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THE FEKETE-SZEGÖ PROBLEMS FOR A SUBCLASS OF M-FOLD

SYMMETRIC BI-UNIVALENT FUNCTIONS

A. MOTAMEDNEZHAD1, S. SALEHIAN2, N. MAGESH3, §

Abstract. In this paper, we investigate a new subclass Ph,p
Σm

(λ, γ) of m-fold symmetric
bi-univalent functions. Moreover, for functions of this subclass, we obtain the coefficient
estimates of the Taylor-Maclaurin coefficients |am+1|, |a2m+1| and Fekete-Szegö problems.
The coefficients estimates presented in this paper would generalize and improve those in
related works of several earlier authors
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1. Introduction

Let A denote the class of functions f which are analytic in the open unit disc U = {z ∈
C : |z| < 1}, with in the form

f(z) = z +

∞∑
n=2

anz
n. (1)

we let S to denote the class of functions f ∈ A which are univalent in U (see details [3, 5]).
Every function f ∈ S has an inverse f−1, which is defined by

f−1(f(z)) = z (z ∈ U)

and

f(f−1(w)) = w

(
|w| < r0(f), r0(f) ≥ 1

4

)
.
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In fact, the inverse function f−1 is given by

f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (2)

A function f ∈ A is said to be bi-univalent in U, if both f and f−1 are univalent in U
(see [17]). We denote σB the class of bi-univalent functions in U given by (1).

Lewin [9] investigated the class σB of bi-univalent functions and showed that |a2| <
1.51 for the Taylor-Maclaurin coefficient |a2| of functions belonging to σB. Subsequently,
Brannan et al. [2] conjectured that |a2| ≤

√
2. However, finding upper bounds of the

Taylor-Maclaurin coefficients |an|(n ∈ N − {2, 3}) for each f ∈ σB is coefficient estimate
problem and still an open problem.

For a brief history and interesting examples of functions in the class σB, refer to the
papers by Sirvastava et al. [13, 14, 23, 24].

For each function f ∈ S function

h(z) = m
√
f(zm) (3)

is univalent and maps unit disk U into a region with m-fold symmetry. A function f is
said to be m-fold symmetric (see [8, 10]) if it has the following normalized form:

f(z) = z +
∞∑
k=1

amk+1z
mk+1 (z ∈ U,m ∈ N). (4)

We denote by Sm the class of m-fold symmetric univalent functions in U, which are nor-
malized by the series expansion (4). In fact, the functions in class S are one-fold symmetric.

In [18] Srivastava et al. defined m-fold symmetric bi-univalent functions analogues to
the concept of m-fold symmetric univalent functions. They gave some important results,
such as each function f ∈ σB generates an m-fold symmetric bi-univalent function for each
m ∈ N. Furthermore, for the normalized form of f given by (4), they obtained the series
expansion for f−1 as follows:

f−1(w) = w − am+1w
m+1 + [(m+ 1)a2

m+1 − a2m+1]w2m+1

−[
1

2
(m+ 1)(3m+ 2)a3

m+1 − (3m+ 2)am+1a2m+1 + a3m+1]w3m+1 + · · · . (5)

We denote by Σm the class of m-fold symmetric bi-univalent functions in U. For m = 1,
formula (5) coincides with formula (2) of the class σB. Some examples of m-fold symmetric
bi-univalent functions are given as follows:(

zm

1− zm

) 1
m

,

[
1

2
log

(
1 + zm

1− zm

) 1
m

]
and [− log(1− zm)]

1
m

with the corresponding inverse functions(
wm

1 + wm

) 1
m

,

(
e2wm − 1

e2wm + 1

) 1
m

and

(
ew

m − 1

ewm

) 1
m

,

respectively.
In fact that this widely-cited work by Srivastava et al. [18] actually revived the study

of m-fold symmetric bi-univalent functions in recent years and that it led to a flood of
papers on the subject by (for example) Srivastava et al. [15, 16, 18, 19, 20], and others
[6, 7, 11, 12, 21, 22].
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The object of the present paper is to introduce new subclass Ph,pΣm
(λ, γ) of Σm and obtain

estimates on initial coefficients |am+1|, |a2m+1| for functions in subclass and improve some
recent works of many authors.

