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Abstract: Airway remodeling in asthma is characterized by reticular basement membrane (RBM)
thickening, likely related to epithelial structural and functional changes. Gene expression profiling of
the airway epithelium might identify genes involved in bronchial structural alterations. We analyzed
bronchial wall geometry (computed tomography (CT)), RBM thickness (histology), and the bronchial
epithelium transcriptome profile (gene expression array) in moderate to severe persistent (n = 21) vs.
no persistent (n = 19) airflow limitation asthmatics. RBM thickness was similar in the two studied
subgroups. Among the genes associated with increased RBM thickness, the most essential were
those engaged in cell activation, proliferation, and growth (e.g., CDK20, TACC2, ORC5, and NEK5)
and inhibiting apoptosis (e.g., higher mRNA expression of RFN34, BIRC3, NAA16, and lower of
RNF13, MRPL37, CACNA1G). Additionally, RBM thickness correlated with the expression of genes
encoding extracellular matrix (ECM) components (LAMA3, USH2A), involved in ECM remodeling
(LTBP1), neovascularization (FGD5, HPRT1), nerve functioning (TPH1, PCDHGC4), oxidative stress
adaptation (RIT1, HSP90AB1), epigenetic modifications (OLMALINC, DNMT3A), and the innate
immune response (STAP1, OAS2). Cluster analysis revealed that genes linked with RBM thickness
were also related to thicker bronchial walls in CT. Our study suggests that the pro-fibrotic profile in
the airway epithelial cell transcriptome is associated with a thicker RBM, and thus, may contribute to
asthma airway remodeling.

Keywords: asthma; airway remodeling; gene expression; bronchial epithelium

1. Introduction

Asthma is an inflammatory disease of the airways that may result from exposure to
inhaled allergens or other environmental agents, rendering genetically susceptible individ-
uals to aberrant activation and prolonged immune responses [1]. Airway remodeling is a
pathological feature of persistent asthma and contributes to the clinical manifestations of
the disease. It refers to the bronchial wall’s structural changes caused by chronic inflamma-
tion, repeated cycles of injury, and repair [2]. In asthma, airway remodeling is characterized
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by modifications in the epithelium and subepithelial fibrosis, including thickening of the
basement membrane and deposition of extracellular matrix (ECM) proteins in the submu-
cosa [3,4]. Thickening of the basement membrane occurs mainly in the lamina reticularis
layer, the so-called reticular basement membrane (RBM), which is localized beneath the
basal lamina [3].

Although host factors that make asthma subjects susceptible to airway structural
changes are complex and poorly understood, multiple studies support the concept of
airway epithelial barrier dysfunction as being critical for this process [1,5]. The airway
epithelium is continuously exposed to airborne particles and infectious agents and rep-
resents the airways’ frontline barrier between the host and environment. Furthermore, it
plays a vital role in the innate immune defense and mucociliary clearance. As a source of
cytokines and growth factors, the airway epithelium regulates other cell functions [5,6]; for
example, it stimulates lung fibroblasts to produce ECM components, such as collagens and
fibronectin, and pro-fibrotic transforming growth factor (TGF)-β [1]. Moreover, known
environmental risk factors, such as cigarette smoke, biomass fuel particles, and respiratory
viral infections, may stimulate the production of ECM proteins by the airway epithelium,
fibroblasts, and smooth muscle cells [1].

Under physiological conditions, the epithelium’s integrity is preserved by tight junc-
tions, limiting the passage of macromolecules to the submucosa. Exposure to allergens,
pathogens, or air pollutants can cause cleavage of tight junctions, increasing epithelial per-
meability, which likely further enhances persistent airway inflammation in asthma [7]. In
predisposed individuals, such environmental injury may also induce airway epithelial cell
apoptosis, accompanied by the secretion of paracrine factors that initiate the regenerative
process in the tissue, leading to the aberrant repair and subsequent structural changes of
the airway [1].

Genome-wide association studies have identified several susceptibility genes asso-
ciated with epithelial barrier function, differentiation, and homeostasis, including genes
encoding cadherin family proteins and those related to mucus production [7]. How-
ever, genetic factors’ exact contribution to epithelial barrier defects, asthma development,
progression, and airway remodeling are not entirely understood. Moreover, bronchial
epithelial gene expression signatures and their linkage to the airway’s structural changes
have not been previously studied. Therefore, by analyzing bronchial mucosa biopsies
from asthma individuals, we investigated potential associations between the epithelial cell
transcriptome and RBM thickness, as well as their linkage to asthma severity, inflammation
patterns, persistent airflow limitation, and airway geometry parameters revealed by lung
computed tomography (CT) scans. According to our knowledge, such an approach has not
been previously implemented in asthma research.

2. Results
2.1. Patient Description and Basic Laboratory Tests

We analyzed 40 non-smoking moderate to severe asthma patients aged 30–65 years,
with at least a 3-year history of confirmed asthma and no exacerbation within at least six
months before the enrollment. About half of the patients (n = 21, 52.5%) had persistent
airflow limitation, while the remaining (n = 19, 47.5%) had normal spirometry before or after
bronchodilator. Persistent airflow limitation was defined as a forced expiratory volume in
1 s (FEV1)/vital capacity (VC) index below 0.7 or FEV1 lower than 0.8 of predicted value
after bronchodilator.

Demographics and clinical characteristics of patients studied are provided in Table 1.
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Table 1. Demographics and clinical characteristics of subjects studied.

No-Persistent Airflow
Limitation, n = 19

Persistent Airflow
Limitation, n = 21 p-Value

Demographic data

Age, years 52 (42–63) 56 (53–68) 0.07
Male gender, n (%) 5 (26) 3 (14) 0.58

Height, m 1.62 ± 0.08 1.63 ± 0.09 0.8
Body mass index, kg/m2 28.2 (24.9–31.3) 25.7 (23.9–31.2) 0.26

Past smoking, n (%) 5 (26) 5 (24) 0.86
Pack-years of smoking, n 0 (0–0) 0 (0–0) 0.46

Living primarily in inner-city
environments, n (%) 9 (47) 12 (57) 0.76

Asthma-Related Variables

Atopy, n (%) 11 (58) 9 (43) 0.95
Asthma duration, years 11 (5–20) 8.5 (5.5–18) 0.75

