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Abstract

Several new discoveries over the past decade have shown that metabolic syndrome, a cluster of 

metabolic disorders, including increased visceral obesity, hyperglycemia, hypertension, 

dyslipidemia and low HDL-cholesterol, is commonly associated with skeletal muscle insulin 

resistance. More recently, non-alcoholic fatty liver disease (NAFLD) was recognized as an 

additional condition that is strongly associated with features of metabolic syndrome. While the 

pathogenesis of skeletal muscle insulin resistance and fatty liver is multifactorial, the role of 

dysregulated redox signaling has been clearly demonstrated in the regulation of skeletal muscle 

insulin resistance and NAFLD. In this review, we aim to provide recent updates on redox 

regulation with respect to (a) pro-oxidant enzymes (e.g. NAPDH oxidase and xanthine oxidase); 

(b) mitochondrial dysfunction; (c) endoplasmic reticulum (ER) stress; (d) iron metabolism 

derangements; and (e) gut-skeletal muscle or gut-liver connection in the development of skeletal 

muscle insulin resistance and NAFLD. Furthermore, we discuss promising new therapeutic 

strategies targeting redox regulation currently under investigation for the treatment of skeletal 

muscle insulin resistance and NAFLD.
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Introduction

Metabolic syndrome is a cluster of metabolic disorders, which includes increased visceral 

obesity, hyperglycemia, dyslipidemia, increased blood pressure and decreased high-density 

lipoprotein (HDL)-cholesterol. In the last decade, skeletal muscle insulin resistance has been 

considered to be the major pathological condition associated with features of metabolic 

syndrome and the subsequent development of type 2 diabetes along with the accompanying 

complications. More recently, non-alcoholic fatty liver disease (NAFLD) was recognized as 

an additional condition that is closely associated with features of metabolic syndrome. While 

the pathogenesis of skeletal muscle insulin resistance and fatty liver is multifactorial, redox 

stress resulting from overproduction of reactive oxygen species (ROS) and reactive nitrogen 

species (RNS) is rapidly gaining wide recognition for its role in the regulation of metabolic 

syndrome and the subsequent development of type 2 diabetes, together with the associated 

cardiovascular diseases. In this review, we discuss recent advances in the involvement of 

dysregulated redox regulation in the pathophysiology of skeletal muscle insulin resistance 

and NAFLD, with a focus on pro-oxidant and antioxidant enzymes, mitochondrial 

dysfunction, endoplasmic reticulum (ER) stress, aberrant iron metabolism and dysbiosis of 

gut microbiota. We also highlight potential therapeutic targets and provide insights into the 

role of antioxidants and drugs currently under investigation for the treatment of skeletal 

muscle insulin resistance and NAFLD. This information is timely and important because it 

enables awareness of the mediation of redox regulation in two major metabolic regulatory 

organs for glucose and lipid metabolism, and paves avenue to the development of potential 

therapeutic interventions.

Redox regulation of skeletal muscle insulin resistance

Skeletal muscle tissue is a primary tissue responsible for 70-90% of total body insulin-

stimulated glucose uptake and oxidative metabolism. It is well established that skeletal 

muscle insulin resistance and impaired glucose metabolism, both due in part to reduced 

insulin action and glucose uptake, play a central role in the whole-body insulin resistance, as 

well as in the subsequent development of metabolic syndrome, type 2 diabetes, NAFLD and 

the associated cardiovascular diseases. Pathophysiological mechanisms responsible for 

dysregulated redox signaling, including excessive ROS production, mitochondrial 

dysfunction, ER stress, iron metabolism derangements and gut-skeletal muscle axis, have 

been implicated in skeletal muscle insulin resistance (Figure 1). In recent years, NADPH 

oxidases (Nox) have emerged as the initial and primary source of ROS in skeletal muscle 

cells [1, 2]. It has been shown that Nox1, Nox2, Nox4, DUOX1 and DUOX2 are expressed 

in various subcellular compartments of skeletal muscle cells [2]. While Nox2-derived ROS 

mediates insulin signaling, skeletal muscle glucose transport, calcium release and muscle 

differentiation under physiological conditions, angiotensin II-induced over-production of 

