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Abstract
• Key message Errors in forest stand attributes can lead to sub-optimal management prescriptions concerning the 
set management objectives. When the objective is net present value, errors in mean diameter result in greater losses 
than similar errors in basal area, and underestimation greater losses than overestimation.
• Context Errors in forest inventory data can cause inoptimality losses in the objectives set to forest management. Losses 
occur when the forest is treated with management prescriptions that are optimal for erroneous data but not for correct data.
• Aims We evaluate the effect of varying levels of errors in basal area and mean diameter on the inoptimality losses.
• Methods Errors from 20% of overestimation to 20% of underestimation were simulated in basal area and mean diameter. 
For each stand, the management prescription that maximized the net present value was selected with and without errors. 
The inoptimality losses were calculated for different error levels.
• Results The tested error levels resulted in inoptimality losses of 0.11–3.01%. Errors in mean diameter increased inoptimal-
ity losses more than similar relative errors in basal area. Simultaneous underestimation of basal area and mean diameter led 
to greater inoptimality losses than simultaneous overestimation of these attributes.
• Conclusion If the forest is considered as an investment, using inventory data where basal area and mean diameter are 
underestimated causes greater losses compared with data where these attributes are overestimated. Errors in mean diameter 
are more important than similar errors in the basal area. Large errors in basal area and mean diameter should be avoided 
especially in stands where the basal area is high.

Keywords Forest management planning · Inoptimality loss · Inventory error · Net present value · Value of information

1 Introduction

Forest  management planning aims to f ind the 
combination of management prescriptions for different 
stands that maximizes the utility of the decision-maker 
(Pukkala 2002). Plans are developed using forest 
planning systems where the current stand attributes 
are used as the starting point for the simulation of 

alternative treatment schedules for the stands or some 
other calculation units. Then, the optimal combination 
of the simulated treatment schedules is searched for. 
The decision-maker’s utility function is maximized, 
possibly subject to a set of constraints. If the decision-
maker considers the forest as an investment, the optimal 
management prescriptions are commonly selected based 
on the net present value (NPV).

Regardless of the inventory method, estimated stand 
attributes contain errors that affect the planning process. 
However, although accurate data are more valuable in 
decision-making than less accurate data, errors in stand 
attributes do not fully reveal the quality of the decisions that 
can be made with the data (e.g., Kangas 2010; Kangas et al. 
2014). Errors in the stand attributes are relevant if they lead 
to management prescriptions different from those based on 
correct data. Therefore, errors should be analyzed from the 
viewpoint of the value of information in decision-making 
(Lawrence 1999).
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Inoptimality losses describe the expected losses, in 
terms of the objectives set by the decision-maker, when 
sub-optimal management prescriptions that result from 
the use of erroneous data are followed instead of optimal 
management prescriptions based on correct data. In the 
case where the objective is to maximize NPV, the losses 
are expressed in monetary terms. Such economic losses 
are often used in cost-plus-loss (CPL) analysis to rank 
forest inventory methods. In CPL, the inventory method 
that leads to the lowest total cost, i.e., minimize (cost + 
loss), is ranked as the best alternative (Hamilton 1978; 
Burkhart et  al. 1978). CPL analysis is related to the 
concept of the value of information (VOI) (Lawrence 
1999, p. 45–94). In forest management planning, 
VOI can be defined based on inoptimality losses; the 
additional information has a value if the losses in NPV 
can be reduced compared with using existing (prior) 
information. The relationship between errors and losses 
can be analyzed to identify the stand attributes for which 
accurate inventory information is important (e.g., Eid 
2000). VOI can be used as an indicator to evaluate 
whether reducing the magnitude of the error is worth 
the associated cost. Theoretically, VOI is defined based 
on Bayesian decision theory (e.g., Lawrence 1999, p. 
65; Kangas 2010), but it can be calculated based on 
simulated stand-level inoptimality losses (Kangas et al. 
2014).

