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Expression quantitative trait loci (eQTL) analysis is useful for identifying genetic variants
correlated with gene expression, however, it cannot distinguish between causal and
nearby non-functional variants. Because the majority of disease-associated SNPs
are located in regulatory regions, they can impact allele-specific binding (ASB) of
transcription factors and result in differential expression of the target gene alleles. In this
study, our aim was to identify functional single-nucleotide polymorphisms (SNPs) that
alter transcriptional regulation and thus, potentially impact cellular function. Here, we
present regSNPs-ASB, a generalized linear model-based approach to identify regulatory
SNPs that are located in transcription factor binding sites. The input for this model
includes ATAC-seq (assay for transposase-accessible chromatin with high-throughput
sequencing) raw read counts from heterozygous loci, where differential transposase-
cleavage patterns between two alleles indicate preferential transcription factor binding
to one of the alleles. Using regSNPs-ASB, we identified 53 regulatory SNPs in human
MCF-7 breast cancer cells and 125 regulatory SNPs in human mesenchymal stem cells
(MSC). By integrating the regSNPs-ASB output with RNA-seq experimental data and
publicly available chromatin interaction data from MCF-7 cells, we found that these 53
regulatory SNPs were associated with 74 potential target genes and that 32 (43%)
of these genes showed significant allele-specific expression. By comparing all of the
MCF-7 and MSC regulatory SNPs to the eQTLs in the Genome-Tissue Expression
(GTEx) Project database, we found that 30% (16/53) of the regulatory SNPs in MCF-
7 and 43% (52/122) of the regulatory SNPs in MSC were also in eQTL regions.
The enrichment of regulatory SNPs in eQTLs indicated that many of them are likely
responsible for allelic differences in gene expression (chi-square test, p-value < 0.01). In
summary, we conclude that regSNPs-ASB is a useful tool for identifying causal variants
from ATAC-seq data. This new computational tool will enable efficient prioritization of
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genetic variants identified as eQTL for further studies to validate their causal regulatory
function. Ultimately, identifying causal genetic variants will further our understanding
of the underlying molecular mechanisms of disease and the eventual development of
potential therapeutic targets.

Keywords: expression quantitative trait loci, allele-specific binding, transcription factor, ATAC-seq, functional
single-nucleotide polymorphisms, computational biology, bioinformatics, transcriptional regulation

INTRODUCTION

Expression quantitative trait loci (eQTL) analysis has developed
over the years into a powerful tool to investigate the effects
of genetic variants on gene regulatory networks, identify
quantitative traits for complex diseases, and derive causal
inference frameworks for genomic markers and gene expression
(Fagny et al., 2017; van der Wijst et al., 2020). Specifically,
eQTL analysis is designed to investigate how single-nucleotide
polymorphisms (SNPs) in regulatory elements directly modify
the abundance of a gene transcript. The major goal of an
eQTL study is to reduce the large number of variants identified
from a genome-wide association study (GWAS) to a list of
potential causal SNPs for further investigation into how the
locus contributes to disease. The validity of eQTL analysis
has been demonstrated in multiple tissue types, in which high
heritability has been observed in a large variety of gene transcripts
(Nica and Dermitzakis, 2013).

Despite recent technological and methodological advances,
eQTL analysis cannot distinguish between causal and non-
functional variants that are in strong linkage disequilibrium (LD).
In this study, we aim to identify functional SNPs in key regulatory
regions that alter transcriptional regulation and thus, potentially
impact cellular function. Such variants would be important
for investigating the etiology of the associated disease and for
identifying potential therapeutic targets.

Surveys of GWAS indicate that about 93% of disease-
and trait-associated variants lie within non-coding sequences,
especially in intergenic and intronic areas (Maurano et al.,
2012). Notably, 76.5% of all non-coding GWAS SNPs are
either within or in perfect LD with DNase I hypersensitive
sites, which correspond to open chromatin regions that contain
transcription factor (TF) binding motifs (Maurano et al.,
2012). Such variants are likely to disturb gene expression
by modulating transcriptional regulatory elements, including
promoters, silencers, and enhancers (Cookson et al., 2009;
Musunuru et al., 2010; Degner et al., 2012). Intronic variants
can affect gene splicing by altering canonical splice sites,
activating non-canonical splice sites, or changing splicing
regulatory elements. In addition, intronic variants can also
affect transcription regulatory motifs resulting in altered gene
expression (Vaz-Drago et al., 2017). We previously developed
a computational framework called regSNPs-intron that showed
high accuracy in predicting disease-causing intronic SNPs (Lin
et al., 2019). Similar methods are needed to prioritize intragenic
variants that alter binding sites of key DNA binding proteins,
such as TFs, as an efficient way of identifying candidate disease-
causing SNPs.

