
TWMS J. App. and Eng. Math. V.11, N.2, 2021, pp. 605-615

ANALYTICAL APPROXIMATE SOLUTIONS OF TIME-FRACTIONAL

INTEGRO-DIFFERENTIAL EQUATIONS USING A NEW ITERATIVE

TECHNIQUE

M. SADAF1, G. AKRAM1, §

Abstract. In this manuscript, a new iterative technique is proposed to obtain the solu-
tions of linear and nonlinear time-fractional integro-differential equations. The suggested
algorithm is a modification of the homotopy analysis method. The deformation equa-
tions obtained in this case are easily integrable and the calculations involved in the
algorithm are much simpler than the standard homotopy analysis method. The method
is illustrated with the help of different numerical test applications. The numerical and
graphical results explicitly reveal the potential and accuracy of the proposed technique.

Keywords: Integro-differential equations, Iterative Technique, Caputo fractional deriva-
tive, Modified homotopy analysis method.
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1. Introduction

During the past two decades, fractional calculus has drawn increasing attention due
to its applications in diversified fields of science and engineering. It is an extension of
the traditional calculus to non-integer (fractional) order. Thus fractional calculus has the
ability to describe different physical phenomena in a more flexible way than the tradi-
tional integer-order calculus. The importance of fractional calculus has in turn induced
the need for the development of mathematical techniques for the solutions of fractional
order differential and integro-differential systems. Various mathematical techniques have
been developed for the solutions of fractional order system (e.g. see [1]-[3]).
Fractional order integro-differential equations arise in fluid dynamics, biological models
and chemical kinetics [4, 5]. Mathematical modeling of heat conduction in materials with
memory involves fractional-order Volterra integro-differential equations [6]. Such equa-
tions also arise in the combined conduction, convection and radiation problems [7]. The
importance and potential of the study of the solutions of integro-differential equations
has caught the attention of many researchers during recent years. Arikoglu and Ozkol [8]
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used differential transform method for the solution of fractional order integro-differential
equations. Hetmaniok et al. [9] used homotpy analysis method for the solutions of integral
equations of second kind. Hybrid functions approximation [10] has also been employed
successfully for solving such problems.
In this manuscript, a new iterative algorithm is proposed for the solutions of fractional
order integro-differential equations. The proposed algorithm is basically a modification of
the well-known homotopy analysis method (HAM) with major advantages over the stan-
dard method. Homotopy analysis method (HAM) is an approximate analytical technique,
built on the concept of homotopy for the solutions of differential equations. The homotopy
analysis is highly flexible in many respects so that it might overcome restrictions of pertur-
bation techniques and other non-perturbation methods. The great freedom and flexibility
of the HAM has inspired many mathematicians to study HAM in search of better nu-
merical techniques. Optimal homotopy asymptotic method, predictor homotopy analysis
method, spectral homotopy analysis method and shooting homotopy analysis method been
successfully applied to solve different mathematical problems (e.g. see [11]-[15]). Odibat
and Bataineh proposed an adaptation of homotopy analysis method introducing homo-
topy polynomials [16]. Sadaf and Akram [17] proposed an improved adaptation of the
method for the solution of higher order boundary value problems. Shaban et al. proposed
a method based on HAM and the Tau method to study the study a case of magneto-
hydrodynamic squeeze flow between two parallel infinite disks [18]. Maitama and Zhao
investigated non-differentiable problems on Cantor sets using local fractional homotopy
analysis method [20]. Demir et al. presented a new technique based on homotopy analysis
method to obtain the solutions of space-time fractional differential equations [21].
The paper is organized as follows. Some basic definitions of fractional calculus are stated
in Section 2. The basic idea of HAM is briefly described in Section 3. A new iterative
technique for the solutions of time-fractional nonlinear integro-differential equations is
proposed in Section 4. Convergence analysis of the proposed algorithm is presented in
Section 5. Some numerical test applications are illustrated in Section 6.