Studies that assess the effects of errors on inoptimality 
losses can be divided into two groups. The first group 
includes studies that use data that contain the observed 
errors of a given forest inventory method. For instance, Eid 
et al. (2004) compared two different inventory methods 
based on photo interpretation and airborne laser scanning 
(ALS) and assessed how the errors associated with the 
inventory methods affected the timing of clear-fellings 
and the consequent losses. Alternative k-Nearest Neighbor 
(k-NN) predictions based on ALS and satellite image data 
were compared in terms of losses by Duvemo et al. (2007). 
Bergseng et al. (2015) assessed sub-optimal harvesting 
decisions and the corresponding losses using four different 
inventory methods. Kangas et al. (2018) analyzed errors and 
losses when ALS and aerial image point cloud data were 
used in forest planning.

The second category of studies uses simulated errors; 
i.e., errors are simulated for stand attributes, and those 
erroneous attributes are used in a forest planning system. 
The errors are generated from random distributions, 
which mimic an inventory method with a given accuracy. 
For instance, Eid (2000) generated normally distributed 
random errors with varying levels of variance for basal 
area, basal area-weighted mean height, stand age, and site 
quality index. Mäkinen et al. (2010) and Islam et al. (2010) 
simulated errors that are similar to errors in predictions 

based on ALS and aerial image data. Mäkinen et al. (2010) 
also compared several methods for simulating random 
errors and concluded that correlations between the errors 
and the shape of the error distribution had only a small 
effect on the expected losses.

A third possibility is to analyze the effect of a given 
error rather than an error distribution. For instance, Kangas 
et al. (2011) analyzed the effect of errors in stand attributes 
on the correctness of the timing of harvest decisions 
compared with silvicultural guidelines during a 10-year 
planning period. To consider different error combinations, 
they simulated, for all stands, errors ranging from − 30 to 
30% for basal area, diameter or height of the basal area 
median tree, or a combination of them. No optimization 
was used, and hence, the effects of errors on expected 
losses caused by sub-optimal management prescriptions 
were not assessed.

In this study, we analyzed the effect of given errors in 
basal area and basal area-weighted mean diameter in the 
same way as Kangas et al. (2011) but, as a new element, we 
analyzed how different levels of errors affect the optimality 
of forest management prescriptions. The optimality 
of management prescriptions was assessed based on 
inoptimality losses calculated for the next 10 and 20 years. 
The results give insight into the effect of overestimation 
vs. underestimation, the importance of basal area vs. mean 
diameter, and the effect of the magnitude of the error. The 
inoptimality losses due to errors in basal area and mean 
diameter were compared with inoptimality losses arising 
from the use of randomly assigned forest information. 
Random information represents a benchmark case (i.e. 
population-level prior information).

2  Material and methods

2.1  Forest data

Sample plot data were collected from an inventory area 
located in central Finland (approx. 62° 27′ N, 24° 13′ E) 
between spring and autumn 2013. Systematic sampling 
with L-shaped clusters was used, and 2468 sample plots 
were originally placed in the inventory area. Exactly 1956 
sample plots were located on forestry land. A full cluster 
comprised eight sample plots located 250 m apart along 
two perpendicular lines. The distance between clusters was 
4.3 km.

Trees were measured in circular sample plots with 
radii of 9 m. Tree species and diameter at breast height 
(DBH, diameter at 1.3-m height) were measured for all 
tally trees. The heights of the tally trees were predicted 
with the species-specific mixed-effects models of 
Eerikäinen (2009). The observed heights of the basal area 
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median trees of different tree species (Scots pine; Pinus 
sylvestris L., Norway spruce; Picea abies [L.] H. Karst., 
and deciduous trees; mainly birches, Betula spp. L.) 
were used to calibrate the species-specific mixed-effects 
models for each plot. The tree volumes were predicted 
using species-specific volume models described in 
Laasasenaho (1982) with DBH and height as independent 
variables. Basal area per hectare, basal area-weighted 
mean diameter (hereafter called mean diameter), and 
basal area-weighted mean height (hereafter called mean 
height) by tree species were determined from trees with 
a DBH of at least 5 cm.