Assay for transposase-accessible chromatin with high-
throughput sequencing (ATAC-seq) is a high-throughput
technology that employs an engineered Tn5 transposase to
map genome-wide chromatin accessibility and nucleosome
positioning (Buenrostro et al., 2013). In open chromatin
regions, DNA-binding proteins protect DNA from DNase I
enzyme digestion in DNase-seq or Tn5 transposase insertion
(Thurman et al., 2012; Sung et al., 2016). Such protection
often results in an altered pattern of enzymatic cleavage at
the binding site compared to the flanking genomic region,
which is referred to as a footprint. To date, many studies have
inferred TF binding sites from ATAC-seq data by analyzing
the digital genomic footprints left by DNA-binding proteins
(Cavalli et al., 2016; D’Antonio et al., 2017; Wei et al., 2018).
For example, the algorithms HINT-ATAC, DeFCoM, and
Mocap each focus on identifying TF binding sites from
sequencing-based footprint data (Chen et al., 2017; Quach
and Furey, 2017; Li et al., 2019). While these existing methods
predict TF binding events at the single base-pair resolution,
none of these tools were designed to evaluate the impact of
genetic variants on TF footprints. Furthermore, like DNase
I, Tn5 transposase is reported to have specific sequence bias
(Adey et al., 2010; Lu et al., 2017), although the impact of
this bias on ATAC-seq footprinting profiles has not been
systematically investigated.

Recently, the Sasquatch algorithm was developed to
predict the effect of non-coding variants on TF binding
by analyzing differences in DNase footprints between
samples with different genotypes (Schwessinger et al.,
2017). This method improved the statistical power by
effectively eliminating biases resulting from variations in
the footprint patterns of different transcription factors.
Here, we propose to further analyze the differences in the
ATAC-seq read distribution between two heterozygous alleles
from the same individual. This strategy further reduces the
biases of the sequencing variation on different experiments
and sample types.

In our analysis, we first systematically screened for functional
variants by applying a generalized linear model (GLM) based
on the ATAC-seq data from two different cell lines. We further
evaluated our findings using RNA-seq data from the same cell
line, as well as publicly available chromatin interaction data
(Teng et al., 2015). The overall strategy presented in this study
provides evidence for functional SNP activity, which can serve
as the basis for generating testable hypotheses for experimental
validation. Ultimately, findings generated from regSNPs-ASB are
expected to aid in understanding the molecular mechanisms of
complex diseases.
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FIGURE 1 | Schematic illustrating detection of allele-specific TF binding by ATAC-seq. (A) Schematic of allele-specific TF binding detected by ATAC-seq. Alleles 1
and 2 contain a single nucleotide difference in the TF-binding site, which results in preferential TF binding to allele 1. TF binding to the site prevents the Tn5
transposase from cleaving the DNA at that location. (B) The difference in TF binding is detected in ATAC-seq data by a characteristic footprint, observed as a dip in
read counts at the binding site. An allele-specific binding (ASB) event is identified by the occurrence of this footprint in one allele (top) and uniform read counts in the
other allele (bottom). The ASB regions are defined by transposase cut sites shown above the plot: a = TF-binding site, b = site shoulders, c = flanking region. The
number of cut sites in region b are not considered in the regSNPs-ASB model to allow for variability in the size of the TF binding motifs.

RESULTS

Sequence variants within a TF-binding site may alter TF-
binding affinity at that locus (Johnston et al., 2019). When
functional SNPs are heterozygous and TFs preferentially bind
to one allele, differential ATAC-seq cleavage patterns between
the two alleles are expected to result (Figure 1). Based on this
premise, we developed a computational model called regSNPs-
ASB for detecting allele-specific differences in TF occupancy on a
genome-wide scale.

