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INTRODUCTION 
 

Ferroptosis is a newly discovered form of cell death 

characterized by iron-dependent lipid peroxidation [1]. 

Ferroptosis is closely related to metabolism of amino 

acids, iron and polyunsaturated fatty acids, and 

biosynthesis of glutathione, phospholipids, NADPH, 

and coenzyme Q10 [2, 3]. Ferroptosis is inhibited by 

iron chelators, lipid peroxidation inhibitors, and 

reduction of intracellular polyunsaturated fatty acids 

[2]. Preliminary evidence suggests that ferroptosis 

suppresses tumor growth and progression and is 

potentially beneficial for cancer therapy [3]. However, 

the relationship between expression of ferroptosis- 

 

related genes (FRGs) and tumorigenesis has not been 

investigated in detail. 

 

In this study, we systematically analyzed the 

differential expression and genetic alterations in 

ferroptosis-related genes (FRGs) in 32 cancer types. 

We focused on clear cell renal cell carcinoma (ccRCC) 

for several reasons. The cytoplasm of ccRCC cells is 

rich in lipids [28].  

 

A recent study showed that aerobic glycolysis was 

significantly upregulated in ccRCC compared to glioma 

and lung cancer [4]. The glycolytic metabolites are 

precursors for the synthesis of fatty acids [28, 29].  
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ABSTRACT 
 

In this study, we analyzed the clinical significance of ferroptosis-related genes (FRGs) in 32 cancer types in 
the GSCA database. We detected a 2-82% mutation rate among 36 FRGs. In clear cell renal cell carcinoma 
(ccRCC; n=539) tissues from the The Cancer Genome Atlas database, 30 of 36 FRGs were differentially 
expressed (up- or down-regulated) compared to normal kidney tissues (n=72). Consensus clustering analysis 
identified two clusters of FRGs based on similar co-expression in ccRCC tissues. We then used LASSO 
regression analysis to build a new survival model based on five risk-related FRGs (CARS, NCOA4, FANCD2, 
HMGCR, and SLC7A11). Receiver operating characteristic curve analysis confirmed good prognostic 
performance of the new survival model with an area under the curve of 0.73. High FANCD2, CARS, and 
SLC7A11 expression and low HMGCR and NCOA4 expression were associated with high-risk ccRCC patients. 
Multivariate analysis showed that risk score, age, stage, and grade were independent risk factors associated 
with prognosis in ccRCC. These findings demonstrate that this five risk-related FRG-based survival model 
accurately predicts prognosis in ccRCC patients, and suggest FRGs are potential prognostic biomarkers and 
therapeutic targets in several cancer types.    
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Furthermore, aerobic glycolysis, which is an hallmark 

of cancer cells, is necessary for the robust production of 

fatty acids that are required for the rapid proliferation 

and progression of tumor cells [5]. Ferroptosis is also 

triggered by perturbations in lipid metabolism [3]. 

Therefore, we analyzed the status of expression of 

FRGs in ccRCC. We also constructed a new survival 

model with five risk FRGs using Lasso regression 

analysis and verified its prognostic significance in 

ccRCC.  

 

RESULTS AND DISCUSSION  
 

Widespread genetic alterations of FRGs in 32 cancer 

types 
 

We performed a comprehensive literature survey [1–3, 

6–16] and identified 36 key ferroptosis-related proteins 

(Figure 1A). Figure 1B shows the protein-protein 

interactions (PPI) network analysis between these 36 

ferroptosis-related proteins using the STRING online 

database (https://string-db.org) and visualized with 

the Cytoscape software [17]. We then used the GSCA 

database [18] to determine the single nucleotide 

variations (SNV) and copy number variations (CNV) in 

the 36 FRGs in the 32 cancer types. Our analysis 

revealed that TP53, NFE2L2, FANCD2, DPP4, ALOX5, 
PTGS2, ALOX15B, ACSL4, CARS, HMGCR were the 

top 10 FRGs with mutation rates ranging from 2–82% 

(Supplementary Figure 1A). The average mutation rate 

of TP53 was the highest among all FRGs at 82%; 

majority of the genetic aberrations were missense 

mutations and were more common in lung 

adenocarcinoma (LUAD) and squamous cell 

carcinoma(LUSC) (Supplementary Figure 1A, 1B). We 

also analyzed the CNVs in the FRGs among the 32 

cancer types and found heterozygous mutations in TP53 

and ALOX15B and heterozygous amplifications in RPL8 

and PTGS2 (Supplementary Figure 1C). Then, to verify 

these results, we downloaded the raw CNV and SNV 

data of the 32 tumors from the TCGA database, 

analyzed using the Perl and R languages, and visualized 

the results using TBtools [19]. These results were 

consistent with those from the GSCALite website 

(Figure 1C, 1D). 

