A NEW CLASS OF MIXED MONOTONE OPERATORS WITH CONCAVITY AND APPLICATIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS

H. SHOJAAT ${ }^{1}$, H. AFSHARI ${ }^{2}$, M. S. ASGARI ${ }^{1}$, §

Abstract

In this article, we investigate a class of mixed monotone operators with concavity on ordered Banach spaces. As applications, we utilize the main results obtained in this paper to study for solutions of fractional differential equations. An example is also considered to illustrate the main result.

Keywords: Fractional differential equation; normal cone; positive solution.
AMS Subject Classification: 83-02, 99A00

1. Introduction

As an important branch of nonlinear functional analysis, the nonlinear operators and their application in nonlinear differential equations are taken into consideration (see $[7,8,9]$). In 2015 the sum operator

$$
\begin{equation*}
T_{1} u+T_{2} u+T_{3}(u, u)=u, \tag{1}
\end{equation*}
$$

has been considered by Wang and Zhang, where T_{1} is a decreasing operator, T_{2} is an increasing sub-homogeneous operator and T_{3} is mixed monotone operator. In this paper we study (1) with different conditions. As an application, we apply our main fixed point theorem to solution of the boundary value problems via nonlinear fractional differential equations.
Suppose $(E,\|\|$.$) be a Banach space which is partially ordered by a cone P \subseteq E$, that is, $u \leq v$ if and only if $v-u \in P$. We denote the zero element of E by θ. Recall that a non-empty closed convex set $P \subset E$ is a cone if it satisfies (i) $u \in P, \lambda \geq 0 \Longrightarrow \lambda u \in P$; (ii) $u \in P,-u \in P \Longrightarrow u=\theta$. A cone P is called normal if there exists a constant $N>0$ such that $\theta \leq u \leq v$ implies $\|u\| \leq N\|v\|$, also we define the order interval

[^0]$\left[u_{1}, u_{2}\right]=\left\{u \in E \mid u_{1} \leq u \leq u_{2}\right\}$ for all $u_{1}, u_{2} \in E$ and
$P_{h}=\{u \in E \mid \exists \lambda, \mu>0$ such that $\lambda h \leq u \leq \mu h\}$ for $h>\theta$.

2. Preliminaries

Definition 2.1. [2,3] $T_{1}: P \times P \rightarrow P$ is said to be a mixed monotone operator if T_{1} is increasing in u and decreasing in v, i.e., u_{i}, $v_{i}(i=1,2) \in P, u_{1} \leq u_{2}, v_{1} \geq v_{2}$ imply $T_{1}\left(u_{1}, v_{1}\right) \leq T_{1}\left(u_{2}, v_{2}\right)$. The element $u \in P$ is called a fixed point of T_{1} if $T_{1}(u, u)=u$.

Theorem 2.1. [9] Let P be a normal cone in a real Banach space E.
Assume that $T_{1}: P \times P \rightarrow P$ is a mixed monotone operator and that satisfy the following conditions:
(i) $\exists h \in P$ with $h \neq \theta$ such that $T_{1}(h, h) \in P_{h} ;$
(ii) for $u, v \in P$ and $t \in(0,1)$ there exists $\phi(t) \in(t, 1]$ such that

$$
T_{1}\left(t u, \frac{1}{t} v\right) \geq \phi(t) T_{1}(u, v)
$$

Then
(1) $T_{1}: P_{h} \times P_{h} \rightarrow P_{h} ;$
(2) $\exists x_{0}, y_{0} \in P_{h}$ and $r \in(0,1)$ such that

$$
r y_{0} \leq x_{0}<y_{0}, x_{0} \leq T_{1}\left(x_{0}, y_{0}\right) \leq T_{1}\left(y_{0}, x_{0}\right) \leq y_{0}
$$

(3) the operator equation $T_{1}(u, u)=u$ has a unique solution u^{*} in P_{h};
(4) for initial values $u_{0}, v_{0} \in P_{h}$, construct

$$
\begin{aligned}
& u_{n}=T_{1}\left(u_{n-1}, v_{n-1}\right) \\
& v_{n}=T_{1}\left(v_{n-1}, u_{n-1}\right), n=1,2, \ldots
\end{aligned}
$$

then $u_{n} \rightarrow u^{*}$ and $v_{n} \rightarrow u^{*}$.
In paper [6], Sun and Zhao studied the equation

$$
\begin{aligned}
& D_{0^{+}}^{\nu} x(t)+g(t) f(t, x(t))=0, \quad 0<t<1 \\
& x(0)=x^{\prime}(0)=0, \quad x(1)=\int_{0}^{1} q(\zeta) x(\zeta) d \zeta
\end{aligned}
$$

where $2<\nu \leq 3, D_{0^{+}}^{\nu}$ is the Riemann-Liouville fractional derivative.
Motivated by [6], in paper [1], Feng and Zhai considered the following form:

$$
\begin{align*}
& D_{0^{+}}^{\nu} x(t)+f(t, x(t))+g(t, x(t))=0, \quad 0<t<1 \tag{2}\\
& x(0)=x^{\prime}(0)=0, \quad x(1)=\int_{0}^{1} q(\zeta) x(\zeta) d \zeta
\end{align*}
$$

where $2<\nu \leq 3, D_{0^{+}}^{\nu}$ is the Riemann-Liouville fractional derivative. The function $q(t)$ satisfies the following conditions:

$$
\begin{aligned}
& q:[0,1] \rightarrow[0, \infty) \quad \text { with } \quad q \in L^{1}[0,1] \quad \text { and } \\
& \omega_{1}=\int_{0}^{1} \zeta^{\nu-1}(1-\zeta) q(\zeta) d \zeta>0, \quad \omega_{2}=\int_{0}^{1} \zeta^{\nu-1} q(\zeta) d \zeta<1
\end{aligned}
$$