Of the sample plots located on forestry land, we 
selected plots where the main tree species was Scots pine 
as we wanted to eliminate the effect of tree species. Since 
most of the plots were measured in pure or almost pure 
pine stands, we assumed that all the trees were pines in 
planning calculations. Sample plots located in seedling 
stands were omitted from the data. In total, 1037 sample 
plots remained for the analysis. Most of the selected 
sample plots were in forests that were classified as sub-
xeric (55.2%) and mesic (29.8%) fertility classes. The 
main properties of the field data are shown in Table 1.

2.2  Simulating errors in basal area and mean 
diameter

A range of error levels were simulated for basal area and 
mean diameter within each stand. These variables were 
selected as they are used to predict the diameter distribu-
tion, and therefore, have a notable effect on the present 
state description of the stand. Other stand attributes were 
assumed error-free and were kept equal to the true values 
in the field data. Different combinations of errors were 
simulated using error levels of − 20%, − 15%, − 10%, 
− 5%, 0%, 5%, 10%, 15%, and 20%, resulting in a total of 
81 error combinations for basal area and mean diameter 
for each stand. The errors were simulated by multiplying 
basal area and mean diameter in every sample plot with 
factors that ranged from 0.8 to 1.2.

2.3  Forest planning computations and assessment 
of inoptimality losses

Forest planning computations were performed with the 
Monsu forest planning software (Pukkala 2004), in which 
the sample plots were treated as stands. Computations 
included a prediction of the present state, simulation 
of alternative treatment schedules, and selection of the 
optimal treatment schedule for each stand from the set 
of simulated schedules. The input variables were basal 
area per hectare, mean diameter, mean height, and 
variables that describe the basic site characteristics. 
Forest development was predicted, and several treatment 
alternatives were simulated for 50 years. The simulated 
treatments comprised different thinning alternatives 
(thinning from above and from below), clear-felling, 
seed tree felling, and removal of the upper canopy from 
two-storied stands. A schedule with no cuttings was also 
simulated for every stand. The regeneration rules of the 
simulator were modified so that after clear-felling the 
stand always regenerated to pine. The planning period was 
divided into 5-year sub-periods and possible treatments 
were simulated in the middle of a 5-year period.

The objective of the planning was to maximize NPV with 
a 3% discount rate. The NPV of each stand was calculated 
as the sum of discounted revenues and costs during the 
planning period. In addition, the net present value of the 
remaining growing stock at the end of the 50-year period 
was predicted with the updated models of Pukkala (2005), 
and the predicted NPV was discounted from the end of 
the planning period to the present. The updated prediction 
models for NPV are described in Appendix.

Since the objective of the planning was to maximize 
NPV and there were no global constraints, optimization 
was equal to selecting the management prescription that 
resulted in the greatest NPV for each stand.

Simulation and selection of optimal management 
prescriptions were carried out for correct data, data 
that contained simulated errors in basal area and mean 
diameter, and for random information. To determine the 
inoptimality losses due to the use of erroneous data, the 
management prescriptions selected for the stands based 
on erroneous data were simulated using the correct data. 
However, since it is unlikely that forest data acquired today 
is still used in decision-making in a very distant future, 
only the management prescriptions of the first two and 
four 5-year sub-periods were examined. In other words, it 
was assumed that the inventory data are used in decision-
making for the next 10 or 20 years after which the new 
data will be acquired.

The inoptimality losses were defined as the difference 
in NPV between the management prescriptions that 
were based on correct and erroneous data. Inoptimality 

Table 1  The main properties of the field data.