Asthma severity (GINA):
persistent moderate, n (%) 8 (42) 7 (33)

persistent severe, n (%) 11 (58) 14 (67) 0.57
Asthma symptom control §:

well-controlled asthma, n (%) 2 (11) 2 (10)
not-well controlled asthma, n (%) 4 (21) 5 (24)

very poorly controlled asthma, n (%) 13 (68) 14 (67) 0.97
Oral glucocorticosteroids use, n (%) 5 (26) 5 (24) 0.86

FEV1 before bronchodilator, L 2.58 ± 0.84 1.67 ± 0.8 <0.001
FEV1 before bronchodilator, % of

the predicted value 101 (85.9–110) 68.05 (48.3–79) <0.001

FEV1 after bronchodilator, L 2.61 ± 0.81 1.92 ± 0.89 0.02
FEV1 after bronchodilator, % of the

predicted value 103.8 (93–114.5) 73.7 (61.6–88.2) <0.001

Change in FEV1 after
bronchodilator, L 0.16 (0.03–0.29) 0.23 (0.15–0.34) 0.23

FEV1/VC (before bronchodilator) 74.1 (71.6–76.3) 56.7 (49–61.1) <0.001
FEV1/VC (after bronchodilator) 77.8 (72–79.7) 62.3 (54.7–67.8) <0.001

Categorical variables are presented as numbers (percentages), continuous variables as median and interquartile
range, or mean and standard deviation, as appropriate. Abbreviations: FEV1—forced expiratory volume in one
second, VC—vital capacity, GINA—Global Initiative for Asthma, L-liter, n—number, §—asthma symptom control
(assessed based on asthma control test results).

Both subgroups did not differ in the demographic parameters or asthma severity and
duration. Patients with persistent airflow limitation were characterized by higher blood
and bronchoalveolar lavage (BAL) eosinophilia (Table 2). Intriguingly, they also had lower
interleukin (IL)-6 concentrations in BAL.

Table 2. Laboratory variables.

No-Persistent Airflow
Limitation, n = 19

Persistent Airflow
Limitation, n = 21 p-Value

Blood Count

Hemoglobin, g/dL 13.4 (12.9–13.9) 13.7 (12.6–14.4) 0.67
Red blood cells, 106/µL 4.62 (4.3–4.84) 4.71 (4.17–5.16) 0.71

White blood cells, 103/µL 5.88 (4.95–7.51) 7.45 (6.51–9.25) 0.008
Neutrophils, 103/µL 3.5 (2.7–4.2) 3.54 (2.7–4.2) 0.73

Lymphocytes, 103/µL 1.9 (1.5–2.4) 2.2 (1.97–2.6) 0.13
Monocytes, 103/µL 0.51 (0.48–0.68) 0.68 (0.53–1.1) 0.02

Blood platelets, 103/µL 218 (177–246) 224 (187–294) 0.26
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Table 2. Cont.

No-Persistent Airflow
Limitation, n = 19

Persistent Airflow
Limitation, n = 21 p-Value

Asthma and Inflammatory Biomarkers in Peripheral Blood

Eosinophilia/µL 130 (70–290) 565 (380–1340) <0.001
Immunoglobulin E, IU/mL 43 (22.7–133) 152 (32–586) 0.19
C-reactive protein, mg/L 4.24 (0.45–8.67) 6.71 (0.58–42) 0.9

Interleukin 6, pg/mL 0.58 (0.43–1.04) 1.12 (0.5–3.21) 0.08
Interleukin 10, pg/mL 0.44 (0.005–0.76) 0.67 (0.41–1.62) 0.05

Periostin, ng/mL 0.3 (0.27–0.36) 0.38 (0.31–0.51) 0.06
A disintegrin and
metalloproteinase

domain-containing protein
33, ng/mL

1.2 (0.2–2.29) 1.76 (1.26–2.77) 0.11

Reticular Basement Membrane Thickness

The thickness of the
reticular basement

membrane of the bronchial
mucosa, µm

5.96 (5–7.96) 6.2 (5.24–7.45) 0.9

Bronchoalveolar Lavage Cellularity and Biomarkers

Macrophages, % 86.8 (74.5–93) 83 (56.3–91) 0.47
Lymphocytes, % 7 (4.5–15.5) 7 (3–10.5) 0.33
Neutrophils, % 3 (2–4.5) 4 (2–12.5) 0.34
Eosinophils, % 0.1 (0–1) 2.3 (0.5-7) 0.004

Periostin, ng/mL 0.85 (0.76–0.96) 0.81 (0.72–0.95) 0.6
Interleukin 6, pg/ml 0.99 (0.67–1.14) 0.2 (0.005–0.86) 0.01

Interleukin 10, pg/ml 0.01 (0.005–0.01) 0.01 (0.005–0.01) 0.81
Variables are presented as medians and interquartile range.

2.2. Computed Tomography Imaging Shows Airway Wall Thickening in Asthma Patients with
Persistent Airflow Limitation

Figure 1 depicts how airway geometry parameters were automatically analyzed.
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Table 3 presents cross-sectional geometry parameters of the right upper lobe apical
segmental bronchus (RB1) and the right lower lobe basal posterior bronchus (RB10).



Int. J. Mol. Sci. 2021, 22, 998 5 of 21

Table 3. Lung computed tomography airway remodeling indices.

No-Persistent Airflow
Limitation, n = 19

Persistent Airflow
Limitation, n = 21 p-Value p-Value

(Adjusted)

The Right Upper Lobe Apical Segmental Bronchus (RB1)

Lumen diameter, mm 3.95 (3.6–4.5) 4.05 (3.7–5.3) 0.58 0.23
Airway diameter, mm 7.4 (6.8–8.4) 8.3 (7.3–9.3) 0.13 0.76
Wall thickness, mm 1.8 (1.6–1.9) 1.95 (1.8–2.4) 0.02 0.16
Wall thickness ratio 23.75 (21.3–24.6) 24.75 (23.1–26.9) 0.07 0.01
Lumen area, mm2 12.3 (10–16) 12.8 (10.5–22) 0.65 0.2

Wall area, mm2 30.8 (25.9–39.3) 39.4 (31.1–48.1) 0.1 0.78
Wall area ratio 72.55 (67.3–75.1) 74.8 (71.3–78.7) 0.08 0.01

The Right Lower Lobe Basal Posterior Bronchus (RB10)

Lumen diameter, mm 4.35 (3.7–4.7) 3.8 (3–4.5) 0.17 0.02
Airway diameter, mm 7.9 (6.3–8.5) 7.6 (6.2–8.4) 0.36 0.03
Wall thickness, mm 1.8 (1.6–1.9) 1.8 (1.5–1.9) 0.98 0.54
Wall thickness ratio 23.1 (19.8–24.9) 24 (22–26.4) 0.16 0.07
Lumen area, mm2 14 (8.3–17) 11.1 (7.3–16.2) 0.31 0.04

Wall area, mm2 33.6 (22.4–42.4) 31.7 (21.9–40.5 0.5 0.08
Wall area ratio 71.3 (63.6–74.8) 73.3 (68.5–78.5) 0.18 0.06

Variables are presented as medians and interquartile range.

