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From 25 to 29 April 2020, the state of Indiana undertook test-
ing of 3,658 randomly chosen state residents for the novel severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, the
agent causing COVID-19 disease. This was the first statewide ran-
domized study of COVID-19 testing in the United States. Both
PCR and serological tests were administered to all study partic-
ipants. This paper describes statistical methods used to address
nonresponse among various demographic groups and to adjust
for testing errors to reduce bias in the estimates of the overall dis-
ease prevalence in Indiana. These adjustments were implemented
through Bayesian methods, which incorporated all available infor-
mation on disease prevalence and test performance, along with
external data obtained from census of the Indiana statewide pop-
ulation. Both adjustments appeared to have significant impact
on the unadjusted estimates, mainly due to upweighting data in
study participants of non-White races and Hispanic ethnicity and
anticipated false-positive and false-negative test results among
both the PCR and antibody tests utilized in the study.
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The novel severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is a viral strain that causes COVID-19. Since

its emergence in late 2019, it has resulted in a pandemic of
historical proportions. In the United States, there were over 1
million cases confirmed by the end of April 2020 and almost
65,000 deaths (1). However, the true extent of the pandemic is
not known due to a number of contributing factors. Most impor-
tantly, a significant proportion of people infected with the virus
are asymptomatic or show mild symptoms (2). In addition, due
to the novelty of this virus and the speed of its spread, diagnostic
test availability was limited at the time of the study, so testing was
concentrated on symptomatic individuals or those with symp-
toms severe enough to warrant hospitalization. Recently, one
study was published (3) (the University of Southern California
study; henceforth, the “USC study”), and one has been posted
in preprint archives (4) (the “Stanford study”), describing efforts
to estimate the prevalence of infection through testing nonhos-
pitalized individuals. These studies suggest that the majority of
COVID-19 cases may go undetected, with significant implica-
tions for economic, policy, and public health decision making.
Given the high-stakes nature of the pandemic, these papers have
received unusual scrutiny, despite (or because of) their limited
geographic coverage or concerns about the validity and general-
izability of their findings due to lack of random selection of their
subjects.

Generally, two types of tests are used. A molecular test, pre-
dominantly administered through nasopharyngeal swabs, which
assesses the possibility of having current infection, and an anti-
body test that detects the presence of previous infections in
blood serum. Several tests of each type have received Emergency
Use Authorization by the US Food and Drug Administration
(5). However, data on their accuracy are limited. Even more
limited are studies assessing biases in prevalence estimation
resulting from testing errors, both false-positive (where unin-
fected subjects test positive for the disease) or false-negative
(where infected subjects test negative on the diagnostic test).

Notable exceptions to this include a small study by Qian et al.
(6) and Gelman and Carpenter (7), along with the sensitivity
analyses undertaken by Bendavid et al. in the Stanford study
(4). At the time of this writing, this latter study is in the peer-
review stage.

This report describes the statistical analysis of SARS-CoV-2
testing data in the state of Indiana (henceforth, the “Indiana
study”). The Indiana Department of Health (IDOH) undertook
statewide testing between 25 and 29 April 2020, involving ran-
domly chosen residents from the state. At the time, this was
the only statewide cohort of randomly selected individuals to
be tested for infection with the SARS-CoV-2 in the United
States (8). As of this writing, the Indiana study and two sub-
sequently completed waves of random testing of Indiana state
residents are the only randomized statewide studies for COVID-
19 ever performed in the United States. While study participants
were selected randomly, however, substantial nonresponse and
concerns about diagnostic testing errors raise the possibility of
significant biases present in the unadjusted estimates of dis-
ease prevalence. The present paper describes methods used to
address a number of these concerns.

Data Sources
Data used in this study were obtained from three sources: 1) cen-
sus data for all counties in Indiana, with summaries by sex, age,
race and ethnicity, along with margins of error for these esti-
mates; 2) the results from the Indiana statewide testing, a sample
selected according to a stratified random-sampling design, per-
formed between 25 and 29 April 2020; and 3) information on the
number of daily confirmed COVID-19 cases and deaths resulting
from COVID-19 disease, provided by the IDOH dashboard (10),
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as relayed to the dashboard available from The Johns Hopkins
University (1).

The study was reviewed by the Indiana University Institutional
Review Board. Per the Office of Human Research Protections
guidance on coronavirus research (11), this study was deemed a
public health surveillance activity exempted from human subjects
review. Nevertheless, the IDOH obtained informed consent for
this study from each participant.