BA basal area, D mean diameter, H mean height, V total volume, and 
SD standard deviation

Minimum Maximum Mean SD

BA  (m2  ha−1) 2.4 39.5 17.6 6.7
D (cm) 8 34.7 18.4 4.6
H (m) 6.2 24.7 14.8 3.5
V  (m3  ha−1) 8.9 419.8 133.6 68.1
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losses were calculated for the next 10 and 20 years. The 
simulations of the 50-year period were used in both cases. 
If the management prescription for the first two (10 years) 
or four (20 years) 5-year periods differed when based 
on correct or erroneous data, it was assumed that the 
erroneous management schedule was followed until the 
end of the 50-year period. If management prescriptions 
were the same for the 10 or 20 years, the management 
schedule based on the correct data was followed until 
the end of the 50-year period. Consequently, the NPV 
included the simulated net incomes during the 50-year 
period and the model predicted NPV at the end of this 
period. The inoptimality losses (%) were calculated 
relative to the sum of net present values of the 
management prescriptions selected for the stands based 
on correct data:

where NPVopt i is the NPV (€  ha−1) of stand i for the 
management prescription selected based on the correct data, 
NPVerr i is the NPV (€  ha−1) of stand i for the management 
prescription selected using the erroneous data that is 
simulated with the correct data, and n is the number of 
stands.

The random information was determined based on 
random permutations of the observed data to preserve 
correct distributions at the population-level. For each 
stand, the correct values of basal area, mean diameter, 
and mean height were replaced with values that belonged 
to another randomly selected stand in the observed data. 
In other words, attributes were mixed between the stands 
so that none of the stands had the correct values of basal 
area, mean diameter, and mean height that originally 
belonged to it, but the values came from another 
stand in the observed data. Ten different datasets were 
generated this way to consider the variation between 
the permutations. The inoptimality loss of random 
information (NPVloss RI) was computed as the mean of 
NPVloss over the ten iterations.

The inoptimality losses that resulted from different 
error combinations for basal area and mean diameter 
were compared with the NPVloss RI. This describes the 
value of the erroneous data with a given error level 
compared with the random information (i.e., population-
level prior). We introduce a metric BRI (Better than 
Random Information) for this purpose. It indicates how 
much smaller (%) inoptimality losses can be expected 

(1)NPVloss =

n
∑

i=1

�

NPVopt i − NPVerr i

�

n
∑

i=1

NPVopt i

× 100

from a certain combination of errors in basal area and 
mean diameter, compared with the inoptimality loss of 
random prior information. BRI equals 100 for the correct 
data. The BRI metric was calculated as follows:

3  Results

The inoptimality losses varied from 0.11 to 3.01% for 
the 10-year period (Fig.  1), depending on the error 
combination. In general, errors in mean diameter affected 
the inoptimality losses more than similar relative errors 
in basal area. Underestimation of mean diameter led to 
greater inoptimality losses than overestimation. When the 
management prescriptions were selected for the datasets 
that were based on random information, the mean of 
inoptimality losses ± standard error was 8.85 ± 0.09% 
for the 10-year period. When there was error in at least 
one of the variables, the greatest BRI value and smallest 
relative inoptimality loss were obtained when the basal 
area was underestimated by 10% and the mean diameter 
was correct. The greatest inoptimality loss and the 
smallest BRI value were obtained when the basal area 
was overestimated by 20% and the mean diameter was 
underestimated by 20%.

The increase in relative inoptimality losses between 10 
and 20 years is presented in Fig. 2. Inoptimality losses 
were larger for the 20-year period in all error combinations. 
Relative inoptimality losses increased the most in error 
combinations where mean diameter was underestimated. 
Inoptimality losses also increased notably in situations 
where basal area was underestimated, and the mean 
diameter was overestimated. The increase was the smallest 
in situations where both attributes were overestimated.

The relationships between the inoptimality losses (€ 
 ha−1) and stand attributes at the beginning of a planning 
period are shown in Figs. 3 and 4, where inoptimality 
losses are presented as a function of basal area and mean 
diameter in different error combinations. The lines were 
fitted to inoptimality losses using smoothing splines with 
a smoothing parameter equivalent to 6 degrees of freedom 
(Green and Silverman 1993). A trend of increasing losses 
was apparent when the basal area increased (Fig. 3). When 
inoptimality losses were illustrated as a function of mean 
diameter, the greatest losses were obtained when the mean 
diameter was between 20 and 30 cm, forming hill-shaped 
like patterns (Fig. 4).

