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Abstract: Atherosclerosis remains a large health and economic burden. Even though it has been 
studied for more than a century, its complex pathophysiology has not been elucidated. The relatively 
well-established contributors include: chronic inflammation in response to oxidized cholesterol, 
reactive oxygen species-induced damage and apoptosis. Recently, profilin 1, a regulator of actin 
dynamics emerged as a potential new player in the field. Profilin is abundant in stable atherosclerotic 
plaques and in thrombi extracted from infarct-related arteries in patients w ith acute myocardial 
infarction. The exact role of profilin in atherosclerosis and its complications, as well as its mechanisms 
of action, remain unknown. Here, we summarize several pathways in which profilin may act through 
mitochondria in a number of processes implicated in atherosclerosis.
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1. Introduction

Atherosclerosis is a chronic inflammatory and degenerative disease of large and 
medium-sized arteries. Its complications are a leading cause of death worldwide [1]. 
Clinical manifestations of atherosclerosis depend on lesion location, plaque burden and 
its composition, which translates to stability. The main complications with the biggest 
toll arise from thromboembolic complications due to plaque rupture or ulceration with 
subsequent thrombus formation, and again— depending on the vascular bed— include: 
myocardial infarction, stroke, acute limb ischemia and other embolic complications [2].

Several risk factors for clinically significant atherosclerosis are established, includ
ing: male gender, age, hypertension, blood lipid disorders, diabetes mellitus, smoking, 
chronic kidney disease, lack of physical activity and genetic predispositions [2,3]. So 
far, causal therapies for atherosclerosis have concentrated on lipid-lowering and anti
inflammatory strategies (involving mostly statins), but they have shown to be less success
ful than anticipated [4]. Newer, more aggressive anti-inflammatory approaches such as 
anti-interleukin-1 ß antibodies have shown to be effective, but at the price of a higher risk of 
lethal infections [5]. Invasive treatment of coronary artery disease either with percutaneous 
angioplasty or with coronary artery bypass grafting, although principally lifesaving, is still 
associated with considerable immediate and long-term risks, depending on the clinical 
setting [6,7]. These factors underscore the complexity of atherosclerosis and coronary artery 
disease and justify further investigation into the molecular mechanisms underlying the 
disease with a potential to develop new therapeutic targets.

Recently mitochondrial pathways have been explored regarding atherosclerosis, yel- 
dieng some exciting results. Profilin 1 is a relatively new and still understudied player in
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the field. A closer look into several common pathways between profilin and mitochondrial 
proteins might shed light on the direction of future studies.

2. A Molecular Insight into Atherosclerosis

The formation of atherosclerotic plaque begins with an accumulation and oxidation of 
apolipoprotein B-contamm g lipoproteins (LDLs) within the artery wall. This constitutes 
a signal for the activation of the endothelium, as well as an immune response. As the 
stimulus— oxidized LDL (oxLDL)— acts in a continuous manner, this causes a chronic 
inflammation within the vessel wall. An activation of the nuclear factor- k B (N F-k B) tran
scription factor and a switch in gene expression leads to a dramatic change of the endothelial 
cells' (ECs) phenotype [8]. The ECs express adhesion molecules: Intercellular Adhesion 
Molecule 1 (ICAM-1), Vascular Cell Adhesion Molecule 1 (VCAM-1), selectin-E, selectm-P, 
chemokines attracting monocytes (Monocyte Chemoattractant Protein-1, Interleukin-8) 
and T lymphocytes (CXC) [9]. The activated monocytes migrate into the vessel wall. ECs 
express the von Willebrand factor, which binds glycoprotein Ib on platelets, leading to 
their activation. Activated platelets, in turn, release a number of proteins including platelet 
factor 4, RANTES, P-selectin, sCD40L and metaloproteinases, further escalating inflamma
tion [10]. Macrophages infiltrate the vessel wall and secrete Interleukin-1 ß (IL-1 ß), Tumor 
Necrosis Factor-a, catepsins, and matrix metaloproteinases. They also phagocyte oxLDL 
depots and become 'foam cells'. Foam cells further produce cytokines, growth factors, 
Interferon-y  and metaloproteinases. This causes an infiltration of the intima by vascular 
smooth muscle cells (VSMCs) [11]. VSMCs also change their phenotype and excrete mostly 
type I collagen, elastin and proteoglycans, enlarging the plaque volume [12]. This is fol
lowed by an accumulation of free, amorphic cholesterol crystals in the plaque and death 
of cells involved in the process. Cell death, through apoptosis or necrosis, is the basis 
for the formation and expansion of the necrotic core [13]. The expansion of the necrotic 
core leads to thinning of the fibrous cap covering the lesion, which makes it vulnerable 
to erosion or rupture and consequent thrombosis. Macrophages and mastocytes release 
metaloproteinases, which target collagen, further increasing the risk of rupture [14]. New, 
dysfunctional vessels sprout from vasa vasorum and infiltrate the plaque leading to local 
hemorrhages and causing further destabilization. Post-apoptotic debris and other compo
nents of the extracellular matrix within the plaque serve as foci of calcification, which can 
progress to a varying extent [15,16].