Statistical Methods
Sample Selection. Selection of study participants was performed
randomly via a stratified random-sampling procedure with the 10
IDOH preparedness districts (12) used as strata (Fig. 1). A listing
of all Indiana residents was prepared from data obtained from
the Indiana State Department of Revenue, for every person who
submitted a tax return in the fiscal year 2018 or 2019 plus their
dependents. Data were supplemented by information provided
by the Indiana Bureau of Motor Vehicles, in cases where infor-
mation was incomplete or not available. Residents were excluded
from sampling if they were less than 12 years of age on the date of
the sample selection (22 April 2020), had a non-Indiana address
on their tax return, were incarcerated, were deceased, or had no
reliable date of birth information.

Endpoints of Interest. The endpoints of interest in the study
included having a positive molecular or antibody test. These
cases, respectively, address the presence of active disease (molec-

10

7

1

4

2

8

5

9

6

3

0.00

0.01

0.02

0.03

0.04

0.05

Fig. 1. IDOH preparedness districts in the state of Indiana with heat map
corresponding to estimated COVID-19 prevalence (Table 5). Map informa-
tion from IndianaMap, the largest publicly available collection of Indiana
geographic information system map data (9).

ular test-positive) or previous disease (antibody test-positive). A
third endpoint, involving positivity in either or both of these tests,
addresses cumulative exposure to the virus (8). In this paper, we
address analyses for all three of these endpoints.

Survey Sampling. In survey sampling, inference on the character-
istic of interest in the population follows well-established theory
(13). The underlying assumption is that the sampling design is
“ignorable” (14), which basically means that all factors related
to the selection of the samples are accounted for. This is plau-
sible if inclusion of subjects in the study is solely determined by
the sampling design. In this case, the prevalence of COVID-19
disease is

p=

I∑
i=1

Nipi
N

=

I∑
i=1

wipi ,

where wi =Ni/N , i =1, . . . , I =10 is the fraction of the pop-
ulation in each stratum (IDOH preparedness district) i in the
Indiana state population, and pi =

∑Ni
k=1 yik/Ni is the preva-

lence within each stratum, based on COVID-19–infected (yik =
1) and –uninfected individuals (yik =0) for k =1, . . . ,Ni . The
usual estimate of p is

p̂=

I∑
i=1

ni p̂i
n

=

I∑
i=1

ŵi p̂i ,

where ni and n are, respectively, the number of sampled units
within each stratum and the total sample size, while p̂i =∑ni

k=1 yik/ni and ŵi =ni/n denote the estimate of the within-
stratum prevalence and the stratum fraction in the population,
respectively.

Poststratification and Nonresponse. From a survey sampling per-
spective, sampling weights are determined by the design and can
thus be considered deterministic (a priori known and constant).
When significant discrepancies exist between the sample frac-
tions ni/n from the population fractions Ni/N , however, p̂ will
not be an unbiased estimator of p, as the within-sample estimates
will not receive the correct weight. The ignorability assumption
is also not plausible when significant nonresponse exists and, in
particular, when the likelihood of response is associated with the
presence or absence of the characteristic of interest (in our case,
exposure to SARS-CoV-2). Adjustments in both cases involve
weighting by the inverse probability of selection into the sam-
ple (design weights) and poststratification to adjust for known
discrepancies between the sample and the population (poststrat-
ification weights). In the previous development, we now add a
layer j =1, . . . , J , corresponding to the J -related poststratifi-
cation groups, and we introduce a nonresponse indicator, Rijk ,
for individual k in poststratification group j and stratum i ,
where Rijk =1 if an individual consented for testing and Rijk =0
otherwise. Then, the poststratified estimate of the prevalence
is (15),

p̂ps =

∑I
i=1

∑J
j=1

∑nij

k=1 Rijkwijkyijk∑I
i=1

∑J
j=1

∑nij

k=1 Rijkwijk

, [1]

where yijk is the SARS CoV-2 infection status for individual k
belonging in the poststratification group j in stratum i , and wijk

is the poststratification weight

wijk =

(
Ni

ni

)(
nij

mij

)
,

where nij is the number of sampled individuals in stratum i and
group j , and mij =

∑nij

k=1 Rijk is the number of individuals from
that group and stratum actually tested. In this regard, the wijk

provide an adjustment to the inverse probability of sampling (i.e.,
Ni/ni) by the poststratification weight nij/mij . Poststratification
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attempts to correct the sampling weights so that p̂ps gets closer
to p̂. However, in contrast to sampling weights, poststratifica-
tion weights are not fixed by design (see, for example, Lu and
Gelman) (16), as it is not known at the time of sample selection
what the intersection will be between various relevant subgroups
in the population and the sample. Consequently, the nij are ran-
dom, which in turn means that using them in the process of
poststratification is expected to increase the variability of the
estimates in contrast to the sampling weights, which are con-
stant. As sampling weights apply equally to all subpopulations,
the estimate in [1] reduces to

p̂=
1

N

I∑
i=1

(
Ni

ni

) J∑
j=1

nij p̂ij , [2]

where p̂ij =
1

mij

∑nij

k=1 Rijkyijk is the estimate of the prevalence
in district i and group j . Estimates of COVID-19 prevalence in
each district can be produced as

p̂i·=
1

ni

J∑
j=1

nij p̂ij , [3]

along with prevalence rates across demographic groups,

p̂·j =

∑I
i=1

(
Ni
ni

)
nij p̂ij∑I

i=1

(
Ni
ni

)
nij

. [4]