 

Prognostic significance of FRGs in various tumors 
 

Next, we analyzed the prognostic relevance of FRGs in 

different tumors. The mRNA expression data analysis 

of tumor data from the TCGA database for 32 tumors 

using the R language and TBtools software showed that 

SLC7A11, a representative FRG, was up-regulated in all 

32 different tumors compared to the corresponding 

controls (Figure 2B). Furthermore, TIMER database 

[20] analysis also showed that SLC7A11gene 

expression was significantly upregulated in 32 tumor 

tissues compared to the corresponding normal tissues 

(Figure 2A). We also analyzed the levels of 18 

ferroptosis-related proteins in ccRCC tissues using the 

UALCAN database [21] and found significant 

upregulation of ferroptosis-related proteins in the 

ccRCC tumor tissues compared to the controls (Figure 

2C). UALCAN now provides protein expression 

analysis option using data from Clinical Proteomic 

Tumor Analysis Consortium (CPTAC) Confirmatory/ 

Discovery dataset. The protein expression for Colon 

cancer, Breast cancer, Ovarian cancer, Clear cell renal 

cell carcinoma and Uterine corpus endometrial 

carcinoma is available [30]. 

 

Next, we analyzed the relationship between the 

expression of FRGs and the overall survival (OS) in 33 

different kinds of tumors using the GEPIA online 

database [22]. The results varied in different tumors. 

For example, in ccRCC, high expression of MT1G, 

CHAC1, and ALOX5, as well as low expression of the 

remaining 33 FRGs correlated with significantly lower 

OS; conversely, low ALOX5 expression correlated with 

reduced OS in Bladder Urothelial Carcinoma (BLCA), 

Cholangiocarcinoma (CHOL), and Skin Cutaneous 

Melanoma (SKCM) (Figure 2D). 

 

Functional analysis of FRG-related pathways in 

ccRCC 
 

The critical role of the Warburg effect and lipid 

metabolism has been well established in ccRCC [3–5]. 

Since ferroptosis also involves lipid metabolism, we 

analyzed the expression of FRGs in 72 normal kidney 

and 539 ccRCC specimens from the TCGA database 

use Limma package by R language. The results showed 

that 30 out of 36 FRGs (Supplementary Table 1) were 

differentially expressed in ccRCC tissues compared to 

the normal kidney tissues (Figure 3A). We observed 

strong correlation among the FRGs, with GCLC and 

NCOA4 showing a Pearson correlation co-efficient of 

0.52 (Figure 3B). Furthermore, we performed gene 

integration analysis [23–25] to determine the relationship 

between FRGs and other genes in ccRCC. Protein-protein 

interaction (PPI) network analysis using the STRING 

website showed a strong interaction network among the 

36 FRG and 30 FRG-related genes (Supplementary Table 

2). The heatmap showed that the expression of these 16 

genes(MT1G, CHAC1, ACSL, AKR1C2, PTGS2, 

AKR1C1, CBS, FDFT1, HMGCR, ATP5MC3,  

GLS2, NFE2L2, CS, NCOA4, CISD1, GSS) in ccRCC 

tissues was significantly down-regulated and 45 genes 

(EMC2, RPL21, RPS12, GCLM, RPL7, FANCD2, 

RPS3A, TP53, RPL5, GPX4, RPS10, RPL3, RPL10A, 

RPS4X, RPL17, RPS13, RPS17, DPP4, RPL23, 

AKR1C3, RPL19, RPS7, RPS27, RPS25, RPL8, RPS24, 
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Figure 1. Genetic alterations and PPI network of 36 FRGs in the TCGA pan-cancer datasets. (A) Diagrammatic representation 
shows intracellular localization of ferroptosis-related proteins in different signaling pathways. (B) The protein-protein interaction network 
analysis results of 36 ferroptosis-related genes (FRGs) are shown. (C) The copy number variation (CNV) frequency of the 36 FRGs is shown for 
the 32 cancer types. The color code bar on the right refers to differential gain or loss of copy numbers. (D) The single nucleotide variation 
(SNV) frequency of the 36 FRGs is shown for the 32 cancer types. The color code bar on the right refers to differential SNV frequencies.  
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RPL11, RPS16, HSPB1, CARS, RPL23A, RPS11, 