As expected, corresponding airway cross-sectional geometry parameters measured in
RB1 and RB10 correlated well with each other; for wall area ratio (WAR) and wall thickness
ratio (WTR), the correlation coefficients were the strongest (R = 0.53, p = 0.001, and R = 0.55,
p < 0.001, respectively).

CT imaging revealed a higher RB1 WAR and WTR in subjects with persistent airflow
limitation and a tendency towards an increase in those variables in RB10 (Table 3). That
group of patients also had lower lumen and airway diameters and decreased lumen areas in
RB10 than the remaining individuals (Table 3). Males were characterized by higher airway
and lumen areas; however, WAR and WTR were not associated with gender. Additionally,
lumen and wall diameters in RB10 remained in a weak positive relationship with height
(R = 0.37, p = 0.02, and R = 0.32, p = 0.049, respectively).

WAR and WTR in RB1, but not in RB10, inversely correlated with the FEV1/VC index
before bronchodilator (R = −0.34, p = 0.04, and R = −0.37, p = 0.03, respectively).

Additionally, RB1 wall thickness was positively related with peripheral blood and
BAL eosinophilia (R = 0.45, p = 0.009, and R = 0.53, p = 0.001, respectively). A similar,
although less strong association was documented between RB1 WAR or WTR and blood
eosinophil count (R = 0.35, p = 0.04, and R = 0.36, p = 0.04, respectively).

2.3. Reticular Basement Membrane Thickness Is Not Increased in Asthma Patients with Persistent
Airflow Limitation

Surprisingly, RBM thickness was not significantly increased in asthma subjects with
persistent airflow limitation (Figure 2).

RBM thickness was also not related to age, sex, asthma duration, and smoking history
(data not shown). Likewise, there was no association with spirometry values, asthma
severity, or symptom control scores. Among laboratory parameters, thickness of the
RBM layer showed a moderate positive correlation with blood neutrophil count (R = 0.35,
p = 0.02) and BAL periostin (R = 0.46, p = 0.04), albeit not with systemic biomarkers
of type-2 inflammation (blood eosinophil count: R = −0.25, p = 0.09; serum periostin:
R = −0.3, p = 0.2). Additionally, patients with a thicker RBM (median value as a cut-off
point (6.08 µm)) were characterized by a higher odds ratio (3.95 (95%CI: 1.75–6.2), p < 0.001)
of increased BAL periostin concentrations, defined as values above the cut-off point of
0.95 ng/mL.
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RBM thickness was not related to lung CT airway geometry parameters, except for a
weak positive relationship with RB10 wall thickness (R = 0.3, p = 0.04), after adjustment for
confounders (β = 0.39 (95%CI: 0.2–0.6)).
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Figure 2. Histological examination of the bronchial mucosa section; abbreviations: Epi—epithelium, RBM—reticular
basement membrane (shown by dashed lines), Sub—submucosa. The reticular basement thickness was similar in both
asthma subgroups.

2.4. Increased Reticular Basement Membrane Thickness Is Associated with Fibrosis- and
Growth-Promoting Pattern of Gene Expression in Bronchial Epithelium

To search for unique airway transcriptome patterns associated with increased RBM
thickness, we stratified asthma patients into those with increased vs. decreased RBM
thickness, using the median value as a cut-off point (6.08 µm). This comparison revealed
51 genes, for which expression significantly differed between both analyzed subgroups.
Among them, 17 genes differed at the significance level lower than 0.001. These genes are de-
scribed in Table S1 (Supplementary Materials). The thicker RBM was linked with a gene ex-
pression profile promoting cell proliferation and growth (CDK20 [8], MIS12 [9], PDS5B [10]),
regulating DNA transcription (ZNF594 [11]), apoptosis (RNF157 [12], HTRA2 [13]), and
cargo transporting (SLC39A13 [14], SLC16A6 [15], IPO13 [16]), as well as related to the
ECM components (LAMA3 [17], USH2A [18]). Moreover, we documented higher mRNA
levels of CLEC9A (C-type lectin domain containing 9A) [19], which encodes an endocytic
receptor specialized in the uptake and processing of dead cell material, and OAS2, encoding
2′,5′-oligoadenylate synthase, engaged in the cell antiviral response [20]. Interestingly,
we also identified differentially expressed genes involved in neuronal cell proliferation,
growth, and function. For example, increased RBM thickness was associated with the
lower expression of BRINP2, which inhibits neuronal cell proliferation (Table S1) [21].

Further correlation analyses identified several genes in which expression was posi-
tively (101 genes) or negatively (39 genes) associated with RBM thickness. Among them,
19 and nine, respectively, had particularly strong correlation coefficients (i.e., ≥ 0.6 or
≤ −0.6). This set of genes is listed in Table 4.
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Table 4. Epithelial cell transcriptome—genes for which expression remained in strong positive or negative associations with
reticular basement membrane thickness (correlation coefficients ≥ 0.6 or ≤ −0.6).

Gene Alias for Gene Correlation Coefficient Potential Linkage with Airway and Asthma Pathology

MIS12 MIS12 kinetochore
complex component 0.745

Plays an essential role in chromosome segregation [9]. The
higher expression suggests increased proliferation

potency of airway epithelial cells.

CDK20 Cyclin-dependent kinase
20 0.727 The encoded kinase may activate airway epithelial cell

growth and proliferation [8].

TACC2 Transforming acidic
coiled-coil protein 2 0.608

A centrosome- and microtubule-interacting protein,
involved in homologous recombination repair [22],

attenuates DNA damage and cytotoxicity in immortalized
human bronchial epithelial cells [23].

NEK5 NIMA related kinase 5 0.625
Regulates centrosome integrity and is involved in cell

proliferation [24]. The higher expression suggests
increased proliferation potency of airway epithelial cells.

ORC5 The origin recognition
complex subunit 5 0.603

Promotes DNA replication [25]. The higher expression
might indicate increased proliferation potency of airway

epithelial cells.