In that paper the authors obtained some alternative answers to the them main results by using a sum operator.
In this paper we study the equation

$$
\begin{align*}
& D_{0^{+}}^{\nu} x(s, t)+f\left(t, \frac{\partial}{\partial s} x(s, t)\right)+g(t, x(s, t))+e\left(t, x(s, t), \frac{\partial}{\partial s} x(s, t)\right)=0 \tag{3}\\
& 0<s, t<1, \quad x(s, 0)=\frac{\partial}{\partial t} x(s, 0)=0, \quad x(s, 1)=\int_{0}^{1} q_{1}(s, \zeta) x(s, \zeta) d \zeta
\end{align*}
$$

where q_{1} satisfies the following:

$$
\begin{aligned}
& (Q) \quad q_{1}:[0,1] \times[0,1] \rightarrow[0, \infty) \quad \text { with } \quad q_{1} \in L^{1}([0,1] \times[0,1]) \quad \text { and } \\
& \omega_{1}=\int_{0}^{1} \zeta^{\nu-1}(1-\zeta) q_{1}(s, \zeta) d \zeta>0, \quad \omega_{2}=\int_{0}^{1} \zeta^{\nu-1} q_{1}(s, \zeta) d \zeta<1
\end{aligned}
$$

Definition 2.2. [4, 5] The Riemann-Liouville fractional derivative for a continuous function f is defined by

$$
D^{\nu} f(t)=\frac{1}{\Gamma(n-\nu)}\left(\frac{d}{d t}\right)^{n} \int_{0}^{t} \frac{f(\zeta)}{(t-\zeta)^{\nu-n+1}} d \zeta, \quad(n=[\nu]+1)
$$

where the right-hand side is point-wise defined on $(0, \infty)$.
Definition 2.3. $[4,5]$ Let $[a, b]$ be an interval in \mathbb{R} and $\nu>0$. The Riemann-Liouville fractional order integral of a function $f \in L^{1}([a, b], \mathbb{R})$ is defined by

$$
I_{a}^{\nu} f(t)=\frac{1}{\Gamma(\nu)} \int_{a}^{t} \frac{f(\zeta)}{(t-\zeta)^{1-\nu}} d \zeta
$$

whenever the integral exists.
Suppose;

$$
\begin{equation*}
G(t, \zeta)=G_{1}(t, \zeta)+G_{2}(t, \zeta), \quad(t, \zeta) \in[0,1] \times[0,1] \tag{4}
\end{equation*}
$$

where

$$
G_{1}(t, \zeta)=\frac{1}{\Gamma(\nu)}\left\{\begin{array}{l}
t^{\nu-1}(1-\zeta)^{\nu-1}-(t-\zeta)^{\nu-1}, \quad 0 \leq \zeta \leq t \leq 1 \tag{5}\\
t^{\nu-1}(1-\zeta)^{\nu-1},
\end{array} 0 \leq t \leq \zeta \leq 18\right.
$$

and

$$
\begin{equation*}
G_{2}(t, \zeta)=\frac{t^{\nu-1}}{1-\omega_{2}} \int_{0}^{1} G_{1}(\tau, \zeta) q_{1}(\zeta, \tau) d \tau \tag{6}
\end{equation*}
$$

Lemma 2.1. [8] The function $G_{1}(t, \zeta)$ defined by (5) has the following properties:

$$
\frac{t^{\nu-1}(1-t) \zeta(1-\zeta)^{\nu-1}}{\Gamma(\nu)} \leq G_{1}(t, \zeta) \leq \frac{\zeta(1-\zeta)^{\nu-1}}{\Gamma(\nu-1)}, \quad t, \zeta \in[0,1]
$$

From [6] and Lemma 2.1, we have

$$
\frac{\omega_{1} \zeta(1-\zeta)^{\nu-1} t^{\nu-1}}{\left(1-\omega_{2}\right) \Gamma(\nu)} \leq G(t, \zeta) \leq \frac{t^{\nu-1}(1-\zeta)^{\nu-1}}{\left(1-\omega_{2}\right) \Gamma(\nu)}, \quad t, \zeta \in[0,1]
$$