Overall Strategy and Data Preprocessing
for regSNPs-ASB
The overall strategy of regSNPs-ASB is shown in Figure 2, which
consists of six steps. First, open chromatin regions and SNPs
were extracted from ATAC-seq data. Second, open chromatin
regions and SNPs were filtered by the quality control and the
total number of cutting sites in each open chromatin region,
respectively. Third, potential allele-specific TF binding sites were
extracted by merging the loci of heterozygous variants and
TF binding sites. Fourth, significant allele-specific TF binding
events were detected using GLM. Fifth, empirical filtering was
performed to avoid false positive events. The final output
is a list of ASB events with associated TF and regulatory
SNP information.

To identify potential allele-specific transcription factor
binding sites, we first conducted ATAC-seq experiments on
patient-derived mesenchymal stem cells (MSC) and a breast
cancer cell line (MCF7). Using the MACS2 algorithm (Feng et al.,
2011), we identified 33,919 and 8,746 open chromatin regions
in MSC and MCF7 cells, respectively. Within these regions,
heterozygous SNPs were derived from the ATAC-seq BAM files
using samtools (Li et al., 2009). After quality control filtering,
1,119,374 and 815,852 heterozygous variants were identified in
the open chromatin regions of MSC and MCF7 cells, respectively

(Table 1). In each open chromatin region, we used FIMO (Grant
et al., 2011) to scan both reference and alternative sequences for
putative transcription factor binding sites. In total, 3,874,515 and
1,725,376 candidate binding sites were identified from MSC and
MCF7 cell lines, respectively. Among these, 40,475 binding sites
contained heterozygous variants in MSC and 12,402 in MCF7.

Detection of Allele-Specific TF Binding
Events in MSC and MCF7 Cells
For each potential TF binding site containing heterozygous
variants, we asked whether there were allele-specific differences
in the open chromatin regions. To address this question, a
generalized linear model (see section “Materials and Methods”)
was implemented to examine the differences in the ratio of the
cut site frequency in the flanking regions relative to the TF
footprint (i.e., the flanks-to-footprint ratio) between the reference
and alternative alleles (Figure 1B).

A negative binomial distribution was used in our model to
account for the over-dispersion of the read counts. The coefficient
of the interaction between the allele type (reference or alternative)
and the region (flanking or footprint), βint, was used to evaluate
whether the footprints on the putative TF-binding sites were
significantly different between the two alleles. This analysis
resulted in 2,417 candidate allele-specific TF binding sites in MSC
and 922 sites in MCF-7 cells (FDR < 0.05). Using the position
weight matrices (PWM) of the candidate TFs retrieved from
the JASPAR database (Khan et al., 2018), we further calculated
the position-specific scoring matrices (PSSM) scores (see section
“Materials and Methods”) of the candidate allele-specific TF-
binding sites for both reference and alternative alleles. Overall,
we detected 406 and 122 candidate TF-binding sites in MSC
and MCF7 cell lines with a significant βint value and a sizable
PSSM score difference (| deltaPSSM| > 5). Since each variant
can potentially disrupt the binding sites of multiple TFs, 125
and 53 heterozygous SNPs in MSC and MCF7 were identified

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 July 2020 | Volume 8 | Article 886

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00886 July 27, 2020 Time: 18:0 # 4

Xu et al. Deciphering Regulatory SNPs From ATAC-seq

FIGURE 2 | Workflow of regSNPs-ASB. (A) The input data for regSNPs-ASB are: (1) ATAC-seq raw read counts in a standard BAM format, (2) prior knowledge of TF
binding motifs from the public domain, and (3) a vcf file with heterozygous SNP loci. (B) The first round of filtering considers only open-chromatin regions with a high
amount of transposase cut sites and removal of SNPs with low mapping quality and read depth. (C) Call potential allele-specific TF-binding sites containing
heterozygous SNPs. (D) Detect ASB events using GLM to identify allele-specific TF binding. (E) The second round of filtering requires the predicted ASB to have a
high magnitude difference between reference and alternative alleles, as well as consistency in beta and PSSM values. (F) The output of regSNPs-ASB is a list of ASB
events with associated TF information, regulatory SNP information, and corresponding ATAC-seq read counts from different alleles for each technical replicate.

TABLE 1 | regSNP-ASB filtering summary.