(2)BRI =

(

1 −

(

NPVloss

NPVloss RI

))

× 100
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4  Discussion

Inoptimality losses occur when the management 
prescriptions optimal for the erroneous data result in 
lower NPV in the correct data than the truly optimal 
management prescriptions. Lower NPV originates from 
differences in management prescriptions due to errors in 
basal area and mean diameter.

Errors in mean diameter increased, on average, the 
inoptimality losses more than errors in basal area. 
Underestimation of mean diameter and basal area resulted 
in greater inoptimality losses than overestimation of 
these attributes (Fig.  1). On average, simultaneous 
underestimation of basal area and mean diameter 
resulted in inoptimality losses that were 1.3 times 
greater compared with simultaneous overestimation of 
these attributes. Inoptimality losses were 1.5–10.6 times 
greater when only the mean diameter contained error, 
compared with the situation where only the basal area 
was erroneous. The main reason for the stronger effect of 
mean diameter was the fact that error in mean diameter 

particularly affected the selected cutting type (thinning 
or final felling). The error associated with the basal area 
mainly affected the timing and intensity of thinning.

Inoptimality losses were also compared with the situation 
where the management prescriptions were based on random 
information (BRI). For example, when basal area and mean 
diameter were both underestimated by 15%, the inoptimality 
loss was 1.96% and the BRI value was 77.9% for the 10 years 
(Fig. 1). This means that the inoptimality loss was 77.9% lower 
than in the case where random stand attributes were used. On the 
contrary, when both stand attributes were overestimated by 15% 
at the beginning of the planning period, the inoptimality loss 
was 1.50% and the BRI value was 83.1%, which indicates that 
overestimates are less important than underestimates (Fig. 1).

Inoptimality losses increased when a 20-year period 
was used instead of a 10-year period (Fig. 2), since a 
20-year period included more prescriptions, increasing 
the likelihood of prescription error. Losses increased 
particularly when the mean diameter was underestimated. 
The increase was mostly due to a large number of 
treatments (mainly thinning from above) that were 

Fig. 1  Relative inoptimality 
losses (upper figures) and Better 
than Random Information (BRI) 
values (lower figures) in differ-
ent error combinations for basal 
area and mean diameter during 
the next 10 years. The cells are 
colored in a green-yellow-red 
gradient according to ascending 
relative inoptimality losses
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prescribed to take place later than optimal. Inoptimality 
losses increased also especially in error combinations 
where mean diameter was overestimated and basal area 
was underestimated.

Inoptimality losses increase when the basal area 
increases regardless of the error in the basal area and mean 
diameter (Fig. 3). This indicates that the errors of the basal 
area are the more important, the more valuable the stand 
is. The inoptimality losses also increased as a function 
of mean diameter, but after the mean diameter reached 
approximately 21–26 cm, the losses started to decrease 
(Fig. 4). The maximum losses reflect the time point where 
a selection between final felling (clear-felling or seed tree 
felling) and thinning is to be made.

The typical erroneous management prescriptions vary 
with different error combinations. For example, when the 
mean diameter was overestimated by 15% (Fig. 3a–d), 
most of the losses came from premature treatments (i.e., 
a treatment was prescribed to take place earlier than 
optimal), or from situations where clear-felling or seed 
tree felling was prescribed for the stand instead of thinning 

from above. On the contrary, when the mean diameter was 
underestimated by 15% (Fig. 3m–p), the losses resulted 
frequently from situations where the optimal treatment was 
final felling but the prescription was erroneously thinning 
from above, or treatments were prescribed to take place 
later than optimal.