RPS18, RPS5, RPS28, CRYAB, RPS8, RPS20, RPS14, 

RPL18A, ALOX12, RPS19, SLC7A11, ALOX5, 

ALOX15B) was significantly up-regulated compared to 

the normal kidney tissues (Figure 3C). GO functional 

analysis of these 66 FRGs and FRG-related genes 

showed them linked to pathways such as SRP-

dependent co-translational protein targeting to 

membrane, co-translational protein targeting to 

membrane protein targeting to ER, nuclear-transcribed 

mRNA catabolic process, and nonsense-mediated decay 

(Figure 3D, 3E; Supplementary Table 3). KEGG 

pathway analysis showed that these 66 genes were 

involved in pathways related to ferroptosis, ribosome 

metabolism, arachidonic acid metabolism, glutathione 

metabolism, cysteine and methionine metabolism, and 

serotonergic synapse (Figure 3F; Supplementary Table 

4). Furthermore, we analyzed the GSLA database to 

determine the role of FRGs in different classical 

signaling pathways in ccRCC. The results showed that 

the expression of FRGs was related to the activation or 

inhibition of multiple oncogenic pathways; for example, 

FANCD2 expression correlated with the activation of 

apoptotic, cell cycle, and EMT pathways; AKR1C2 

expression correlated with the inhibition of apoptotic 

and DNA damage response pathways (Supplementary 

Figure 2).  

 

Consensus clustering analysis of FRGs reveals two 

clusters in ccRCC 
 

Next, we used the commonclusterplus package to 

identify the different groups of FRGs based on their co-

expression patterns in ccRCC tissues from the TCGA

 

 
 

Figure 2. Pan-cancer mRNA and protein expression of FRGs. (A) Box plots show SLC7A11 mRNA expression in tumor (red) and normal 
(blue) tissue samples corresponding to 33 cancer types. Note: **P<0.01; ***P<0.001. (B) Alterations in the expression of 36 FRGs in 20 
different cancer types are shown with the color code bar (right) referring to the corresponding log2 (FC) values. (C) Box plots show the 
differences in the expression of 18 different ferroptosis-related proteins in the KIRC (blue) and normal kidney (orange) tissues from the 
UALCAN dataset. (D) The overall survival of patients belonging to 33 cancer types based on the expression of the 36 FRGs is shown. The color 
code is shown in the right. 
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database. We divided the FRGs into two groups based 

on their expression indices using k = 2 as the optimal 

value because the grouping was suboptimal when they 

were divided into more than 2 clusters (Figure 4A–

4C). The principal component analysis (PCA) 

confirmed the clustering results of FRGs into two 

subgroups (Figure 4D). Next, we analyzed the 

relationship between these two clusters and the 

clinicopathological characteristics of ccRCC patients. 

In cluster 1, RPL8, GPX4, AKR1C3, CISD1, 
ATP5MC3, GSS, and HSPB1 showed significantly 

lower expression in ccRCC tissues, but the remaining 

cluster1 genes showed significantly higher expression 

than the normal kidney tissues (Figure 2E).  

 

 
 

Figure 3. Correlation and functional pathway analysis of FRGs and FRG-related proteins in ccRCC. (A) The expression of 36 FRGs 
in ccRCC patient samples is shown. The upregulated FRGs are indicated in red and the downregulated FRGs are shown in blue. N represents 
tumor sample, T represents normal sample. (B) Co-expression analysis shows the correlation between the 36 FRGs based on their expression 
in ccRCC tissues. (C) The expression of 36 FRGs and 30 FRG-interacting proteins in ccRCC is shown with 72 normal kidney tissues and 539 
tumor tissues. (D, E) GO terms representing biological processes for the 66 FRGs and FRG-interacting genes. (F) KEGG pathway analysis shows 
the main signaling pathways represented by the 66 FRGs and FRG-interacting genes. Note: *P < 0.05, **P < 0.01. ***P < 0.001.  
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On the other hand, the expression of cluster 2 genes 

correlated with higher tumor grades, stage, and the M- 

and T-stage (TNM staging) tumors (Figure 2E). 