There is a vast number of cytokines implicated in the initiation and progression of 
atherosclerosis, but they are not the focus of this paper and have been reviewed else
where [17]. W hat deserves special attention in the context of mitochondrial involvement 
in atherosclerosis are reactive oxygen species and reactive nitrogen species (ROS and 
RNS, respectively). It has been shown that cells located in the plaque activated via pro- 
inflammatory signals (mainly Tumor Necrosis Factor-a, IL-1), angiotensin II or mechanical 
stimuli become a rich source of free radicals originating in the mitochondria [18]. ROS 
and RNS, in turn, further augment inflammatory responses and influence a number of 
cellular processes such as: adhesion, migration, proliferation and differentiation, all critical 
in the development of atherosclerosis [19,20]. There are several sources of oxidants such as 
myeloperoxidase, lipoxygenases, uncoupled endothelial nitric oxide synthase, however 
the mitochondrial NADPH oxidase is thought to be the predominant source of ROS and 
RNS [21,22].

The final stage of atherosclerosis—complications— is where apoptosis plays a special 
role. Plaque VSMCs present a relatively high apoptotic rate via c-myc, a proapoptotic 
protein [23]. Apoptosis of ECs and VSMCs enhance plaque vulnerability, hence increasing 
the risk of thromboembolic complications [24,25]. Additionally, macrophage apoptosis 
in mature plaques is involved in the further progression of the disease [26]. Apoptotic 
macrophages are abundant at sites of plaque rupture, as compared with stable lesions in 
material from patients who had undergone sudden cardiac death [27].



3. Profilin 1: General Information

Profilin family members (1-4) were first identified in the 1970s as actm-sequestermg 
proteins [28]. Since then, a growing amount of data has suggested that proflmt, the most 
abundant human profilin isoform, is much more than just an actin regulator. For brevity, 
we will refer to Profilm-1 as 'profilin' throughout this review.

Profilin is a conservative actin-associated protein crucial for basic cell processes, such 
as proliferation, migration, cell-cell and cell-matrix interactions [29]. Murine embryos with 
a profilin gene knockout are unable to survive beyond a two-cell stage, which underscores 
its importance for the physiology of the cell [30]. Although actin regulation is its best- 
known function, profilin is much more than just this. It localizes not only in sub-membrane 
areas, where it interplays with actin, but also in the nucleus, within spliceosomes, Cajal 
bodies and gems, suggesting that it could be involved in post-transcription regulation of 
gene expression [31]. In support of the probable gen-regulating function, it was shown 
that profilin itself remains within the nucleus, while profilm-actm complexes are swiftly 
removed to the cytoplasm by exportin 6 [32].

PFN1, the gene encoding profilin, consists of three exones and is located in the short 
arm of chromosome 17 (17p13.2 subband) [33]. A microdeletion of this region has been 
implicated in the patophysiology of Miller-Dieker syndrome, a congenital disorder in
volving facial dysmorphia and lisencephaly [34]. Thus far, the role of PFN 1  mutations 
in humans has been best characterized in the patophysiology of amyotrophic lateral scle
rosis. It was shown that C71G, M114T, G118V and E117G mutations in PFN1, lead to 
structural and conformational alterations, which cause its aggregation and ubiquitina- 
tion. This, in turn, impedes actin polymerization, decreases axonal growth and causes 
neuronal dysfunction [35,36]. It was also reported that gain-of-function mutations in PFN1 
might render a form of profilin, which causes conformational defects in TAR DNA-binding 
protein 43, a crucial molecule in the patophysiology of amyotrophic lateral sclerosis [37]. 
Moreover, post-translational profilin modifications (mostly phosphorylation) and changes 
in profilin expression have been implicated in a number of human malignancies, such 
as breast, pancreatic, renal and bladder cancer, as well as glioblastoma [38- 42]. There 
have been some studies on profilin genetic variants in murine models showing that it is 
crucial for peripheral nervous system myelination [43] as well as motor neuron disease 
development [44].

Not much is known about the regulation of PFN1 expression. However, there are 
reports showing that extracellular stimulation with oxysterol or angiotensin II activates 
PFN1 expression via the JAK2/STAT3 pathway [45,46].

The structure of profilin determines its ability to bind three groups of partners: actin, 
phosphatidylinositol 4,5-bisphosphate (PIP2) and poly-proline containing proteins. One 
of the PIP2-binding regions is located within the actin-binding region, suggesting that 
these two molecules compete for the binding site [47- 49]. Additionally to the three classes 
of molecular partners, profilin binds to microtubules via several surface residues and 
enhances their growth [50].