Nox2-generated ROS impairs insulin signaling in muscle cells [3]. An increase in Nox2 and 

other Nox subunits was found in skeletal muscle in a mouse model of diet-induced insulin 

resistance [1]. In addition, Nox inhibitor apocynin was found to attenuate skeletal muscle 

insulin resistance in mice with heart failure after myocardial infarction [4]. Most recently, it 

has been reported that Nox2-generated ROS contributes to skeletal muscle insulin resistance 

in mice fed a high-fat diet (HFD) and that deficiency of Nox2 restores skeletal muscle 
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insulin sensitivity by improving glucose uptake in skeletal muscle cells, suggesting a direct 

role for Nox2 in skeletal muscle insulin resistance [5]. These findings may enable the use of 

specific inhibitors, such as GSK2795039 and NOx2ds-tat, in the treatment of skeletal muscle 

insulin resistance and metabolic syndrome.

Despite being recognized as major sources of ROS in skeletal muscle, available evidence 

regarding xanthine oxidase (XO), mitochondrial ROS and phospholipase A2 in the context 

of skeletal muscle insulin resistance is limited to a small number of studies in recent years. 

An increase in XO activity has been shown in skeletal muscle of diabetic mice and in 

patients with diabetes [6, 7]. It has also been found that treatment with XO inhibitor 

oxypurinol reduces oxidative stress and improves mitochondrial function in mouse models 

of diabetes induced by streptozotocin and diet [6]. Most recently, a new highly potent XO 

inhibitor, febuxostat, has been reported to improve skeletal muscle insulin resistance in 

HFD-treated rats [8]. Nevertheless, it has been shown that high ROS production by XO 

increases insulin sensitivity, glucose uptake and mitochondrial oxidative activity in skeletal 

muscle of senescence-accelerated mice, and that a treatment with N-acetylcysteine reverses 

these phenotypes [9]. Thus, the answer to the question of whether inhibition of XO has 

benefits in skeletal muscle insulin resistance, however, remains elusive.

While the role of mitochondrial ROS and dysfunction in skeletal muscle insulin resistance 

remain controversial (for a more detailed recent review, see ref [10]), excessive 

mitochondrial ROS and mitochondrial dysfunction have been observed in skeletal muscle of 

patients with type 2 diabetes and in skeletal muscle of mice fed a HFD [1, 11]. Most 

recently, a mechanism involving at least in part nucleotide-binding oligomerization domain 

protein-2 (NOD2)-mediated mitochondrial ROS generation has been linked to induction of 

insulin resistance in skeletal muscle cells [12]. Excessive mitochondrial ROS production and 

mitochondrial dysfunction have been associated with obesity and profound skeletal muscle 

insulin resistance in mice which specifically lack estrogen receptor alpha (ERα) in skeletal 

muscle [13]. Additionally, decreased levels of mitochondrial deacetylase, sirtuin-3 (SIRT3), 

have been shown to play an important role in skeletal muscle insulin resistance via 

mitochondrial ROS production [14]. In accord with this observation, decreased levels of 

SIRT3 in skeletal muscle have been associated with the development of metabolic 

syndrome-associated pulmonary hypertension. Agents that increase SIRT3 activation in 

skeletal muscle, such as nitrite and metformin, improved insulin sensitivity and reduced 

pulmonary pressures in rats with metabolic syndrome-associated pulmonary hypertension. It 

is worth noting that nitrite-mediated SIRT3 activation in this study required ROS generation 

[15].

Additionally, mitochondrial inefficiency and increased mitochondrial ROS production 

induced by hypoxia in skeletal muscle have been shown to improve glucose disposal 

independent of weight loss or improvement in insulin responsiveness [16]. Interestingly, 

using DJ-1-deficient mice fed a HFD, a recent study has revealed a novel mechanism by 

which ROS-induced mitochondrial uncoupling promotes energy expenditure in the skeletal 

muscle and leads to protection of skeletal muscle insulin resistance and glucose intolerance, 

presenting an appealing therapeutic potential of mild mitochondrial uncoupling for the 
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treatment of type 2 diabetes together with related metabolic disorders from the skeletal 

muscle perspective [17].