Dataset Chromatin
accessibility

regions

Heterozygous
SNPs

Potential TF
binding sites

Candidate
allele-specific TF

binding sites

Significant
allele-specific TF

binding sites

Filtered
allele-specific TF

binding sites

Regulatory
SNPs

MSC 33,919 1,119,374 3,874,515 40,475 2417 406 125

MCF-7 8,746 815,852 1,725,376 12,402 922 122 53

with the potential to disrupt TF binding. The number of TFs
whose binding sites were disrupted by each heterozygous variant
are shown in Supplementary Figure S1. A complete list of
these variants can be found in Supplementary Tables S1, S2. In
addition, the βint values, the ATAC-seq read distribution on and
flanking the putative sites, and the deltaPSSM, can be found in an
RShiny website1.

Examples of the ATAC-seq signal distribution for two
TF binding sites on the reference and alternative alleles
identified by regSNPs-ASB are presented in Figure 3A.
For SNP rs7164266, regSNPs-ASB detected a decrease in
the footprint on the alternative allele. The matching score
differences (deltaPSSM = 7.24) further supported the regSNPs-
ASB prediction. Since rs7164266 occurs in a CTCF-binding
motif, this finding suggests that the variant allele could potentially
repress CTCF binding to this site. On the contrary, for rs6752740,
a SNP located in a putative KLF14 binding site, a clear footprint
was observed on the alternative allele, but not on the reference
allele. This finding indicates that the rs6752740 SNP could
enhance KLF14 binding, which was supported by the matching
score differences (deltaPSSM = −5.48). The ratio of the number
of ATAC-seq cutting sites between the two alleles on putative TF
binding sites (X) versus the flanking regions (Y) was plotted for all

1https://yunlongliulab.shinyapps.io/regsnps-asb/

of the identified events (Figure 3B). Taken together, these results
indicate that the regSNPs-ASB algorithm can identify genome-
wide allele-specific TF binding events from ATAC-seq data.

Correlation of Allele-Specific TF Binding
and Allele-Specific Gene Expression
We next asked whether the allele-specific TF binding predicted by
regSNPs-ASB correlated with allele-specific gene expression. To
address this question, we first identified likely target genes for the
heterozygous variants that exhibited allele-specific TF binding.
For putative promoter variants, the closest gene to each variant
was considered as the target gene. However, because enhancer
variants can be far away from their target genes, Chromosome
Conformation Capture (3C) and its derivative techniques have
become the major biochemical approaches to study such distal
transcriptional regulation and chromatin interactions. Therefore,
potential enhancer regulatory SNPs were combined with 3C
experimental interaction data obtained from the 4Dgenome
database. For this analysis, we focused on MCF-7 cells since 3C
data was not available for MSCs. In MCF7 cells, 8 of the 53
heterozygous variants that exhibited allele-specific TF binding
were located in the promoter or 5′UTR regions, while the other
45 SNPs were located in intronic or distal intergenic regions and
were considered potential enhancer regulatory SNPs. For these 45
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FIGURE 3 | Allele-specific TF binding events occur throughout the genome. (A) Two examples of allele-specific TF-binding events in MSC are depicted by orange
and blue histograms representing the observed ATAC-seq profiles for the reference and alternative alleles, respectively. The corresponding TF-binding motif is shown
below the histograms, where the black box indicates the SNP locus. The left panel illustrates TF binding on the reference allele and the right panel illustrates TF
binding on the alternative allele. Based on the regions defined in Figure 1B, we summed the corresponding read counts: Aref = the number of reference allele reads
binding at the TF-binding site; Aalt = the number of alternative allele reads binding at the TF-binding site; Cref = the number of reference allele reads binding at the
flanking region; Calt = the number of alternative allele reads binding at the flanking region. (B) Log-ratio plot of Aref/Aalt vs. Cref/Calt. Points located in the lower right
quadrant of the plot represent variants that result in a loss in TF binding, similar to the SNP shown in the right panel in (A). Points in the upper left quadrant represent
a gain in TF binding, similar to the SNP in the left panel in (A).

putative enhancer SNPs, 66 potential target genes were identified
in the 4Dgenome database.

Allele-specific expression analysis for the target genes was
conducted using heterozygous variants in the open reading frame
of the putative target genes. We found that 75% (6/8) of the
target genes associated with promoter variants and 39% (26/66)
of the target genes associated with putative enhancer variants
showed significant allele-specific expression (p-value < 0.01,
Supplementary Table S7).