3.1. Profilin in Atherosclerosis

Profilin was found to be more abundant in coronary atherosclerotic plaques in compar
ison to healthy vessel wall fragments harvested from individuals with typical risk factors 
and severe coronary artery disease. Intriguingly, profilin was found in both ECs and in the 
extracellular matrix, suggesting that it may play a role in cell-cell communication. Indeed, 
profilin stimulation of rat and human VSMCs led to a 3-4-fold increase in DNA synthesis 
and migration rate. These effects were dose-dependent and relied on the classical growth 
factor-related pathways: PI3K /A kt and R as/R af/M E K /Src and Erk1/2. The authors also 
suggested that proatherogenic diet might enhance profilin expression [51]. Romeo et al. 
showed that Ldlr - / -  mice lacking one copy of the profilin encoding (PFN1) gene were 
characterized by an antiatherogenic phenotype: higher endothelial nitric oxide synthase 
3 activity, lower VCAM-1 expression, and lower oxLDL uptake by macrophages and lower



inflammatory response to oxLDL as compared to Ldlr -/- . PFN1 - / -  mice [52]. Dardik et al. 
reported that exposing human ECs to homocysteine under flow, but not static conditions 
led to an overexpression of profilin and underexpression of a-catenin, both of which are in
volved in actin cytoskeleton regulation. This was accompanied by a loss of a-catenin from 
intercellular junctions. These results suggest that homocysteine causes endothelial damage 
in dynamic conditions and that this occurs through cytoskeletal disruption mediated by 
high profilin levels [53]. Profilin may also exert pro-atherogenic effects through VSMCs. 
It was shown that stimulation with angiotensin II caused an up-regulation of the profilin 
gene expression with a subsequent proliferation of rat aortic VSMCs [46]. Since arterial 
hypertension is one of the main established causes of atherosclerosis, profilin may pose a 
molecular link between hypertension and plaque formation.

3.2. Profilin in Coronary Artery Disease and Diabetes

Diabetes is one of the strongest factors influencing the progression of atherosclerosis 
and a predictor of poor percutaneous coronary intervention (PCI) outcomes [54]. Chronic 
hyperglycemia causes endothelial dysfunction, which is key for atherosclerosis develop
ment. Advanced Glycation End-Products (AGEs) are an early indicator of coronary artery 
disease in diabetic patients [55]. Li et al. showed that ECs exposed to AGEs overexpressed 
profilin, measured as mRNA and the concentration of the protein itself. This was associ
ated with a cytoskeleton reorganization, a rise in ICAM-1, asymmetric dimethylarginine 
and a decrease in nitric oxide production. Blocking profilin ameliorated these effects. 
This shows that AGEs-related endothelial dysfunction is profilm-dependent [56]. Similar 
results were shown for diabetic cardiomyopathy, where profilin was upregulated in rat 
cardiomyocytes following chronic exposure to AGEs. The rise in profilin expression was 
associated with an increase in Rho, RAGE and p65. Again, silencing profilin ameliorated 
these changes [57]. The expression of the profilin gene in ECs was up-regulated by LDL 
cholesterol [58]. Furthermore, 7-ketocholesterol enhanced the transcription of PFN1 gene in 
aortic endothelial cells in diabetic rats via JAK2/STAT3 activation and this was dependent 
on oxysterol-binding protein-1 [45]. We have recently reported a lower serum concentration 
of profilin in patients with coronary artery disease and co-existing diabetes, as compared 
with non-diabetics. The mechanism behind this phenomenon remains to be investigated. 
We hypothesize that carbonylation of profilin, a common post-translational modification in 
chronic hyperglycemia, may change the affinity of profilin to the antibody used in ELISA, 
leading to a lower reading [59].

3.3. Profilin in Myocardial Infarction

Hao et al. studied profilin expression in aortic ECs harvested from rats with myocardial 
infarction (MI) induced by left anterior descending artery ligation. They found that profilin 
and E R K 1/2  were overexpressed in MI rats and correlated with the extent of myocardial 
damage as per troponin T and creatine kinase MB measurements. This was accompanied 
by a rise in the expression of mRNA of pro-apoptotic proteins such as p53, Fas, and Bax, 
whereas the mRNA for anti-apoptotic Bcl-2 expression was reduced. Moreover, ECs from 
MI-rats showed signs of dysfunction by higher endothelial microparticles production and 
lower nitric oxide release [60]. This suggests that the activation of ERK1/2 and profilin may 
be a mechanism of MI-related systemic endothelial dysfunction and apoptosis. Endothelial 
dysfunction, in turn, leads to a higher incidence of major adverse events and unfavorable 
myocardial remodeling in MI survivors [61]. Moreover, profilin is a significant component 
of thrombi retrieved from infarct-related arteries in ST-elevation myocardial infarction 
(STEMI) patients. Analysis of these thrombi showed that they have different compositions 
regarding actin cytoskeleton and associated proteins, including: ß -actin, tropomyosin-3, -4 
and profilin. Interestingly, profilin co-localized with platelets and leukocytes within the 
thrombus structure, suggesting its source. Profilin was more abundant in fresh thrombi 
and its levels decreased with time; with an opposite dynamic in the blood [62]. In our 
study, serum profilin concentrations were inversely proportionate to the onset-of-pain