The literature is currently scarce on the topics related to the influence of ER stress, iron 

metabolism derangements and gut microbiota in skeletal muscle insulin resistance. ER 

stress-induced insulin resistance in skeletal muscle has been shown in women with 

gestational diabetes and/or maternal obesity, and it was found that activation of AMPK 

protected against the observed phenotypes [18, 19]. Additionally, deletion of tribbles 3 

(TRB3), a pseudokinase that is upregulated during the ER stress, has been shown to improve 

skeletal muscle insulin resistance in HFD-treated mice [20], suggesting inhibition of skeletal 

muscle TRB3 expression as a new therapeutic strategy for managing insulin resistance. It 

has also been reported that iron overload mediated insulin resistance in human skeletal 

muscle cells and iron deprivation enhanced insulin receptor and glucose transporter 4 

(GLUT4) transcription, along with increasing protein oxidation levels in skeletal muscle of 

rats [21, 22]. Human data indicate that gut microbes and high levels of gut oxidative stress 

are related to a predisposition for diabetic complications [23]. While the gut microbes are 

restricted to the gut, it has been shown that the extracellular vesicles secreted by the gut 

microbes induce insulin resistance by impairing glucose metabolism in skeletal muscle of 

mice fed a HFD [24]. This provides a new insight into pathogenesis of type 2 diabetes and 

its related complications in the context of the gut-muscle crosstalk.

Redox regulation of NAFLD

NAFLD is defined as the presence of cytoplasmic lipid droplets in more than 5% of 

hepatocytes in the absence of excessive alcohol consumption (14 drinks/week for men and 7 

drinks/week for women). It is one of the most prevalent chronic liver diseases and has posed 

a significant threat in public health. The worldwide prevalence ranges from 20% to 30%, 

with nearly 100 million individuals affected in the US [25]. NAFLD is associated with 

increased risk for diabetes, cardiovascular disease, chronic kidney disease, cirrhosis, 

hepatocellular carcinoma and both all-cause and liver mortality [26]. Nonalcoholic 

Steatohepatitis (NASH), a severe form of NAFLD, is characterized by hepatic steatosis with 

the concurrent histological manifestation of lobular inflammation and ballooning 

degeneration. NASH is associated with higher risk of advanced liver disease and has become 

the leading cause of liver transplantation in the US.

The pathophysiology of NAFLD is complex. NAFLD and NASH are strongly associated 

with obesity, insulin resistance and dyslipidemia, along with chronic systemic oxidative 

stress [27]. A previous study has suggested a “multiple parallel-hit model” as the main 

mechanism for the pathogenesis of NAFLD [28]. In this model, multiple conditions have 

synergistically influence on individuals who have genetic predisposition for NAFLD. Insulin 

resistance, a key factor, promotes hepatic de novo lipogenesis, adipose tissue dysfunction 

and fatty acid export impairment, which lead to the accumulation of fat in the liver [29, 30]. 

The deposition of triglyceride and other lipid metabolites renders the tissue sensitive to the 

insults of oxidative stress and other lipotoxic mechanisms. Additionally, excessive ROS 

production that increase redox stress, which in turn triggers mitochondrial dysfunction, ER 

stress, inflammation and the inability of hepatocytes to synthesize endogenous antioxidant, 
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has been clearly demonstrated in the regulation of NAFLD. Other factors such as altered 

iron metabolism, high levels of gut oxidative stress, genetic predisposition and epigenetic 

alterations also play a pivotal role in regulating the fat content and inflammatory state of 

liver (Figures 1 and 2).

Multiple new studies in the recent years have demonstrated evidence that Nox and XO are 

the predominant intracellular source of ROS in the liver. It has been shown that Nox1 and 

Nox2 are increased in the liver of NASH patients and that levels of serum alanine 

aminotransferase (ALT), a marker of NAFLD, are decreased in Nox1 and Nox2 KO mice 

fed a high fat/cholesterol diet or a HFD [31-33], suggesting a key role for Nox1 and Nox2 in 

NAFLD and NASH. It has also been reported that generation of peroxynitrite by ROS 

derived from Nox1 and Nox2 can trigger hepatocellular injury and Kupffer cell activation in 

mouse models of NAFLD [31, 33]. Nox-mediated peroxynitrite was also found to up-

regulate NF-κB activity and lead to NASH progression via recruiting TLR4 into lipid rafts 

[34]. Moreover, an increase in XO activity has been shown in rat model of NAFLD induced 

by HFD [35]. Administration of XO inhibitor, febuxostat, suppresses the development of 

NASH induced by trans-fatty acid-contained HFD [36]. These findings may enable the use 

of specific inhibitors of Nox1, Nox2, XO, as well as dark chocolate, which has been shown 

to downregulate Nox2 in patients with NASH [37], in the treatment of NAFLD and NASH.