One example of the chromatin interaction analysis is shown in
Figure 4, where allele-specific binding on rs151202 was observed
in the ATAC-seq data (Figure 4B). Motif analysis indicated that
this SNP weakened the binding of transcription factor AP-2
gamma (TFAP2C). A previous 3C study reported that this SNP
is located in a regulatory region that interacts with two target
genes, DHX29 and SKIV2L2 (Teng et al., 2015). Interestingly,
we observed strong allele-specific expression differences of
both of these genes at SNP loci in the coding-regions,
rs3761764 (p-value = 0.031) and rs2061242 (p-value = 1.35E-07),
respectively (Figure 4B).

These results suggest that the rs151202 variant at
chr5:54529604 likely disturbed TFAP2C binding, resulting
in differential expression of DHX29 and SKIV2L2 genes.
Interestingly, TFAP2C is a key regulator of hormone
responsiveness in breast carcinoma cells through the control
of multiple estrogen signaling pathways (Gee et al., 2009).
It is also noteworthy that the overexpression of DHX29 can
promote cancer cell growth in culture and in xenografts (Parsyan
et al., 2009). Taken together, these results demonstrate that
regSNPs-ASB has the potential to identify causal regulatory SNPs

that affect TF binding and further impact the expression levels
of target genes.

Correlation of Allele-Specific TF Binding
and Allele-Specific Gene Expression
We next asked whether the regulatory SNPs identified by
regSNPs-ASB could be found in a list of eQTL signals. To address
this question, we compared all of the regulatory SNPs identified
in MCF-7 and MSC to the eQTLs in the GTEx database. We
found that 30.2% (16/53) of the regulatory SNPs in MCF-7
and 42.6% (52/122) of the regulatory SNPs in MSC were also
eQTLs (Supplementary Tables S3, S4). This enrichment was
significant when compared to non-regulatory SNPs (chi-square
test, p-value = 1.52E-08). Thus, SNPs identified by regSNPs-ASB
that are also in eQTLs could be prioritized for experimental
validation of their functional role as the causal variants involved
in the target gene regulation.

Based on the finding that regulatory SNPs are significantly
enriched in eQTLs, we further tested whether our method could
be used to identify plausible causal SNPs that modulate TF
binding from a list of GWAS SNPs associated with specific
cell systems. Notably, rs7943121 was identified as a SNP that
weakens the binding of the transcriptional repressor CCCTC-
binding factor (CTCF) (FDR = 0.033, Figure 5A). This SNP
was also identified as an eQTL in breast mammary tissue
that could modulate SPT2 chromatin protein domain containing
1 (SPTY2D1) expression (Figure 5B). Furthermore, we also
observed that rs7943121 was in strong LD (r2 > 0.8) with
rs10832963, which is one of the most significant GWAS-SNPs
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FIGURE 4 | Regulatory SNP affects the expression of two target genes. (A) Illustration of the relative positions of the candidate regulatory SNP (red) and
coding-region SNPs (green) located within two target genes (DHX29, SKIV2L2) in MCF-7 cells. Vertical blue lines indicate exons. (B) ATAC-seq and RNA-seq data
suggest the regulatory SNP can drive an ASB event. The ATAC-seq footprint shows preferential TF binding on the reference allele at the regulatory SNP. Boxplots
from RNA-seq data across six samples show the gene expression values of the two target genes is increased in the alternative allele.

associated with breast cancer (Figure 5C; Michailidou et al.,
2017). Overall, these results provide compelling evidence that
regulatory SNPs detected by regSNPs-ASB can potentially be the
drivers of previous-reported eQTL and GWAS signals.

DISCUSSION

eQTLs and GWAS are conventional methods for mapping
association variants that have identified tens of thousands of loci
that are highly correlated with gene expression and common
diseases, respectively. However, screening for the true causal
variants remains a challenging problem. In this study, we
introduced a computational method, regSNPs-ASB, for detecting
regulatory SNPs that affect transcription factor binding using
ATAC-seq data. The major conclusion of this study is that
by integrating ATAC-seq data with RNA-seq expression data,
chromatin conformation data and LD information from SNP
datasets, regSNPs-ASB is able to efficiently evaluate the regulatory
functions of SNPs in disease contexts. This conclusion is based
on the following evidence: First, we systematically detected
potential regulatory SNPs with allele-specific differences in TF
occupancy using a statistical test. Second, we provided evidence
that regulatory SNPs can affect the expression of their target
genes. Finally, we found that regulatory SNPs are significantly
enriched within expression-correlated variants compared with

non-regulatory SNPs in the GTEx database. Collectively, these
findings demonstrate that the regSNPs-ASB algorithm can be
used to identify causal variants from ATAC-seq data, and thereby,
further our understanding of the molecular mechanisms of
complex diseases.