Theorem 2.2. [1] Assume (Q) and
$\left(H_{1}\right) f:[0,1] \times[0, \infty) \rightarrow[0, \infty)$ is continuous and increasing with respect to the second argument, $f(t, 0) \not \equiv 0$;
$\left(H_{2}\right) g:[0,1] \times[0, \infty) \rightarrow[0, \infty)$ is continuous and decreasing with respect to the second argument, $g(t, 1) \not \equiv 0$;
$\left(H_{3}\right)$ for $\lambda \in(0,1), \exists \phi_{i}(\lambda) \in(\lambda, 1), i=1,2$ with

$$
f(t, \lambda u) \geq \phi_{1}(\lambda) f(t, u), \quad g(t, \lambda u) \leq \frac{1}{\phi_{2}(\lambda)} g(t, u)
$$

for $t \in(0,1), u \in[0, \infty)$.
Then the problem (2) has a unique positive solution x^{*} in P_{h}, where $h(t)=t^{\nu-1}, t \in[0,1]$ and for $u_{0}, v_{0} \in P_{h}$,

$$
\begin{aligned}
& u_{n+1}(t)=\int_{0}^{1} G(t, \zeta)\left[f\left(\zeta, u_{n}(\zeta)\right)+g\left(\zeta, v_{n}(\zeta)\right)\right] d \zeta \\
& v_{n+1}(t)=\int_{0}^{1} G(t, \zeta)\left[f\left(\zeta, v_{n}(\zeta)\right)+g\left(\zeta, u_{n}(\zeta)\right)\right] d \zeta
\end{aligned}
$$

$n=0,1,2, \ldots$, we have $u_{n}(t) \rightarrow u^{*}(t), v_{n}(t) \rightarrow u^{*}(t)$, where $G(t, \zeta)$ is given as (4).
Recall that $T_{1}: P \rightarrow P$ is said to be homogeneous if $T_{1}(t u)=t T_{1}(t u)$ for $t>0, u \in E$. $T_{1}: P \rightarrow P$ is said to be sub-homogeneous if $T_{1}(t u) \geq t T_{1}(u)$ for all $t>0, u \in E$.
Theorem 2.3. [7] Let P be a normal cone in a real Banach space $E, T_{1}: P \rightarrow P$ is an increasing sub-homogeneous operator, $T_{2}: P \rightarrow P$ is a decreasing operator and $T_{3}: P \times P \rightarrow P$ is a mixed monotone operator that satisfy the following conditions:

$$
T_{2}\left(\frac{1}{t} v\right) \geq t T_{2} v, \quad T_{3}\left(t u, \frac{1}{t} v\right) \geq t^{\gamma} T_{3}(u, v), \quad t \in(0,1), \gamma \in(0,1), u, v \in P
$$

Assume that
(i) $\exists h_{0} \in P_{h}$ such that $T_{1} h_{0} \in P_{h}, T_{2} h_{0} \in P_{h}, T_{3}\left(h_{0}, h_{0}\right) \in P_{h}$;
(ii) $\exists \delta_{0}>0$ with $T_{3}(u, v) \geq \delta_{0}\left(T_{1} u+T_{2} u\right)$ for $u, v \in P$.

Then
(1) $T_{1}: P_{h} \rightarrow P_{h}, T_{2}: P_{h} \rightarrow P_{h}$ and $T_{3}: P_{h} \times P_{h} \rightarrow P_{h}$;
(2) $\exists x_{0}, y_{0} \in P_{h}$ and $r \in(0,1)$ with

$$
r y_{0} \leq x_{0}<y_{0}, x_{0} \leq T_{1} x_{0}+T_{2} y_{0}+T_{3}\left(x_{0}, y_{0}\right) \leq T_{1} y_{0}+T_{2} x_{0}+T_{3}\left(y_{0}, x_{0}\right) \leq y_{0}
$$

(3) the operator equation $T_{1} u+T_{2} u+T_{3}(u, u)=u$ has a unique solution u^{*} in P_{h};
(4) for $u_{0}, v_{0} \in P_{h}$, construct

$$
\begin{aligned}
& u_{n}=T_{1} u_{n-1}+T_{2} v_{n-1}+T_{3}\left(u_{n-1}, v_{n-1}\right) \\
& v_{n}=T_{1} v_{n-1}+T_{2} u_{n-1}+T_{3}\left(v_{n-1}, u_{n-1}\right), n=1,2, \ldots
\end{aligned}
$$

then $u_{n} \rightarrow u^{*}, v_{n} \rightarrow u^{*}$.

3. MAIN RESULTS

In this section we consider the generalization of Theorem 2.3.
Theorem 3.1. Let P be a normal cone, in a real Banach space $E, T_{1}: P \rightarrow P$ be a decreasing, $T_{2}: P \rightarrow P$ be a increasing, $T_{3}: P \times P \rightarrow P$ be a mixed monotone operators and
$\left(H_{1}\right)$ For $u, v \in P$ and $t \in(0,1), \exists \phi_{1}(t), \phi_{2}(t), \phi_{3}(t) \in(t, 1)$ with

$$
\begin{equation*}
T_{1}(t v) \leq \frac{1}{\phi_{1}(t)} T_{1} v, \quad T_{2}(t u) \geq \phi_{2}(t) T_{2} u \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{3}\left(t u, \frac{1}{t} v\right) \geq \phi_{3}(t) T_{3}(u, v) \tag{8}
\end{equation*}
$$

$\left(H_{2}\right) \exists h_{0} \in P_{h}$ such that $T_{1} h_{0}+T_{2} h_{0}+T_{3}\left(h_{0}, h_{0}\right) \in P_{h}$.
Then
(i) $\exists x_{0}, y_{0} \in P_{h}$ and $r \in(0,1)$ such that

$$
r y_{0} \leq x_{0}<y_{0}, x_{0} \leq T_{1} y_{0}+T_{2} x_{0}+T_{3}\left(x_{0}, y_{0}\right) \leq T_{1} x_{0}+T_{2} y_{0}+T_{3}\left(y_{0}, x_{0}\right) \leq y_{0}
$$