Therefore, these results demonstrate that the expression 

of FRGs is closely related to tumor malignancy and 

progression in ccRCC patients (Figure 2E). 

Construction and verification of the new FRG-based 

survival model  

 

To better understand the prognostic role of FRGs in 

ccRCC, we performed a univariate Cox regression 

analysis on the expression of FRGs in the TCGA 

 

 
 

Figure 4. Consensus clustering analysis of FRGs in ccRCC. (A) The heat maps show the consensus clustering matrix for FRGs in the 
ccRCC dataset for k = 2, 3, 4 and 5. The optimal clustering is represented by k=2. (B) The cumulative distribution function (CDF) plot of 
consensus clustering matrix for k=2–9 is shown. (C) The consensus CDF plots show the cumulative distributive functions of the consensus 
matrix for k values (indicated by different colors) between 2 and 9. (D) Principal component analysis (PCA) of FRGs mRNA expression profiles 
of the ccRCC patients in the TCGA dataset demonstrates two patient clusters, cluster1 (in red) and cluster2 (in blue). (E) Heatmap shows the 
correlation between the expression of FRGs and the clinicopathological features of the two ccRCC patient clusters, cluster 1 (orange) and 
cluster 2 (green). The color codes for different clinicopathological parameters are as indicated. The expression of FRGs is also indicated by a 
color code bar, where red refers to high expression or upregulation and green refers to low expression or downregulation.  
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dataset. The results indicated that high expression of 

CARS, FANCD2, SLC7A11, CHAC1, SAT1, CBS, 

ALOX15, and AKR1C2 correlated with worse survival 

rates in patients with ccRCC. In contrast, high 

expression of NCOA4, HMGCR, DPP4, GCLC, 

FDFT1, LPCAT3, GCLM, and NFE2L2 correlated with 

better survival rates in ccRCC patients (Figure 5A; 

Supplementary Table 5). We first selected FRGs as 

survival-related FRGs according to the P-value < 0.05, 

and then used the LASSO regression model to analyze 

and determine the most powerful prognostic markers, 

based on the results, we selected five genes (CARS, 

NCOA4, FANCD2, HMGCR, SLC7A11) to build a risk 

signature model based on minimum criteria (Figure 5B, 

5C). Then, we divided the ccRCC patients into low- and 

high-risk groups based on the median risk score and 

investigated the prognostic prediction performance of 

the new survival model made up of five genetic risk 

characteristics. Kaplan-Meier survival curve analysis 

showed that the high-risk group patients had 

significantly lower survival rates than the low-risk 

group patients (Figure 5D). Furthermore, we performed 

ROC curve analysis to analyze the prognostic prediction 

performance of the new survival model in ccRCC 

patients and obtained a AUC score of 0.73, thereby 

demonstrating that the risk score calculated by this 

model can accurately predict the 5-year survival rate of 

ccRCC patients (Figure 5E). 

 

 
 