Our method is developed based on the established strategy for
conducting allele-specific analysis on many types of sequencing
data, which specifically focus on the sequencing reads on
heterozygous loci. This includes allele-specific gene expression
(Zhang et al., 2014; Castel et al., 2015), allele-specific alternative
splicing analysis (Nembaware et al., 2008; Li et al., 2012),
allele-specific binding of ChIP-seq (de Santiago et al., 2017)
and CLIP-seq data analysis (Yang et al., 2019), allele-specific
chromatin interaction (Cavalli et al., 2019), and allele-specific
chromatin accessibility (Harvey et al., 2014; Zhang et al., 2019).
To our knowledge, our method is the first to analyze allele-
specific footprint.

When designing regSNPs-ASB, we considered several
potential issues that could arise from technical artifacts. On
the one hand, the intrinsic sequence bias of DNase I and Tn5
enzymes has a striking effect on the average cut profile over a
specific TF-binding motif, which is a major limitation of current
genomic footprinting methods (Yardımcı et al., 2014; Xu et al.,
2017). regSNPs-ASB effectively eliminates the impact of sequence
preference bias, since this algorithm focuses on identifying the
differences in the cut-site distribution between two alleles of a
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FIGURE 5 | Identified regulatory SNP is in strong LD with a GWAS SNP in breast cancer. (A) The C allele of regulatory SNP rs7943121 is predicted to compromise
binding of the CTCF TF based on the motif, which is consistent with regSNP-ASB predictions. (B) The genotype of regulatory SNP rs7943121 is correlated with
SPTY2D1 gene expression (GTEx breast cancer data). Each dot represents the expression of a sample. The sample groups of different rs7943121 genotype were
indicated on the X-axis; and the relative expression level of SPTY2D1 is shown on the Y-axis. The median value of SPTY2D1 expression level in each genotype
group is represented by the dark black horizontal line in the box plot. Homo Ref: homozygote for the reference G allele, Het: heterozygote; Homo Alt: homozygote
for the alternative allele. A chi square P-value was calculated based on Mahalanobis distance. (C) The regulatory SNP rs7943121 is in strong LD (r2 > 0.8) with SNP
rs10832963 (red).

single locus, where the technical variability should be the same.
For the same reason, our model is insensitive to the differences
in the intrinsic footprint patterns from different TF domains.
On the other hand, cancer cell lines often contain copy-number
variants, which complicate the detection of allele-specific TF
binding. Traditional ChIP-based methods for identifying allele-
specific TF binding (Wei et al., 2012; Cavalli et al., 2016), cannot
effectively distinguish gene expression changes that are caused by
allele-specific copy number amplification from the effects caused
by allele-specific TF binding. regSNPs-ASB ignores this feature
of cancer genomes because it detects differences in footprint
shape that result from TF-binding, rather than the imbalance of

read counts from different alleles. By avoiding these technical
problems, regSNPs-ASB effectively screens for allele-specific TF
binding in an unbiased manner.

We also note that there are some limitations of regSNPs-
ASB. First, although this model can effectively evaluate TFs
with shallow footprints that are caused by transient interactions
with DNA, regSNPs-ASB, like all other footprinting-based
computational algorithms, cannot detect TFs that do not leave
footprints because of their short occupancy time (on the order of
seconds). In that case, the differential TF binding events cannot
be detected by ATAC-seq and technological improvements
will be needed to capture those events. Second, the proposed
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method can only be applied on the heterozygous loci in the
genome, and cannot be used to identify the functional variants
on the homozygous variants. In addition, regSNPs-ASB infers
TF occupancy from open chromatin regions that contain a
probabilistic match to TF consensus recognition motifs, which
limits the ability to identify TFs whose motif sequences are not
known. However, this limitation will diminish as new TF motifs
are discovered and included in the JASPAR database.

It should be noted that the proposed methods are designed
for the cell systems with diploid genomes, which may not
be appropriate to study the cell systems with complicated
chromosome rearrangement, including tumors and cancer cells
that have aberrant CNV (copy number variation) and LOH
(lost of heterogeneity). In theory, our method can be applied
on the genomic loci with somatic mutations. At such loci,
however, since only a proportion of the cells will carry the same
mutation, the power of our method for detecting such variants
may be compromised.