(ii) the equation $T_{1} u+T_{2} u+T_{3}(u, u)=u$ has a unique solution u^{*} in P_{h};
(iii) for $u_{0}, v_{0} \in P_{h}$, construct

$$
\begin{aligned}
& u_{n}=T_{1} v_{n-1}+T_{2} u_{n-1}+T_{3}\left(u_{n-1}, v_{n-1}\right) \\
& v_{n}=T_{1} u_{n-1}+T_{2} v_{n-1}+T_{3}\left(v_{n-1}, u_{n-1}\right), n=1,2, \ldots
\end{aligned}
$$

then $u_{n} \rightarrow u^{*}$ and $v_{n} \rightarrow u^{*}$.
Proof. From (7) we obtain

$$
\begin{align*}
& T_{1}\left(\frac{1}{t} v\right) \geq \phi_{1}(t) T_{1} v, \quad T_{2}(t u) \geq \phi_{2}(t) T_{2} u \tag{9}\\
& T_{3}\left(t u, \frac{1}{t} v\right) \geq \phi_{3}(t) T_{3}(u, v), t \in(0,1), u, v \in P
\end{align*}
$$

Since $T_{1} h_{0}+T_{2} h_{0}+T_{3}\left(h_{0}, h_{0}\right) \in P_{h}, \exists \lambda_{1}, \lambda_{2}>0$ with

$$
\lambda_{1} h \leq T_{1} h_{0}+T_{2} h_{0}+T_{3}\left(h_{0}, h_{0}\right) \leq \lambda_{2} h .
$$

From $h_{0} \in P_{h}, \exists t_{0} \in(0,1)$ such that

$$
t_{0} h \leq h_{0} \leq \frac{1}{t_{0}} h .
$$

Let $\phi(t)=\min \left\{\phi_{1}(t), \phi_{2}(t), \phi_{3}(t)\right\}$. Then $\phi(t) \in(t, 1)$ for $t \in(0,1)$. From $\left(H_{1}\right)$ and (9),

$$
\begin{aligned}
T_{1} h+T_{2} h+T_{3}(h, h) & \geq T_{1}\left(\frac{1}{t_{0}} h_{0}\right)+T_{2}\left(t_{0} h_{0}\right)+T_{3}\left(t_{0} h_{0}, t_{0}^{-1} h_{0}\right) \\
& \geq \phi_{1}\left(t_{0}\right) T_{1} h_{0}+\phi_{2}\left(t_{0}\right) T_{2} h_{0}+\phi_{3}\left(t_{0}\right) T_{3}\left(h_{0}, h_{0}\right) \\
& \geq \phi\left(t_{0}\right)\left[T_{1} h_{0}+T_{2} h_{0}+T_{3}\left(h_{0}, h_{0}\right)\right] \\
& \geq \lambda_{1} \phi\left(t_{0}\right) h \\
T_{1} h+T_{2} h+T_{3}(h, h) & \leq T_{1}\left(t_{0} h_{0}\right)+T_{2}\left(\frac{1}{t_{0}} h_{0}\right)+T_{3}\left(t_{0}^{-1} h_{0}, t_{0} h_{0}\right) \\
& \leq \frac{1}{\phi_{1}\left(t_{0}\right)} T_{1} h_{0}+\frac{1}{\phi_{2}\left(t_{0}\right)} T_{2} h_{0}+\frac{1}{\phi_{3}\left(t_{0}\right)} T_{3}\left(h_{0}, h_{0}\right) \\
& \leq \frac{1}{\phi\left(t_{0}\right)}\left[T_{1} h_{0}+T_{2} h_{0}+T_{3}\left(h_{0}, h_{0}\right)\right] \\
& \leq \frac{\lambda_{2}}{\phi\left(t_{0}\right)} h
\end{aligned}
$$

Note that $\lambda_{1} \phi\left(t_{0}\right), \frac{\lambda_{2}}{\phi\left(t_{0}\right)}>0$, we get $T_{1} h+T_{2} h+T_{3}(h, h) \in P_{h}$.
We define $T=T_{1}+T_{2}+T_{3}$ by $T(u, v)=T_{1} v+T_{2} u+T_{3}(u, v)$, then $T: P \times P \rightarrow P$ is a mixed monotone and $T(h, h)=T_{1} h+T_{2} h+T_{3}(h, h) \in P_{h}$.
Moreover, for $u, v \in P$ and $t \in(0,1)$, we have

$$
\begin{aligned}
T\left(t u, t^{-1} v\right) & =T_{1}\left(t^{-1} v\right)+T_{2}(t u)+T_{3}\left(t u, t^{-1} v\right) \\
& \geq \phi_{1}(t) T_{1} v+\phi_{2}(t) T_{2} u+\phi_{3}(t) T_{3}(u, v) \\
& \geq \phi(t)\left[T_{1} v+T_{2} u+T_{3}(u, v)\right] \\
& =\phi(t) T(u, v)
\end{aligned}
$$

