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We compute various (generalized) isovector charges of the octet baryons. These include gA, gT

and gS as well as the unpolarized, polarized and transversity parton distribution function (PDF)
momentum fractions 〈x〉u+−d+ , 〈x〉∆u−−∆d− and 〈x〉δu+−δd+ . The simulations are carried out on
a subset of the (isospin symmetric) N f = 2+ 1 flavour Coordinated Lattice Simulations (CLS)
gauge ensembles with lattice spacings ranging from a ≈ 0.086fm down to a ≈ 0.050fm. First
results on the breaking of flavour symmetry and the low energy constants F and D are presented.
While SU(3) flavour symmetry violations are found to be sizeable for gA = 〈1〉∆u+−∆d+ , these are
quite small for gT = 〈1〉δu−−δd− and 〈x〉u+−d+ .
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1. Introduction

In recent years quite a few lattice calculations of the nucleon axial charge gN
A have been car-

ried out, assuming isospin symmetry, most of which are compatible with the experimental ratio
gN

A/gN
V = 1.2732(23) [1], as measured from neutron β decay. On the lattice gN

A can be accessed,
e.g., via the proton matrix element 〈p|ūγ5γµu− d̄γ5γµd|p〉. The hyperon axial charges gB

A for B 6= N
are less well known since a direct measurement, e.g., of Σ− → Σ0e−ν̄e, is unrealistic. So far
these can only be inferred, assuming an approximate flavour symmetry, from β decays such as
Ξ−→Λ`ν̄` or Σ−→ n`ν̄`, where an s-quark is converted into a u-quark. In terms of lattice simula-
tions only few direct results [2, 3, 4, 5, 6, 7] of these charges exist. Such determinations, however,
are interesting both in terms of testing the extent of SU(3) flavour symmetry and to determine
the low energy constants (LECs) F and D from first principles, which also appear in other SU(3)
BChPT expansions, e.g., of octet baryon self-energies.

In addition to the axial charges we also compute the hyperon isovector charges in other chan-
nels, in particular the scalar charges gB

S , and the tensor charges gB
T as well as the unpolarized,

polarized and transversity Bjorken momentum fractions 〈x〉Bu+−d+ , 〈x〉B∆u−−∆d− and 〈x〉B
δu+−δd+ , re-

spectively, where q± = q± q̄. Much less is known for these (generalized) charges since these are
even more elusive to experimental measurement than gB

A.

2. CLS gauge ensembles used

Ensemble β a[fm] Nt ·N3
s Mπ [MeV] LMπ t/a Nconfigs

H102 3.4 0.0856 96 ·323 355 4.9 [8(2), 10(2), 12(2), 14(2)] 2004
N202 3.55 0.0642 128 ·483 412 6.4 [11, 14(2), 16(2), 19(4)] 1768
X250 64 ·483 348 5.4 [11, 14(2), 16(4), 19(4)] 345
X251 64 ·483 269 4.2 [11, 14(2), 16(4), 19(4)] 436
N203 128 ·483 346 5.4 [11(2), 14(2), 16(2), 19(2)] 1543
N200 128 ·483 284 4.4 [11, 14, 16, 19] 1712
D201 128 ·643 199 4.1 [11(2), 14(2), 16(2), 19(2)] 1078
N302 3.7 0.0497 128 ·483 347 4.1 [14, 17, 21, 24] 1383

Table 1: CLS gauge ensembles analysed here. t denotes the source-sink separations and bracketed digits
indicate the number of measurements carried out for each distance on each configuration.

For our analysis we employ gauge ensembles generated by the Coordinated Lattice Simu-
lations (CLS) [8] effort, that combine the N f = 2+ 1 non-perturbatively O(a) improved Wilson
fermionic action with the tree-level Symanzik improved gauge action. To avoid freezing of the
topological charge most of these ensembles have open boundary conditions in time [9]. The en-
sembles are generated along three different trajectories, namely:
• tr M = const: keeping the trace of the quark mass matrix constant near its physical value [8],

thereby increasing the strange quark mass while the light quark mass is decreased.
• m̂s ≈ m̂ph

s : setting the renormalized strange quark mass to its physical value [10].
• m` = ms: the symmetric line.
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This enables us to extrapolate to the physical point along two different quark mass trajectories
(tr M ≈ tr Mph and m̂s ≈ m̂ph

s ), while along the symmetric line an extrapolation to the N f = 3 chiral
limit can be carried out.