In summary, we show that the regSNPs-ASB algorithm is
effective in identifying candidate causal SNPs from ATAC-
seq data. This new computational tool will enable efficient
prioritization of genetic variants identified by association
studies for further studies to validate their causal regulatory
function. Ultimately, identifying causal genetic variants
will further our understanding of the underlying molecular
mechanisms of disease.

MATERIALS AND METHODS

Cell Lines
Human MCF-7 breast cancer cells were purchased from ATCC
(Manassas, VA, United States) and were authenticated using
cell line authentication services of Genetica (Burlington, NC,
United States). Cells were maintained in minimal essential media
(MEM) plus 10% fetal bovine serum (FBS) with penicillin and
streptomycin. Media was changed to phenol red-free MEM with
5% charcoal-dextran treated FBS for at least 3 days prior to
experiments. We generated 3 ATAC-seq libraries and 2 RNA-
seq libraries from MCF-7 cells. Each individual library was
derived from three technical replicates. Human mesenchymal
stem cells (MSCs) were purchased from Lonza (Walkersville, MD,
United States) and were tested for purity by flow cytometry.
MSCs were thawed and the culture process was initiated
by plating in tissue culture flasks (Corning, Corning, NY,
United States) containing MSC growth medium (Lonza) at
37◦C in 5% CO2-90% humidity according to the manufacturer’s
instructions. We generated 3 ATAC-seq libraries from MSC and
each individual library was derived from two technical replicates.

ATAC-seq Experimental Procedure
Assay for transposase-accessible chromatin with high-
throughput sequencing was performed according to the
published protocol (Buenrostro et al., 2013). Briefly, cells were
collected in cold PBS and cell membranes were disrupted in
cold lysis buffer (10 mM Tris–HCl, pH 7.4, 10 mM NaCl, 3 mM
MgCl2 and 0.1% IGEPAL CA-630). The nuclei were pelleted

and resuspended in the transposase reaction mix containing
25 µL 2 × TD buffer, 2.5 µL transposase (Illumina) and
22.5 µL nuclease-free water. Directly following transposition,
the sample was purified using a Qiagen MinElute kit. Following
purification, libraries were amplified using 1 × NEBnext
PCR master mix and 1.25 µM custom Nextera PCR primers.
AMPure XP beads (Beckman Coulter) were used to purify the
transposed DNA and the amplified PCR products. All libraries
were sequenced on a 100-cycle paired-end run on an Illumina
NovaSeq 6000 instrument.

RNA-seq Experimental Procedure
Total RNA was prepared using a RNeasy kit (Qiagen). The
concentration and quality of total RNA samples was first assessed
using an Agilent 2100 Bioanalyzer. A RIN (RNA integrity
number) of five or higher was required to pass the quality control.
A TruSeq Stranded mRNA Library Prep Kit (Illumina) was
used to prepared single-indexed strand-specific cDNA libraries
from 500 nanograms of RNA per sample. The resulting libraries
were quantified using a Qubit and the size distribution was
assessed using an Agilent 2100 Bioanalyzer. Pooled libraries
(1.5 picomoles) were sequenced with 2 × 75 bp paired-end
configuration on a HiSeq 4000 instrument (Illumina). A Phred
quality score (Q score) was used to measure the quality of
sequencing. More than 90% of the sequencing reads reached Q30
(99.9% base call accuracy).

Preprocessing for Identifying
Allele-Specific Transcription Factor
Binding
For ATAC-seq footprinting analysis, all of the read start sites
were adjusted to represent the center of the transposon binding
event; reads aligning to the forward strand were offset by + 4 bp
and reads aligning to the reverse strand were offset by -5 bp
(Buenrostro et al., 2013). MACS2 (Feng et al., 2011) was used with
default parameters to identify all ATAC-seq peaks. Peaks with
<200 cutting sites were removed from downstream analysis to
minimize the effect of nucleosome-bound regions. Heterozygous
SNPs were identified using samtools-1.6 and bcftools-1.6 with
the parameters mpileup -uf and view -Nvcg, respectively (Li
et al., 2009). SNPs were further filtered by VcfFilter with the
parameter DP > 10 and MQ > 20 (Erik, 2012). In each open
chromatin region, we used FIMO (Grant et al., 2011) to recognize
potential TF binding sites from both reference and alternative
alleles. Lastly, we used BEDTools IntersectBed (Quinlan and Hall,
2010) to merge the loci of heterozygous variants and potential TF
binding sites. The set of TF binding sites intersecting SNPs were
regarded as potential allele-specific TF binding sites.