AMBRA1 Autophagy and beclin 1
regulator 1 0.626

Regulates autophagy, cell survival, and proliferation [26].
A positive correlation with reticular basement membrane
(RBM) thickness suggests that autophagy mechanisms are

likely involved in airway remodeling pathology.

GAD1 Glutamate decarboxylase
1 0.696

An enzyme catalyzing gamma-aminobutyric acid (GABA)
production. GABA may be produced by human epithelial
cells, likely relaxing airway smooth muscle [27]. Higher

expression of GAD1 in airway transcriptome has also been
documented in chronic obstructive pulmonary disease

(COPD) patients [28].

MYO1B Myosin I B 0.658

A motor protein related to the actin filament-based cell
organization and movement [29]. Higher airway epithelial
cell expression might reflect epithelial-to-mesenchymal
transition, a structural modification, whereby epithelial

cells lose cell–cell polarity and display mesenchymal
features, such as migratory properties [5].

CORO2A Coronin 2A 0.6

An actin-binding protein involved in cell cycle
progression, signal transduction, cell motility, apoptosis,
and gene expression [30]. Higher expression in airway

epithelium may also reflect the epithelial-to-mesenchymal
transition.

TPM1 Tropomyosin alpha-1
chain 0.603

An actin-binding protein involved in the contractile cell
system [31]. The higher expression may also reflect the

epithelial-to-mesenchymal transition.

OTOF Otoferlin 0.612

A protein involved in the vesicular release. Pathological
mutations in OTOF are related to deafness. Although its

exact role in asthma pathology is unknown, it may be
involved in airway mucus secretion [32].

TPH1 Tryptophan hydrolase 1 0.643

A hydroxylase that catalyzes the first rate-limiting step in
the biosynthesis of serotonin [33], an important

inflammatory mediator in asthma. Serotonin modulates
the function of various inflammatory cells, such as mast
cells, eosinophils, dendritic cells, and lung epithelium.

Higher levels have been shown in asthma patients’
airways; however, its exact source in the lungs is

unknown [34].
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Table 4. Cont.

Gene Alias for Gene Correlation Coefficient Potential Linkage with Airway and Asthma Pathology

RNF34 Ring finger protein 34 0.683
A ring finger containing protein, involved in

protein–protein and protein–DNA interactions. It likely
protects epithelial cells from premature apoptosis [35].

EEF2 Eukaryotic translation
elongation factor 2 0.658

An essential factor in cell protein biosynthesis. The higher
expression suggests increased protein translation potency

in asthma patients with thicker RBM [36].

STAP1 Signal transducing
adaptor family member 1 0.609

Positively regulates gene expression and signal
transduction. The exact role in asthma pathology is

unknown; however, it is abundant in activated human B
cells [37].

OAS2 2′-5′-oligoadenylate
synthetase 2 0.703

An interferon-induced antiviral ribonuclease L that
destabilizes double-stranded viral RNA. It plays a critical

role in the cellular innate antiviral response. A positive
correlation with RBM thickness suggests that viral

infections, essential asthma exacerbation triggers, might
also be involved in airway remodeling pathology. The
encoded protein also regulates cell apoptosis, growth,

differentiation, and gene expression [20].

USH2A Usherin 0.601 An extracellular matrix protein, found in many tissues’
basement membrane, including the lungs [18].

LAMA3 Laminin subunit α3 0.615

A protein belonging to the laminin family. Laminins are
essential for the formation and function of the basement

membrane [17]. Higher airway expression has been linked
with COPD and idiopathic pulmonary fibrosis patients

[38].

PCDHA3 Protocadherin alpha 3 0.609

A neural cadherin-like cell adhesion protein. Its role in
airways is unknown; however, it might be related to the

neural network and synaptic organization in airway
remodeling pathology [39].

PDS5 Cohesin associated factor
B −0.643

A protein that negatively regulates cell proliferation [10].
The lower expression suggests increased proliferation

potency of airway epithelial cells.

HPRT1
Hypoxanthine phosphori-

bosyltransferase
1

−0.647

A transferase engaged in purine salvage pathway. Its
deficiency might be associated with increased local uric
acid production [40]. Soluble uric acid is an endogenous
danger signal, which may stimulate neovascularization

[41] and cell proliferation [42]. Furthermore,
hypoxia-inducible factor 1 α (HIF1-α) strongly

upregulates HPRT1; therefore, a lower expression of
HPRT1 might indicate a worse response to oxidative stress

in airway epithelium [40].

RNF13 Ring finger protein 13 −0.636
A ring zinc finger containing protein, promoting cell

apoptosis [43]. The lower expression might indicate the
anti-apoptotic potency of airway epithelial cells.

MRPL37 Mitochondrial ribosomal
protein L37 −0.66

A large subunit of mitochondrial ribosomal proteins,
which catalyzes protein production within the

mitochondrion. Recent investigations have uncovered this
protein’s pro-apoptotic role [44,45]; therefore, its lower

expression might indicate anti-apoptotic potency of
airway epithelial cells.

CACNA1G Calcium voltage-gated
channel subunit α1 G −0.615

A transmembrane voltage-dependent calcium channel
promoting cell death. The decreased expression suggests

lower apoptotic activity [46].
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Table 4. Cont.

PIEZO2
Piezo type

mechanosensitive ion
channel component 2

−0.6

A stretch-gated ion channel that senses airway stretches
[47]. Lower expression in those with a thicker RBM might
indicate a weaker response to epithelial cells’ mechanical

stimuli. Lower PIEZO2 expression has been shown in
COPD patients [28].

Gene Alias for Gene Correlation Coefficient Potential Linkage with Airway and Asthma Pathology

CA3 Carbonic anhydrase 3 −0.606

A carbonic anhydrase that facilitates the reversible
hydrating of carbon dioxide. Lower expression in those

with thicker RBM might indicate a possible weaker
contraction ability or a worse response to oxidative stress

in airway epithelium because CA3 is upregulated by
HIF1-α [48].

KIF11 Kinesin family member 11 −0.645
A motor cell protein involved i.a. in cilia beating and cell
division. The lower expression might suggest impaired

cilia function in those with a thicker RBM [49].