to reperfusion time in MI patients. Moreover, serum profilin was significantly lower in 
patients with an impaired post-intervention flow in the infarct-related artery, suggesting 
that it may be involved in coronary microvascular obstruction and ischemia/reperfusion 
injury [63]. The results from studies on profilin in atherosclerosis and coronary artery 
disease have been summarized in Table 1.

Table 1. Summary of the main conclusions from studies on profilin in atherosclerosis and coronary artery disease. LDL: low 
density lipoprotein; PCI: percutaneous coronary intervention; STEMI: ST-segment elevation myocardial infarction.

Publication Year Authors M ain Conclusion Reference

2004 Romeo G et al.
Profilin is abundant in aortic atherosclerotic plaques and leads

[58]to LDL-dependent endothelial dysfunction in hyperglycemia

2007 Moustafa-Bayoumi 
et al.

Profilin overexpression leads to vascular hypertrophy and 
hypertension [64]

2010 Caglayan et al.
Profilin is expressed in atherosclerotic plaques and exerts 

proatherogenic effects in vascular smooth muscle cells [51]

2013 Li Z et al.
Profilin exerts proatherogenic effects in response to chronic 

hyperglyceamia [56]

2013 Zhao et al. Profilin 1 contributes to cardiac hypertrophy and interferes
[65]with nitric oxide production in hypertensive rats

Profilin is present in thrombi from infarct-related arteries in
2015 Ramaiola et al. STEM I patients. The amount of profilin decreases with 

thrombus "age"
[62]

2017 Yang et al.
Profilin is up-regulated in cardiomyocytes in response to 

chronic exposure to advanced glycation end-products and 
contributes to cardiotoxicity

[57]

2017 Hao et al.
Profilin is overexpressed in aortic endothelial cells during 

myocardial infarction
[60]

2019 Paszek et al.
Serum profilin levels in coronary artery disease are associated 

with diabetes, family history and multivessel disease
[59]

2020 Paszek et al.
Profilin serum concentration depends on the time of symptom 

duration, post-PCI flow in the infarct-related artery and 
P2Y12 administration in myocardial infarction patients

[63]

The mechanism in which profilin is implicated in atherosclerosis is unknown. More
over, it is unclear whether its pronounced presence in atherosclerotic plaques is a source 
of the problem or its consequence. It is mostly postulated that profilin augments the 
development of plaques. However, one cannot exclude that its up-regulation is a result of 
the activation of cellular defense systems. Considering the fundamental role of profilin in 
regulating actin dynamics and the importance of the cytoskeleton in regulating a number of 
aspects in mitochondrial biology, the link between profilin and mitochondria is one exciting 
pathway to explore. Below, we discuss the ways in which mitochondria are involved in the 
pathogenesis of atherosclerosis and coronary artery disease with possible profilin involve
ment. Since the effects of profilin in the pathophysiology of atherosclerosis are ambiguous, 
we gathered the reported positive and negative effects of profilin in the pathophysiology 
of atherosclerosis in Figure 1. Mitochondria-related pathways are discussed below.



N e g a t i v e  e f f e c t s
O F  P R O F I L I N  IN A T H E R O G E N E S I S :  

D N A  s y n t h e s i s  an d  m i g r a t i o n !  
e N O S j ,  V C A M ! ,  o x L D L  u p t a k e !  
h o m o c y s t e i n e - m e d i a t e d  EC  d a m a g e !  
A G E - r e l a t e d  EC  d y s f u n c t i o n !  
M i - r e l a t e d  E C  d y s f u n c t i o n !
N O j ,  h y p e r t e n s i o n !  
m i t o c h o n d r i a l  f i s s i o n ! ,  R O S !  
p r o f i l i n - E G R - 1  i n f l a m m a t i o n  ( M l ) !  
a p o p t o s i s !