Figure 5. Construction of FRG-based survival model for prognostic prediction in ccRCC. (A) Univariate Cox regression analysis 
results show the hazard ratios (HR) with 95% confidence intervals (CI) and p values for the 36 FRGs. (B, C) Risk score model 
construction for FRGs using Lasso regression analysis. (B) Partial likelihood deviance was plotted against log (lambda). The 
vertical dotted lines indicate the lambda value with minimum error. The largest lambda value is where the deviation is within 
one standard error (SE) of the minimum. (C) The Lasso coefficient profiles of FRGs in ccRCC. (D) Kaplan–Meier survival curves 
show overall survival of high- and low-risk ccRCC patients that are grouped according to the risk scores calculated by the new 
survival model based on the expression of 5 FRGs. (E) ROC curve analysis shows the prognostic prediction efficiency of the new 
survival model. As shown, the AUC value for the new survival model is 0.73. 
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Figure 6. Relationship between the risk score, clinicopathological features. (A) The heatmap shows the profiles of the expression of 
survival model FRGs and clinicopathological features in low- and high-risk ccRCC patients. (B) Diagrammatic representation shows the 
regulatory relationship between transcription factors and FRGs. The red lines represent positive regulation, the blue lines represent reverse 
regulation, the yellow triangle represents transcription factors, the red oval represents up-regulated FRGs, the green oval represents down-
regulated FRGs, and gray represents statistically insignificant ERGs. (C) Univariate Cox regression analyses results show the association 
between clinicopathological parameters such as age, gender, grade, tumor size (T), tumor node (N), tumor metastasis (M), and risk score of 
the new survival model with the OS of ccRCC patients. (D) Multivariate Cox regression analyses results show the association between 
clinicopathological parameters such as age, gender, grade, tumor size (T), tumor node (N), tumor metastasis (M), and risk score of the new 
survival model with the OS of ccRCC patients. *P < 0.05, **P < 0.01, and ***P < 0.001. 

 

 
 

Figure 7. Experimental verification of CARS. (A–C) Immunohistochemical images from the HPA database show CARS protein expression 
in ccRCC (T) and normal kidney (N) tissues. (D) CCK8 assay results show the relative proliferation of si-control- and si-CARS-transfected 786-O 
cells. The data are shown as means ± S.D. 
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The new FRG-based survival model shows strong 

association with clinicopathological features of 

ccRCC patients 
 

To better understand the relationship between FRGs and 

ccRCC, we systematically analyzed correlation between 

the risk score based on the expression of five FRGs, 

namely, FANCD2, HMGCR, SLC7A11, CARS and 

NCOA4 and the clinicopathological characteristics of high- 

and low-risk ccRCC patients in the TCGA dataset. We 

observed a strong correlation between the risk score and 

the clinicopathological characteristics such as T (tumor 

size), N (tumor node), M (tumor metastasis), tumor grade, 

tumor staging, gender, and survival in high- and low-risk 

ccRCC patients (Figure 6A). In the high-risk group, 

FANCD2, CARS, and SLC7A11 levels were significantly 

up-regulated, whereas HNGCR and NCOA4 levels were 

significantly down-regulated (Figure 6A). COX regression 

analysis showed that risk score, grade, age, tumor stage, 

tumor size (T), and tumor metastasis (M) correlated with 

the OS of ccRCC patients (Figure 6C; Supplementary 

Table 6). Multivariate COX regression analysis showed 

that risk score, age, stage, and grade were independent risk 

factors for the prognosis of ccRCC patients (Figure 6D. 

Supplementary Table 7). Finally, we showed strong 

correlation between several transcription factors and FRGs 

and established a regulatory network among them (Figure 

6B). Next, we used CARS gene to verify our model. The 

Human Protein Atlas database analysis shows that CARS 

expression is significantly higher in ccRCC tissues 

compared to normal kidney tissues Figure 7A–7C [26]. 

These results were consistent with previous bioinformatics 

analysis results (Figures 2B, 2C, 3A). CCK8 proliferation 

assay shows that CARS knockdown 786-O cells showed 

significant reduction in proliferation compared to the 

control 786-O cells (Figure 7D). This suggests that CARS 

may play an oncogenic role in ccRCC, but the specific 

mechanism needs to be investigated further. 

 

In conclusion, we systematically showed the clinical 

relevance of FRGs in 32 cancer types. Furthermore, 

bioinformatics analysis of FRGs in clear cell renal cell 

carcinoma (ccRCC) demonstrated that the expression of 

FRGs correlates with several clinicopathological 

characteristics of ccRCC patients including tumor stage, 

grade, T- and M-stages. We further constructed and 

verified a survival model using five FRGs to predict the 

prognosis of ccRCC patients.  

 

MATERIALS AND METHODS 

 

Cell lines, siRNA knockdown, antibodies and 

reagents  
 

The human ccRCC cell lines 786-O cells were 

purchased from the Cell Bank of the Chinese Academy 

of Sciences. All cells were cultured according to the 

manufacturer's protocol. 786-O cells were cultured in 

RPMI 1640 medium containing 10% foetal bovine 

serum, cells were cultured at 37 °C with 5% CO2. cells 

were transfected with 20 nmol/L siRNAs using 

Lipofectamine RNAiMAX reagent (Invitrogen).  