C21orf58 Chromosome 21 open
reading frame 58 −0.629 Exact biological roles are unknown

In Figure 3, we present the cross-correlation matrix and hierarchical clustering (a
heatmap) of 28 genes, for which expression correlated best with RBM thickness, i.e., with
correlation coefficients ≥ 0.6 or ≤ −0.6. This Figure demonstrates which genes (among
those 28) were associated well with each other. For example, some of the genes for which
expression remained in a strong inverse relationship with RBM thickness, e.g., MRPL37,
were also negatively associated with the mRNA level of genes promoting cell proliferation
and growth, but determining RBM thickness positively (e.g., ORC5, CDK20, EEF2). On the
other hand, a strong association was demonstrated between mRNA levels of TPMI1 and
CDK20 or TACC2 and AMBRA1, likely indicating similar regulatory mechanisms of their
expressions.

The remaining genes significantly correlated with RBM thickness (i.e., with less strong
coefficients) are listed in Supplementary Materials (Tables S2 and S3).

As expected, correlation analysis confirmed most of the genes differentially expressed
in patients with higher RBM thickness (e.g., LAMA3 [17], USH2A [18], MIS12 [9], CDK20 [8]).
However, we identified other genes potentially contributing to RBM depositions, including
TACC2, encoding centrosome- and microtubule-interacting protein [22], NEK5 regulating
centrosome integrity [24], ORC5 modulating DNA replication [25], AMBRA1 involved in
autophagy, cell survival, and proliferation [26], as well as MYO1B and CORO2A, both
controlling various cellular processes, such as cell cycle progression, signal transduction,
cell motility, apoptosis, and gene expression [29,30]. Interestingly, many of the genes
positively correlated with RBM thickness have anti-apoptotic functions (e.g., RNF34 [35]),
are involved in immune responses (OAS2 [20], STAP1 [37]), the cell contractile system
(TPM1, TPM2, MYO1B, CORO2A [29–31]), neuronal growth and function (PCDHA3 [50]),
or have essential enzymatic activities (GAD1 [27], TPH1 [33], EEF2 [36]). On the other hand,
several genes inversely associated with the RBM thickness possess opposite biological
functions, such as PDS5 [10] which negatively regulates cell proliferation, and apoptosis
promoting genes, including RNF13 [43], MRPL37 [44,45], and CACNA1G [46]. Overall,
most of the genes associated with RBM thickness could be assigned to ontology groups
linked with a cell growth-promoting phenotype (e.g., cell proliferation and metabolism,
anti-apoptotic) and fibrosis/remodeling-promoting phenotype (e.g., ECM components
and proteins regulating neovascularization) as summarized in Figure 4. This Figure was
prepared based on gene ontology terms presented in Tables S4–S6 in Supplementary
Materials and the literature data. In contrast, in Figure 5, we present a network of lung-
specific interactions of those genes. As has been shown, the processes modulated by the
indicated genes have a wide range of interdependencies. We identified several hubs with
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interlinking genes, associated with basement membrane structure or functions, either
directly or through first-degree interactors. By betweenness centrality within the network,
HSP90AB1, encoding multifunctional chaperon protein, BIRC3 regulating apoptosis, HPRT1
referred to the purine salvage pathway uric acid production, and TCEA2, involved in RNA
polymerase II functioning, formed the largest hubs. The lower nodes referred to the PML
gene, modulating DNA transcription, cell apoptosis, and senescence; MYOB1, engaged in
actin filament-based movement, and MUC1 or CLEC7A encoding membrane receptors.
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2.5. Cluster Analysis Integrating Molecular and Remodeling Data Reveals Subgroups of Asthma
Patients with Unique Bronchial Epithelial Gene Expression Patterns

A cluster analysis based on epithelial expression levels of genes that correlated best
with RBM thickness (28 genes included) and clinical data revealed three different clusters of
patients. Clusters one (n = 11) and two (n = 10) were characterized by altered expression of
six genes related to cell growth and proliferation or possessing anti-apoptotic properties (i.e.,
increased expression of CDK20, RNF34, GAD1, PDS5 and lower of RNF13 and MRPL37),
involved in ECM composition (LAMA3), innate immune response (OAS2), contractile
system (TPMI1, PIEZO2), and TPH1, as compared to cluster three (n = 19). Cluster two
had the highest expression of additional genes engaged in ECM structure (USH2A) and
cell growth (EEF2, TACC2, NEK5), together with the most significant decline in HPRT,
compared with the two remaining collections. Cluster two has also been referred to
as having increased expression of the other two genes involved in cell growth (ORC5,
AMBRA1) and STAP1 and OTOF, compared to cluster three.

Interestingly, clusters one and two had thicker RBMs in comparison to cluster three
(p < 0.001, both), while cluster two referred to the highest values of RB1 and RB10 wall
thickness, as compared to the remaining patient collections (p < 0.008 and p = 0.049, respec-
tively). Cluster one had a higher BAL periostin than cluster three (p = 0.01). Demographic
and clinical parameters and spirometry values did not differ among the three separated
sets of patients.
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3. Discussion

In this study, we compared several airway remodeling indices at the large bronchi
and peripheral level, including CT airway cross-sectional geometry and histological ex-
amination of the mucosa (RBM thickness) in asthma subjects, with a particular focus
on individuals with persistent airflow limitation vs. those with normal spirometry after
bronchodilator. We also investigated the associations between the bronchial epithelial
cell transcriptome and airway structural parameters. We have demonstrated that altered
gene expression in the bronchial epithelium may determine RBM thickness, which was
surprisingly weakly related to other airway remodeling markers. First of all, the RBM layer
was not increased in patients with persistent airflow limitation. It either did not correlate
with CT bronchial wall remodeling indices, except for a weak relationship with RB10 wall
thickness. On the other hand, we have shown a clear association between the degree of
airflow limitation and airway remodeling indices in lung imaging, particularly within the
RB1. Therefore, we may speculate that RBM thickening likely progresses independently of
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the parameters linked with airway geometry and function, such as the rate of the decrease
in spirometry values and the altered bronchial wall in CT scans.

Interestingly, airway and systemic biomarkers of type-2 inflammation (e.g., blood and
BAL eosinophilia) were higher in patients with persistent airflow limitation and those with
thicker walls in CT. In turn, RBM thickness was related to the BAL periostin and blood
neutrophilia, albeit not to the systemic type-2 biomarkers. Therefore, we might speculate
that separate mechanisms may drive airway remodeling, depending on whether they act
at the bronchial mucosa level or airway wall structure. However, type-2 inflammation in
the airways is likely involved in both of them.