2. Subclass Ph,pΣm
(λ, γ)

In this section, we introduce the general subclass Ph,pΣm
(λ, γ).

Definition 2.1. Let the functions h, p : U→ C be so constrained that

min{Re ((h(z)) ,Re (p(z))} > 0 (z ∈ U) and h(0) = p(0) = 1.

A function f ∈ Σm given by (4) is said to be in the subclass Ph,pΣm
(λ, γ), if the following

conditions are satisfied:

1 +
1

γ

(
zf ′(z)

f(z)
+ λ

z2f
′′
(z)

f(z)
− 1

)
∈ h(U) (0 ≤ λ ≤ 1, γ ∈ C− {0}, z ∈ U) (6)

and

1 +
1

γ

(
wg′(w)

g(w)
+ λ

w2g
′′
(w)

g(w)
− 1

)
∈ p(U) (0 < λ ≤ 1, γ ∈ C− {0}, w ∈ U), (7)

where g is the extension of f−1 to U.

Remark 2.1. There are many selections of the functions h(z) and p(z) which would
provide interesting classes of m-fold symmetric bi-univalent functions Σm. For example,
if we let

h(z) = p(z) =

(
1 + zm

1− zm

)α
= 1 + 2αzm + 2α2z2m + · · · (0 < α ≤ 1),

it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of Definition 2.1.

If f ∈ Ph,pΣm
(λ, γ), then∣∣∣∣∣arg

{
1 +

1

γ

(
zf ′(z)

f(z)
+ λ

z2f
′′
(z)

f(z)
− 1

)}∣∣∣∣∣ < απ

2

and ∣∣∣∣∣arg
{

1 +
1

γ

(
wg′(w)

g(w)
+ λ

w2g
′′
(w)

g(w)
− 1

)}∣∣∣∣∣ < απ

2
.

Therefore, for h(z) = p(z) =
(

1+zm

1−zm
)α

, γ = 1 and λ = 0, the subclass Ph,pΣm
(λ, γ) reduces

to the subclass SαΣm
which was considered by Altinkaya and Yalcin [1].

If we let

h(z) = p(z) =
1 + (1− 2β)zm

1− zm
= 1 + 2(1− β)zm + 2(1− β)z2m + · · · (0 ≤ β < 1),

it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of Definition 2.1.

If f ∈ Ph,pΣm
(λ, γ), then

Re

{
1 +

1

γ

(
zf ′(z)

f(z)
+ λ

z2f
′′
(z)

f(z)
− 1

)}
> β
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and

Re

{
1 +

1

γ

(
wg′(w)

g(w)
+ λ

w2g
′′
(w)

g(w)
− 1

)}
> β.

Therefore, for h(z) = p(z) = 1+(1−2β)zm

1−zm , γ = 1 and λ = 0, the subclass Ph,pΣm
(λ, γ)

reduces to the subclass SβΣm
which was considered by Altinkaya and Yalcin [1].

Remark 2.2. For one-fold symmetric bi-univalent functions, we denote the subclass

Ph,pΣ1
(λ, γ) = Ph,pΣ (λ, γ). Special cases of this subclass illustrated below:

• By putting h(z) = p(z) =
(

1+zm

1−zm
)α

, γ = 1 and λ = 0, then the subclass Ph,pΣ (λ, γ)

reduces to the subclass S∗Σ[α] of strongly bi-starlike functions of order α(0 < α ≤ 1).

• By putting h(z) = p(z) = 1+(1−2β)zm

1−zm , γ = 1 and λ = 0, then the subclass Ph,pΣ (λ, γ)

reduces to the subclass S∗Σ(β) of bi-starlike functions of order β(0 ≤ β < 1).