 

Data acquisition and analysis 
 

The SNV and CNV data of 32 cancers was downloaded 

from The Cancer Genome Atlas (https://cancerge 

nome.nih.gov/) database, analyzed using the Perl 

language and visualized with the TBtools software. The 

RNA-seq transcriptome data of the KIRC cohort was 

downloaded through the R/Bioconductor package 

TCGAbiolinks with 72 normal kidney tissues and 539 

tumor tissues [27] at the Genomic Data Commons 

(GDC) portal. We also downloaded gene expression, 

CNV and SNV data for 32 types of cancers as 

Fragments Per Kilobase of transcript per Million 

mapped reads (FPKM) at the Genomic Data Commons 

(GDC) portal. We totally analyzed 32 different TCGA 

projects, each project represents a specific cancer type, 

including kidney renal clear cell carcinoma (KIRC);  

kidney renal papillary cell carcinoma (KIRP); kidney 

chromophobe (KICH); brain lower grade glioma (LGG); 

glioblastoma multiforme (GBM); breast cancer (BRCA); 

lung squamous cell carcinoma (LUSC); lung 

adenocarcinoma (LUAD); rectum adenocarcinoma 

(READ); colon adenocarcinoma (COAD); uterine 

carcinosarcoma (UCS); uterine corpus endometrial 

carcinoma (UCEC); ovarian serous cystadenocarcinoma 

(OV); head and neck squamous carcinoma (HNSC); 

thyroid carcinoma (THCA); prostate adenocarcinoma 

(PRAD); stomach adenocarcinoma (STAD); skin 

cutaneous melanoma (SKCM); bladder urothelial 

carcinoma (BLCA); liver hepatocellular carcinoma 

(LIHC); cervical squamous cell carcinoma and 

endocervical adenocarcinoma (CESC);  adrenocortical 

carcinoma (ACC); pheochromocytoma and 

paraganglioma (PCPG); sarcoma (SARC); pancreatic 

adenocarcinoma (PAAD); esophageal carcinoma 

(ESCA); testicular germ cell tumors (TGCT); 

thymoma(THYM); uveal melanoma (UVM); lymphoid 

neoplasm diffuse large b-cell lymphoma (DLBC); 

cholangiocarcinoma (CHOL). The clinical information 

of cancer patients including information regarding age, 

survival status, tumor grades, tumor stages, tumor size 

(T) status, and metastasis (M) status was downloaded 

from TCGAbiolinks and analyzed with the Perl 

language and R studio. The expression data of FRGs in 

539 ccRCC and 72 normal kidney tissues was analyzed 

with the Limma package and visualized as a heat map 

using the TBtools software. Coexpression analysis was 

performed using the “Corrplot” package. We used the 

“Consensus Cluster Plus” package to determine the 

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
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gene clusters, and then used “Ggplot2” and “Limma” 

package for PCA analysis. We performed LASSO 

regression analysis with the “Glmnet” and “Survival” 

packages. The univariate and multivariate Cox hazard 

analysis of clinical characteristics was performed by 

"survival" package.  

 

Establishment of regression model and construction 

of risk score 

 

After removing the samples without complete clinical 

information, univariate Cox models were performed to 

investigate the correlation between the FRGs expression 

levels and the overall survival (OS) in KIRC patients. We 

first selected FRGs as survival-related genes according to 

the P-value < 0.05. Then, Lasso regression was performed 

to eliminate genes that might overfit the model. Lastly, we 

applied multivariate analysis to identify the optimal 

prognostic FRGs for the model. The risk score was 

calculated based on a linear combination of the Cox 

coefficient and gene expression. The following 

calculation formula was used for the analysis: Risk score 

=Σ N
i=1 (Expi*Coei). N, Coei, and Expi represented gene 

number, coefficient value, and level of gene expression, 

respectively. The median was set as the cut-off value to 

divided all KIRC patients into low-risk and high-risk 

groups. Time-dependent receiver operating characteristic 

(ROC) analysis for overall survival (OS) was used to 

evaluate the accuracy of the prognostic model.  