P o s i t i v e  e f f e c t s
O F  P R O F I L I N  I N A T H E R O G E N E S I S :

- f u n c t i o n a l  s c a f f o ld  for  
m i t o c h o n d r i a l  t r a n s p o r t
- m i t o c h o n d r i a l  a n c h o r a g e  m  r e g i o n s  
of h igh  e n e r g y  d e m a n d
- S I R T 3 - r e l a t e d  R O S ! ,  
i n f l a m m a t i o n ! ,  a p o p t o s i s ! ^

Figure 1. A sum mary of profilin involvement in the pathogenesis of atherosclerosis. Details in text. AGE: Advanced 
Glycation End-Products; eNOS: endothelial nitric oxide synthase; EC: Endothelial Cells; MI: myocardial infarction; oxLDL: 
oxidized low-density lipoprotein; PFN: profilin; ROS: Reactive Oxygen Species; EGR: Early Growth Response Protdin.

4. Mitochondria and Profilin in the Pathogenesis of Atherosclerosis
4.1. Mitochondrial 'Transport and Energy Production

The: proper morphology and function of the mitochondria rely on the cytoskeleton. 
Mutation of actin-regulating proteins such as the A rp2/3 fomplex, cofilin or profilin led to 
a disorganization of actin cytoskeleton and distortion of mitochondrial morphology [66]. 
Furthermore, mitochondria need to be transported to regions of the cell, which depend on 
stable: energy production. This transport relies on both, microtubule and actin-dependent 
transport. It waa shown by Morris and Hollenbeck that phafmacological blocking of micro- 
tubulea and leaving only actin available for transport led to a decrease in the velocity and 
distence traveled by mitochondria, with retrograde transport being favoured. When both 
actin and microtubules were inhibited, all mitochondrial m tbility was blocked [67], There
fore, actin cytoskeleton it important fer a short-distance, m rstly retrograde, mitochondrial 
movement. Once the mitochondria reach their destination, it is critically important that 
they remain anchored to regionr of high energy-demand. Thts process relies largely on 
the ptoper function of the actin cptoskeleton. For example, in neurons, mitochondria are 
trafficked and anchgred al sites stimulateg by tht Nerve Growth Facter in a TrkA-mediated 
fashion [68]. Since profilin ir crucial for actin filam ent dynamics, it is probable that its 
dysfunction could impair mitochondrial movement inside phe cell with negative implica
tions for aerobic energy generation. Low aerobic capacity is known to worsen the exercise 
tolerance and outcomes, including mortality, of patients with coronary artery disease [69]. 
Hence, defective profilin function could impair aerobic respiration and negatively influence 
clinical outcomes in patients with coronary artery disease. This is a plausible mechanism, 
since dysfunctional profilin variants were reported in simple Eukaryotes [70], as well as in 
human pathology, such as amyotrophic lateral sclerosis (see Section 3).



4.2. Fusion and Fission

Mitochondria are dynamic organelles that undergo constant fusion and fission [71]. 
A proper balance between these processes is crucial, as it serves to distribute proteins 
and metabolites across the whole compartment, as well as to minimize oxidative dam
age [72]. Mitochondria with an excess of free radicals fuse with others in order to "dilute" 
ROS and RNS in a larger organelle. They may also be isolated by fission and directed 
towards mitophagy. Finally, in the case of overwhelming damage, the cell may undergo 
apoptosis [73].

Inverted formin 2 (INF2) is a protein that connects mitochondrial fission to the actin 
cytoskeleton. Endoplasmic reticulum-bound INF2 forms actin filaments in the proximity 
of mitochondria, which is followed by Dynamin-1-like protein (Drp1) mediated mitochon
drial fission [74]. Profilin interacts directly with INF2 and accelerates the ADP to ATP 
exchange in the process of actin polymerization [75]. Therefore, the direct profilin-INF2 in
teractions most likely facilitate mitochondrial fission via Drp1. An experimental disruption 
of this process by a down-regulation of Drp1 led to a reduction in mitochondrial fission 
and consequently to less ROS generation, better endothelial function and a reduction in 
atherosclerotic plaques in streptozotocin-induced diabetic ApoE - / -  mice [76]. Perhaps 
excessive profilin expression within the atherosclerotic plaque destroys the mitochondrial 
fission/fusion balance in favor of fission, leading to exacerbation of the disease. This could 
be one way to explain the abundance of profilin within atherosclerotic plaques.