Theorem 2.1. Let f(z) given by (4) be in subclass Ph,pΣm
(λ, γ) (0 ≤ λ < 1, γ ∈ C − {0}).

Then

|am+1| ≤ min

{
|γ||hm|

m[(1 + λ(m+ 1)]
,

√
|γ|(|h2m|+ |p2m|)

2m2[1 + 2λ(m+ 1)]

}

and

|a2m+1| ≤ min

{
|γ|(|h2m|+ |p2m|)

4m[1 + λ(2m+ 1)]
+
|γ|(m+ 1)(|hm|2 + |pm|2)

4m2[1 + λ(m+ 1)]2
,

|γ| [(2m+ 1) + λ(m+ 1)(4m+ 1)] |h2m|+ |γ| [λ(m+ 1) + 1] |p2m|
4m2 (1 + λ(2m+ 1)) (1 + 2λ(m+ 1))

}
.

Proof. First of all, we write the argument inequalities in (6) and (7) in their equivalent
forms as follows:

1 +
1

γ

(
zf ′(z)

f(z)
+ λ

z2f
′′
(z)

f(z)
− 1

)
= h(z) (z ∈ U) (8)

and

1 +
1

γ

(
wg′(w)

g(w)
+ λ

w2g
′′
(w)

g(w)
− 1

)
= p(w) (w ∈ U), (9)

respectively, where functions h(z) and p(w) satisfy the conditions of Definition 2.1.
Furtheremore, the functions h(z) and p(w) have the forms:

h(z) = 1 + hmz
m + h2mz

2m + h3mz
3m + · · · (10)

and

p(w) = 1 + pmw
m + p2mw

2m + p3mw
3m + · · · , (11)

respectively.
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Now, upon substituting from (10) and (11) into (8) and (9), respectively, and equating
the coefficients, we get

m[1 + λ(m+ 1)]am+1

γ
= hm, (12)

2m[1 + λ(2m+ 1)]

γ
a2m+1 −

m[1 + λ(m+ 1)]

γ
a2
m+1 = h2m, (13)

−m[1 + λ(m+ 1)]

γ
am+1 = pm, (14)

and

−2m[1 + λ(2m+ 1)]

γ
a2m+1 +

m[(2m+ 1) + λ(m+ 1)(4m+ 1)]

γ
a2
m+1 = p2m. (15)

From (12) and (14), we get

hm = −pm (16)

and

a2
m+1 =

γ2(h2
m + p2

m)

2m2[1 + λ(m+ 1)]2
. (17)

Adding (13) and (15), we get

a2
m+1 =

γ(h2m + p2m)

2m2[1 + 2λ(m+ 1)]
. (18)

Therefore, we find from the equations (16), (17) and (18) that

|am+1| ≤
|γ||hm|

m[(1 + λ(m+ 1)]
,

|am+1| ≤

√
|γ|(|h2m|+ |p2m|)

2m2[1 + 2λ(m+ 1)]
.

respectively. So we get the desired estimate on the coefficient |am+1|.
Next, in order to find the bound on the coefficient |a2m+1|, we subtract (15) from (13),

we get

a2m+1 =
γ(h2m − p2m)

4m[1 + λ(2m+ 1)]
+

(m+ 1)

2
a2
m+1. (19)

Therefore, we find from (17) and (19) that

a2m+1 =
γ(h2m − p2m)

4m[1 + λ(2m+ 1)]
+
γ2(m+ 1)(h2

m + p2
m)

4m2[1 + λ(m+ 1)]2
. (20)

Also, from (18) and (19), we have

a2m+1 =
γ [(2m+ 1) + λ(m+ 1)(4m+ 1)]h2m + γ [λ(m+ 1) + 1] p2m

4m2 (1 + λ(2m+ 1)) (1 + 2λ(m+ 1))
. (21)

So, from the equations (20) and (21), we get

|a2m+1| ≤
|γ|(|h2m|+ |p2m|)

4m[1 + λ(2m+ 1)]
+
|γ|(m+ 1)(|hm|2 + |pm|2)

4m2[1 + λ(m+ 1)]2

and

|a2m+1| ≤
|γ| [(2m+ 1) + λ(m+ 1)(4m+ 1)] |h2m|+ |γ| [λ(m+ 1) + 1] |p2m|

4m2 (1 + λ(2m+ 1)) (1 + 2λ(m+ 1))
.