 

Analysis of genome alterations and cellular 

pathways and GEPIA database 
 

GSCALite (http://bioinfo.life.hust.edu.cn/web/GSCA 

Lite/) database was used to analyze SNV and CNV of 

FRGs in 33 tumors. GSCALite database were also used 

to analyze the degree of FRGs activation or inhibition 

of the classical pathway. We used the Gene Expression 

Profiling Interactive Analysis (GEPIA) database to 

analyze the OS of patients belonging to 33 tumor types 

based on the expression of FRGs. cutt-off high value 

and low value is set to 50%. P <0.05 was considered 

statistically significant.  

 

Protein-protein interaction network  
 

Protein-Protein Interaction (PPI) network analysis of 

DEGs was performed using the STRING database, and 

functional networks were identified with a medium 

confidence score of more than 0.4 and other default 

parameters.  

 

TIMER and UALCAN analysis 
 

The TIMER online tool was used to analyze the 

expression of the SLC7A11 gene in different tumors. 

The UALCAN online tool is used to analyze the levels 

of ferroptosis-related proteins in 110 kidney renal clear 

cell carcinoma (KIRC) and 84 normal kidney tissues. 

UALCAN now provides KIRC protein expression 

analysis option using data from CPTAC dataset (84 

normal tissues and 110 renal tumor tissues).  

 

CCK8 cell proliferation assay 
 

We cultured 1×103 786-O cells per well in 96-well 

culture plates for 5 days (4 replicate wells per group). 

Cell Counting Kit 8 (Dojindo, Japan) was used 

according to the manufacturer’s instructions. Then, we 

added 10 µL CCK-8 reagent (Dojindo, Japan) to each 

well and incubated cells for further 1-2 h. Then, we 

determined the optical density (OD) of each well at 450 

nm using a microplate reader. 

 

Statistical analyses  
 

One-way ANOVA was used to compare the expression 

of FRGs in tumor and normal tissue samples. The 

Student’s t-test was used to compare the expression of 

FRGs in the KIRC dataset according to gender, age, 

stage, T (tumor size), and M (tumor metastasis) status. 

N (tumor node) status was not included in the study 

because it was not verified for a large number of 

samples in the TCGA database. The cut-off value of 

each risk score in the tumor group was determined 

using the “survminer” package, and the patients were 

divided into high- and low-risk groups according to the 

best cut-off threshold value. R studio package was used 

for all statistical analysis. P < 0.05 was considered 

statistically significant. 

 

Abbreviations  
 

CNV: Copy number variation; KIRC: Kidney renal 

clear cell carcinoma; UCEC: Uterine corpus 

endometrial carcinoma; ccRCC: Clear cell renal cell 

carcinoma; FRGs: Ferroptosis-related genes; PPI: 

Protein-protein interaction; SNV: Single nucleotide 

variation; PCA: Principal component analysis; LUAD: 

lung adenocarcinoma; LUSC: squamous cell carcinoma; 

CPTAC: Clinical Proteomic Tumor Analysis 

Consortium; OS: overall survival; BLCA: Bladder 

Urothelial Carcinoma; CHOL: Cholangiocarcinoma; 

SKCM: Skin Cutaneous Melanoma. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Pan-cancer genetic alterations of FRG. (A, B) The mutation frequency of FRG across 32 cancer types. (C) The 
CNV alteration frequency of FRG across cancer types. The deletion (right) and amplification frequencies (left). 
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Supplementary Figure 2. Pathway analysis of FRG. Network diagram demonstrating the correlation between FRG and cancer 
pathways; red = positive correlation, blue = negative correlation. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 to 5. 

 

Supplementary Table 1. The expression of FRGs in ccRCC and normal kidney tissues from the TCGA database.  

Supplementary Table 2. A list of 66 FRGs and FRG-related genes by string. 

Supplementary Table 3. Summary of GO pathway analysis results of FRGs.  

Supplementary Table 4. Summary of KEGG pathway analysis results of FRGs. 