Another interesting finding of our study is that the RBM thickening did not depend
on asthma duration. Therefore, one might speculate that RBM thickening occurs early
during the disease, e.g., as a response to the ongoing airway inflammation, and does
not progress further due to implemented anti-inflammatory treatment. Noteworthy, this
observation mirrors the study performed by Payne et al. [51]. They demonstrated that
RBM thickening is already present in young children (median age 13 years) to a similar
extent to milder adult asthmatics. These authors did not find an association with patients’
age, asthma duration, or lung function, either. Furthermore, it has been demonstrated that
even children younger than five years old with confirmed wheezing episodes may present
a thicker RBM layer [52].

Epithelial cells are the primary source of BAL periostin, stimulating TGF-β release,
which activates the underlying fibroblasts to produce ECM components [6]. Although
TGF-β is also secreted by eosinophils [4], the positive relationship between RBM thickness
and BAL periostin suggests that the bronchial epithelium may indeed orchestrate mucosal
and submucosa changes in airway remodeling pathology. However, the biological role of
the thicker RBM in asthma remains uncertain. It has been hypothesized that it constitutes a
secondary barrier that compensates for the increased epithelial fragility and leakiness, thus
decreasing the entry of harmful particles into the submucosa [6]. However, Rijt et al. [53],
based on murine experiments, have shown contrary results, indicating that basement
membrane remodeling might promote new sensitizations by causing persistent activation
of dendritic cells. Therefore, therapeutic intervention to stabilize RBM thickness, e.g.,
kinase inhibitors, might be beneficial for severe asthma patients. However, to recommend
such a therapeutic approach, the specificity of RBM thickening and its determinants need
to be comprehensively investigated.

In our study, analysis of epithelial cell transcriptome revealed several gene groups as-
sociated with RBM thickness. As expected, in patients with thicker RBM, we demonstrated
a higher expression of genes related to ECM proteins, such as LAMA3 or USH2A. They
encode the laminin subunit α3 and usherin, respectively, proteins that are essential for the
basement membrane structure and function, widely expressed in many organs, including
the lungs [17,18]. Several epithelial-mesenchymal growth regulators may increase LAMA3
expression, such as epidermal growth factor (EGF) [17]. In turn, usherin contains laminin
EGF-like and many fibronectin motifs, and thus, might be upregulated by laminin [18].
Therefore, both proteins are likely involved in increased ECM deposition and could partici-
pate in airway remodeling pathology. In this context, the decrease in expression of LTBP1
can also be essential. This gene encodes a protein that maintains TGF-β in the latent ECM
bound form [54]. Therefore, its downregulation might contribute to the increased TGF-β
activity, promoting ECM remodeling and fibrosis.

Interestingly, RBM thickness remained in a strong positive association with the higher
expression of multiple genes encoding proteins involved in cell activation, proliferation,
and growth or with an anti-apoptotic function. On the other hand, some genes strongly—
but inversely—related to RBM thickness have opposite roles, i.e., either antiproliferative or
pro-apoptotic properties. This observation suggests that the airway epithelial transcriptome
linked with thicker RBM promotes cell proliferation and growth, further reinforced by
the upregulated genes referring to the increased cell metabolism, protein synthesis, cargo
transport, and nucleic acid processing.
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Another important finding of our study is the lower expression of genes involved in
the formation of tight cell junctions. This outcome is in line with other reports pointing
to the disrupted airway epithelial barrier in asthma [7]. It is believed that cleaving tight
junctions results from external factors, such as allergens, pathogens, air pollutants, and
an intrinsic predisposition [7]. Our report suggests that increased permeability of the
epithelium may also contribute to subepithelial changes and airway remodeling. However,
it is worth noting that parallel to the decreased cadherin mRNA levels, we also docu-
mented higher expression of PNN, an E-cadherin transcription activator, likely serving as a
compensatory mechanism [55].

An airway epithelial cell transcriptome profile associated with thicker RBM might
also reflect epithelial-to-mesenchymal transition, a process whereby epithelial cells acquire
characteristics of fibroblasts or mucosa cells [6]. During such a structural modification,
epithelial cells lose cell–cell polarity and adhesion, to become migratory and develop
mesenchymal features [5]. For example, this is reflected in our data by the increased
expression of actin-related proteins, such as TPM1, TPM2, MYO1B, and CORO2A.

The next group of genes associated with a thicker RBM, which merits comment,
contains those referred to as the oxidative stress response genes. Some of these genes were
reported as upregulated, such as HSP90AB1, promoting cell adaptation to environmental
changes [56]; SCARA3, the product of which depletes reactive oxygen species [57], and
DNMT3A, encoding an enzyme involved in CpG or non-CpG motifs DNA methylation [58].
However, decreased expression of CA3 [48] and HPRT [40], both induced by hypoxia-
inducible factor 1α (HIF1-α), a transcription factor that adapts the cell during oxygen
deprivation, might suggest an impaired adaptation to oxidative stress in airway remodeling
pathology. Furthermore, downregulated HPRT might be related to the local overproduction
of uric acid [40], likely stimulating cell proliferation and new blood vessel formation [41,42].
Increased neovascularization might also be related to upregulated FGD5 [59]. Interestingly,
bronchial epithelial cells from patients with a thicker RBM also showed a gene profile
that promotes nerve regeneration and functioning; therefore, it seems that neural network
development may also occur in asthma remodeling pathology.

Another intriguing association shown in our data refers to the significant positive
relationship between RBM thickness and the mRNA level of the gene encoding a decar-
boxylase, which catalyzes γ-aminobutyric acid (GABA) production. It has been recently
demonstrated that the airway epithelium is a predominant source of endogenous GABA,
contributing to airway smooth muscle tone relaxation [27]. Higher GAD1 expression in
those with thicker RBM likely indicates susceptibility to increased GABA epithelial produc-
tion, partially explaining the lack of association between RBM thickness and spirometry
values. Interestingly, the higher expression of this gene in the airway transcriptome has
also been documented in chronic obstructive pulmonary disease (COPD) patients [28].

The last important issue that merits comment, is the relationship between the RBM
layer and the expression of genes contributing to the immune response. A thicker RBM is
strongly determined by upregulated STAP1, encoding a protein abundant in the stimulated
B cells [37] and, to a lesser extent, TRBV11-1, encoding the variable domain of the T
cell receptor [60]. Interestingly, a thicker RBM was also positively associated with gene
transcripts encoding the proteins involved in the antiviral response and other innate
immunity elements, such as AMBRA1, involved in autophagy regulation [26], and MUC1
protecting cells against bacterial, viral, or enzyme attack [61].