Hence, all the conditions of Theorem 2.1 are satisfied. Application of Theorem 2.1 implies that:
$\exists x_{0}, y_{0} \in P_{h}$ and $r \in(0,1)$ with

$$
r y_{0} \leq x_{0}<y_{0}, x_{0} \leq T\left(x_{0}, y_{0}\right) \leq T\left(y_{0}, x_{0}\right) \leq y_{0}
$$

and $T(u, u)=u$ has a unique solution u^{*} in P_{h}; for $u_{0}, v_{0} \in P_{h}$, construct

$$
\begin{aligned}
& u_{n}=T\left(u_{n-1}, v_{n-1}\right) \\
& v_{n}=T\left(v_{n-1}, u_{n-1}\right), n=1,2, \ldots
\end{aligned}
$$

then $u_{n} \rightarrow u^{*}$ and $v_{n} \rightarrow u^{*}$. That is,
(i) $\exists x_{0}, y_{0} \in P_{h}$ and $r \in(0,1)$ with

$$
r y_{0} \leq x_{0}<y_{0}, x_{0} \leq T_{1} y_{0}+T_{2} x_{0}+T_{3}\left(x_{0}, y_{0}\right) \leq T_{1} x_{0}+T_{2} y_{0}+T_{3}\left(y_{0}, x_{0}\right) \leq y_{0}
$$

(ii) equation $T_{3}(u, u)+T_{1} u+T_{2} u=u$ has a unique solution u^{*} in P_{h};
(iii) for $u_{0}, v_{0} \in P_{h}$, construct

$$
\begin{aligned}
& u_{n}=T_{1} v_{n-1}+T_{2} u_{n-1}+T_{3}\left(u_{n-1}, v_{n-1}\right) \\
& v_{n}=T_{1} u_{n-1}+T_{2} v_{n-1}+T_{3}\left(v_{n-1}, u_{n-1}\right), n=1,2, \ldots
\end{aligned}
$$

we have $u_{n} \rightarrow u^{*}$ and $v_{n} \rightarrow u^{*}$.

If in Theorem 3.1, we put $\phi_{1}(t)=\phi_{2}(t)=t$ and $\phi_{3}(t)=t^{\gamma}$, then we can obtain the following result.
Corollary 3.1. Let P be a normal cone in a real Banach space $E, T_{1}: P \rightarrow P$ be a decreasing operator, $T_{2}: P \rightarrow P$ be a sub-homogeneous operator, $T_{3}: P \times P \rightarrow P$ be a mixed monotone operators and $\gamma \in(0,1)$, that satisfies the following conditions:
$\left(H_{1}\right)$ For $u, v \in P$ and $t \in(0,1)$

$$
\begin{equation*}
T_{1}\left(\frac{1}{t} v\right) \geq t T_{1} v, \quad T_{3}\left(t u, \frac{1}{t} v\right) \geq t^{\gamma} T_{3}(u, v) \tag{10}
\end{equation*}
$$

$\left(H_{2}\right) \exists h_{0} \in P_{h}$ such that $T_{1} h_{0}+T_{2} h_{0}+T_{3}\left(h_{0}, h_{0}\right) \in P_{h}$.
Then
(i) $\exists x_{0}, y_{0} \in P_{h}$ and $r \in(0,1)$ such that

$$
r y_{0} \leq x_{0}<y_{0}, x_{0} \leq T_{1} y_{0}+T_{2} x_{0}+T_{3}\left(x_{0}, y_{0}\right) \leq T_{1} x_{0}+T_{2} y_{0}+T_{3}\left(y_{0}, x_{0}\right) \leq y_{0}
$$

(ii) equation $T_{1} u+T_{2} u+T_{3}(u, u)=u$ has a unique solution u^{*} in P_{h};
(iii) for $u_{0}, v_{0} \in P_{h}$, construct

$$
\begin{aligned}
& u_{n}=T_{1} v_{n-1}+T_{2} u_{n-1}+T_{3}\left(u_{n-1}, v_{n-1}\right) \\
& v_{n}=T_{1} u_{n-1}+T_{2} v_{n-1}+T_{3}\left(v_{n-1}, u_{n-1}\right), n=1,2, \ldots,
\end{aligned}
$$

then $u_{n} \rightarrow u^{*}$ and $v_{n} \rightarrow u^{*}$.
Lemma 3.1. Assume (Q) holds. Let $v \in C([0,1] \times[0,1]), 2<\nu \leq 3$, then the problem

$$
\begin{align*}
& D_{0^{+}}^{\nu} x(s, t)+v(s, t)=0, \tag{11}\\
& 0<s, t<1, x(s, 0)=\frac{\partial}{\partial t} x(s, 0)=0, \quad x(s, 1)=\int_{0}^{1} q_{1}(s, \zeta) x(s, \zeta) d \zeta,
\end{align*}
$$

has the solution

$$
x(s, t)=\int_{0}^{1} G(t, \zeta) v(s, \zeta) d \zeta
$$

where $G(t, \zeta)$ is given as (4).
Proof. We reduce problem (11) to an equivalent integral equation

$$
x(s, t)=-I_{0^{+}}^{\nu} v(s, t)+c_{1} t^{\nu-1}+c_{2} t^{\nu-2}+c_{3} t^{\nu-3}
$$

for some $c_{1}, c_{2}, c_{3} \in \mathbb{R}$. Consequently the general solution of the problem (11) is

$$
x(s, t)=-\int_{0}^{t} \frac{(t-\zeta)^{\nu-1}}{\Gamma(\nu)} v(s, \zeta) d \zeta+c_{1} t^{\nu-1}+c_{2} t^{\nu-2}+c_{3} t^{\nu-3}
$$