In some cases, the errors can be large, but still, they 
do not cause losses. For instance, when the true value of 
mean diameter at the beginning of the planning period 
was larger than 25 cm and mean diameter was erroneously 
overestimated (Fig.  4a–h), the selected management 
prescriptions based on the correct data and erroneous 
data were often the same; i.e., clear-felling or seed tree 
felling was prescribed, and consequently, there were no 
losses. However, in this case, severe underestimation 
of mean diameter (15%) still cause losses (Fig. 4m–p), 
because clear-felling or seed tree felling was prescribed to 
take place later than optimal, or thinning was prescribed 
instead of clear-felling or seed tree felling. In summary, 
the results indicate that it is especially important to avoid 
large underestimation in mean diameter particularly in 

Fig. 2  Increase in relative 
inoptimality losses when the 
effects of 20-year prescription 
errors are calculated instead of 
10 years. The cells are colored 
in a green-yellow-red gradient 
according to ascending differ-
ence
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stands in which the optimal treatment is clear-felling or 
seed tree felling in the near future.

In this study, different error levels were simulated 
for basal area and mean diameter by multiplying the 
values of stand attributes systematically with factors 
between 0.8 and 1.2. Error levels were simulated in this 
manner to evaluate the effect of underestimation and 
overestimation and the importance of errors in basal 
area and mean diameter. The errors do not mimic any 
specific inventory method, and neither do they follow 
any specific distributional or correlation assumptions. 
On the other hand, the stand-level results are valid for 
any inventory method, where a given error combination 
may occur. By using the Figs. 1 and 2 as lookup tables 
for observed error combinations, an expected loss for 
any given method could be calculated. In addition, 
information on the inventory costs may allow one 
to estimate which error combination would result in 

the lowest total inventory cost (i.e., inventory cost + 
inoptimality loss). The inventory efforts can be justified 
as long as the decrease in the inoptimality losses is 
greater than the additional costs associated with more 
accurate inventory information.

Some simplifications were made in this study. First, 
the effect of tree species was ignored. It has been found 
that errors in the attributes of the minor tree species 
affect the optimality of management prescriptions (e.g., 
Haara et al. 2019). Islam et al. (2009) pointed out that 
errors in the basal area of minor tree species can affect 
the correctness of holding-level forest plans. However, 
analyzing all tree species (pine, spruce, and deciduous 
trees) and their different error levels would have 
increased the number of error combinations substantially. 
Secondly, errors can also be present in other stand 
attributes. However, we decided to simulate errors only 
for the basal area and mean diameter, since in Finnish 

Fig. 3  Inoptimality losses (€  ha−1) as a function of basal area when 
the errors in basal area (BA) and mean diameter (D) vary between 
− 15 and 15%. The basal area on the x-axis corresponds to the basal 

area of the stand in the correct data at the beginning of the planning 
period. Note that negative spline values are set to zero
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forestry practice these attributes are used to predict the 
present state of the stand (stand density and average tree 
size) and they also determine the financial maturity of 
the stand for cutting.

5  Conclusions

We evaluated the effect of errors in basal area and mean 
diameter on the optimality of management prescriptions 
based on inoptimality losses. When NPV was maximized 
with a 3% discount rate, simultaneous underestimation of 
basal area and mean diameter led to greater inoptimality 
losses than simultaneous overestimation of these attributes. 
Error in mean diameter increased inoptimality losses 
more than an equivalent error in basal area. Therefore, 

it is particularly important to avoid large errors in mean 
diameter when data are used in forest planning.

Appendix

The following linear models were used to predict the 
net present value of the growing stock at the end of the 
planning period (Table 2). The models predict the square 
root of net present value of timber production when 
rotations are expected to continue to infinity. The total net 
present value of the ending growing stock was calculated 
as the basal area-weighted mean of tree species–specific 
predictions. Stumpage prices of 50 €  m−3 and 38 €  m−3 
were used for Pine/Spruce and Birch saw log, and price of 
15 €  m−3 for pulpwood.

Fig. 4  Inoptimality losses (€  ha−1) as a function of mean diame-
ter when the errors in basal area (BA) and mean diameter (D) vary 
between − 15 and 15%. The mean diameter on the x-axis is the basal 

area-weighted mean diameter of the stand in the correct data at the 
beginning of the planning period. Note that negative spline values are 
set to zero
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