The intuition of this latter estimate is that the numerator is
an estimate of the number of persons infected in demographic
group j =1, . . . , J , while the denominator is an estimate of N̂j ,
the total number of Indiana residents in group j . See Chen et al.
(15) for more details.

When multiple groups are involved, poststratification can be
complicated, particularly because of the unknown size of popu-
lation subgroups resulting from complex interactions of multiple
factors. However, in many situations, the marginal counts are
known. For example, while we have census data on sex, age, race,
and ethnicity in Indiana, we do not know how many non-White,
Hispanic individuals live in a certain district in the state. In this
case, iterative proportional fitting (17) and raking methods (18)
can be used to approximate the probabilities of selection. In this
paper, we use iterative proportional fitting (19), where the sam-
ple data are weighted so that they match census data in terms of
ethnicity (distinguished as study participants of Hispanic versus
non-Hispanic ethnicity) and race (categorized as White versus
non-White subjects) in the state of Indiana.

Testing Inaccuracy. To address concerns about testing inaccuracy,
we performed sensitivity analyses based on various scenarios of
testing errors. Given the novelty of the virus, the speed of its
worldwide spread and the severity of the resulting pandemic,
molecular and antibody tests have been rapidly developed and
have generally not been subjected to the usual approval review
that diagnostic tests undergo under normal circumstances. Con-
sequently, there are significant concerns about test accuracy. For
this reason, both false-positive as well as false-negative errors
must be taken into account when calculating final prevalence
estimates. Given estimates of false-positive and false-negative
rates, the observed prevalence p∗=P(t =1), the probability of
an observed positive test result, based on the true prevalence p
follows the equation

p∗= p(1− fn)+ (1− p)fp , [5]

where fp and fn are, respectively, the estimates of the false-
positive and false-negative rates of the test (6, 7). In other words,

fp% positive test results are added and fn% negative tests are sub-
tracted to derive the observed prevalence rate p∗. These methods
are applied to estimates of testing accuracy for both the molecu-
lar and antibody tests involved in our study, as these enter in the
assessment of total disease prevalence. In the IDOH statewide
study, depending on the participating laboratory and the tim-
ing and location of the sample collection, nasopharyngeal swabs
were transferred to the laboratories of Eli Lilly and Company and
processed by a laboratory-developed SARS-CoV-2 test (LDT),
based on the Centers for Disease Control and Prevention (CDC)
primer sets, or to Indiana University Health, where they were pro-
cessed by the Luminex NxTAG CoV Extended Panel or Roche
cobas SARS-CoV-2 test. Blood was transferred to the Mid Amer-
ica Clinical Laboratories for testing using the Abbott IgG test
for SARS-CoV-2 IgG Assay. Both the molecular and antibody
tests are reported to be highly accurate in limited testing. In our
analyses, we assume that the false-positive rate is at most 0.1%
for the Luminex assay (20), the Abbott serological test (21), and
Lilly’s LDT (22) and 2% for the Roche cobas test (23, 24). We
also assume that the false-negative rate is 3% for the Luminex
assay (20), 0.3% for the Roche cobas test (24), and 0.4% for the
Abbot assay given research available by the companies and inde-
pendent laboratories (21, 25). We assign false-negative rates on
the antibody test on the lower end of the reported ranges, because
high false-negative rates are primarily observed early in the infec-
tion (25), when presumably positive cases would be detected by
the PCR test (resulting in lower overall false-positive rates). The
expression in [5] is used unchanged in the analyses of the anti-
body test results. To account for the two different RT-PCR tests,
we modify the expression in [5] slightly as

p∗=

2∑
t=1

δt [p(1− fnt)+ (1− p)fpt ], [6]

where δt , t =1, 2, is an indicator of the RT-PCR test involved
in each test, while fnt and fpt are, respectively, the false-negative
and false-positive rates associated with each of the two molecular
tests. In the analyses of cumulative disease prevalence, we sim-
ply add the two expressions, where now the prevalence associated
with antibody testing is related to the excess prevalence of previ-
ous SARS-CoV-2 exposure, among people without active disease
(see prior elicitation in Bayesian Analysis for more details).