4.3. Apoptosis

As mentioned before, apoptosis is one of the key processes involved in the progression 
and complications of atherosclerosis. BCL-2, a family of mitochondrial proteins, play cru
cial roles both in promoting (BAX, BAK, and BOK) and blocking (BCL-2, BCL-XL, BCL-W, 
MCL-1, and BFL-1/A 1) apoptosis [77]. There is a growing amount of evidence pointing 
to the involvement of the actin cytoskeleton and associated proteins in mitochondria- 
mediated apoptosis. It was demonstrated that an accumulation of actin in the proximity 
of mitochondria directly precedes the hallmarks of apoptosis: the release of cytochrome c, 
BAX translocation to the mitochondria, mitochondrial fission and condensation of nuclear 
DNA. It is hypothesized that actin accumulation in the proximity of mitochondria facilitates 
the transport of pro-apoptotic proteins (BAX) from the cytosol to the mitochondrion [78]. 
Moreover, a pharmacological stabilization of the actin cytoskeleton by jasplakinolide and its 
destabilization by cytochalasin D were both shown to exert proapoptotic effects. Caspase-3, 
a mitochondrial initiator of apoptosis was elevated in both cases [79,80]. Mitochondria- 
induced apoptosis may also be affected by actin-associated proteins. Gelsolin, an actin 
assem bly/disassem bly regulator, closes the voltage-dependent anion channel and main
tains the physiological mitochondrial membrane potential. Therefore, it reduces the outflow 
of cytochrome c to the cytoplasm and blocks apoptosis [81]. However, cofilin— a partner of 
profilin in regulating actin depolymerization—was demonstrated to have pro-apoptotic 
properties. The translocation of dephosphorylated cofilin and Drp1 to the mitochondria 
enhanced mitochondrial fission and apoptosis [82]. There is growing evidence that profilin 
itself is a directly pro-apoptotic protein and that it exerts this function via mitochondrial 
pathways. Yao et al. reported that profilin mediated the up-regulation, activation and 
mitochondrial translocation of p53. This induced apoptosis by mitochondrial, transcription- 
independent pathways [83]. Furthermore, Zaidi and associates investigated the role of 
profilin in the survival of breast cancer cells. They transfected a breast cancer cell line with 
the profilin gene using a high-level constitutive expression vector (pcDNA 3.1). This led to 
the engineering of "profilin stable" cells that were then compared with wild type (unmodi
fied) cells after treatment with apoptosis inducers: doxorubicin, oleandrin, paclitaxel or 
vmblastme. They showed a 70-90% death rate in "profilin stable" cells as compared with 
40-50%  of unmodified cells. Profilin exerted its pro-apoptotic properties by decreasing 
the binding capacity and activity of N F-kB, as well as through the phosphorylation of 
p53. The phosphorylated p53 was translocated to the mitochondrion, where it triggered



caspase 9-dependent apoptotic processes. In this way, profilin may increase mitochondria- 
driven apoptosis [84]. In support of these results, several inhibitors of cellular proliferation 
and migration were shown to up-regulate profilin [85,86]. On the other hand, in murine 
hematopoietic stem cells a knock-out of profilin gene led to apoptosis and an increase 
in ROS production via mitochondrial respiration. These effects happened due to the 
downstream activation of early growth response protein 1 (EGR1), a transcription factor 
involved fibrinogenesis and fibrotic processes in response to extracellular stimuli. This 
suggests that profilin may regulate mitochondrial function and apoptosis through gene 
expression [87] . Interestingly, EGR1 was implicated in atherosclerosis and activating the 
post-ischemia inflammatory response [88,89]. It is possible that the final effect that profilin 
may have on mitochondria-driven apoptosis depends on additional regulators or tissue 
type and requires further research. Our own research shows low profilin levels in MI 
patients with suboptimal infarct-related artery flow post-PCI— a symptom of inadequate 
tissue perfusion in the infarct area [63]. This could be due to a profilin-EGR1-mitochondria 
driven inflammation in the infarct region.

4.4. Profilin-SIRT3 Interactions

The NAD-dependent deacetylase sirtuin-3 (SIRT3) is a major mitochondrial NAD- 
deacetylase, which promotes the Krebs cycle and aerobic ATP production via the mito
chondrial electron transport chain, maintains proper potential across the mitochondrial 
membrane and reduces ROS levels. It is also implicated in a number of metabolic effects, 
cell survival, inflammation and cellular reaction to stress [90]. SIRT3 seems to have sev
eral protective roles in the pathogenesis of atherosclerosis. Polymorphisms in SIRT genes 
were linked to the advancement of atherosclerotic plaques, which was attributed to ROS 
imbalance and ROS-related damage [91]. SIRT3 inhibits trimethylamine-N-oxide (TMAO), 
a potent activator of the NLRP3 inflammasome, and caspase-1— a proinflammatory and 
proapoptotic enzyme, which yields IL-1ß and interleukin-18 [92]. Also, Sirt-3 deficient 
mice on a high-cholesterol diet developed endothelial dysfunction that was dependent 
on low superoxide dismutase 2 activity (SOD2) and high ROS generation [93]. SIRT3 was 
also shown to reduce ROS-production and prevent apoptosis by deacetylating Ku70 and 
it's binding with Bax. This prevented Bax from translocating to the mitochondrion and 
setting off an Apoptosis Inducing Factor (AIF)-dependent cascade. Ergo, SIRT3 prevents 
stress-induced cell death [94,95]. Taking into consideration the importance of apoptosis in 
thromboembolic complications of atherosclerosis, SIRT3 may be one of the most important 
proteins protecting against MI and stroke.