Mitochondria are one of the key players in the hepatic lipid homeostasis. Beta-oxidation of 

fatty acid in mitochondria is a major process for energy production. Mitochondrial 

dysfunction could be categorized as primary and acquired. Primary mitochondrial 

dysfunction includes damage of mitochondrial DNA and dysregulation of sirtuins, a group 

of NAD(+)-dependent deacetylases [38]. In addition to the known role of SIRT1 in NAFLD, 

decreased levels of SIRT3 have recently been shown in livers from mice with diet-induced 

NAFLD [39]. It has also been found that overexpression of SIRT3 prevents diet-mediated 

NAFLD through ERK-CREB-Bnip3-regulated mitophagy, suggesting a potential strategy of 

SIRT3-targeting therapy in the treatment of NAFLD [39]. Acquired mitochondrial 

dysfunction can be triggered by overload of free fatty acids (FFAs), which causes an 

increased permeability of inner membrane of mitochondria and impairment of ATP synthesis 

process [40]. Both primary and acquired mitochondrial dysfunction block the fatty acid β-

oxidation and promote the production of ROS. Excessive ROS instigate lipid peroxidation, a 

process in which lipids containing carbon-carbon double bond(s) are attacked by free 

radicals, with subsequent formation of carbonyl-containing molecules such as 4-hydroxy-2-

nonenal (4-HNE) and malondialdehyde (MDA) [41], 4-HNE and MDA are highly reactive 

aldehydes and are toxic to mitochondria and activators of hepatic stellate cells, a 

predominant player in liver fibrogenesis. In addition, mitochondrial ROS trigger the 

activation of NLRP3 inflammasome [42], which is related to liver inflammation and fibrosis 

in mouse model of NASH [43].

ER has a central role in protein and lipid biosynthesis. The accumulation of saturated fatty 

acids undermines the ER homeostasis and triggers the ER stress, which is associated with 

NAFLD in many aspects. In addition to inducing lipogenesis, decreasing liver insulin 

sensitivity and activating nuclear factor erythroid 2-related factor 2 (Nrf2) (for a more 

detailed recent review, see ref [44]), a recent study has revealed a new mechanism by which 
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ER stress causes lipogenesis and NASH development via caspase-2 activation of sterol 

regulatory element-binding protein 1 and 2 (SREBP1/2) [45]. Ablation of caspase-2 or 

pharmacological intervention with caspase-2 was found to prevent diet-induced NASH 

progression in ER stress-prone mice, thus presenting a new opportunity for the inhibition of 

caspase-2 in prevention or treatment of ER stress-driven fatty liver disease. Furthermore, in 

order to restore ER homeostasis, unfolded protein response (UPR) is activated. UPR is 

energy consuming and could further aggravate the dysfunctional status of mitochondria. 

Mechanistically, recent studies have shown that various pathways of UPR signaling network, 

including PERK/eIF2α/ATF4, IRE1α–XBP1 and activating transcription factor 6 (ATF6), 

regulate the lipid metabolism and play a role in lipid accumulation [46-48] (Figure 2). A 

detrimental role of activating transcription factor 3 (ATF3) induced by ER stress or excessive 

ROS has also been shown to be associated with the development of hepatic steatosis and 

type 2 diabetes in Zucker diabetic fatty rats and in patients with NAFLD [49], Given that in 
vivo ATF3 silencing was found to reduce ER stress-mediated hepatic steatosis and glucose 

intolerance, ATF3-targeting may be a potential strategy for prevention and management of 

NAFLD and type 2 diabetes.