Bayesian Analysis. To bring all components of the analysis
together and properly propagate the error through them, we
use Bayesian methods. See, for example, Qian et al. (6), Chen
et al. (15), and Gelman and Carpenter (7) for related ideas. The
model is

yij ∼Binomial(mij , pij ),

where yij =
∑nij

k=1 Rijkyijk reflects mij test results in stratum i
and group j . To account for multiple RT-PCR and antibody
tests, the above model is modified as yij ∼Binomial(mij , p

∗
ij ),

where p∗ij is defined in [5] or [6] as appropriate, in order to
account for the different tests as described in the model above.
Prevalence of cumulative disease exposure is estimated as the
sum of current disease and the excess of cases with previous
exposure to SARS CoV-2 but without active disease. In this
case, prevalence of prior exposure is determined as the differ-
ence of cumulative disease and prevalence of active disease (with
the constraint that it be greater or equal to zero). We impose
beta priors on the true prevalence pij and the false-negative and
false-positive rates of each test, i.e.,

pij ∼Beta(a, b)

fn ∼Beta(an , bn)
fp ∼Beta(ap , bp).
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Table 1. Confirmed COVID-19 cases during the 2-wk period of 15
to 29 April 2020 and total cases since the start of the pandemic in
Indiana along with populations of the 10 IDOH preparedness
districts in the state, used in the elicitation of priors for
seroprevalence and rates of active disease

IDOH district Cases in 15 to 29 April Total cases District population

1 1,293 2,394 811,393
2 619 1,049 657,419
3 591 883 741,028
4 1,341 1,478 379,126
5 3,429 8,292 1,866,050
6 521 1,092 626,343
7 102 264 277,283
8 329 744 382,115
9 463 1,259 463,370
10 187 380 487,755
Total 8,875 17,835 6,691,882

The hyperparameters in the beta priors are obtained as the
numbers of false-positive and false-negative tests performed in
the various laboratory studies consulted in the prior elicita-
tion (see references in Testing Accuracy). For an aggregated list
of such references also see the Foundation of Innovative New
Diagnostics (26).

For the prior distribution of the COVID-19 prevalence, we
consider information available in the IDOH dashboard on the
number of daily confirmed cases. We then determine the param-
eters in the prior distribution so that the 95% CI of the beta
distribution covers 1 to 55 times the number of cases reported
by IDOH, divided by each district’s population (a crude mea-
sure of disease prevalence). This is loosely based on results from
the Stanford study (4). To calculate the resulting prior distribu-
tions on cumulative and active COVID-19 disease prevalence, we
work backward to ensure that the average prevalence remains
at the levels reported by IDOH (listed in Table 1). To account
for differences in prevalence rates among ethnic and racial sub-
groups, we follow the CDC estimates, which assign triple the risk
for infection with SARS-CoV-2 to individuals with Hispanic eth-
nicity and, on average, double the risk among non-White racial
groups, compared to White persons of non-Hispanic ethnicity
(27). For example, there have been 2,394 confirmed COVID-
19 cases in District 1 (Table 1), out of a population of 811,393.
Assuming a 3:3:2:1 ratio of cases among Hispanic non-Whites
and Whites and non-Hispanic non-Whites and Whites (27), we
estimate that non-Hispanic Whites have 0.2% observed preva-

lence, while Hispanic Whites have 0.6% prevalence in the district
in order for the combined prevalence to be 0.3% (the ratio of
total cases 2,394 over the 811,393 residents in the districts). The
beta parameters for the prevalence prior among non-Hispanic
Whites is a =1.34 and b=37.09, resulting in prior 95% CI
for the prevalence, between 0.20 and 11.06% (or 55 times the
observed prevalence). The beta parameters corresponding to
Hispanic Whites (and Hispanic non-Whites) are a =1.28 and
b=10.40, corresponding to prevalence bounds equal to three
times those among non-Hispanic Whites. We also consider active
disease, based on the number of confirmed cases reported in the
2 wk between 15 and 29 April 2020, the day the test was com-
pleted in this study (Table 1). In the case of District 1 again,
where 1,293 cases were reported in that period, this process
results in a beta prior distribution with parameters a =1.32 and
b=21.77, for White residents of Hispanic origin, resulting in a
95% prior CI for the prevalence between 0.33 and 17.9%.

Postsampling Simulations. To properly assess the variability
of sample sizes in the four demographic subgroups (i.e.,
Hispanic/non-Hispanic, White/non-White), we have performed
simulations, generating repeated sequences of the nij sampled
observations from a multinomial distribution with probabilities
Nij/Ni and total sample size ni =

∑J
j=1 nij , where the popu-

lation sizes Nij were obtained from the iterative proportional
fitting procedure discussed in Poststratification and Nonresponse.
We carried out 1,000 such simulations in each of the three sepa-
rate analyses described in Results. The simulated nij counts were
used in the calculations involved in Eqs. 2–4 above.