Transcription Factor Motif Disruption
Analysis
The position-specific scoring matrices (PSSM) of the candidate
TFs were retrieved from the JASPAR database (Khan et al., 2018)
and used to annotate the potential regulatory effects of the tested
SNPs on TF motifs. The magnitude of the change in binding
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affinity was calculated as the absolute difference (delta) of PSSM
scores, that is delta (PSSM) = PSSM(ref) – PSSM(alt).

regSNPs-ASB Computational Model
Description
We explicitly modeled the counts of DNA fragments for each
potential binding site using a generalized linear model. The total
number of sequencing reads within a given region of the genome
approximately follow a negative binomial distribution.

For each potential allele-specific TF binding site, we built the
following generalized linear regression model to fit the DNA
fragment counts:

log(E(y)) = β0 + βrxr + βaxa + βintxrxa + ε

where y is the number of ATAC-seq reads in which the Tn5
cleavage position mapped to a specific region and allele; xr and
xa are binary predictor variables that indicate the region where
a cleavage event happened (0 = binding site and 1 = flanking
region) and the allele that the fragment mapped to (0 = reference
allele and 1 = alternative allele), respectively (Figure 1B); βr
and βa are the regression coefficients used to estimate the
relationship between the scalar response and xr and xa. In
addition, β0 indicates the average sequencing depth around
a heterozygous site and ε is the random error. Logarithm
is the canonical link function when the response variable
follows a negative binomial distribution. Our null hypothesis
(H0) is: βint = 0. Rejecting the null hypothesis indicates that
the allelic imbalance differs between reference and alternative
alleles. A positive or negative βint value indicates a gain or loss
of binding ability to the variant, respectively. False discovery
rate was calculated using the Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995).

Regulatory SNPs Target Gene
Identification
For each regulatory SNP, we first used SnpSift (Cingolani et al.,
2012) to retrieve the corresponding reference SNP ID number
(rsID) before querying the SNPs to the Short Genetic Variations
database (dbSNP). ANNOVAR (Hakonarson et al., 2010) was
used to annotate the location of each SNP. Variants located within
a 1 kb region upstream or downstream of a transcription start site
were considered as potential promoter regions. The remaining
regulatory SNPs were considered as enhancers using chromatin
interaction data from the 4DGenome database2. Each record
in this database includes three parts: a chromatin interaction
between two genomic regions, genes located in the interacting
regions, and the experimentally-derived or computationally-
predicted data used to detect the genomic interaction. BEDTools
IntersectBed (Quinlan and Hall, 2010) was used to examine
overlaps between regulatory SNPs and interacting chromatin
regions. For any genomic region overlapping with regulatory
SNPs, genes located in the paired interacting region were
recognized as potential target genes for the corresponding
regulatory SNPs.

2https://4dgenome.research.chop.edu/

Allele-Specific Expression Analysis
Typical allele-specific expression analysis seeks to capture allelic
imbalance of reference and alternative alleles in RNA-seq read
counts covering heterozygous sites. Under the null hypothesis of
balanced expression, the fraction of allelic read counts is expected
to fit a binomial distribution (N, 0.5). For each regulatory SNP
target gene, we used a binomial test to detect whether allele-
specific expression occurred at each coding SNP based on the
corresponding RNA-seq data. All target genes that reject the
null hypothesis (P value < 0.05) were considered genes with
allele-specific expression.

SNP Linkage Disequilibrium Analysis
We used the 1000 Genome Project Phase 3 variants3 (Auton
et al., 2015) and plink2 (Chang et al., 2015) to conduct the
linkage disequilibrium analysis. First, vcf file formats were
converted to the corresponding pgen, psam, and pvar file formats
using plink –vcf. Then we calculated r2 and D’ between each
SNP and disease-correlated GWAS-SNP using plink –out. The
linkage disequilibrium results were plotted by the genetic variant-
centered annotation browser, SNiPA (Arnold et al., 2015).

eQTL Analysis
The eQTL analysis was performed using GTEx v7 data4. We
classified a regulatory SNP as a genetic variant exerting regulatory
effects on the expression of gene if it was completely overlapping
with any eQTL in the corresponding tissue.
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