Supplementary Table 5. Univariate Cox regression analysis of the prognostic significance of the expression of FRGs in 
ccRCC samples from the TCGA dataset  

Supplementary Table 6. Univariate analysis of risk score and other KIRC clinical data.  

id HR HR.95L HR.95H pvalue 

age 1.029049 1.015526 1.042753 2.21E-05 

gender 0.953475 0.693387 1.311121 0.769403 

grade 2.303129 1.870932 2.835165 3.62E-15 

stage 1.900087 1.659546 2.175493 1.48E-20 

T 1.934057 1.634871 2.287994 1.44E-14 

M 4.509619 3.290467 6.180481 7.51E-21 

riskScore 1.172773 1.128116 1.219197 8.55E-16 

 

Supplementary Table 7. Multivariate regression analysis of risk score and other KIRC clinical data.  

id HR HR.95L HR.95H pvalue 

age 1.034601 1.019246 1.050187 8.25E-06 

gender 0.95717 0.690262 1.327283 0.792975 

grade 1.478108 1.170279 1.866907 0.001039 

stage 1.819611 1.151655 2.874979 0.010318 

T 0.766397 0.503673 1.166164 0.214151 

M 1.269594 0.639759 2.519492 0.49485 

riskScore 1.14614 1.09283 1.20205 1.99E-08 
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Supplementary Table 8. Regulatory relationship between transcription factors and FRGs 

TF FRGs cor pvalue Regulation 

BATF FANCD2 0.424352 2.09E-24 postive 

CEBPA ALOX5 0.430824 3.49E-25 postive 

CEBPB NCOA4 -0.40479 3.70E-22 negative 

CENPA CARS 0.444214 7.59E-27 postive 

CENPA FANCD2 0.760034 3.86E-100 postive 

CENPA CBS 0.490092 3.93E-33 postive 

CIITA ALOX12 0.417909 1.19E-23 postive 

E2F1 FANCD2 0.584767 1.43E-49 postive 

EOMES FANCD2 0.423908 2.36E-24 postive 

ETS1 GSS -0.47768 2.45E-31 negative 

ETS1 GPX4 -0.49883 1.93E-34 negative 

ETS1 HSPB1 -0.45975 7.20E-29 negative 

EZH2 FANCD2 0.749936 4.24E-96 postive 

FLI1 GSS -0.45969 7.33E-29 negative 

FLI1 GPX4 -0.45103 1.01E-27 negative 

FLI1 ATP5MC3 -0.43823 4.29E-26 negative 

FOXM1 CARS 0.466305 9.38E-30 postive 

FOXM1 TFRC 0.407549 1.82E-22 postive 

FOXM1 FANCD2 0.695871 2.29E-77 postive 

FOXM1 CBS 0.630685 1.10E-59 postive 

GATA2 CHAC1 0.43485 1.12E-25 postive 

GATA3 CBS 0.52576 1.01E-38 postive 

HEY1 GSS -0.41796 1.18E-23 negative 

HIF1A ACSL4 0.499759 1.39E-34 postive 

LMNB1 CARS 0.402936 5.94E-22 postive 

LMNB1 TFRC 0.414054 3.33E-23 postive 

LMNB1 FANCD2 0.750462 2.64E-96 postive 

MEF2C GSS -0.44669 3.67E-27 negative 

MEF2C GPX4 -0.45883 9.54E-29 negative 

MYBL2 CARS 0.460291 6.10E-29 postive 

MYBL2 FANCD2 0.702684 1.72E-79 postive 

MYBL2 CBS 0.443459 9.46E-27 postive 

MYC NFE2L2 0.417635 1.28E-23 postive 

NCAPG CARS 0.471307 1.92E-30 postive 

NCAPG TFRC 0.402843 6.09E-22 postive 

NCAPG FANCD2 0.774639 2.36E-106 postive 

NCAPG CBS 0.532948 6.24E-40 postive 

PBX1 NCOA4 0.428139 7.36E-25 postive 

PRDM1 GSS -0.42233 3.63E-24 negative 

PRDM1 GPX4 -0.43305 1.87E-25 negative 

PRDM1 ATP5MC3 -0.43383 1.50E-25 negative 

SREBF2 HMGCR 0.56739 3.80E-46 postive 

SREBF2 CS 0.504764 2.37E-35 postive 

SREBF2 FDFT1 0.492813 1.55E-33 postive 

VDR HMGCR 0.400825 1.02E-21 postive 

 

 