2. Preliminaries of Fractional Calculus

There are different notions of fractional differential operators but the definition in Ca-
puto sense is most commonly used. The reason for choosing Caputo type fractional deriv-
ative is that it is suitable to model real world phenomena.
Definition 1. Caputo’s fractional derivative of order α is defined, as

Dαf(x) =
1

Γ(n− α)

∫ x

0

f (n)(s)

(t− s)α+1−nds, n− 1 < α ≤ n, n ∈ N, (1)

where α is the order of derivative and n is the smallest integer greater than α.
Definition 2. The Riemann-Liouville fractional integral operator of order α is defined as

Iαf(x) =

{
1

Γ(α)

∫ x
0

f(s)
(x−s)1−αds, α > 0,

f(x), α = 0.
(2)

The Caputo derivative and Riemann-Liouville integral satisfy the following property.

Iα(Dαf(x)) = f(x)−
n−1∑
i=0

f i(0+)
xi

i!
. (3)
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3. Basic Idea of HAM

Homotopy analysis method is an analytical technique which can be used to compute
the solutions of linear and nonlinear differential equations, integral equations and integro-
differential equations. For a nonlinear differential equation

N [y(x)] = 0, x ∈ Θ, (4)

whereN is a nonlinear operator, x is an independent variable , y(x) is an unknown function
and Θ is the interval of domain, a homotopy Y (x, p) is constructed with an embedding
parameter p ∈ [0, 1] by

(1− p)L[Y (x, p)− y0(x)]− p~H(x)N [Y (x, p)] = 0, x ∈ Θ, (5)

where ~ is auxiliary parameter, H(x) is an auxiliary function and L is auxiliary linear
operator. Application of Taylor’s theorem gives the series expansion of Y (x, p), as

Y (x, p) = y0(x) +
∞∑
m=1

ym(x)pm, (6)

where ym(x) is obtained by dividing the mth-order deformation derivative by m!. For
suitably chosen H(x), ~, L and y0(x), the series converges to y(x) at p = 1. Moreover,
ym(x),m = 1, 2, 3, ... can be calculated using the mth-order deformation equation

L[ym(x)− χmym−1(x)]− ~H(x)Rm(y
m−1

) = 0, (7)

x ∈ Θ, p ∈ [0, 1],

where

Rm(y
m−1

) =
1

(m− 1)!

∂m−1N (Y (x, p))

∂pm−1

∣∣∣∣
p=0

,

y
m−1

(x) = {y0(x), y1(x), ..., ym−1(x)},

χm =

{
0, m ≤ 1,
1, m > 1.

(8)

4. New Iterative Technique for Fractional Order
Integro-Differential Equations

Although homotopy analysis method gives an efficient way to approximate the solutions
to many linear and nonlinear problems, sometimes the higher order deformation equations
lead to complicated integrals and tedious calculations. To overcome these difficulties, a
new iterative algorithm method is proposed in this section through a modification of HAM.
The Fredholm type time-fractional integro-differential equation is considered, as

y′′(x) + f(x)y′(x) + g(x)Dα(y(x)) + h(x)y(x) = r(x) +
∫ b
a K(x, s)ψ(y(s))ds,

y(a) = 0, y(b) = δ, 0 < α < 1,

}
(9)

where ψ(y(x)) is a function of the unknown function y(x). The fractional order integro-
differential equation can be written, as

L[y(x)] +N [y(x)] = 0, x ∈ Θ, (10)

where L is a linear differential operator, N is a nonlinear operator, x is independent
variable and y(x) is an unknown function. A homotopy Y (x; p) can be constructed with
an embedding parameter p ∈ [0, 1] by

(1− p)L[Y (x; p)− y0(x)]− p~H(L[Y (x; p)] +N [Y (x; p)]) = 0, x ∈ Θ, (11)
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where ~ is auxiliary parameter and L is auxiliary linear operator. For p = 0, Eq.(11)
becomes