SIRT3 also has important metabolic functions with implications for atherosclerosis. 
SIRT3-knockout mice placed on a high-fat diet show insufficient fatty acid ß -oxidation and 
are prone to metabolic syndrome, including insulin resistance and hepatosteatosis. The 
case is similar in humans: a single nucleotide polymorphism in the human SIRT3 gene 
reduced the enzyme activity leading to mitochondrial protein acetylation and metabolic 
syndrome [96].

A potentially game-changing result was reported by Yao et al. They showed that 
profilin interacts with SIRT3 directly and specifically, both in vitro and in vivo. A trans
fection with profilin resulted in a rise in SIRT3 expression. Moreover, the profilin-SIRT3 
interaction led to the down-regulation of hypoxia-inducible factor 1a  (HIF-1a) [40]. HIF-1a 
is a transcription factor for a number of genes involved in cell proliferation, angiogenesis 
(including Vascular Endothelial Growth Factor) and glucose metabolism [97]. Importantly, 
H IF-1a is highly expressed in smooth muscle cells and cardiomyocytes [98], which un
derscore the potential role of a possible profilin-SIRT3-HIF-1a axis in atherosclerosis. It is 
plausible that profilin may influence SIRT3-mediated processes involved in the formation 
and progression of atherosclerotic plaques (ROS scavenging, inflammation, and apoptosis).

SIRT3 is also protective against hypertension, a prominent risk factor for coronary 
artery disease. Dikalova et al. demonstrated a SIRT3 deficiency with a SOD2 acetylation 
(inactivation) in the blood mononuclear cell fraction of hypertensive individuals. SOD2



expression itself was not influenced. This suggests that SIRT3 deficiency leads to SOD2 
hyperacetylation and elevated ROS, which contribute to hypertension [99]. However, 
profilin was shown to promote hypertension and vascular remodeling in rodents. This was 
partially also mediated via an increased level of free radicals (peroxynitrite), suggesting 
another way in which SIRT3-profilin interplay could influence atherosclerosis [64,100].

4.5. Ischemia/Reperfusion Injury

Yang at al. showed that cardiomyocytes exposed to stress by nutrient withdrawal 
managed to maintain physiological NAD+ levels, which is essential for cell survival. 
This was achieved due to a compensatory rise in nicotinamide phosphoribosyltransferase 
(Nampt) expression, as well as functional mitochondrial SIRT3 and SIRT4 [101]. This 
may be critically important in acute myocardial ischemia, where due to artery blockage, 
oxygen and nutrients are lacking in the myocardium. The proper function of SIRT3 could 
maintain cell viability and integrity up to the time of reperfusion and restoration of nutrient 
flow. In this case, a dysfunction of SIRT3 could increase the risk of ischemia-reperfusion 
injury. In fact, hearts harvested from SIRT3-knockout mice, which underwent myocardial 
infarction, showed more pronounced ischemia/reperfusion injury in comparison with wild 
type specimens. This was accompanied by a larger extent of mitochondrial permeability 
transition pore opening and ROS production [102]. It is possible that profilin facilitates the 
proper action of SIRT3 and prevents ischemia-reperfusion injury. This notion is supported 
by our own results. As mentioned before, we recorded lower profilin concentrations in 
MI-patients with inadequate post-PCI coronary flow, which is an angiographical sign of 
microvascular obstruction and ischemia/reperfusion injury [63]. The observed low serum 
profilin levels do not prove a causal role of profilin in ischemia-reperfusion injury; however, 
in light of the role of SIRT3 and its direct interaction with profilin, this may constitute a 
promising research area.

Excessive mitochondrial fission was also reported to cause ischem ia/reperfusion 
injury [103]. This is another mechanism where profilin (acting via INF2) could exacerbate 
ischemia/reperfusion injury. The possible involvement of profilin in mitochondrial fission 
has been discussed above. A putative model for profilin-mitochondria associations in 
processes involved in the pathogenesis of atherosclerosis is presented in Figure 2.