All analyses were performed within the R environment
(28). Bayesian inference was carried out using the package
RStan (29). Iterative proportional fitting was implemented
through the package mipfp (19). Data management was per-
formed with the package dplyr (30), and maps were generated
through the packages maps (31) and sp (32). Survey estimates
were produced with the package survey (33). All code and
data summaries used in these analyses are posted on GitHub
(https://github.com/cyiannou/IDOH-STUDY).

Results
Characteristics of the Sample. The selection of Indiana residents
was performed according to a stratified random sample based
on the 10 IDOH preparedness districts (12) (Fig. 1). There had
been about 11,000 confirmed cases reported by IDOH by 20
April 2020 (1, 10) for a crude prevalence estimate of 0.16% in
a state of about 6.7 million people (34) (Table 1). A sample
of 5,000 residents was calculated to provide an estimate of the
prevalence that would a have margin of error of less than 1%,

Table 2. Description of the sampling design

District Sample Exclusions Total Number Number of Number

District population population No DOB < 12 y Deceased Incarcerated exclusions sampled tests positive

1 763,039 2,397 60 436 59 3 558 1,839 380 10
2 644,674 2,025 38 407 47 4 496 1,529 287 0
3 723,066 2,272 39 414 44 5 502 1,770 448 7
4 338,900 1,065 22 181 23 0 226 839 209 2
5 1,834,537 5,763 94 1,102 102 12 1,310 4,453 1,170 37
6 574,535 1,805 15 264 47 2 328 1,477 327 9
7 247,406 778 14 133 14 0 161 617 156 4
8 328,984 1,034 17 165 20 2 204 830 212 1
9 447,988 1,408 33 247 28 0 308 1,100 204 9
10 464,186 1,459 23 272 27 3 325 1,134 232 6
Total 6,367,315 20,006 355 3,621 411 31 4,418 15,588 3,625 85

District population numbers in the state of Indiana were supplied by state agencies for the purposes of sampling and do not correspond to population
estimates provided by the US Census Bureau. DOB, date of birth.
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Table 3. Relevant sample characteristics

Sample data (n = 3,625) Census data (n = 6,691,878)

Factor Frequency Percentage Frequency Percentage

Race
Non-White 279 7.70 878,567 13.13
White 3,346 92.30 5,813,315 86.87

Ethnicity
Hispanic/Latino 80 2.21 474,572 7.09
Not Hispanic 3,545 97.79 6,217,310 92.91

even under the extreme scenario of a 15% prevalence, the upper
limit considered following estimates of unreported cases in the
Stanford study (4). To account for nonresponse, a sample of
20,006 residents was selected with probability proportional to
the population size of each Indiana IDOH district. Out of these,
4,418 sampled individuals were excluded because they were
younger than 12 y on 22 April 2020, were incarcerated, were
deceased, or did not have reliable date of birth data, resulting in
a final sample of 15,588 residents. From these, 3,658 were tested
and 3,625 had at least one available molecular or antibody test
present in the database (Table 2). Demographic information on
the 3,625 tested subjects are shown in Table 3.

Prevalence Estimates. Unadjusted and adjusted (poststratified)
prevalence estimates are shown in Table 4. Point estimates plus
Wald and exact binomial CIs are presented with respect to the
unadjusted estimates. The statistics presented in the case of
adjusted (poststratified) estimates were derived from the empiri-
cal distribution resulting from 1,000 simulations (medians of the
empirical distribution generated via simulation along with 95%
empirical CIs of the 2.5th and 97.5th quantile of the empirical
distribution).
Unadjusted Prevalence Estimates. Using the data in Table 2, the
point estimate of the total disease prevalence is p̂=2.33%, with
a 95% Wald-type CI of 1.83 to 2.82%. An exact binomial 95% CI
is 1.86 to 2.87% (Table 4). These unadjusted estimates involved
use of the sampling weights but no other adjustment.
Adjusted Prevalence Estimates. Representation of important
demographic subgroups in the sample, such as race and ethnic-
ity, can be contrasted with census data in the state (2). From
consideration of these data (Table 3), it appears that people of
Hispanic ethnicity and non-White Indiana residents are under-
represented in the sample. Given that ethnicity and race have
been identified to be related with COVID-19 prevalence (35),
we performed poststratification adjustments as described earlier
in Statistical Methods. The results, which also account for inac-
curacies in the testing, are shown in Table 4 for antibody tests,
RT-PCR tests, and the combined measure of cumulative expo-
sure to COVID-19 disease. Adjusting for underrepresentation
by non-White individuals and people of Hispanic ethnicity, as
well as imperfect testing, resulted in a revised estimate of sero-
prevalence of 2.60% (95% empirical CI: 2.08 to 3.35%) based
on the antibody test, a prevalence of active COVID-19 disease