A. MOTAMEDNEZHAD, S. SALEHIAN, N. MAGESH: THE FEKETE-SZEGÖ PROBLEMS... 519

�

Theorem 2.2. Let f(z) given by (4) be in subclass Ph,pΣm
(λ, γ) (0 ≤ λ < 1, γ ∈ C − {0}).

Also let ρ be real number. Then

|a2m+1 − ρa2
m+1| ≤


|γ|

4m(1+λ(2m+1)) {(1 + T (ρ)) |h2m|+ (1− T (ρ)) |p2m|} ; |T (ρ)| ≤ 1

|γ|
4m(1+λ(2m+1))

{∣∣1 + T (ρ)
∣∣|h2m|+

∣∣T (ρ)− 1
∣∣|p2m|

}
; |T (ρ)| ≥ 1.

where

T (ρ) =
(m− 2ρ+ 1) (1 + λ(2m+ 1))

m (1 + 2λ(m+ 1))
.

Proof. From the equation (19), we get

a2m+1 − ρa2
m+1 =

γ(h2m − p2m)

4m[1 + λ(2m+ 1)]
+
m− 2ρ+ 1

2
a2
m+1. (22)

From the equation (18) and (22), we have

a2m+1 − ρa2
m+1 =

|γ|
4m (1 + λ(2m+ 1))

{[
1 +

(m− 2ρ+ 1) (1 + λ(2m+ 1))

m (1 + 2λ(m+ 1))

]
h2m

+

[
(m− 2ρ+ 1) (1 + λ(2m+ 1))

m (1 + 2λ(m+ 1))
− 1

]
p2m

}
.

Next, taking the absolute values we obtain

|a2m+1 − ρa2
m+1| ≤

|γ|
4m (1 + λ(2m+ 1))

{ ∣∣∣∣1 +
(m− 2ρ+ 1) (1 + λ(2m+ 1))

m (1 + 2λ(m+ 1))

∣∣∣∣ |h2m|

+

∣∣∣∣(m− 2ρ+ 1) (1 + λ(2m+ 1))

m (1 + 2λ(m+ 1))
− 1

∣∣∣∣ |p2m|
}
.

Then, we conclude that

|a2m+1 − ρa2
m+1| ≤


|γ|

4m(1+λ(2m+1)) {(1 + T (ρ)) |h2m|+ (1− T (ρ)) |p2m|} ; |T (ρ)| ≤ 1

|γ|
4m(1+λ(2m+1))

{∣∣1 + T (ρ)
∣∣|h2m|+

∣∣T (ρ)− 1
∣∣|p2m|

}
; |T (ρ)| ≥ 1.

�

3. Conclusions

By putting

h(z) = p(z) =

(
1 + zm

1− zm

)α
= 1 + 2αzm + 2α2z2m + · · · (0 < α ≤ 1, z ∈ U),

λ = 0 and γ = 1 in Theorems 2.1 and 2.2, we conclude the following results.

Corollary 3.1. Let f given by (4) be in subclass SαΣm
(0 < α ≤ 1,m ∈ N). Then

|am+1| ≤ min

{
2α

m
,

√
2α

m

}
=

√
2α

m

and

|a2m+1| ≤ min

{
α2

m
+

2(m+ 1)α2

m2
,
(m+ 1)α2

m2

}
=

(m+ 1)α2

m2
.
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Corollary 3.2. Let f given by (4) be in subclass SαΣm
(0 < α ≤ 1,m ∈ N). Also let ρ be

real number. Then

|a2m+1 − ρa2
m+1| ≤


α2

m ; |m−2ρ+1|
m ≤ 1

|m−2ρ+1|α
m2 ; |m−2ρ+1|

m ≥ 1.