Y0(x; p) = y0(x),

whereas for p = 1, it yields the original nonlinear integro-differential equation (10). Hence
the function Y (x; p) varies from the initial guess to the required solution for the variation
of p from 0 to 1.
Using the power series expansion

Y (x; p) =
∞∑
i=0

Yi(x; p), (12)

the nonlinear term in Eq.(11) can be simplified, as

N [Y (x; p)] =
∞∑
i=0

Ni[Y0(x; p), Y1(x; p), ..., Yi(x; p)]. (13)

Using Eq.(12) and Eq.(13) in Eq.(11), the modified higher order deformation equations
are obtained, as

L[Y1(x; p)] = ~H(L[Y0(x; p)] +N0[Y0(x; p)]), (14)

and for k = 1, 2, 3, ...

L[Yk+1(x; p)] = L[Yk(x; p)] + ~H(L[Yk(x; p)]

+Nk[Y0(x; p), Y1(x; p), ..., Yk(x; p)]). (15)

Finally, the N -th order approximate solution can be calculated, as

yN (x) =

N∑
i=0

yi(x). (16)

5. Convergence Analysis

In this section, convergence of the solution series using the proposed technique is dis-
cussed.

Theorem 5.1. If the series y0(x) +
∑+∞

k=1 yk(x) is convergent, where yk(x) is governed by
Eqns.(14) and (15), it must be an exact solution of problem (9).

Proof. Convergence of the series
∑∞

k=1 yk(x) implies

lim
k→∞

yk(x) = 0. (17)
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Consider the series
∑∞

k=1 ~H(L[Yk−1(x; p)] +Nk−1[Y0(x; p), Y1(x; p), ..., Yk−1(x; p)]) for
p = 1. Using Eqns.(15) and (17) yield

∞∑
k=1

~H(L[Yk−1(x; p)] +Nk−1[Y0(x; p), Y1(x; p), ..., Yk−1(x; p)])

=
∞∑
k=1

(L[Yk(x; p)]− χkL[Yk−1(x; p)])

= L
∞∑
k=1

[yk(x)− χkyk−1(x)]

= L( lim
k→∞

yk(x))

= 0, (18)

where the linearity of the operator L is used.
Since ~ 6= 0, H(x) 6= 0, so it can be expressed, as

∞∑
k=1

(L[Yk−1(x; p)] +Nk−1[Y0(x; p), Y1(x; p), ..., Yk−1(x; p)]) = 0. (19)

Moreover,

∞∑
k=1

(L[Yk−1(x; p)] +Nk−1[Y0(x; p), Y1(x; p), ..., Yk−1(x; p)])

=
∞∑
k=1

[y′′k−1(x) + f(x)y′k−1(x) + g(x)Dβ(yk−1(x)) + h(x)yk−1(x)

−
∫ b

a
K(x, s)ρ(yk−1(s))ds] + (1− χm)r(x)].

=
∞∑
k=1

[y′′k−1(x) + f(x)y′k−1(x) + g(x)Dβ(yk−1(x)) + h(x)yk−1(x)

−
∫ b

a
K(x, s)ρ(yk−1(s))ds] + r(x). (20)

From Eq.(18) and Eq.(20), it can be written as

∞∑
k=1

[y′′k−1(x) + f(x)y′k−1(x) + g(x)Dβ(yk−1(x)) + h(x)yk−1(x)

−
∫ b

a
K(x, s)ρ(yk−1(s))ds] + r(x) = 0, (21)

which shows that the series solution satisfies the integro-differential Eq.(9). This completes
the proof. �

Remark: The valid region of ~ for convergence of series solution can be determined,
although approximately, by plotting the ~-curves. Let x0 ∈ [a, b], then Yk(x0; p) is function
of ~. The graph of Yk(x0; p) versus ~ ia a ~-curve [19].
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Figure 1. Comparison of exact solution (solid line) and approximate so-
lution (dashed line) for Example 1