The literature is currently scarce on the influence of iron metabolism derangements and gut 

microbiota in the development of NAFLD. Iron catalyzes the production of free radicals 

through Fenton reaction, which results in oxidative stress and lipid peroxidation. An increase 

in serum ferritin levels has been shown in patients with NAFLD [50]. It has also been 

reported that iron overload induced oxidative stress and promoted liver steatosis in rats fed 

an iron-rich diet, suggesting iron depletion might be beneficial for the treatment of NAFLD 

[51]. Nevertheless, a recent meta-analysis study demonstrated that iron depletion by 

phlebotomy does not improve insulin resistance, serum ALT levels and liver histology in 

patients with NAFLD [52]. Thus, further investigations are required to determine clearly the 

relationship between iron overload/depletion and NAFLD. High levels of gut oxidative stress 

and inflammasome-mediated dysbiosis have been linked recently to the progression of 

NAFLD [53, 54]. It has been shown that microbiomes rich in ethanol-producing Escherichia 
may be responsible for elevated blood-ethanol concentration and increased oxidative stress 

in patients with NASH [55]. It has also been shown that dysbiosis diminished the 

fermentation of some carbohydrates to produce short-chain fatty acids and increased the 

production of free fatty acid [56]. This study also emphasized the upregulation of 

proinflammatory cytokines under dysbiosis status, pinpointing the role of gut microbiota in 

the development of NAFLD. Conversely, microbiota may abate the protection against 

obesity brought by fasting induced adipose factor (FIAF), a lipoprotein lipase inhibitor 

(LPL). Therefore, more studies will be needed to decipher the underlying mechanisms and 

potential therapeutic targets.

Summary and future perspectives

Unraveling the role of redox stress in the regulation of skeletal muscle insulin resistance and 

NAFLD has provided new insights in the development of future treatments. In addition to 

emerging therapeutic approaches/targets discussed above, several experimental and clinical 

studies have demonstrated that the use of vitamins C, D, E and glutathione (GSH) 

ameliorates oxidative stress and improves NAFLD and skeletal muscle insulin sensitivity 
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[57-61]. Targeting oxidative stress and mitochondrial dysfunction with the treatment of 

nitrate and nitrite has also been reported to improve hepatosteatosis, ageing-related liver 

degeneration and skeletal muscle insulin resistance in experimental studies [62-65]. 

Moreover, activation of proliferator-activated receptor-gamma (PPAR-γ) by pioglitazone 

was reported to attenuate oxidative stress and to improve NAFLD and skeletal muscle 

insulin resistance [66-68]. Therapeutic agents with antioxidative activity, such as apoptosis 

signal-regulating kinase 1 (ASK1) inhibitor and vascular adhesion protein-1 (VAP-1) 

inhibitor, are now being evaluated in patients with NASH. Along with recent developments 

in skeletal muscle insulin resistance and NAFLD, future studies related to redox regulation 

and mechanisms are still needed to enhance further our understanding of the pathogenesis of 

skeletal muscle insulin resistance and NAFLD and to provide potential translational options 

for the treatment of these metabolic disorders and the associated diseases.
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Highlights

• Multiple dysregulated redox signaling pathways synergistically influence the 

development of skeletal muscle insulin resistance and NAFLD.

• Targeting of the dysregulated redox signaling networks as a promising new 

strategy in the treatment of skeletal muscle insulin resistance and NAFLD.
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Figure 1: Redox regulation of skeletal muscle insulin resistance and NAFLD/NASH.
Pathophysiological mechanisms responsible for dysregulated redox signaling, including 

increased pro-oxidant enzymes (e.g. NAPDH oxidase and xanthine oxidase), mitochondrial 

dysfunction, ER stress, iron metabolism derangements and gut-skeletal muscle or gut-liver 

connection, in the development of skeletal muscle insulin resistance and non-alcoholic fatty 

liver disease (NAFLD)/ nonalcoholic steatohepatitis (NASH).
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Figure 2: Current perspective on redox regulation in the development of NAFLD/NASH.
Current view on the conditions of the “multiple parallel-hit model” that synergistically 

influences the pathogenesis of NAFLD/NASH with respect to (a) NOX, XO and endothelial 

dysfunction; (b) mitochondrial dysfunction; (c) endoplasmic reticulum (ER) stress; (d) iron 

metabolism derangements; and (e) dysbiosis of gut microbiota.
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