Remark 3.1. The bounds on |am+1| and |a2m+1| given in Corollary 3.1 are better than
those given in [1, Corollary 6]. Because

√
2α

m
≤ 2α

m
√
α+ 1

and

(m+ 1)α2

m2
≤ α2

m
+

2(m+ 1)α2

m2
≤ α

m
+

2(m+ 1)α2

m2
.

By putting

h(z) = p(z) =
1 + (1− 2β)zm

1− zm
= 1 + 2(1− β)zm + 2(1− β)z2m + · · · (0 ≤ β < 1, z ∈ U),

λ = 0 and γ = 1 in Theorems 2.1 and 2.2, we conclude the following results.

Corollary 3.3. Let f given by (4) be in subclass SβΣm
(0 ≤ β < 1,m ∈ N). Then

|am+1| ≤


√

2(1−β)

m ; 0 ≤ β ≤ 1
2

2(1−β)
m ; 1

2 ≤ β < 1

and

|a2m+1| ≤


(m+1)(1−β)

m2 ; 0 ≤ β ≤ 1+2m
2(1+m)

2(m+1)(1−β)2

m2 + 1−β
m ; 1+2m

2(1+m) ≤ β < 1.

Corollary 3.4. Let f given by (4) be in subclass SβΣm
(0 ≤ β < 1,m ∈ N) . Also let ρ be

real number. Then

|a2m+1 − ρa2
m+1| ≤


(1−β)
m ; |m−2ρ+1|

m ≤ 1

(1−β)|m−2ρ+1|
m2 ; |m−2ρ+1|

m ≥ 1.

Remark 3.2. The bounds on |am+1| and |a2m+1| given in Corollary 3.3 are better than
those given in [1, Corolary 7].

By setting m = 1 in Corollary 3.1, we conclude the following result.

Corollary 3.5. Let f given by (1) be in subclass S∗Σ[α] of strongly bi-starlike functions of
order α(0 < α ≤ 1). Then

|a2| ≤ min
{

2α,
√

2α
}

=
√

2α

and

|a3| ≤ min
{

5α2, 2α2
}

= 2α2.

Remark 3.3. The bounds on |a2| and |a3| given in Corollary 3.5 are better than those
given in [4, Corolary 2.5].
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By setting m = 1 in Corollary 3.2, we conclude the following result.

Corollary 3.6. Let f given by (1) be in subclass S∗Σ[α] of strongly bi-starlike functions of
order α(0 < α ≤ 1). Also let ρ be real number. Then

|a3 − ρa2
2| ≤

 α2 ; |1− ρ| ≤ 1
2

2|1− ρ|α; |1− ρ| ≥ 1
2 .

By setting m = 1 in Corollary 3.3, we conclude the following result.

Corollary 3.7. Let f given by (1) be in subclass S∗Σ(β) of bi-starlike functions of order
β(0 ≤ β < 1). Then

|a2| ≤


√

2(1− β); 0 ≤ β ≤ 1
2

2(1− β) ; 1
2 ≤ β < 1

and

|a3| ≤

 2(1− β) ; 0 ≤ β ≤ 3
4

4(1− β)2 + (1− β); 3
4 ≤ β < 1.

Remark 3.4. The bound on |a2| given in Corollary 3.7 is better than that given in [4,
Corolary 3.5].

By setting m = 1 in Corollary 3.4, we conclude the following result.

Corollary 3.8. Let f given by (1) be in subclass S∗Σ(β) of bi-starlike functions of order
β(0 ≤ β < 1). Also let ρ be real number. Then

|a3 − ρa2
2| ≤

 1− β ; |1− ρ| ≤ 1
2

2(1− β)|1− ρ|; |1− ρ| ≥ 1
2 .
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[1] Altinkaya, Ş. and Yalçin, S., (2015). Coefficient bounds for certain subclasses of m-fold symmetric
bi-univalent functions, Journal of mathematics, Article ID 241683, 5 pages.