6. Test Applications

Application 1
The time-fractional linear integro-differential equation is considered, as

y′′(x)− x2D0.3y(x) + xu(x) = r(x) +

∫ 1

0
K(x, t)y(t)dt (22)

subject to the constraints y(0) = 0 and y(1) = 0, where r(x) = −x5 +x3−12x2 + 4x
15 + 68

35 +
24

Γ(4.7)x
5.7− 2

Γ(2.7)x
3.7 and K(x, t) = t2−2x. The analytic solution of this integro-differential

system is

y(x) = x2(1− x2).

The initial approximation is calculated using the standard HAM, as y0(x) = 0. The
auxiliary function H(x) is taken as H(x) = 1. Using the first and second order deformation
equations, the second order approximation to the exact solution is calculated, as

y(x) = y0(x) + y1(x) + y2(x), (23)

where the value of ~ is taken to be ~ = −1. The approximate solution values and corre-
sponding absolute errors are summarized in Table 1. The results are graphically repre-
sented by Figure 1.

Table 1: Approximate solution values and absolute errors for Example 1
x Exact solution Approximate solution Absolute error

0.0 0.000000 0.000000 0.000000
0.1 0.009900 0.009913 1.306720× 10−5

0.2 0.038400 0.038448 4.821870× 10−5

0.3 0.081900 0.081200 9.979060× 10−5

0.4 0.134400 0.134562 1.623850× 10−4

0.5 0.187500 0.187730 2.304120× 10−4

0.6 0.230400 0.230698 2.977360× 10−4

0.7 0.249900 0.250257 3.565400× 10−4

0.8 0.230400 0.230792 3.918480× 10−4

0.9 0.153900 0.154263 3.632010× 10−4

1.0 0.000000 0.000157 1.568040× 10−4
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Application 2
The time-fractional linear integro-differential equation is considered, as

y′′(x) + xD0.7y(x) + (x+ 2)y′(x) = r(x) +

∫ 1

0
K(x, t)y(t)dt (24)

subject to the constraints y(0) = 0 and y(1) = 0, where

r(x) = −12x2 + 20x3 +
(240− 36π2 + π4)(1 + 6x2)

π6
+ (2 + x)(−4x3 + 5x4)

− Γ(5)

Γ(4.3)
x4.3 +

Γ(6)

Γ(5.3)
x5.3 (25)

and K(x, t) = (1 + 6x2) cosπt. The analytic solution of this integro-differential system is

y(x) = x4(x− 1).

The initial approximation is calculated according to standard HAM, as y0(x) = 0. The
auxiliary function H(x) is taken as H(x) = 1. Moreover, value of ~ is chosen as ~ = −0.65.
The second order approximation to the exact solution is calculated using the proposed
method and the numerical results are summarized in Table 2. The results are expressed
graphically in Figure 2.

Table 2: Approximate solution values and absolute errors for Example 2
x Exact solution Approximate solution Absolute error

0.0 0.000000 0.000000 0.000000
0.1 −0.000090 −0.000071 1.938800× 10−5

0.2 −0.001280 −0.001119 1.607010× 10−4

0.3 −0.005670 −0.005158 5.121850× 10−4

0.4 −0.015360 −0.014380 9.809290× 10−4

0.5 −0.031250 −0.029999 1.251410× 10−3

0.6 −0.051840 −0.050938 9.023600× 10−4

0.7 −0.072030 −0.072357 3.267400× 10−4

0.8 −0.081920 −0.084078 2.157550× 10−3

0.9 −0.065610 −0.068967 3.357210× 10−3

1.0 0.000000 −0.001403 1.403230× 10−3

Application 3
The time-fractional nonlinear integro-differential equation is considered, as

y′′(x) +D0.9y(x) + xy(x) = r(x) +

∫ 1

0
K(x, t)y2(t)dt (26)

subject to the constraints y(0) = 0 and y(1) = 1, where

r(x) =
13

6
+
x

5
+

Γ(3)

Γ(2.1)
x1.1 + x3 (27)

and K(x, t) = −(x+ t). The analytic solution of this integro-differential system is

y(x) = x2.

