification. As of the investigations reported in the 
thesis, a total of 199 patients were recruited. Their median age is 46 years, 69% are males, 15% 
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have CVD and 9% have diabetes. Causes of CKD were chronic glomerulonephritis in about 
33% of patients, diabetic nephropathy in about 6% of patients, ADPKD in about 10% of 
patients and other or unknown etiologies in about 51% of patients. The most commonly used 
medications before RTx were erythropoiesis-stimulating agents (82%), phosphate binders 
(90%), antihypertensive medications (55% with ACEi/ARB, 58% with betablockers and 55% 
with calcium-channel blockers) and statin use (35%). About 55% of the patients received 
dialysis treatment for a median period of 1.1 years before undergoing LD-RTx; 24% of the 
patients received PD, 28% received HD and 3% had both PD and HD, as two patients switched 
from PD to HD and three patients switched from HD to PD treatment. The Swedish Ethical 
Review Authority approved the study (no. 2008/1748-31/2, 2016/1790-32). 

The Leuven cohort is a prospective observational study comprised of CKD G5 patients 
referred for single kidney transplant at the University Hospital Leuven. The aim of this study 
is to investigate the natural history of bone histomorphometry and vascular calcification in 
dialysis-dependent patients before and after kidney transplantation. Adult patients (>18 years) 
eligible for kidney transplantation at the University Hospital Leuven are invited to participate 
in a kidney allograft protocol biopsy program. Exclusion criteria are: use of bisphosphonates 
within 6 months before the study entry, clinical signs of acute infection and unwillingness to 
participate in the study. Blood samples and bone biopsies (prior to kidney transplantation) and 
epigastric inferior artery biopsies (during kidney transplantation procedure) are collected and 
stored for a range of analyses. The ethical committees of University Hospitals Leuven approved 
the study (S52091). 

3.2 CLINICAL AND PHYSICAL EXAMINATION  

Each patient’s medical chart was reviewed and relevant data including underlying kidney 
disease, history of CVD, diabetes, other comorbid conditions, common medications, and 
survival were extracted.  

CVD was defined by clinical history of signs of ischemic cardiac disease, and/or presence of 
peripheral vascular disease and/or cerebrovascular disease. Smoking habits were recorded as 
current smokers, former smokers, and non-smokers. In the present studies, patients with current 
smoking habits are defined as smokers. The estimated glomerular filtration rate (eGFR) in the 
MIA and Kärltx cohort was estimated by the Chronic Kidney Disease Epidemiology 
Collaboration (CKD-EPI) formula [82]. In MIMICK2 cohort, total time on PD was defined as 
vintage time.  

FRS, an estimate of 10-year risk of developing CVD, was calculated from sex- and age- 
stratified formulas with scores for systolic blood pressure, diabetes, anti-hypertensive 
medication, total cholesterol, high-density lipoprotein (HDL) cholesterol and smoking status 
[83]. 

Survival was determined from the day of examination and sample collection, with no loss to 
follow-up of any patients. Cardiovascular death was identified by physicians and was defined 
as a result of sudden death, coronary heart disease, stroke or complicated peripheral vascular 



 

 11 

disease. Causes of death were registered by a nephrologist blind to patient data and to the study 
objectives. 

Nutritional status  

Nutritional status was assessed using the subjective global assessment (SGA), with a four point 
scale grading system consisting of six components: three subjective assessments answered by 
the patients concern the patient’s history of weight loss, incidence of anorexia and vomiting, 
and three assessments performed by evaluators based on the subjective grading of muscle 
wasting, presence of edema and loss of subcutaneous fat [84]. On the basis of these 
assessments, each patient received a nutritional status score, 1 = normal nutritional status, 2 = 
mild malnutrition, 3 = moderate malnutrition and 4 = severe malnutrition. For the purpose of 
the study, poor nutritional status was defined as SGA score >1 and normal nutritional status 
was defined as SGA score = 1.  

Anthropometric evaluation 

At time of recruitment, body weight, body mass index (BMI, kg/m2), and other anthropometric 

measurements were obtained. Lean body mass and fat mass were calculated by anthropometry 
with measurements of biceps, triceps, sub-scapular and supra-iliac skinfold thickness using the 
Durnin and Womersley caliper method [85], and by equations proposed by Siri [86]. Lean body 
mass index and fat body mass index were calculated according to the method of Kyle et al [87] 
and expressed as kg/m2. Handgrip strength (HGS) was measured both in the dominant hand or 
in the hand without fistula (in the prevalent HD patients) using a Harpenden Handgrip 
Dynamometer (Yamar, Jackson, MI, USA). Each measurement was repeated three times for 
the measured hand, and the highest value was noted. For the analyses in the thesis, HGS was 
converted into percentage of sex-matched healthy subjects (% HGS).  

Augmentation index 

Assessment of arterial stiffness was performed non-invasively by SphygmoCorVR System 
(AtCor Medical, Sydney, Australia), using tonometry-based and cuff-based SphygmoCor 
Devices. The peripheral pulse waveform (PPW) was recorded from the radial artery at the wrist 
in non-fistula arm using applanation tonometry with a sensor probe. PPW and brachial blood 
pressure measurements were used to estimate central aortic pressure waveform calculated by 
the transfer function. Using the cuff-based SphygmoCor Device, brachial artery compression 
waveforms were obtained by partially inflating a cuff over the brachial artery between shoulder 
and elbow joint. Brachial waveforms were calibrated using cuff-measured brachial systolic and 
diastolic blood pressures, and then used to generate central aortic pressure waveforms by 
transfer function. Augmentation pressure (AP) and augmentation index (AIx) were derived 
based on pulse wave analysis. The merging of incident and the reflected wave (the inflection 
point) were identified on the generated central aortic pressure waveform. AP was defined as 
maximum systolic pressure minus pressure at the inflection point. AIx was defined as AP 
divided by pulse pressure and expressed as a percentage. In addition, because AIx is influenced 
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by heart rate, an index normalized for heart rate of 75 beats per minute (bpm) was used. 
SphygmoCor adjusts the AIx at an inverse rate of 4.8% for each 10 bpm increment. 

Skin autofluorescence  

Advanced glycation end-products autofluorescence was measured using an Autofluorescence 
AGE reader (DiagnOptics Technologies BV, Groningen, The Netherlands). Patients with 
tattooed and dark skin were not investigated. The AGE reader illuminates a skin surface of 1 
cm2, guarded against surrounding light, with an excitation light source between 300 and 420 
nm. Emission light (fluorescence in the wavelength range between 420 and 600nm) and 
reflected excitation light (with a wavelength between 300 and 420nm) from the skin are 
measured with a spectrometer. SAF was calculated as the ratio between the emission light and 
reflected excitation light, multiplied by 100, and expressed in arbitrary units (AU). All 
measurements were performed at room temperature in a semi-dark environment.  