By $x(s, 0)=\frac{\partial}{\partial t} x(s, 0)=0, \quad x(s, 1)=\int_{0}^{1} q_{1}(s, \zeta) x(s, \zeta) d \zeta$, we have

$$
c_{2}=c_{3}=0, \quad c_{1}=\int_{0}^{1} \frac{(1-\zeta)^{\nu-1}}{\Gamma(\nu)} v(s, \zeta) d \zeta+\int_{0}^{1} q_{1}(s, \zeta) u(s, \zeta) d \zeta .
$$

Hence the unique solution of (11) is

$$
\begin{aligned}
x(s, t)= & -\int_{0}^{t} \frac{(t-\zeta)^{\nu-1}}{\Gamma(\nu)} v(s, \zeta) d \zeta+\frac{t^{\nu-1}}{\Gamma(\nu)} \int_{0}^{1}(1-\zeta)^{\nu-1} v(s, \zeta) d \zeta \\
& +t^{\nu-1} \int_{0}^{1} q_{1}(s, \zeta) u(s, \zeta) d \zeta \\
& =\int_{0}^{1} G_{1}(t, \zeta) v(s, \zeta) d \zeta+t^{\nu-1} \int_{0}^{1} q_{1}(s, \zeta) u(s, \zeta) d \zeta .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int_{0}^{1} q_{1}(s, t) x(s, t) d t= & \int_{0}^{1} q_{1}(s, t)\left(\int_{0}^{1} G_{1}(t, \zeta) v(s, \zeta) d \zeta\right) d t \\
& +\int_{0}^{1}\left(q_{1}(s, t) t^{\nu-1} \int_{0}^{1} q_{1}(s, \zeta) x(s, \zeta) d \zeta\right) d t \\
& =\int_{0}^{1}\left(\int_{0}^{1} q_{1}(s, t) G_{1}(t, \zeta) d t\right) v(s, \zeta) d \zeta \\
& +\left(\int_{0}^{1} t^{\nu-1} q_{1}(s, t) d t\right)\left(\int_{0}^{1} q_{1}(s, \zeta) x(s, \zeta) d \zeta\right)
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{1} q_{1}(s, \zeta) x(s, \zeta) d \zeta= & \frac{1}{1-\omega_{1}} \int_{0}^{1}\left(\int_{0}^{1} G_{1}(t, \zeta) q_{1}(s, t) d t\right) v(s, \zeta) d \zeta \\
& =\frac{1}{1-\omega_{1}} \int_{0}^{1}\left(\int_{0}^{1} G_{1}(\tau, \zeta) q_{1}(s, \tau) d \tau\right) v(s, \zeta) d \zeta
\end{aligned}
$$

We have

$$
\begin{aligned}
x(s, t)= & \int_{0}^{1} G_{1}(t, \zeta) v(s, \zeta) d \zeta+\frac{t^{\nu-1}}{1-\omega_{2}} \int_{0}^{1}\left(\int_{0}^{1} G_{1}(\tau, \zeta) q_{1}(s, \tau) d \tau\right) v(s, \zeta) d \zeta \\
& =\int_{0}^{1} G_{1}(t, \zeta) v(s, \zeta) d \zeta+\int_{0}^{1} G_{2}(t, \zeta) v(s, \zeta) d \zeta \\
& =\int_{0}^{1} G(t, \zeta) v(s, \zeta) d \zeta
\end{aligned}
$$

This completes the proof.
In this section we consider the Banach space E as the follows,

$$
E=\left\{y(s, t) \in C([0,1] \times[0,1]) \left\lvert\, \frac{\partial}{\partial s} y(s, t) \in C([0,1] \times[0,1])\right.\right\}
$$

with the norm

$$
\|y\|=\max \left\{\max _{s, t \in[0,1]}\left\{|y(s, t)|, \max _{s, t \in[0,1]}\left|\frac{\partial}{\partial s} y(s, t)\right|\right\}\right\}
$$

also let E be endowed with an order relation $\left.\left.\frac{\partial}{\partial s} y(s, t)\right) \leq \frac{\partial}{\partial s} y^{\prime}(s, t)\right)$ if $y(s, t) \leq y^{\prime}(s, t)$. let

$$
\begin{equation*}
\left.P=\left\{y \in E: y(s, t), \frac{\partial}{\partial s} y(s, t)\right) \geq 0, s, t \in[0,1]\right\} \tag{12}
\end{equation*}
$$