The parameters of the ensembles investigated so far are listed in table 1. These cover a range of
pion masses from ∼ 410MeV down to ∼ 200MeV, three different lattice spacings a and volumes
with LMπ between 4.1 and 6.4. D201 is on the m̂s ≈ m̂ph

s trajectory, which at this light pion mass
is very close to the tr M = const line. H102, N202, N203, N200 and N302 are on the tr M = const
line and X250 and X251 (as well as N202) are on the SU(3) symmetric line.

3. Definitions, numerical methods and the fit procedure

The isovector charges are defined as matrix elements of local operators at zero momentum
transfer. Here we consider two kinds of (generalized) charges:

gB
J = 〈B|O(ΓJ)|B〉, J ∈ {V,A,T,S}, (3.1)

mB〈x〉BJ = 〈B|O(ΓJ)|B〉, J ∈ {u+−d+,∆u−−∆d−,δu+−δd+}, (3.2)

where the Γ-structures of the latter currents contain one derivative and in both cases we use isovec-
tor combinations O(ΓJ) = ūΓJu− d̄ΓJd. We destroy the nucleon, the Σ and the Ξ octet baryon
components with Dirac index α , using the interpolators

Nα = pα = ε
i jkui

α

(
u jᵀCγ5dk

)
, Σ+

α = ε
i jkui

α

(
u jᵀCγ5sk

)
, Ξ0

α = ε
i jksi

α

(
s jᵀCγ5uk

)
, (3.3)

where q ∈ {u,d,s} are Wuppertal smeared quark fields with ms ≥ m` = mu = md . When con-
structing zero-momentum two-point functions C2pt,B, we project with P+ = 1

2(1+γ4) onto positive
parity, while for the three-point functions, we also project on helicity differences if this is required.

The matrix elements are obtained from ratios of three-point over two-point functions

RB
J (t,τ) =

C3pt,B(t,τ,q = p′ = 0,ΓJ)

C2pt,B(t,p = 0)
t�τ→∞−−−−−→ 〈B|O(ΓJ)|B〉latt, (3.4)

where t is the temporal source-sink separation and τ the distance of the current from the source.
In our case the discretization effects are of orders a2 and a for matrix elements without and with
derivatives, respectively. To quote results in the continuum MS scheme at the scale µ = 2GeV, we
renormalize the lattice matrix elements, multiplying these by

ZJ(g2,aµ)
(
1+am`bJ(g2)+3amb̃J(g2)

)
, (3.5)

where 3m = tr M. We non-perturbatively determine the renormalization with respect to the inter-
mediate RI’-SMOM scheme and employ the improvement coefficients bJ(g2) of [11], where first
estimates of b̃J were found to be compatible with zero.

With the exception of the m` = ms ensembles the three-point correlation functions are com-
puted using the stochastic method described in [12] (see also [13, 14, 15, 16]), estimating a
timeslice-to-all propagator (depicted as a wiggly line in figure 1). This allows us to factorize
the three-point correlation function into two parts, the spectator part S and the insertion part I,
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which can be evaluated separately, where we leave all Dirac indices (Greek letters) as well as the
stochastic and colour indices (n and k) open:

C(p′,q,x′4,y4,x4)
α ′α β ′ β δ ′δ γ ′γ
U DU U =

1
Nsto

Nsto

∑
n=1

3

∑
k=1

(
SUD(p′,x′4,x4)

α ′α β ′ β δ ′

nk · IUU(q,y4,x4)
δ γ ′γ
nk

)
. (3.6)

The baryon source time x4 and the cur-

α′

x′
4

β′

δ′ δ γ′

y4

α

x4

β

γ

U

D

U U

Figure 1: The computation of the stochastic three-point
function. The red and blue indices correspond to the spec-
tator and insertion part, see eq. (3.6). The blue wiggly line
represents the stochastic propagator, whereas solid lines
are standard point-to-all propagators.

rent insertion time y4, where the spatial mo-
mentum q is injected, are varied, while the
sink time x′4 of the baryon with momen-
tum p′, where the stochastic source is lo-
cated, is fixed. We have a similar back-
ward sink (not shown) to enable forward-
backward time averaging. For the baryons
other than the proton, we substitute the
quark flavours accordingly. We then com-
pute the contractions for the matrix ele-
ments of interest. In this analysis we restrict
ourselves to non-flavour changing currents
and p′ = q = 0.

Note that for different baryon sinks or momenta no additional inversions are needed. However,
stochastic noise is added to the gauge noise. This is eventually offset by averaging over three-
point functions in the forward and backward directions as well as over equivalent polarizations and
momentum combinations at very little computational overhead. Any baryonic three-point function
with currents containing (in our case) up to one derivative can be computed at the analysis stage
from the building blocks S and I that we store, making this method extremely versatile.