The initial approximation is taken as y0(x) = 0. The auxiliary function H(x) is taken as
H(x) = 1. Moreover, value of ~ is chosen as ~ = −0.6. The second order approximation
to the exact solution is calculated using the proposed method and the numerical results
are summarized in Table 3. The results are expressed graphically in Figure 3.
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Figure 2. Comparison of exact solution (solid line) and approximate so-
lution (dashed line) for Example 2
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Figure 3. Comparison of exact solution (solid line) and approximate so-
lution (dashed line) for Example 3

Table 3: Approximate solution values and absolute errors for Example 3
x Exact solution Approximate solution Absolute error

0.0 0.000000 0.000000 0.000000
0.1 0.010000 0.009232 7.684470× 10−4

0.2 0.040000 0.037501 2.498910× 10−3

0.3 0.090000 0.085704 4.295280× 10−3

0.4 0.160000 0.154750 5.249810× 10−3

0.5 0.250000 0.245527 4.473170× 10−3

0.6 0.360000 0.358858 1.142350× 10−3

0.7 0.490000 0.495416 5.416150× 10−3

0.8 0.640000 0.655591 1.559150× 10−2

0.9 0.810000 0.839282 2.928200× 10−2

1.0 1.000000 1.045590 4.559110× 10−2
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Figure 4. Comparison of exact solution (solid line) and approximate so-
lution (dashed line) for Example 4

Application 4
The time-fractional nonlinear integro-differential equation is considered, as

y′′(x) + x2D0.7y(x) + xy(x) = r(x) +

∫ 1

0
K(x, t)y(t)y′(t)dt (28)

subject to the constraints y(0) = 0 and y(1) = 1, where

r(x) =
115

252
+ x+ 12x2 + (6x+ x4)(−1 + 2x) + 2

Γ(5)

Γ(4.3)
x3.3 − Γ(4)

Γ(3.3)
x4.3 (29)

and K(x, t) = −(2x+ t). The analytic solution of this integro-differential system is

y(x) = x3(2x− 1).

Taking y0(x) = 0, H(x) = 1 and ~ = −0.735, the second order approximation to the exact
solution is calculated using the proposed method and the numerical results are summarized
in Table 4. The results are graphically represented by Figure 4.

Table 4: Approximate solution values and absolute errors for Example 4
x Exact solution Approximate solution Absolute error

0.0 0.000000 0.000000 0.000000
0.1 −0.000080 −0.000855 5.494240× 10−5

0.2 −0.000480 −0.004915 1.149590× 10−4

0.3 −0.010800 −0.010925 1.248700× 10−4

0.4 −0.012800 −0.012819 1.858790× 10−5

0.5 0.000000 0.0004225 4.222490× 10−4

0.6 0.043200 0.0448090 1.609010× 10−3

0.7 0.137200 0.1412260 4.025870× 10−3

0.8 0.307200 0.3150820 7.881910× 10−3

0.9 0.583200 0.5956600 1.246040× 10−2

1.0 1.000000 1.0150800 1.507960× 10−2
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7. Conclusions

The purpose of this study is to introduce a reliable iterative algorithm to approximate
the solutions of time-fractional integro-differential equations of the form (9). The fractional
derivative is considered in Caputo sense. The proposed algorithm is a modification of the
well-known homotopy analysis method which has two major advantages over the standard
homotopy analysis method. Firstly, it involves fewer terms in each iteration. Secondly,
the integrals involved on each iteration step are easier to manipulate. The algorithm is
illustrated using different test applications. The numerical and graphical representations
of the results show explicitly the accuracy and generality of the suggested method.
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