3.3 BIOCHEMICAL MEASUREMENTS   

Blood samples were collected after an overnight fast or before dialysis session in HD patients 
after the longest interdialytic period. Plasma was separated within 30 min and was kept frozen 
at -70 °C if not analyzed immediately. Determinations of creatinine, albumin (bromcresol 
purple), calcium, phosphate, intact parathyroid hormone (iPTH), total cholesterol, low-density 
lipoprotein (LDL) and HDL cholesterol, triglyceride, hemoglobin, and high-sensitivity C-
reactive protein (hsCRP, high-sensitivity nephelometry assay) were measured by routine 
methods at the Division of Clinical Chemistry, Department of Laboratory Medicine, 
Karolinska University Hospital, Huddinge. The rest of biochemical parameters were mostly 
performed at Renal Lab of Division of Renal Medicine, Karolinska Institutet, or elsewhere in 
designated labs. Plasma interleukin-6 was analyzed by immunometric assays on an Immulite 
1000 Analyzer (Siemens Healthcare Diagnostics, Los Angeles, CA, USA) using commercial 
kits (coefficient of variation, CV 4%). Total osteocalcin (N-MID; Immunodiagnostic Systems, 
Boldon, UK) and inactive/active carboxylated osteocalcin (Takara Bio, Otsu, Shiga, Japan) 
were analyzed with Commercial ELISA Kits. Klotho was measured by Human solubleα-
Klotho ELISA Assay from IBL International (Hamburg, Germany) and human FGF23 (C 
terminal) was measured by ELISA Kit from Immutopics International (San Clemente, CA). 
Total alkaline phosphatase (ALP) activity was measured with Commercial Reagent Kit 
(Alkaline Phosphatase (IFCC) Plus; Thermo Fisher Scientific Oy, Vantaa, Finland) by an 
automatic chemical analyzer (Konelab 20XTi; Thermo Electron Corporation, Vantaa, Finland) 
and bone ALP (BALP) was measured using Ostase BAP ELISA kit (Immunodiagnostic 
Systems, Boldon, UK).  

Vitamin K status was indirectly evaluated by measuring plasma dp-ucMGP levels in a single 
run by the Laboratory of Coagulation Profile (Maastricht, the Netherlands) using the 
commercially available IVD CE-marked chemiluminescent InaKtif MGP assay on the IDS-
iSYS system (Immunodiagnostic Systems, Boldon, UK) [88]. In brief, plasma samples and 
internal calibrators were incubated with magnetic particles coated with murine monoclonal 
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antibodies against dp-MGP, acridinium-labelled murine monoclonal antibodies against 
ucMGP and an assay buffer. The magnetic particles were captured using a magnet and washed 
to remove any unbound analyte. Trigger reagents were added, and the resulting light emitted 
by the acridinium label was directly proportional to the level of dp-ucMGP in the sample. The 
analytical range was between 300 and 12,000 pmol/L and was linear up to 11,651 pmol/L. The 
within-run and total variations of this assay were 0.8–6.2% and 3.0–8.2%, respectively.  

Serum levels of indoxyl sulfate (IndS), p-Cresyl sulfate (pCS), trimethylamine N-oxide 
(TMAO), phenylacetylglutamine (PAG) were quantified using a dedicated ultra-performance 
liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method as described 
elsewhere [89]. 

3.4 CORONARY ARTERY CALCIUM AND AORTIC VALVE CALCIUM  

Coronary artery calcium (CAC) and aortic valve calcium (AVC) were measured by 64-channel 
detector scanner (LightSpeed VCT; General Electric (GE) Healthcare, Milwaukee, WI, USA) 
in cine mode. Scans were ECG-gated and a standard non-contrast media protocol was applied 
using a tube voltage 100 kV, tube current 200 mA, rotation time 350 ms, slice thickness 2.5 
mm and a display field of view of 25 cm. CAC data were processed and analyzed using an 
Advantage Workstation (GE Healthcare, Milwaukee, Wisconsin, USA). CAC was assessed as 
a lesion with an area > 1 mm2 and a peak intensity >130 Hounsfield Units (HU) based on the 
Agatston method and expressed in Agatston units (AU) [9]. The Agatston score is calculated 
using a weighted measurement to the highest density of calcification in a coronary artery. The 
density is expressed in Hounsfield units, and graded as 1 = (130-199 HU), 2 = (200-299 HU), 
3 = (300-399 HU), and 4 = (�400 HU). The Agatston score is a product of density and area 
(mm2) of coronary calcification. The Agatston score of each plaque is then summed for all 
image slices of the heart (left main artery, the left anterior descending artery, the left circumflex 
artery and the right coronary artery) to determine the total CAC score. The total volume score 
(CAC volume, mm3) is a product of total area score (CAC area) and slice thickness 
(2.5mm)[13]. AVC-scores were computed using the Agatston CAC-scoring method from non-
contrast cardiac CT scans. AVC was defined as the sum of calcium in aortic valve area 
including calcium within valve leaflets as well in aortic wall immediately connected to the 
leaflets. Presence of AVC and CAC was defined as total AVC score>0 and CAC score>0, 
respectively. 

3.5 ARTERY BIOPSIES AND MEDIA CALCIFICATION SCORING  

Within 20 min after skin incision at start of surgery, one piece (1-2 cm in length) of the inferior 
epigastric artery was collected by sharp dissection. Samples were immediately placed in 
AllProtect Tissue Reagent (Qiagen, Hilden, Germany) or snap frozen and subsequently stored 
at −70 °C, or fixed in 4% phosphate-buffered formalin. Formalin-fixed tissues were embedded 
in paraffin. One- to two-µm-thick sections were stained with hematoxylin and eosin and von 
Kossa staining, respectively. The degree of media calcification was semi-quantified on von 
Kossa-stained sections and graded 0 to 3 by an experienced pathologist: score 0 indicates no 
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calcification, score 1 indicates minimal calcification, score 2 indicates moderate calcification 
and score 3 indicates extensive calcification. In Study III, patients with score 0 (n=25) and 1 
(n=68) were combined into one group representing no-minimal media VC (n=93), while those 
having moderate (score 2; n=38) or extensive (score 3; n =21) signs of VC were combined into 
another group representing moderate-extensive media VC (n = 59).  

3.6 STATISTICAL ANALYSES 

Data are expressed as median (either 10th-90th percentile or 25th-75th percentile interquartile 
range (IQR)), mean (standard deviation, SD), number, or percentage, as appropriate. Statistical 
significance was set at the level of p <0.05. Comparisons between two groups were assessed 
with the non-parametric Wilcoxon test for skewed continuous variables and t test for normally 
distributed continuous variables and Fischer´s exact test for nominal variables. Comparisons 
between more than two groups were assessed with Kruskal-Wallis test for the non-parametric 
continuous variables, one-way analysis of variance (ANOVA) for normally distributed 
variables and Chi-square test for nominal variables. Spearman rank correlation analysis was 
used to determine associations between two variables. Multivariate associations were 
performed by multiple linear regressions and multinomial logistic regression analyses.  