of 1.81% (1.46 to 2.25%) based on the RT-PCR test, and an esti-
mate of cumulative disease exposure of 3.58% (3.03 to 4.18%). In
all cases, the adjusted estimates were higher than the unadjusted
estimates (Table 4). Results from the analysis of cumulative
COVID-19 prevalence are shown in Fig. 2. From Fig. 2, it is
evident that the adjustment involving poststratification and con-
sideration of possible erroneous diagnostic tests has resulted in a
substantial right shift of the center of the prevalence distribution
to the right of the usual stratified (unadjusted) estimate of the
prevalence.
District-Level Estimates. Prevalence estimates within each dis-
trict are shown in Table 5. A heat map, corresponding to the
cumulative prevalence rates (rightmost column in Table 5), is
shown in Fig. 1. The highest cumulative disease exposure rates
were seen in District 5 (the district that includes Indianapolis and
surrounding counties), District 1 (located at the northwest cor-
ner of the state close to Chicago, IL), and District 9 (the district
bordering the tristate area between Indiana, Ohio, and Kentucky
and the large metropolitan areas of Cincinnati and Louisville).
Very high rates were also observed in District 4, home to a
concentrated epidemic surrounding meat-packing plants in the
area. Point estimates and 95% empirical CIs are presented
in Table 5.
Estimates by Demographic Group. We also produce estimates
by demographic groups, broken down into dichotomous classi-
fications of individuals as Hispanic or non-Hispanic and White
versus non-White. These are presented in Table 6. The conclu-
sion from these data is that individuals of Hispanic ethnicity and,
secondarily, non-White persons, are disproportionately affected
by the epidemic, as has been reported previously (36, 37).

Discussion
Statewide testing for infection with the SARS-CoV-2 virus was
performed in Indiana between 25 and 29 April 2020. This study
was the first randomized statewide testing study for infection
with SARS-CoV-2 undertaken in the United States. In the paper
describing the results of this study, Menachemi et al. reported an
overall disease prevalence estimate of 2.79% (8). Their estimates
were adjusted for ethnicity, race, and age, but no allowance
was made for possible inaccuracies in the estimates resulting
from erroneous diagnostic test results. The revised estimate of
3.58%, resulting after taking into consideration both poststratifi-
cation for demographic factors as well as possible testing errors,
suggests that the cumulative disease prevalence reported by
Menachemi et al. may have been somewhat underestimated.

The adjustment of prevalence estimates through poststratifi-
cation is important because racial and ethnic groups are dis-
parately affected by the COVID-19 epidemic (36, 37) but are
frequently underrepresented in surveys (38). In this reanaly-
sis of the Indiana statewide sampling data, poststratification
adjustment for Hispanic ethnicity and non-White race and cor-
rections for imperfect testing resulted in substantial increases
over the unadjusted estimates (Table 4). The reason for this
revision is likely the much higher prevalence rates seen among
non-Whites and individuals of Hispanic ethnicity in the sample
(8) and possible false-negative test results in both the molecu-
lar and antibody tests, even for the relatively small error levels
considered.

Table 4. Prevalence estimates

Seroprevalence RT-PCR test positivity Cumulative exposure

Type of estimate Point estimate 95% CI Point estimate 95% CI Point estimate 95% CI

Unadjusted (Wald) 1.52 1.11 1.92 1.30 0.92 1.67 2.33 1.83 2.82
Unadjusted (exact) 1.52 1.14 1.98 1.30 0.95 1.72 2.33 1.86 2.87
Poststratified (empirical) 2.60 2.08 3.35 1.81 1.46 2.25 3.58 3.03 4.18
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Table 5. Prevalence estimates adjusted for poststratification and test inaccuracies by IDOH
preparedness district

Seroprevalence RT-PCR test positivity Cumulative exposure

District Point estimate 95% CI Point estimate 95% CI Point estimate 95% CI

1 3.68 1.98 6.39 2.31 1.11 4.11 4.42 2.69 7.08
2 1.29 0.51 2.86 0.84 0.29 1.91 1.83 0.98 3.30
3 1.25 0.58 2.44 1.31 1.32 0.65 2.32 1.29 3.33
4 2.27 0.80 5.35 2.75 1.10 5.76 4.37 2.24 7.61
5 3.89 2.69 5.92 2.11 1.38 3.11 5.00 3.76 6.54
6 1.33 0.59 2.79 1.98 1.06 3.28 2.83 1.74 4.47
7 0.89 0.33 2.29 1.31 0.54 2.63 2.15 0.99 4.29
8 1.37 0.56 3.07 0.82 0.33 1.80 2.06 1.14 3.66
9 4.04 2.04 7.28 1.48 0.57 3.12 4.09 2.32 6.81
10 0.94 0.37 2.12 1.52 0.71 2.78 1.95 1.06 3.63