In addition to statistical errors there will be systematic uncertainties related to the precision
of the renormalization constants and improvement coefficients, the continuum limit extrapolation,
finite volume effects and the use of unphysical quark masses. Not all of these systematics can be
explored on the presently analysed subset of CLS ensembles. With all lattice extents L > 4.1/Mπ ,
finite size effects should be negligible. Before discussing the quark mass dependence, we will study
the effect of excited state contributions. For all ensembles we use a set of four different, approxi-
mately matched source-sink separations t/fm = (x′4− x4)/fm ∼∈ {0.7,0.8,1.0,1.2}. In figure 2 we
show the ratio RN

T (see eq. (3.4)) for the tensor channel, in which excited state contributions are
clearly visible. To obtain the final result, we carry out simultaneous fits to the two-point function
and the ratios using all four (or three) source-sink separations, according to the ansatz

C2pt,B(t) = A0e−mBt (1+A1e−∆mBt) , RB
J (t,τ) = B0 +B1e−∆mBt/2 cosh(∆mB(τ− t/2))+B2e−∆mBt

(3.7)

with the mass difference ∆mB = m′B−mB. In these fits the position of the current τ = y4− x4 is
allowed to run within the interval τ ∈ [δ t, t−δ t], where δ t ∈ {2a,3a,4a}. Overall, we find stable
results for all six fits as can be seen in the bottom right panel of the figure, where the error band
indicates our final result.
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Figure 2: Ratios RN
T (see eq. (3.4)) for the tensor charge of the nucleon gN

T on ensemble N203 for different
source-sink separations t, together with the fits (3.7) covering different intervals τ ∈ [δ t, t−δ t]. We indicate
the results of these and three additional fits where we omit the smallest t value in the bottom right panel.

4. Results and Outlook
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Figure 3: Axial and tensor charges gB
A, gB

T as well as 〈x〉Bu+−d+ , for B ∈ {Σ,Ξ} divided by the nucleon’s.

In figure 3 we show results for the examples of the axial and tensor charges and the unpolarized
isovector PDF Mellin moment 〈x〉Bu+−d+ . The dashed red lines that are drawn to guide the eye
connect the m` = ms points that will approach the SU(3) chiral limit while the blue lines connect
the tr M ≈ tr Mph points. The left-most point corresponds to D201, which is on the m̂s ≈ m̂ph

s line,
but also near the tr M = tr Mph trajectory, due to the small pion mass. The first row shows the
nucleon charges which are subject to visible cut-off effects. When normalizing hyperon charges
with respect to the nucleon charges (second and third rows) the renormalization and improvement
factors cancel and the data collapse onto two curves for the two quark mass trajectories, indicating
that lattice spacing effects cancel to a large extent.
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Figure 4: Linear extrapolation in M2
π of the LECs F and D for the ensembles on the symmetric line.
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Figure 5: Symmetry breaking parameter (see eq. (4.2)) for gA and 〈x〉∆u−−∆d− , where M2
K−M2

π ∝ ms−m`.
The dashed vertical line indicates the physical point. The blue lines are only drawn to guide the eye.

Assuming SU(3) flavour symmetry, the axial vector charges can be expressed as combinations
of the two LECs F and D:

gN
A = F +D, gΣ

A = 2F, gΞ
A = F−D. (4.1)

We can directly extract these LECs, extrapolating the combinations F = (gN
A + gΞ

A)/2 and D =

(gN
A − gΞ

A)/2 along the m` = ms trajectory as linear functions in M2
π , see figure 4. Our values are

consistent with the recent lattice results obtained in [7], albeit the latter correspond to the SU(2)
and not to the SU(3) chiral limit.

Finally, we investigate SU(3) flavour symmetry breaking effects. Note that according to
eq. (4.1) (gN

J +gΞ
J )/gΣ

J = (2FJ)/(2FJ) = 1 holds for m` = ms. Thus the breaking effect for a current
J can, e.g., be quantified in terms of the parameter

δ
J
SU(3) =

(
gN

J +gΞ
J
)
/gΣ

J −1. (4.2)

These effects are small for gT and 〈x〉u+−d+ as is also evident from figure 3, where the blue and
red data sets do not significantly deviate from each other. However, for the axial moments gA =

〈1〉∆u+−∆d+ and 〈x〉∆u−−∆d− we find symmetry breaking effects of about 10% at physical quark
masses, see figure 5. This will be investigated in detail, employing the systematic approach used
by QCDSF [5].
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We are in the process of analysing additional ensembles that should enable us to carry out
controlled physical point and continuum limit extrapolations. We also plan to determine the ∆S = 1
(generalized) form factors to complete the picture of flavour symmetry violation and to determine
the relevant baryon ChPT LECs.
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