In Study III, the relaxed linear separability (RLS) method was applied to select the subset of 
features associated with VC. The term “relaxed” in the name of the method means the 
deterioration of the linear separability (between two groups of patients) due to the gradual 
neglecting of selected features. Initially, in the RLS algorithm, the optimal hyperplane that 
separates patients from two groups, is determined. This hyperplane is usually described by a 
large number of features. The repeated minimization of criterion function with a gradual 
increase of regularization parameter of RLS method allows to generate in a deterministic 
manner the descending sequence of feature subsets. In the process of evaluation of each feature 
subset, the cross-validation (leave one out) procedure was used. The apparent error (AE) and 
the cross-validation error (CVE) determined the errors on the training and testing parts of the 
data, respectively, and both denote the proportion of misclassified patients. The feature subset 
with minimal CVE was selected as optimal and applied on data of all patients to determine 
receiver operating characteristic (ROC) curve and check classification accuracy. The details of 
RLS feature selection method were presented elsewhere [90,91]. Missing values were assigned 
using k-nearest neighbor algorithm at k = 1 using “knnimpute” function from Bioinformatics 
Toolbox (Matlab 2018b, Mathworks, Natick, MA, USA). In total 8% of missing values were 
imputed. The mean values of features in the resultant dataset differed on average by 1.21 ± 
1.73% from the original data; however, for none of the features the difference was statistically 
significant.. The imputation of missing values did not involve the outcome variable. The RLS 
model was applied for the final dataset with complete set of values, whereas all the other 
methods operated on the original data set. 

Survival analyses were conducted with Fine & Gray competing-risk regression models with 
kidney transplantation as a competing risk to establish cumulative incidence curves. The 
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relative risk for mortality was presented as sub-hazard ratio (sHR, 95% confidence interval 
(CI)). 

Statistical analyses were performed using statistical software SAS version 9.4 (SAS Campus 
Drive, Cary, NC, USA), Stata 16.1 (Stata Corporation, College Station, TX, USA) and Matlab 
(2018b, Mathworks, Natick, MA, USA). Figures were created using GraphPad Prism (version 
9.0 GraphPad Software, www.graphpad.com). 

3.7 STUDY CONSIDERATIONS 

Strengths of the studies 

The access to relatively large and extensively phenotyped cohorts of CKD patients followed 
for several years - and with no patients lost during follow-up - that allowed analyses of long-
term consequences of VC with many potential confounders being taken into account represents 
a major strength of our studies. While the observational nature of the investigations does not 
allow us to draw conclusions on causality, our studies yielded several novel observations 
representing in some cases the first reported associations in this research field that we hope will 
stimulate and guide future research activities aiming at elucidating disease etiology, diagnosis, 
prognosis and adverse effects of VC in CKD.  

Limitations of the studies 

a) study design  

First, the studies presented in this thesis are of post hoc nature and therefore do not allow 
conclusions regarding causality. Secondly, during the long recruitment time window of the 
Kärltx (ongoing since 2009) and MIA (patients recruited between 1994-2014) cohorts, updated 
clinical guidelines with recommendations for therapeutic changes were introduced affecting 
the treatment of the patients. For example, use of non-calcium phosphate binders and statin 
therapy increased during recent decades. Thirdly, all investigated patients represent a selected 
group of those individuals surviving earlier stages of CKD and with no complications 
excluding them from participation. Among investigated patients, those from Kärltx and Leuven 
cohorts represent individuals eligible to undergo kidney transplantation that are younger and 
healthier than average incident patients receiving KRT in Sweden. This selection bias thus 
limits the generalizability of our results to the whole CKD population. On the other hand, it is 
a strength that investigated patients are not burdened by very high age and acute complications 
as these factors could have overshadowed the impact of typical pathways leading to VC.   

b) clinical measurements 

Many, if not all clinical assessments, are at least to some extent not objective. Data on diagnosis 
were obtained from medical charts, which provided diagnoses that not necessarily had been 
confirmed by detailed clinical investigations and also did not separate between different 
degrees of severity. For instance, a patient who had a history of aortic aneurysm, could have 
had one or several incidences of myocardial infarction, angina pectoris, cerebrovascular lesion 
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or peripheral arterial insufficiency; all were diagnosed as CVD. Clearly, this general grouping 
may fail to cover the severity of underlying etiologies of CVD that would influence the course 
and prognosis of the disease. Also, as we relied on medical charts, we cannot exclude that some 
previous events taking place at other hospitals were not appropriately recorded or overlooked; 
therefore, mostly likely, the overall presence of CVD may be underestimated in our patient 
materials. Also, causes of death are collected from the medical records and death certificates. 
Autopsy that may be required to establish the actual cause of death is usually not performed. 
Hence, the cause of death represents an opinion of the physician issuing the death certificate 
and for other reasons noted above the use of “cardiovascular mortality” as an endpoint of 
clinical investigations is likely to be biased. Thus, in some studies presented in this thesis, in 
which we test “cardiovascular mortality” as sensitivity analysis, we prefer using overall deaths,  
i.e., all-cause mortality as this unquestionably represents the most robust definition of the 
ultimate clinical endpoint.  

SGA is by design subjective and thus subject to bias as it relies on subjective assessments 
including patients’ self-reported answers to patient-related outcomes. Also, while the SGA 
assessment was conducted by trained nurses, we cannot rule out intra- and inter-individual 
variations [92]. Even so, we and others have reported that SGA is a strong predictor of clinical 
outcomes in CKD patients[93–95], suggesting that SGA provides a meaningful measurement 
of nutritional status. In Study II, aside from AVC, SGA also shows a strong association with 
mortality with multiple adjustments. In addition, anthropometric measurements, e.g., skinfold 
thickness and body weight (and BMI calculation), may be influenced by fluid retention and 
hydration status and shall be interpreted with caution in the setting of CKD.  

c) biochemical measurements 

Some of the biochemical measurements presented in this thesis have been measured post hoc 
from frozen samples. Thus, we cannot rule out the possibility of sample degradation due to 
long-term storage or sample alterations due to repeated thawing and refreezing processes. Also, 
it shall be noted that biochemical measurements in these studies are based on one single time 
point whereas the investigated molecules may vary over time influenced by various factors and 
conditions.  

d) statistical methods 

Due to the observational design of the studies and insufficient sample size, and, despite 
extensive phenotyping, we are not able to control for all possible confounders in these 
investigations, while, in some cases, we may have induced over-adjustment. However, we have 
attempted to remove factors in regression models suspected to have collinearity and to avoid 
adjusting for factors that are pathophysiologically related. Also, as some may hold against 
dichotomizing continuous variables in multiple regressions, we have sometimes done so given 
that a limited sample size did not allow determining associations per units of increase. In 
addition, though sex differences may be reflected in the course of age-related diseases, we did 
not perform sex-stratified statistical analyses mainly due to a limited sample size.  
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4 MAIN RESULTS AND DISCUSSIONS 

4.1 CAC COMPONENTS AND AVC IN RISK PREDICTION 

The studies presented in the thesis (Study I and II) further demonstrated the prognostic value 
of cardiac atherosclerosis, with a focus on coronary atherosclerosis (represented by CAC score 
and its components, i.e., CAC density and volume) and aortic valve calcium (AVC), in risk 
prediction in the context of uremic milieu.  