With the revised estimate of COVID-19 disease prevalence
of 3.58%, the total number of cases in Indiana as of the end
of April is estimated to be 241,044 in a state of about 6.7 mil-
lion people (34). Menachemi et al. (8) estimated the number of
COVID-19 cases to be 187,802 individuals, corresponding to a
prevalence estimate of 2.79% of the Indiana population. Exclud-
ing the 85 positive cases identified in this study, there were 17,756
confirmed COVID-19 cases in the state from the start of the epi-
demic up to 29 April 2020 (10). The estimate by Menachemi
et al. suggests an almost 11-fold difference between confirmed
and estimated number of COVID-19 cases in Indiana as of 29
April 2020, the date the testing was completed. Adjusting for
possible test inaccuracies, our revised estimate of the fold differ-
ence between confirmed and total COVID-19 cases is 13.6 (95%
empirical CI: 11.5 to 15.8). These numbers represent a much
lower order of magnitude than the 55-fold difference (95% CI:
26 to 95) reported in the Stanford study (4).

We also produced district-specific estimates, subjected to both
poststratification adjustments and analyses to account for imper-
fect testing. The district-level cumulative disease-exposure esti-
mates are highly variable, ranging from just under 2% in districts
2 and 10, to 5% in District 5. The highest levels of COVID-19 dis-
ease were observed mostly in localities including or being proxi-
mal to large urban areas like Marion County (Indianapolis) and
surrounding counties (District 5); the counties close to Chicago,
IL (District 1); and the cities of Louisville and Cincinnati,
OH (District 9) (Fig. 1). On the other hand, the highest rate of
active disease was seen in District 4, reflecting an emerging con-
centrated epidemic in meat-packing plants in the district. Having
the ability to track the evolution of the epidemic and to differen-
tiate between regions within a state is helpful for mobilizing state
resources efficiently to areas of most acute need.

As reported elsewhere (27, 36), the burden of COVID-19 is
not equal across demographic groups. In our study, non-White
Indiana residents and, in particular, persons of Hispanic ethnic-
ity, had by far the highest rates of disease prevalence. The dif-
ferences are particularly stark when compared with prevalence
rates among White non-Hispanic individuals.

A major advantage of Bayesian modeling, in addition to pro-
viding a unified platform for carrying out the entire analysis, is
the ability to incorporate all available evidence in the model. In
this manner, important nuances, such as previous versus current
disease can be detected, with significant subepidemics observed
among minority populations and urban centers as early as the
end of April, less than 2 mo after the first case was identified
in Indiana. The analysis also detected an emerging epidemic
in a district where a superspreader event occurred in meat-
packing plants in late April. This is a great strength of this
approach.

At the same time, our study has a number of limitations. The
most important of these involves potential bias resulting from
the low response rate. We attempted to adjust for underrepre-
sentation in the sample among important demographic groups
by poststratifying our data using census information. It should
be acknowledged, however, that these adjustments make the
implicit assumption that missing data are missing at random
(MAR) (39). To clarify, under MAR, a tested Hispanic White
person would have the same chance of having a positive test as a
member of this subgroup who did not respond to the invitation
for testing. However, if nonresponders have different prevalence
of COVID-19 disease than responders with similar character-
istics, even poststratified analyses will result in estimates with
unknown bias. A positive bias in this study is improbable, how-
ever. While it is possible that persons who were motivated to be
tested, and might have had higher disease prevalence, responded
preferentially to the invitation, almost 40% of those testing posi-
tive in the study reported having no symptoms (8). Consequently,
there is weak evidence that symptomatic individuals tried to avail
themselves of a free testing opportunity during a time of test-
ing scarcity. By contrast, nonresponders, such as Hispanic and
non-White residents, would be expected to have higher rather

Fig. 2. Cumulative exposure to SARS-CoV-2 in Indiana at the end of April
2020. The histogram shows the posterior distribution of the cumulative
prevalence adjusted for nonresponse and imperfect testing. The dashed line
shows the usual stratified estimate of the prevalence without any further
adjustments.
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Table 6. Medians and 95% CIs of the posterior distribution for overall disease prevalence in the four
demographic groups in the state of Indiana