It's easy to see that, P is a normal cone and $P_{h} \subseteq E$.
We can obtain the following consequences.
Theorem 3.2. Assume (Q) and
$\left(H_{1}\right) f:[0,1] \times[0, \infty) \rightarrow[0, \infty)$ is continuous and decreasing with respect to the second argument, $f(t, 1) \not \equiv 0$;
$\left(H_{2}\right) g:[0,1] \times[0, \infty) \rightarrow[0, \infty)$ is continuous and increasing with respect to the second argument, $g(t, 0) \not \equiv 0$;
$\left(H_{3}\right)$ e : $[0,1] \times[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ is continuous and increasing with respect to the second argument, also decreasing with respect to the third argument, $e(t, 0,1) \not \equiv 0$;
$\left(H_{4}\right)$ for $\lambda \in(0,1), \exists \phi_{i}(\lambda) \in(\lambda, 1), i=1,2,3$ such that

$$
\left.\begin{array}{l}
f\left(t, \frac{1}{\lambda} v\right) \geq \phi_{1}(\lambda) f(t, v), \quad g(t, \lambda u) \leq \frac{1}{\phi_{2}(\lambda)} g(t, u), \quad e\left(t, \lambda u, \frac{1}{\lambda} v\right) \geq \phi_{3}(\lambda) e(t, u, v) \\
\quad \text { for } t
\end{array}\right)(0,1), u, v \in[0, \infty) .
$$

Then (2) has a solution x^{*} in P_{h}, where $h(t)=t^{\alpha-1}, t \in[0,1]$ and for $u_{0} \in P_{h}$, construct

$$
\begin{array}{r}
u_{n+1}(s, t)=\int_{0}^{1} G(t, \xi)\left[f\left(s, \frac{\partial}{\partial s} v_{n}(s, \xi)\right)+g\left(s, u_{n}(s, \xi)\right)+e\left(s, u_{n}(s, \xi), \frac{\partial}{\partial s} v_{n}(s, \xi)\right)\right] d \xi, \\
v_{n+1}(s, t)=\int_{0}^{1} G(t, \xi)\left[f\left(s, u_{n}(s, \xi)\right)+g\left(s, \frac{\partial}{\partial s} v_{n}(s, \xi)\right)+e\left(s, \frac{\partial}{\partial s} v_{n}(s, \xi), u_{n}(s, \xi)\right)\right] d \xi, \\
n=0,1,2, \ldots, \text { and } u_{n}(s, t) \rightarrow u^{*}(s, t), v_{n}(s, t) \rightarrow u^{*}(s, t) \text { where } G(t, s) \text { is given as (4). }
\end{array}
$$

Proof. From Lemma (3.1) we know that problem (3) has an integral formulation given by

$$
x(s, t)=\int_{0}^{1} G(t, \zeta)\left[f\left(\zeta, \frac{\partial}{\partial s} y(s, \zeta)\right)+g(\zeta, x(s, \zeta))+e\left(s, x(s, \zeta), \frac{\partial}{\partial s} y(s, \zeta)\right)\right] d \zeta
$$

Define, $T_{1}: P \rightarrow P, T_{2}: P \rightarrow P$ and $T_{3}: P \times P \rightarrow P$ by

$$
\begin{aligned}
& T_{1} y(s, t)=\int_{0}^{1} G(t, \zeta) f\left(\zeta, \frac{\partial}{\partial s} y(s, \zeta)\right) d \zeta, \quad T_{2} x(s, t)=\int_{0}^{1} G(t, \zeta) g(\zeta, x(s, \zeta)) d \zeta \\
& T_{3}(x(s, t), y(s, t))=\int_{0}^{1} G(t, \zeta) e\left(s, x(s, \zeta), \frac{\partial}{\partial s} y(s, \zeta)\right) d \zeta
\end{aligned}
$$

Then u is the solution of problem (3) if and only if

$$
u=T_{1} u+T_{2} u+T_{3}(u, u)
$$

T_{1} is decreasing, T_{2} is increasing. We show that T_{3} is increasing operator respect to the second argument, also decreasing respect to third argument. For $(x, y),\left(x^{\prime}, y^{\prime}\right) \in P \times P$ with $x \geq x^{\prime}$ and $y \leq y^{\prime}$, we have

$$
\begin{aligned}
T_{3}(x(s, t), y(s, t))= & \int_{0}^{1} G(t, \zeta) f\left(\zeta, x(s, \zeta), \frac{\partial}{\partial s} y(s, \zeta)\right) d \zeta \\
& \geq_{1} \int_{0}^{1} G(t, \zeta) f\left(\zeta, x^{\prime}(s, \zeta), \frac{\partial}{\partial s} y^{\prime}(s, \zeta)\right) d \zeta \\
& =T_{3}\left(x^{\prime}(s, t), y^{\prime}(s, t)\right)
\end{aligned}
$$

We can prove that T_{1}, T_{2} and T_{3} are satisfies (7) and (13). So we only need to prove that $T_{1} h+T_{2} h+T_{3}(h, h) \in P_{h}$. From H_{1}, H_{2}, H_{3} and 2.1,

$$
\begin{aligned}
& T_{1} h(t)+T_{2} h(t)+T_{3}(h(t), h(t))=\int_{0}^{1} G(t, \zeta)\left[f(\zeta, 0)+g\left(\zeta, \zeta^{\nu-1}\right)+e\left(\zeta, \zeta^{\nu-1}, 0\right)\right] d \zeta \\
& \leq \frac{t^{\nu-1}}{\left(1-\omega_{2}\right) \Gamma(\nu)} \int_{0}^{1}(1-\zeta)^{\nu-1}[f(\zeta, 0)+g(\zeta, 1)+e(\zeta, 1,0)] d \zeta \\
& T_{1} h(t)+T_{2} h(t)+T_{3}(h(t), h(t))=\int_{0}^{1} G(t, \zeta)\left[f(\zeta, 0)+g\left(\zeta, \zeta^{\nu-1}\right)+e\left(\zeta, \zeta^{\nu-1}, 0\right)\right] d \zeta \\
& \geq \frac{\omega_{1} t^{\nu-1}}{\left(1-\omega_{2}\right) \Gamma(\nu)} \int_{0}^{1} \zeta(1-\zeta)^{\nu-1}[f(\zeta, 1)+g(\zeta, 0)+e(\zeta, 0,1)] d \zeta
\end{aligned}
$$