The Agatston CAC score adds to FRS for CVD prediction and improves risk stratification in 
various study populations [10]. While higher CAC volume associates with worse outcomes in 
the general population [14,96–99], it has been proposed that increased CAC density in the 
arterial wall reflects plaque stabilization[100–103], leading to reduced risk of coronary events 
[104]. However, recent reports suggested that the density of calcium in the plaques was not 
associated with mortality in patients with type 2 diabetes[15] and a high density of calcified 
plaques was independently associated with increased all-cause mortality in HD patients [14]. 
Thus, in these complex disease scenarios, the role of CAC density in risk prediction and plaque 
stabilization is yet to be determined. In Study I, we reported an inverse J-shaped relationship 
between CAC density and mortality in advanced CKD G5 patients, with middle tertile of CAC 
density being associated with the highest mortality and highest tertile of CAC density forming 
an intermediate risk group (Figure 1). It is plausible that with the concurrence of traditional 
risk factors with uremia-related risk factors, such as hyperphosphatemia, hypercalcemia, 
hypomagnesemia, hyperparathyroidism together with a diminished effectiveness of factors 
within the VC inhibitory system (e.g., fetuin-A, MGP, osteoprotegerin (OPG)), CKD patients 
are predisposed to a more complex conundrum of vascular aging processes over and above 
single entities promoting VC. Our data indicate that high CAC volume associates with 
inflammation, malnutrition and low handgrip strength. The concurrent inflammation, 
sarcopenia and atherosclerotic calcification burden may reflect such a progressive aging 
process in CKD. Moreover, we observed that inflammation modifies the relationship between 
CAC density and mortality, supporting the catalytic effect of inflammation on cardiovascular 
risk factors in uremic milieu [105].  
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Figure 1. Crude mortality rate/1000 patient-years (95% CI) according 
to tertiles of (A) CAC score, (B) CAC volume and (C) CAC density 
(n=207) and in patients with a CAC score of 0 (n=89). Figure from 
Study I [106]. 

 

 

 

Both intima and media calcification can be co-existent in CKD [4]. In Study I, we report that 
the extent of arterial media calcification in epigastric arteries was significantly associated with 
both high CAC volume and high CAC density. Interestingly, while medial layer appears to be 
the major histological sites affected by calcification in epigastric arterial biopsies, 14% of 
patients with extensive media calcification were absent from coronary calcification. Hence, the 
magnitude and susceptibility for calcification can differ between divergent arterial sites [107]. 
Though CT scanning yielding CAC score does not differentiate between intima and media 
calcification, it is likely that CAC to a larger extent represents calcium in the intimal layer of 
coronary arteries which are more susceptible to atherosclerotic calcification. Since both intima 
and media calcification are associated with poor clinical outcomes, focusing on CAC density 
in single anatomical arteries trees (i.e., coronary arteries) may fail to represent overall 
calcification burden and its implications for risk prediction in CKD. Another complicating 
factor is that as conventional CT scanning cannot identify the calcified plaque pattern 
(microcalcification and macrocalcification), and thus it is a challenge to determine whether a 
high calcium density score or the aggravation of calcium score truly represents the underlying 
stabilization of calcified plaques. 

In Study II, we further explore the prognostic value of AVC and report that the presence of 
AVC is associated with all-cause mortality, independent of coronary calcification indicated by 
CAC score, inflammation, malnutrition, and FRS in CKD G5 patients (Figure 2). Aortic valve 
calcification, another hallmark of premature vascular aging, is prevalent among 25% of 
individuals >65 years [108] and can progress into aortic valve stenosis causing left ventricular 
obstruction. Data from the Multi-Ethnic Study of Atherosclerosis (MESA) study found a 13% 
prevalence of AVC and 11% of overlap prevalence of AVC and CAC in the general population  
[109]. Moreover, adjusting for the presence of subclinical atherosclerosis (estimated by CAC 
score) and inflammation, the presence of AVC was independently associated with increased 
risks of coronary and cardiovascular events, suggesting a prognostic value of AVC in risk 
prediction beyond that of coronary atherosclerosis [109]. In dialysis patients, cardiac valve 
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calcification is 4-5 times more prevalent compared to the general population [110–113]. 
Similar to atherosclerosis, pathological factors involved in valve calcification include 
traditional risk factors, inflammation and disordered bio-mineralization [114]. Here, our study 
shows that AVC was present in 39% of the investigated CKD G5 patients and that overlapping 
presence of AVC and CAC was 37%, which is >3 times higher than that reported in the general 
population (11%)  [109] (Figure 3). More importantly, as observed in the general population, 
our data support the strong prognostic role of AVC in risk prediction, which is beyond 
subclinical coronary atherosclerosis (CAC>0), traditional risk factors, inflammation, and  
nutritional status in advanced CKD. 

  

 

Figure 2. AVC associates with all-cause mortality 

independent of CAC, inflammation and other factors 

in CKD G5 patients. 

 

 

 

 

Figure 3. Prevalence of four groups of patients 

according to presence (+) or not (-) of aortic valve 

calcium (AVC) or coronary artery calcium (CAC). 

Figure from Study II [115]. 

 

                                           

 

Premature vascular aging (e.g. atherosclerotic VC, media VC and EVA) is highly prevalent in 
CKD [2,116,117] and calcification can take place with different histological and anatomical 
forms. This is further supported in our sub-analyses whereby 86% of patients were found to 
have calcification either in coronary arteries estimated by CAC, aortic valves estimated by 
AVC or/and media calcification in epigastric arteries estimated by histological scoring (Figure 
4A). Whereas an overall similar trend of progression of AVC and CAC was observed in 
response to the severity of media VC, the proportions of AVC and CAC in different media VC 
groups differed remarkably (Figure 4B-D), suggesting that distinct mechanisms of 
calcification are involved in different vascular beds beyond the common risk profile. 
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Figure 4. Prevalence of calcification at three sites, inferior epigastric artery, aortic valve (AVC) and coronary 

artery (CAC) among 102 CKD G5 patients who underwent both arterial biopsies and cardiac CT imaging. (A) 

Presence of calcification detected at three vascular sites. (B) Prevalence of AVC with severity of media VC. (C) 

Prevalence of CAC with severity of media VC. (D) Prevalence of combined presence of CAC and AVC with 

severity of media VC. Figure from Study II [115]. 