Our study has several limitations. First of all, we did not analyze the airway tran-
scriptome in healthy controls for ethical reasons. Therefore, we cannot exclude that similar
genes also might determine the RBM thickness in controls. Asthma patients enrolled in this
study were relatively old and had mostly moderate to severe disease; thus, the findings
may not represent younger subjects with milder disease. We investigated bronchial brush
biopsy; therefore, we speculate that the outcomes mainly refer to the airway epithelium and
to a lesser extent, lung infiltrating inflammatory cells. We analyzed airway transcription
profiles at a single time point; therefore, we cannot exclude their changes in time. Statistical
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associations reported here may not necessarily indicate cause–effect relationships. Finally,
the clinical relevance of the demonstrated associations in the airway transcriptional profile
in terms of disease severity, progression, and relation to airway remodeling requires further
investigation.

4. Materials and Methods
4.1. Patients

Our patient group consists of 40 non-smoking moderate to severe asthma subjects aged
30–65 years, with at least a 3-year history of confirmed asthma and no exacerbation within
six months before the enrollment. About half of the patients (n = 21) were characterized
by persistent airflow limitation; the remaining had normal spirometry before or after the
bronchodilator. Except for biological treatment, all asthma medications were permitted,
including oral corticosteroids at a daily dose equivalent to ≤ 10 mg of prednisolone, unless
the amount was the same during the preceding three months.

Diagnosis of asthma was established by a physician, based on recurrent respiratory
symptoms (wheeze, cough, shortness of breath, and chest tightness), together with current
or historically documented post-bronchodilator increase in FEV1 of at least 200 mL and
12% from the baseline [62]. Persistent airflow limitation was defined as a FEV1/VC index
below 0.7 or FEV1 lower than 0.8 of predicted value after bronchodilator. Spirometry and
bronchial reversibility test were performed according to the American Thoracic Society
standards [63], using a Jaeger MasterLab spirometer (Jaeger-Toennies GmbH; Hochberg,
Germany).

Ex-smokers were eligible for the study if they stopped smoking at least five years ago,
with a history of fewer than seven pack-years. Arterial hypertension, diabetes mellitus,
and hypercholesterolemia were allowed in study participants.

Definitions of asthma severity and co-morbidities, as well as other exclusion criteria,
have been provided in Supplementary Materials.

The study was conducted following the Declaration of Helsinki, and the protocol
was approved by the Ethics Committee of the Jagiellonian University (approval number:
KBET/151/B/2013). All subjects gave written informed consent to participate in the study.

4.2. Lung CT

Lung CT with an assessment of airway cross-sectional geometry was performed one
hour after 400 µg albuterol administration using 64-raw multidetector computed tomog-
raphy (Aquilion TSX-101A, Toshiba Medical Systems Corporation, Otawara, Japan) in a
helical scanning mode, without administration of intravenous contrast medium. Auto-
mated program AW Server (General Electric Healthcare, Wauwatosa, WI, USA) was used
to quantify the airway cross-sectional geometry in the RB1 and RB10; including an average
diameter of the lumen and airway, average wall thickness, lumen, and wall area, WAR and
WTR, both defined in Supplementary Materials.

4.3. Bronchofiberoscopy, Endobronchial Biopsy, and Bronchial Brush Biopsy

Bronchofiberoscopy was performed according to the guidelines of the American
Thoracic Society [64] using the bronchofiberoscope BF 1T180 (Olympus, Tokyo, Japan) with
local anesthesia (2% lidocaine) and in mild sedation (0.05–0.1 mg fentanyl and 2.5–5 mg
midazolam given intravenously). During that procedure, 2–3 endobronchial biopsies
were taken from the right lower lobe (the carina between B9 and B10) together with the
brush biopsy. Collected endobronchial specimens were immediately fixed in 10% neutral
buffered formalin solution (Sigma-Aldrich, Saint Luis, MO, USA) and sent to the Pathology
Department for further analysis. Brushes were immediately immersed in TRIzol Reagent
(Thermo Fisher Scientific, Carlsbad, CA, USA).
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4.4. Bronchoalveolar Lavage Fluid Analysis

The cytospin preparations (Thermo Scientific, Walthman, MA, USA) were made from
bronchoalveolar lavage fluid (BALF) samples and stained with the May–Grunwald Giemsa
dye. A total of 1000 cells in each preparation were counted; the results were shown as a
percentage of all inflammatory cells (with the exception of epithelial cells). The remaining
BALF sample was centrifuged; the supernatant was frozen in aliquots and stored at−70 ◦C
until analysis.

4.5. Blood Laboratory Investigations

Fasting blood samples were drawn from the antecubital vein using minimal stasis
between 8:00 and 11:00 A.M. Complete blood cell and platelet count and fibrinogen were
assayed by routine laboratory techniques. High-sensitivity C-reactive protein and IgE
were measured by latex nephelometry (Siemens, Marburg, Germany). Blood samples were
drawn into serum tubes and centrifuged, similarly to BALF at 2000× g for 20 min. The
supernatant was frozen in aliquots and stored at −70 ◦C until analysis.

Commercially available high sensitivity immunoenzymatic assays (ELISAs) were used
to measure blood and BAL concentrations of IL-6, IL-10 (eBiosciencea, Vienna, Austria,
both), and periostin (Phoenix Pharmaceuticals, Burlingame, CA, USA) and serum levels of
a disintegrin and metalloproteinase domain-containing protein (ADAM)33 (Cloud-Clone
Corp., Katy, TX, USA).

4.6. Histologic Examination

Tissue specimens were processed routinely, as described in our previous publica-
tion [65]—briefly, the 2 µm paraffin-embedded sections were cut and stained by hema-
toxylin and eosin. The slides were photographed by a Nikon D5300 camera attached
to the Zeiss Axioscope microscope with a 100× oil immersion lens. The images were
analyzed by the AnalySIS 3.2 software (Soft Imaging System GmbH, Germany). The RBM
thickness was measured along the biopsy’s epithelial surface (Figure 2) according to the
orthogonal intercept method suggested by Ferrando et al. [66] using arbitrary-distance
units. We only analyzed sections covered by non-tangentially cut and well-preserved ep-
ithelial cells. For each patient, at least 30 individual RBM measurements were evaluated at
intervals of 9.5 µm. The results were expressed as harmonic mean, defined in our previous
publication [65].