Figure 2. A  putative model for profilm-mitochondria associations in processes involved in the pathogenesis of atherosclero
sis. (A) Mitochondrial transport. Profilin accelerates the rate of actin polimerization by ADP-actin to ATP-actin conversion, 
building a scaffold for mitochondrial transport. (B) Mitochondrial fission. ProfiSin interacts with Endoplasmic reticulum- 
bound INF2 and accelerates the ADP to ATP exchange in actin polymerization. This provides a platlorm for Drp1-mediated 
mitochondriol fission. (C) Apoptosis. Profilin-mediated actin accumulation leads to translocation of Bax to the mitoehondria 
with subsequent cytochrome c release. The level of caspase-3 rises. Profilin phosphorylates p53, which translocstes to the 
mitochondria activating other apoptotic pathways. ROS levels increase. There are followed by nuclear DNA condensation 
and enhanced mitochondrial fission. (D) Profllm-SIRT-3 interactions. Profilin increases SIRT-3 levels. SIRT-3 deaceiylates 
(activates) SOD-2, leading to a decrease in ROS. A low BIOS Irvel p romoies the die gradation of HIF-da snd prevents V EGF 
transripteon and locel neoangiogenesis. SIRT-3 also increases NAD+ levels, together w ith decreased ROS protect against 
Ischem ia/Reperfusion Injury. Abbreviations: ADP: Adenosme diphos—iate; ATP: Adenosine triphosphate; I: eomplex I 
of tire: electron transport drain; cyt c: cytochorme c; Drp1: Dynamin-1-llke protein; F[IF-1cr: Hypoxia Inducible Factor-1a; 
INF-2: Inverted Formin-2; I/R : ischem ia/reperfusion injury; N A D +/N A D H : Nicotinamide Adenine Dinucleotide redox 
pair; PFN-1: Profilin 1; ROS: Reactive Oxygen Species; SIRT-3: NAD-dependent Deacetylase Sirtuin-3; SOD-2: Superoxide 
Dismutase 2; VEGF: Vascular Endothelial Growth Factor.

5. Knowledge Gap

Very little ir known about the meehanisms in which profilin acts in atherosclerosis 
on different stages of the diseare, which opens a completely novel area of research. One 
exciting field io exp lore rs the involvement of profilin with mitochondria. The direct 
interaction between profilin and mitochondrial deacetylase SIRT3 seems to Ire particularly 
promising [40]. Further investigation into the nature of thrs interaction is needed, especially 
regarding final SIRT3 effects relevant in atherosclerosis, such as: ROS generation, NLRP3- 
mediated inflammation, apoptosis and cellular reaction to stress- There are data suggesting 
that profilin incseases the expression of SIRT3 [84]; however, it is uncleor whether they 
act in a synergetic manner. Moreover, a growing amount of data point to a possible 
profilin and mitochondrial involvement in other cardiovascular pathologies, such as cardiac 
hypertrophy and hypertension. Further research into the potential link between profilin 
and mitochondria in heart-related issues could change our understanding of atherosclerosis 
and other heart-related conditions.



6. Conclusions

A growing amount of data associate profilin 1, a protein crucial for cell biology, with 
the pathogenesis of coronary artery disease. It is increasingly clear that profilin functions far 
beyond its well-known role as an actin dynamic regulator. The analysis of the network of 
profilin's molecular partners and interactions allows us to hypothesize that there are several 
areas in which profilin may exert pro or antiatherogenic effects via mitochondria. These 
include: regulation of aerobic energy generation, mitochondrial fission, apoptosis, ROS 
generation and neutralization. The direct interaction between profilin and SIRT-3 seems to 
be particularly promising in shedding new light on the pathogenesis of atherosclerosis.
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Abbreviations

ADP Adenosine Diphosphate
AGEs Advanced Glycation End-Products
a if Apoptosis Inducing Factor
ApoE Apolipoprotein E
ATP Adenosine Triphosphate
Drp-1 Dynamin-1-like protein
ECs Endothelial Cells
EGR1 Early growth response protein 1
ICAM-1 Intercellular Adhesion Molecule 1
H IF-1a Hypoxia Inducible Factor-1 a
IL-18 Interleukin 18
IL-1ß Interleukin-1 ß
INF-2 Inverted Formin-2
JAK-2 Janus Kinase-2
LDL Low Density Lipoproteins
LDLr Low Density Lipoprotein receptor
MI Myocardial Infarction
NAD+ Nicotinamide Adenine Dinucleotide, oxidated
Nampt Nicotinamide phosphoribosyltransferase
N FkB Nuclear Factor-KB
NLRP3 NLR family pyrin domain containing 3
oxLDL Oxidated Low-Density Lipoprotein
PCI Percutaneous Coronary Intervention
PI3K Phosphoinositide 3-kinase
PIP2 Phosphatidylinositol 4,5-bisphosphate
RNS Reactive Nitrogen Species
ROS Reactive Oxygen Species
sCD40L Soluble CD40 Ligand
SIRT-3 NAD-dependent deacetylase sirtuin-3



SOD2 Superoxide Dismutase 2
STAT3 Signal Transducer and Activator of Transcription 3
STEMI ST-segment Elevation Myocardial Infarction
TMAO Trimethylamine N-oxide
VCAM-1 Vascular Cell Adhesion Protein 1
v e g f Vascular Endothelial Growth Factor
VSMCs Vascular Smooth Muscle Cells
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