Given the cross-sectional nature of the study design, the true relation between CAC density 
and mortality may not be accurately reflected and the “inverse J-shaped” pattern observed in 
Study I further reflects a complex scenario of VC in the setting of CKD. Also, the strong 
predictive value of AVC for mortality suggests that AVC should be considered and included 
in the standard risk evaluation in advanced CKD. Long-term prospective studies are warranted 
to evaluate the joint impact of evolution of CAC components, AVC, concomitant media 
calcification and other potential risk factors on clinical outcome. 

4.2 PHENOTYPIC FEATURES OF MEDIA CALCIFICATION  

In Study III, we have identified 17 features including traditional risk factors and novel 
biomarkers associated with histologically verified media calcification in a clinical dataset of 
CKD G5 patients undergoing LD-RTx. The identification of risk factors promoting media 
calcification in patients with a complex disease condition (e.g. CKD), is challenging as it 
requires handling of a multifactorial panel of factors involved in VC. Here we applied 
multifactorial RLS model by taking all available factors into account concomitantly to 
minimize the risk of statistical errors as this may provide a biologically more relevant way of 
analyzing data. In contrast to traditional models, where factors are tested one by one or in pre-
selected groups versus an outcome, the RLS method provides a holistic and less biased 
selection of risk factors that concomitantly associate with presence of VC in the uremic milieu. 
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Among 62 features, a feature set of 17 factors was obtained representing the best feature panel 
with the lowest CVE (0.16), which allows 89% of the subjects to be correctly classified to their 
respective groups (Figure 5). We identified that media calcification is largely associated with 
traditional risk factors, bone turnover markers, as well as with several novel biomarkers (Table 
2). Also, by comparing performance of RLS with traditional logistic regression model, we 
found that four parameters identified as determinants of VC in the multivariate logistic 
regression model, i.e., age, sex, BMI and OPG, were also present among the 17 features 
identified by the RLS. Nevertheless, the predictive performance using logistic regression was 
lower than that achieved by RLS with 76% vs. 89% of subjects, respectively, correctly 
classified into their groups. In accordance, the ratio of true-positive to false-positive rate was 
less advantageous in logistic regression than in RLS model with the area under ROC curves 
being 0.80 in logistic regression and 0.91 in RLS selection (Figure 6).  

 

 

Figure 5. Cross-validation error (CVE) and apparent 
error (AE) during RLS procedure. RLS model was 
applied to separate patients with vascular calcification 
from non-calcified patients among 152 CKD G5 
patients. A total of 63 features (including media 
vascular calcification score) were entered into the 
model. The lowest possible CVE was achieved with 
a subset of selected 17 features. Figure from Study III 
[118]. 

 

 

 

 

 

Figure 6. Receiver operating characteristic (ROC) 

curves with area under curve (AUC) for relaxed 

linear separability (RLS), red dotted curve, and 

multivariate logistic regression methods, blue 

dashed line. Figure from Study III [118]. 
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Table 2. List of 17 features derived from RLS method as predictors of media calcification in 152 
CKD G5 patients. Table modified from Study III [118]. 

No. Feature Name RLS factor No. Feature Name RLS factor 

1 sRANKL 4.05 10 fT3 -1.58 
2 Diabetes � 3.67 11 TRAP 5a -1.51 
3 Age 3.55 12 MOTSc�� 1.48 
4 Angiopoietin 2� 3.22 13 CTX 1.41 
5 Cholesterol�� 3.15 14 IgM antiMDA 1.40 
6 BMI � 2.95 15 OPG 1.30 
7 Sex, Male vs Female 2.54 16 iPTH 1.26 
8 Uric acid 2.48 17 Betaine -0.95 
9 IgM antiPC -1.82    

 

It shall be, however, acknowledged that this model is based on a data set of CKD patients 
undergoing LD-RTx who had specific clinical characteristics and phenotypic measurements 
unique to this cohort. Therefore, pre-selection of features was largely based on already 
available knowledge about potentially relevant factors of VC; vice versa, unmeasured markers 
proven to be related to media calcification were not included in the analysis. Also, as we 
discussed in the previous studies about the existence of various forms of VC in CKD, 
calcification in one single vasculature bed may not be sufficiently representative for the entire 
vascular system. Nevertheless, this study represents a novel approach that may have the 
capacity to identify unknown combined effects of individual phenotypic features. While the 
validation of phenotypic features associated with biopsy-verified vascular media calcification 
needs replication in other cohorts, our findings, if confirmed, may facilitate future 
investigations on EVA without the need of taking arterial biopsies. 

4.3 SEVELAMER USE AND GUT MICROBIAL METABOLISM 

With recent increased awareness of drug-microbiome interactions [51], in Study IV, we 
explored the possible link between sevelamer therapy and markers of gut microbial metabolism 
and show that sevelamer use is associated with increased exposure to gut-derived uremic toxins  
represented by circulating concentrations of IndS and PAG, and a poor vitamin K status, in 
CKD G5 patients. In CKD, the high prevalence of vitamin K insufficiency is mainly attributed 
to dietary restrictions [119] and impaired vitamin K recycling [120]. Multiple lines of evidence 
suggests that poor vitamin K status is involved in the pathogenesis of VC and bone fragility, 
both of which are common uremic features [121–123]. Here we found that patients treated with 
sevelamer had a poor vitamin K status, confirming and extending a recent finding from a 
smaller cohort study [46]. It is likely that sevelamer sequesters vitamin K through the 
gastrointestinal tract and abates its absorption. However, in vitro studies evaluating the binding 
of sevelamer and vitamin K (both phylloquinone and menaquinone) yielded conflicting results 
[47,124] and answers remains to be addressed as whether sevelamer interferes with vitamin K 
bioavailability. Intriguingly, we found an independent association between low vitamin K 
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status and high serum levels of PAG and TMAO. Though our observational study design 
precludes solid conclusions on the causality, this may suggest a possible link between gut 
dysbiosis and vitamin K deficiency. It is plausible that while gut dysbiosis may lead to 
decreased endogenous microbial synthesis of vitamin K, a low availability of vitamin K in the 
gut, may alternatively disrupt gut microbial metabolism (Figure 7). Indeed, it has been 
indicated that menaquinones are necessary growth factors to modulate human gut microbiome 
(e.g. Faecalibacterium) [125].  

 

 

 

Figure 7. Sevelamer use and 

microbial metabolism in end-stage 

kidney disease. Figure from Study 

IV [126]. 