Seroprevalence RT-PCR test positivity Cumulative exposure

Demographic Point estimate 95% CI Point estimate 95% CI Point estimate 95% CI

Hispanic/non-White 9.15 3.58 20.49 5.54 2.41 11.60 10.80 5.99 19.50
Hispanic/White 9.75 5.08 17.59 6.56 3.60 10.90 12.00 7.39 18.30
Non-Hispanic/non-White 5.08 3.11 8.52 3.22 1.92 5.25 6.95 4.76 9.69
Non-Hispanic/White 1.57 1.19 2.09 1.16 0.89 1.50 2.30 1.89 2.78

than lower disease prevalence (8, 40), so we are unlikely to have
overestimated the prevalence of the disease. On the other hand, it
is hard to imagine much higher numbers of cases in the state, say
in the order of the Stanford or USC studies. If, for example, the
true number of cases in Indiana were 55 times the number of con-
firmed cases reported by the state, the total number of COVID-19
cases in Indiana by 29 April 2020 would have been 1,031,800 (95%
CI: 487,760 to 1,782,200), a prevalence of 15.3% (95% CI: 7.2 to
26.5%). A cumulative prevalence of up to one in four Indiana resi-
dents is virtually impossible given data reported by state agencies.
For example, there had been 6,445 COVID-19–related intensive
care unit (ICU) and non-ICU hospital admissions reported in the
state from 6 March 2020, the date of the first confirmed case of
COVID-19 in Indiana, and 29 April 2020, when testing for the
present study was completed (41). If the true number of cases in
the state were over 1 million, even hospitalization rates similar
to severe influenza would be expected to result in much higher
numbers of hospitalizations during the same period. Simple cal-
culations using CDC estimates of hospitalizations during the 2017
to 2018 severe flu season (42) (dividing the number hospitalized
by the total number of influenza cases and multiplying the result
by the point estimate of total cases in Indiana per the Stanford
study) result in about 18,611 expected hospitalizations (95% CI:
8,798 to 32,146) in Indiana during the same period. This is almost
three to five times higher than the number reported by state agen-
cies. Thus, the supposition of a much lower or greater caseload
than estimated in these analyses is not aligning with study or state
data.

Another limitation of these data is a potential bias resulting
from even small levels of error in the diagnostic testing. If the
test specificity (true-negative) rate is not virtually 100%, then
there could be enough false-positive tests to put in doubt a sig-
nificant portion of the already small number of observed positive
test results. For example, even a 1% false-positive rate would
suggest that, on average, 36 of the positive tests observed in
our study could be due to false-positive results, erasing almost
three-quarters of the observed positive RT-PCR or antibody
test results. If the false-positive rate were even higher, it would
render the study virtually uninterpretable. Fortunately, false-
positive error rates do not seem to be of great concern in the
tests used in this study, based on manufacturer and indepen-
dent laboratory evaluations (20–22, 24, 25). Of less concern is
a lower sensitivity (higher false-negative) rate scenario. While
crucial clinically, false-negative errors are not expected to mate-
rially affect our prevalence estimates as they correspond to latent
COVID-19–positive individuals who, in the early stages of the
epidemic, are expected to be few in numbers. For example, if
the false-negative rate of a test were 1% and the overall disease
prevalence were 3%, then on average, only 1 to 2 cases out of

about 3,600 would be missed as false-negative results. The com-
bined effect of poststratification adjustments and corrections for
false-positive and false-negative rates in the tests used in the
study was a revision in the estimate of the statewide prevalence of
infection with SARS-CoV-2 from 2.33 to 3.58% (more than 50%
higher than the stratified—unadjusted—estimate and almost
30% higher than 2.79%, the estimate reported by Menachemi
et al.) (8).

A final limitation and potential source of bias is the construc-
tion of the original population from which the sample was drawn.
As described in Statistical Methods, the basis for constructing the
sampling frame were data from the Department of Revenue,
including residents who had submitted tax returns in the 2018
and 2019 tax years, supplemented by Indiana Bureau of Motor
Vehicle data. This population excluded anyone who had not sub-
mitted a tax return in the past 2 y and did not have a current
driver’s license. If these individuals had higher- or lower-than-
average disease prevalence, their exclusion from sampling would
result in underestimation or overestimation of the final statewide
estimate.

These concerns, however, do not detract from the utility and
significance of our study. The alternative to random sampling,
even with all of the possible biases and caveats listed here,
can result in seriously questionable estimates. In their paper,
Menachemi et al. (8) also report testing among 898 persons
through outreach in the African American and Hispanic commu-
nities in Indianapolis. In this nonrandom sample, 22.8% of those
tested had a positive PCR test, and an additional 5.8% had a pos-
itive antibody test without testing positive on the PCR test (8),
resulting in a cumulative disease prevalence of just under 30%,
an estimate that is well outside any credible levels for the entire
state, or the region surrounding Indianapolis, for that period.

We conclude that our analysis, of the first randomized survey
sampling and testing of infection with SARS-Cov-2, despite a
number of potential sources of error and uncertainty in the esti-
mates, is useful as a guide when calculating the prevalence of a
relatively rare disease in this population and time period.

Data Availability Anonymized data have been deposited in GitHub
(https://github.com/cyiannou/IDOH-STUDY/).
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