[2] Brannan, D. A. and Taha, T. S., (1986). On Some classes of bi-univalent functions, Studia Univ.
Babes-Bolyai Math., 31 (2) 70-77.

[3] Breaz, D., Breaz, N. and Sirvastava H. M., (2009). An extention of the univalent conditions for a family
of integral operators, Appl. Math. Lett., 22, 41-44.

[4] Caglar, M., Orhan, H. and Yagmur, N., (2013). Coefficient bounds for new subclasses of bi-univalent
functions, Filomat., 27 (7) 1165-1171.

[5] Duren, P. L., (1983). Univalent functions, Grundlehren der Mathematischen Wissenschaften, Band 259,
Springer-Verlag, New York, Berlin, Heidelberg and Tokyo.

[6] Eker, S. S., (2016). Coefficient estimates for new subclasses of m-fold symmetric bi-univalent functions,
Theory Appl. Math. Comput. Sci., 6 (2) 103-109.

[7] Jahangiri, J. M. and Hamidi, S. G., (2016). Advances on the coefficient bounds for m-fold symmetric
bi-close-to-convex functions, Tbilisi Math. J., 9 (2) 75-82.

[8] Koepf, W., (1989). Coefficients of symmetric functions of bounded boundary rotation, Proc. Amer.
Math. Soc., 105 (2) 324-329.

[9] Lewin M., (1967). On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18,
63-68.

[10] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
[11] Sakar, F. M. and Güney, H. O., (2017). Faber polynomial coefficient estimates for subclasses of m-fold

symmetric bi-univalent functions defined by fractional derivative, Malays. J. Math. Sci., 11 (2) 275-287.



522 TWMS J. APP. AND ENG. MATH. V.11, N.2, 2021

[12] Senthil, B. and Keerthi, B. S., (2016). Certain subclass of m-fold symmetric-sakaguchi type bi-
univalent functions, Int. J. Pure Appl. Math., 109 (10) 29-37.

[13] Srivastava, H. M. and Bansal, D., (2015). Coefficient estimates for a subclass of analytic and bi-
univalent functions, J. Egyptian Math. Soc., 23, 242-246.

[14] Srivastava, H. M., Eker, S. S. and Ali, R. M., (2015). Coefficient Bounds for a certain class of analytic
and bi-univalent functions, Filomat, 29, 1839-1845.

[15] Srivastava, H. M., Gaboury, S. and Ghanim, F., (2016). Initial coefficient estimates for some subclasses
of m-fold bi-univalent functions, Acta Math. Sci. Ser. B, 36 (3) 863-871.

[16] Srivastava, H. M., Gaboury, S. and Ghanim, F., (2015). Coefficient estimates for some subclasses of
m-fold symmetric bi-univalent functions, Acta Univ. Apulensis Math. Inform., 41, 153-164.

[17] Srivastava, H. M., Mishra, A. K. and Gochhayat, P., (2010). Certain subclasses of analytic and bi-
univalent functions, Appl. Math. Lett., 23, 1188-1192.

[18] Srivastava, H. M., Sivasubramanian S., and Sivakumar, R., (2014). Initial coefficient bounds for a
subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., 7 (2) 1-10.

[19] Srivastava, H. M., Zireh A. and S. Hajiparvaneh, (2018). Coefficient estimates for some subclasses of
m-fold symmetric bi-Univalent functions, Filomat, 32 (9) 3143-3153.

[20] Tang, H., Srivastava, H. M., Sivasubramanian, S. and Gurusamy, P., (2016). The fekete-szegö func-
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Nanjundan Magesh received his Ph.D. from VIT University in Vellore, Tamilnadu,
India. Currently, he is working as an assistant professor in the Department of Math-
ematics at Government Arts College for Men, Krishnagiri, Tamilnadu, India. His
current research interests include Geometric Function Theory, Differential Equations
and Fluid Mechanics, Mathematical Modeling.