 

 

 

In addition, we observed that sevelamer treatment was associated with high IndS and PAG, 
independent of traditional and non-traditional factors such as age, sex, phosphate, creatinine 
and dialysis vintage. While this finding seems to be contradicted by some in vitro studies 
showing chelation of the precursor compounds by sevelamer [127,128], it is supported by a 
study [129] reporting that 8-week sevelamer hydrochloride treatment in HD patients did not 
alter serum IndS and Indole-3-acetic acid (IAA), but increase serum pCS. It can be speculated 
that sevelamer may alter the gut microenvironment, either by dragging nutrients and minerals 
into the colon and/or prolonging the colon transit time, and eventually result in accentuated 
protein fermentation (Figure 7). 

As such, our observations that sevelamer use is associated with vitamin K deficiency and 
increased exposure to uremic toxins may indicate clinical trade-offs of sevelamer therapy and 
moreover, explain some of the neutral or negative findings in intervention studies [130,131]. 
The fact that pharmaceutical drugs have both beneficial and unfavorable effects is not restricted 
to sevelamer. A recent survey revealed that 24% of drugs may have an impact on the gut 
microbiome suggesting that a better understanding of  drug-bug interactions can facilitate side 
effect control beyond the benefits [51]. Much research work remains to be performed in this 
area to illustrate such effects, including mechanistic and prospective studies to address possible 
causal links between sevelamer use and disturbed gut microbial metabolism. Also, our findings 
need to be testified in cohort studies with considerable information on diet and residual kidney 
function which are missing in the current investigation.  
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4.4 VITAMIN K STATUS, VC AND MORTALITY 

In Study V, we investigated the clinical associations between functional vitamin K deficiency, 
VC, and all-cause mortality in advanced CKD. We observed an independent association 
between high dp-ucMGP and increased risk of all-cause mortality which is not modified by the 
presence of VC represented by CAC and AVC (Figure 8). Also, we found that dp-ucMGP is 
not an independent determinant of presence of CAC and AVC (Table 3). This comes as an 
unexpected finding but it shall be noted that whilst the role of MGP in VC is well established 
in animal models [53–55], data regarding the association between dp-ucMGP and VC remain 
inconclusive in the clinical setting. Whereas some observational studies showed a positive 
association between circulating dp-ucMGP and VC [65,72,74,132], others have failed to do so 
[71,75,133–135]. Corresponding to a post hoc analysis of a randomized trial showing that dp-
ucMGP was not associated with baseline CAC, nor that the change of dp-ucMGP was 
associated with the change in CAC after 3-year vitamin K supplementation, our data also did 
not support dp-ucMGP as an independent determinant of CAC and AVC. One possible 
explanation can be the intrinsic contrast between high dp-ucMGP turn-over and slow 
progression of VC, making it difficult to observe a temporal association between dp-ucMGP 
and VC at one single observational time. Prospective studies investigating the dynamic changes 
of dp-ucMGP and VC development at multiple time windows may fulfill this gap in 
knowledge. In addition, as we have previously discussed that since cardiac CT scan of calcium 
score was determinant in differentiating macro- and micro-calcification, VC represented by 
CAC and AVC may underestimate the underlying microcalcification pattern. Therefore, the 
observed relation between dp-ucMGP and calcium score in our study and in most other current 
research work cannot mirror the true relation between dp-ucMGP and calcium score. Future 
studies investigating the role of dp-ucMGP in micro- and macrocalcification are in need as to 
delineate its impact on plaque remodeling and VC pattern. 

 

 

 

Figure 8. Associations of dp-ucMGP with all-cause mortality in all 

patients (A, n=493) and sub-group of patients with assessment of CAC 

(B, n=237) and AVC (C, n=223). Model 1, adjusted for age, sex, 

cardiovascular disease, diabetes, body mass index, inflammation, and 

dialysis treatment; Model 2: model 1 plus presence of CAC; Model 3, 

model 1 plus presence of AVC. Figure from Study V [136]. 
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Table 3. Determinants of the presence of vascular calcification*. Table from Study V [136]. 

 
Presence of CAC 

(n = 237, pseudo r2 =0.45) 

Presence of AVC 

(n = 223, pseudo r2 =0.29) 

 OR 95% CI  OR 95% CI 

Age, per 1-SD increase  8.10 4.43-14.81  3.83 2.39-6.14 

Diabetes, yes/no 10.49 1.32-83.18  - - 

Beta-blocker, yes/no - -  2.23 1.03-4.78 

Albumin, per 1-SD increase - -  0.59 0.41-0.85 

* Multivariate logistic regression with stepwise backward selection of variables.  

 

In agreement with pioneering work suggesting functional vitamin K deficiency as a risk factor 
of mortality and cardiovascular events in a variety of study populations [62–69,137], our study 
showed that higher dp-ucMGP is independently associated with increased all-cause mortality 
risk, after adjustments for relevant confounders (e.g. age, sex, BMI, CVD, diabetes, 
inflammation and dialysis treatment). Moreover, this association withstood further adjustment 
for presence of VC, lending support to the speculation that functional vitamin K deficiency 
may affect clinical outcome in CKD via pathways beyond one single entity of VC. Indeed, 
vitamin K deficiency may be linked to the “diseasome of aging” [138]. A large amount of 
clinical evidence posits the involvement of vitamin K deficiency in non-cardiovascular age-
related diseases/complications including physical decline [139], frailty [78], osteoporosis 
[140], fractures [122,141] and depression [142]. Recently, a meta-analysis incorporating data 
from three large cohorts concluded that low circulating phylloquinone (reflecting dietary 
vitamin K intake) was associated with an increased risk of all-cause mortality, but not with 
CVD [143]. These results are in line with the findings in our study that circulating dp-ucMGP 
was not an independent determinant of VC, nor was the association between dp-ucMGP and 
all-cause mortality modified by the presence of VC. Nevertheless, our study is limited by the 
observational design and we are not able to explain this non-significant association between 
dp-ucMGP and VC with supportive evidence. Also, dp-ucMGP and VC were measured at one 
single time point (i.e. at baseline), and repeated measurements over time can be more reflective 
regarding the true interplay between dp-ucMGP and VC. However, this “non-positive” finding 
may motivate future research to explore more about the role of vitamin K deficiency in the 
pathophysiology of cardiovascular health, and more importantly, to illustrate its less explored 
mechanisms as a risk factor for non-cardiovascular causes of poor outcomes in the context of 
CKD.  
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5 CONCLUSIONS  
I. The relationship between CAC density and mortality is “inverse J-shaped” in CKD G5 
patients, with middle CAC density tertile being associated with the highest mortality and 
highest CAC density tertile forming an intermediate risk group. 

II. The overlap of AVC and CAC (37%) was three times higher in advanced CKD than that 
reported in the general population. AVC associated with increased mortality risk independent 
of presence of CAC, traditional risk factors and inflammation. 