4.7. RNA Preparation for Microarray Analysis

Total RNA was extracted from bronchial brush biopsy samples with TRIzol (Thermo
Fisher Scientific, Carlsbad, CA, USA), fractioned by gravity gradient, and isolated using
chromatographic columns (A&A Biotechnology, Gdynia, Poland), followed by storage
in 96% ethanol at −80 ◦C. The quality of each RNA sample was assessed using Qiagen
QIAxel system (Qiagen, Hilden, Germany), and RNA integrity was verified by agarose
gel electrophoresis. RNA was reverse-transcribed into the cDNA library using Syngen
Universal Script Reverse Transcriptase (Syngen, Wroclaw, Poland). The product was
purified by Syngen PCR ME Mini Kit (Syngen, Wroclaw, Poland) and fluorescently labeled
and purified using Kreatech ULS Platinum Bright Red/Orange Kit (Kreatech, Amsterdam,
Netherland). Hybridization of cDNA to the Human Genomic 49K Mi ReadyArray (HEEBO)
(Microarray Inc., Huntsville, AL, USA) at 37 ◦C for 24 h was performed, and microarrays
subsequently were washed.

4.8. Microarray Data Retrieval and Bioconductor

Microarrays were scanned with an InnoScan 900 Microarray Scanner, and hybridiza-
tion signals were detected using Mapix software (v.6.0.1; Innopsys, Carbonne, France).
Since the Innopsys Mapix software failed to perform microarray gridding correctly in some
cases, we developed a custom gridding algorithm to refine the results. Moreover, visible
artifacts and noise render the task challenging. Therefore, the method based on maximally
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stable extremal regions (MSER) was applied to coordinate positioning markers and es-
tablish the sub-grid lines [67]. Computed results were verified manually and corrected if
required. For our study, overall gridding performance exceeded that obtained with the
commercial software, ultimately resulting in expression profiles of 33,519 gene products.
Microarray data preprocessing (background correction and normalization) was done by
Limma R software using the established methods [68,69]. We analyzed genomic data with
Bioconductor v.3.7. the software of the R environment v.3.5.0.

Biological processes, molecular functions, and cellular components gene ontology
terms associated with genes which expression levels correlated significantly with RBM
thickness were derived from GO Biological Process 2018 by Gene Ontology Consortium.
Only terms with p-value < 0.05 were shown (Supplementary Materials Tables S4–S6).

Gene and gene product descriptions were prepared based on the Gene Cards (The
Human Gene Database) (https://www.genecards.org/), Entrez Gene (http://www.ncbi.
nlm.nih.gov/gene), literature data, and gene ontology reports.

Semi-automated analytics platforms Cytoscape 3.7.1 and NetworkAnalyst 3.0 were
used to create an interactions network, where individual molecular entities formed the
nodes and their interactions the edges.

4.9. Statistical Analysis

Statistical analysis was performed with Statistica TIBCO 13.3 and R (version 3.6.1)
software.

We used the Shapiro–Wilk test to verify data distribution. Continuous variables,
mostly non-normally distributed, were reported as a median with interquartile range or as a
mean with standard deviation, as appropriate. They were compared by the Mann–Whitney
U-test or unpaired t-test, respectively. Categorical variables were given as percentages and
compared by χ2 test. Lung CT variables and RBM thickness, were Box–Cox transformed
and a one-way covariance analysis (ANCOVA) was performed to adjust for potential
confounders, including age, sex, and BMI. To evaluate the relationship between continuous
variables, a Spearman rank correlation test or univariate linear regression model with
adjustment for age, sex, and BMI (CT parameters and RBM thickness) were performed. To
calculate odds ratio with 95% confidence interval (CI), the cut-off point of BAL periostin
concentration was calculated based on the receiver operating characteristic (ROC) curve.

We analyzed the Pearson linear and the Spearman rank correlation coefficients to study
relationships between expressions of all genes and RBM thickness. The significance levels
were established as p < 0.001 and p < 0.05, for the Pearson and Spearman rank correlation
coefficients, respectively. We pointed out two genes group. The first was composed of 28
genes characterized by a powerful impact on the RBM thickness (at least 36%) with the
absolute value of the correlation coefficient 0.6 and more, or −0.6 and less. The second
group consists of genes with the correlation coefficients 0.4 to 0.599 and −0.599 to −0.4. All
data regarding gene analyses, such as correlation tests and gene expression comparisons
(Mann–Whitney U-test), were adjusted using the Benjamini–Hochberg correction.

A cluster analysis was performed using the k-means clustering method, based on
mRNA levels of genes correlated best with RBM thickness. We obtained three different
clusters compared by the covariance analysis (ANCOVA), Kruskal–Wallis-test, or χ2 test,
as appropriate.

Results that presented a p-value less than 0.05 were considered statistically significant
unless otherwise stated in the text.

5. Conclusions

Our data showed that RBM thickening likely progresses independently of the pa-
rameters linked with airway geometry and functioning, such as the rate of the decrease
in spirometry values and the thickening of the bronchial walls in CT scans. A thicker
RBM was associated with the airway epithelial cell transcriptome promoting cell activation,
proliferation, and growth. Increased RBM thickness was also linked with altered expression

https://www.genecards.org/
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of genes likely involved in the structural remodeling of the airways, such as increased
ECM depositions, promoting neovascularization, and nerve functioning. However, the
clinical relevance of the presented relationships, in terms of asthma severity, progress,
and airway remodeling of larger airways requires further observational and experimental
investigations.

Supplementary Materials: This article involves an online Supplement https://www.mdpi.com/
1422-0067/22/3/998/s1. Table S1: Epithelial cell transcriptome. Asthma patients were divided
based on the median value of the reticular basement membrane (RBM) thickness as a cut-off point;
genes with higher or lower expression in those with thicker RBM are presented, Table S2: Genes for
which expression remained in weaker, albeit significant positive associations with reticular basement
membrane thickness (correlation coefficients 0.4 to 0.599), Table S3: Genes for which expression
remained in weaker, albeit significant negative associations with reticular basement membrane
thickness (correlation coefficients −0.599 to −0.4), Table S4. Biological processes gene ontology
terms associated with genes which expression level correlated significantly with reticular basement
membrane thickness, Table S5. Molecular functions gene ontology terms associated with genes which
expression levels correlated significantly with reticular basement membrane thickness, Table S6.
Cellular components gene ontology terms associated with genes which expression levels correlated
significantly with reticular basement membrane thickness.
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