III. The RLS model identified 17 features including traditional risk factors and novel 
biomarkers that each - when analyzed together - concomitantly associated with biopsy-verified 
media VC in advanced CKD.  

IV. Sevelamer use is associated with disturbed gut microbial metabolism as indicated by high 
serum IndS and PAG levels and a poor vitamin K status in CKD G5, suggesting a possible 
drug-bug interaction whereby sevelamer therapy could alter gut microbiome as a potential 
trade-off of improving phosphate control. 

V. Functional vitamin K deficiency is associated with increased mortality risk in CKD G5, 
independent of the presence of CAC and AVC. The results highlight the need for further studies 
illustrating the role of vitamin K deficiency in mediating cardiovascular and non-
cardiovascular causes of poor outcomes in advanced CKD. 
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6 DIRECTIONS OF FUTURE RESEARCH 
In the present work, we performed observational studies to expand the knowledge of risk 
factors and prognostic value of VC in the context of CKD. We observed several novel and 
intriguing associations that, as a next step, may guide the design of longitudinal explorations, 
interventional and mechanistic studies, aiming at establishing causal relationships and possibly 
leading to improved diagnostic, preventive and therapeutic strategies for this severe 
complication of CKD. 

The current finding that the role of CAC density score in predicting clinical outcome in CKD 
is contradictive to the assumption of its role in the general population implies that more details 
of CAC scoring need to be delineated. Indeed, CAC density score provides only the average 
density of calcified lesions, not the density of each lesion; however, both low- and high-density 
calcified plaques can co-exist in the same patient. Explorations into the role of each individual 
lesion’s CAC density would provide new insights into the prognostic value of CAC scoring. 
Also, to further understand the predictive role of plaque density in clinical outcome, it would 
be interesting to evaluate the dynamic effects of micro- and macro calcification plaques in risk 
prediction. The use of 18F-sodium fluoride PET-CT imaging might be promising to detect 
microcalcification in vulnerable plaques; however, longitudinal follow-up studies evaluating 
the validity of 18F-sodium fluoride PET-CT imaging are needed to establish its value as 
diagnostic tool to identify microcalcification in CKD. While we found a strong prognostic 
value of AVC in risk prediction, it is important to note that the susceptibility of being calcified 
at vascular sites is not uniformly distributed in the vasculature. Although all vessels may have 
the potential to calcify, only a certain portion of vascular trees develop typical atherosclerosis, 
e.g. coronary arteries, aortic arteries/branches, and arteries of the abdomen and lower 
extremities. By contrast, others appear fairly or thoroughly resistant to the atherogenesis, such 
as the arteries of the upper extremities. Further studies are needed to unveil mechanisms 
underlying the susceptibility to calcification in vascular trees and, from a clinical perspective, 
it is important to compare or combine the prognostic value of calcification at different sites in 
CKD population.  

The RLS feature selection identified several less-explored novel risk factors of media 
calcification which may inform further investigations required to illustrate the underlying 
mechanisms that mediate the process of media VC in CKD. Also, the resulting feature set 
predicting media VC derived from this cohort needs to be further tested and validated in other 
CKD cohorts with similar phenotype pattern. Moreover, the clinical challenge to differentiate 
media calcification from intima calcification and to quantify media calcification non-invasively 
rather than by taking biopsies is to be tackled. The recent development of a nanoparticle-based 
test of the calcification propensity (T50) [144] may be of value as a clinical approach to 
evaluate the risk of VC in CKD; yet, the specificity and sensitivity is to be validated. Hopefully, 
the development of artificial intelligence and use of big data algorithms would help to provide 
advanced diagnostic models. 
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While we observed an association between sevelamer use and markers of disturbed microbial 
metabolism, the possible causal relationship between the two needs to be determined with 
longitudinal and interventional studies. Also, the direct role of sevelamer use as well as other 
common drugs (e.g. proton-pump inhibitors and iron supplementation) in gut microbial 
profiles/patterns is to be explored in vitro and in vivo. As such, a better knowledge of drug-bug 
interactions may provide solutions for side effect control. The observed association between 
vitamin K deficiency and increased risk of mortality, independent of CAC and AVC, requires 
further evidence-based explanations. Prospective studies with repeated measures over time 
would be more accurate in reflecting the long-term interplay between dp-ucMGP and VC. 
Also, as previously mentioned, the different susceptibility to calcification propensity and 
different patterns of micro- and macro-calcification in different vascular trees could potentially 
be incorporated in the construction of new measures of the actual presence and evolution of 
VC. Our observations on calcification, represented by CAC and AVC, may be biased measures 
underestimating the true presence and missing out the true identity of VC. Future studies 
incorporating anatomical (i.e. different vascular sites), histological (i.e. media and intima VC) 
and dynamic patterns of calcification (i.e. micro- and macro-calcification) with long-term 
follow up are warranted to address and tackle the potentially biased research findings. 

It is worth to note that while we normally focus on identifying risk factors as potential 
interventional targets to reduce disease progression, the protective mechanisms have not been 
equally investigated in cardio-metabolic research. A recent concept of the opposite extreme of 
EVA, i.e., supernormal vascular aging (SUPERNOVA) [145,146], may introduce a new 
perspective to explore protective mechanisms of EVA by studying subjects who exhibit an 
exceptional resistance to arterial stiffness for their age and sex. This concept can be further 
extended to investigate subjects with other extreme phenotypes with absent or minimal signs 
of vascular aging including premature atherosclerosis and media calcification. By contrasting 
extremes, it may be possible to discover novel biomarkers and preventative/therapeutic targets 
based upon novel understanding of the protective pathways. 
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7 SOCIAL IMPACT  
In 2017, approximately 860 million people were estimated to have kidney disease, including 
CKD stage 1-5 (843.6 million), acute kidney injury (13.3 million) and kidney failure requiring 
KRT (3.9 million), an intimidating figure that is twice the estimated amount of people with 
diabetes on a global scale [147]. According to The Global Burden of Diseases, Injuries, and 
Risk Factors Study (GBD), 1.4 million people died from CKD in 2019 with an increase of 
28.8% since 2010, rendering CKD as the 11th leading cause of deaths globally [148]. While 
kidney dysfunction as such is a major contributor to morbidity and mortality, by increasing the 
risks associated with other leading causes of death worldwide (including CVD, cancer and 
diabetes), CKD per se is projected to be the 5th leading cause of global death by 2040 [149]. 
Global fatality from all kidney diseases could be even higher, reaching 5 million annually, and 
the lack or limited access to life-saving KRT is contributing to a rising fraction of deaths in 
low-middle-income countries (LMICs) [150]. In 2010, some 2.6 million people worldwide 
were receiving KRT with kidney failure whilst 2.3 to 7.1 million more people, mostly in 
LMICs, required KRT but died in need for it [151]. Kidney disease is also associated with 
tremendous health expenditures. According to the United States Renal Data System (USRDS) 
2020 annual report, total Medicare-related expenditures in USA for CKD in 2018 were $81 
billion (representing 22.3% of Medicare fee-for-service) including $49.2 billion due to kidney 
failure [152]. Timely identification and management of risk factors involved in CKD 
progression aiming at reducing its concerning fatality rate and growing global health care 
burden can clearly have a great social and economic impact.  

Of note, the major culprits of high morbidity and mortality in kidney dysfunction are attributed 
to its high prevalence of cardiovascular complications, which can be several-fold higher than 
in age-matched subjects without kidney failure. According to USRDS 2020 annual report 
[152], the prevalence of CVD was 76.5 % in HD patients, 65.0% in PD patients and 53.7% in 
patients with a functioning kidney transplant. Intriguingly, unlike in the general population 
where coronary atherosclerosis disease is the dominant cause of CV mortality, patients with 
CKD also exhibited a large proportion of left ventricular hypertrophy (LVH) driven by 
progressive VC as the most apparent cardiovascular abnormality [117,153–156]. Many 
therapeutic strategies targeting VC have therefore been explored and evaluated, including 
controlling athero- and arteriosclerosis and managing CKD-MBD. So far, the results are 
inconclusive and it remains unclear whether they are efficient in mitigating VC progression 
[4]. Prior to these problem-solving yet off-target attempts, it is possible that we may have 
missed out the full picture of VC in the context of CKD. The studies presented in this thesis 
further explore the prognostic value, predictive markers as well as treatment consequence of 
VC in uremic milieus. A better understanding of the clinical relevance of VC could advance 
the development of efficient preventive and therapeutic strategies, and ultimately exert a 
beneficial effect on the kidney health-related social and economic burden.  

For instance, in Study I, in contrast to what observed in general population, we found an inverse 
J-shaped pattern between CAC density and mortality, which suggests a more complex scenario 
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between CAC density, volume and risk prediction in the uremic milieu. In Study II, we found 
a strong predictive value of AVC for mortality over traditional risk factors and inflammation, 
suggesting that AVC might be potentially included in the standard risk evaluation. From a 
scientific point of view, these findings provide a new perspective of the prognostic value of 
CAC and AVC, which can guide long-term prospective studies to evaluate the joint impact of 
evolution of CAC components, AVC, concomitant media calcification and other potential risk 
factors on clinical outcome. Additionally, from an economic point of view, our findings reflect 
potential large cost-effectiveness gains by a wider use of cardiovascular imaging in screening 
and risk stratification in advanced CKD. Clearly, more solid evidence is required to determine 
the clinical value of cardiovascular imaging, taking into account the current technique 
challenge of stratifying calcium density and volume, differentiating intima/media VC and 
identifying micro- and macrocalcification. It can be speculated that while overuse may generate 
a harmless yet redundant information, it will add extra costs and burden the health care system; 
underuse, on the other hand, may lead to a failure to collect critical information needed to 
diagnose and implement therapeutic strategies. Misuse, in this sense, without knowing the true 
role of calcium score in risk prediction, could drive false and misleading conclusions, both at 
a scientific level and in clinical practice, with similar unfavorable consequences as overuse and 
underuse.  

In Study III, we identified 17 features including traditional risk factors and novel biomarkers 
associated with histologically verified media VC using the RLS method. Given the high 
prevalence of media VC and its critical impact on the development of arterial stiffening and 
LVH, predictions based on early and accurate diagnosis of media VC is vital in improving 
cardiovascular outcomes in CKD. Techniques quantifying media VC in clinical practice are 
however not available. Hence, alternative new generation data analysis methodology and 
machine-learning algorithms that are able to integrate biomarkers with mechanistic and 
imaging data to predict and quantitate the presence and extent of media VC - and more 
importantly - to discover novel therapeutic targets, are urgently needed. Echoing this, we 
applied the advanced mathematic modelling of the RLS method and provided a holistic as well 
as a less biased view of potential risk factors that concomitantly associate with presence of VC. 
Although the validation of phenotypic features associated with biopsy-verified vascular media 
VC requires replication in other cohorts, our findings may facilitate future investigations on 
media VC without taking arterial biopsies. This non-invasive machine-learning exploration 
exemplifies a potential cost-effective strategy with possible maximum benefits to patients, 
clinicians, policymakers and health care system as a whole.  

In Study IV, we found an association between sevelamer use and disturbed microbial 
metabolism, suggesting clinical trade-offs of sevelamer therapy beyond its phosphate control 
benefits. This delivers an important message to clinicians and researchers of potential drug-bug 
interaction. In fact, a recent survey revealed that up to 24% of drugs may affect the gut 
microbiome [51]. Thus, it is conceivable that a better knowledge of drug-bug interactions may 
open new paths for side effect control.  
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In Study V, we found that dp-ucMGP did not correlate with VC but significantly associated 
with the study endpoint, i.e., all-cause mortality.  Whereas the “non-positive” finding of non- 
apparent association between dp-ucMGP and VC might be attributed to study design, the 
association of dp-ucMGP with mortality may be more important when assessing the impact of 
this research. In scientific explorations, the obtained results are not always equivalent to 
expected ones. Taking account into the study-specific conditions (e.g., study design, 
methodology and limitations), our finding may encourage and add value to future research 
about the role of vitamin K deficiency in cardiovascular health, as well as its less explored 
function in mediating non-cardiovascular causes of poor outcomes in the context of CKD. 

Taken together, we performed observational studies to expand the knowledge of risk factors 
and prognostic value of VC in the context of CKD. We observed several novel and intriguing 
associations that, as a next step, may guide the design of longitudinal explorations,  
interventional and mechanistic studies, aiming at establishing causal relationships and possibly 
leading to improved diagnostic, preventive and therapeutic strategies for this severe 
complication of CKD. Also, it is worth to note that in the pandemic of coronavirus disease-
2019 (COVID-19), several reports have indicated that VC detected by chest CT, such as the 
presence and extent of CAC and the volume of aortic wall calcification, is a predictor of severe 
COVID-19 and associated with worse prognosis in hospitalized patients with COVID-19 
[157,158]. Therefore, aside from the focus on CKD, the role of VC in risk stratification and 
prognosis in other disease scenarios is to be explored and highlighted.  

The studies presented in the thesis are available to the public in peer-reviewed journals and the 
results have been largely disseminated and shared with scientific community through posters 
and oral presentations at several international conferences, symposiums, and other meetings. 
Aside from scientific aspects, findings reported in this thesis may bring several of the above-
mentioned reflections to researchers, medical community, policymakers and health care 
managers above the boom and bust of cardiovascular imaging, the potentials of mathematical 
modeling in cardiovascular research, the interactions between drugs and microbes in 
sustainable treatment, and the hidden myths of vitamin K in human health. 
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