From $\left(H_{3}\right)$ and $\left(H_{1}\right)$ we have

$$
f(\zeta, 0)+g(\zeta, 1)+e(\zeta, 1,0) \geq f(\zeta, 1)+g(\zeta, 0)+e(\zeta, 0,1)>0
$$

Note that $\nu-1>0$ and $f(\zeta, 1)+g(\zeta, 0)+e(\zeta, 0,1) \not \equiv 0$, we get

$$
\begin{aligned}
& \int_{0}^{1}(1-\zeta)^{\nu-1}[f(\zeta, 0)+g(\zeta, 1)+e(\zeta, 1,0)] d \zeta \\
& \geq_{1} \int_{0}^{1} \zeta(1-\zeta)^{\nu-1}[f(\zeta, 1)+g(\zeta, 0)+e(\zeta, 0,1)] d \zeta>0
\end{aligned}
$$

Let

$$
\begin{aligned}
& l_{1}:=\frac{\omega_{1}}{\left(1-\omega_{2}\right) \Gamma(\nu)} \int_{0}^{1} \zeta(1-\zeta)^{\nu-1}[f(\zeta, 1)+g(\zeta, 0)+e(\zeta, 0,1)] d \zeta>0 \\
& l_{2}:=\frac{1}{\left(1-\omega_{2}\right) \Gamma(\nu)} \int_{0}^{1}(1-\zeta)^{\nu-1}[f(\zeta, 0)+g(\zeta, 1)+e(\zeta, 1,0)] d \zeta>0
\end{aligned}
$$

Then $l_{2} \geq l_{1}>0$ and thus $l_{1} h(t) \leq T_{1} h(t)+T_{2} h(t)+T_{3}(h(t), h(t)) \leq l_{2} h(t), t \in[0,1]$, hence $T_{1} h(t)+T_{2} h(t)+T_{3}(h(t), h(t)) \in P_{h}$.
Finally, by Theorem 3.1, $T_{1} u+T_{2} u+T_{3}(u, u)=u$ has a unique solution $x^{*} \in p$; for $u_{0}, v_{0} \in P_{h}$, construct

$$
\begin{aligned}
& u_{n}=T_{1} v_{n-1}+T_{2} u_{n-1}+T_{3}\left(u_{n-1}, v_{n-1}\right) \\
& v_{n}=T_{1} u_{n-1}+T_{2} v_{n-1}+T_{3}\left(v_{n-1}, u_{n-1}\right), n=1,2, \ldots,
\end{aligned}
$$

then $u_{n} \rightarrow x^{*}$ and $v_{n} \rightarrow x^{*}$. That is, problem (3) has a unique positive solution $x^{*} \in P_{h}$, where $h(t)=t^{\nu-1}, t \in[0,1]$ and for $u_{0}, v_{0} \in P_{h}$, construct

$$
\begin{aligned}
& u_{n+1}(s, t)=\int_{0}^{1} G(t, \zeta)\left[f\left(s, \frac{\partial}{\partial s} v_{n}(s, \zeta)\right)+g\left(s, u_{n}(s, \zeta)\right)+e\left(s, u_{n}(s, \zeta), \frac{\partial}{\partial s} v_{n}(s, \zeta)\right)\right] d \zeta, \\
& v_{n+1}(s, t)=\int_{0}^{1} G(t, \zeta)\left[f\left(s, u_{n}(s, \zeta)\right)+g\left(s, \frac{\partial}{\partial s} v_{n}(s, \zeta)\right)+e\left(s, \frac{\partial}{\partial s} v_{n}(s, \zeta), u_{n}(s, \zeta)\right)\right] d \zeta, \\
& n=0,1,2, \ldots, \text { then } u_{n}(s, t) \rightarrow x^{*}(s, t), v_{n}(s, t) \rightarrow x^{*}(s, t) .
\end{aligned}
$$

From the previous theorem and Corollary 3.1, we obtain the following result.
Corollary 3.2. Assume (Q) and
$\left(H_{1}\right) f:[0,1] \times[0, \infty) \rightarrow[0, \infty)$ is continuous and decreasing with respect to the second argument, $f(t, 1) \not \equiv 0$;
$\left(H_{2}\right) g:[0,1] \times[0, \infty) \rightarrow[0, \infty)$ is continuous and increasing with respect to the second argument, $g(t, 0) \not \equiv 0$;
$\left(H_{3}\right) e:[0,1] \times[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ is continuous and increasing with respect to the second argument, also decreasing with respect to the third argument, $e(t, 0,1) \not \equiv 0$;
$\left(H_{4}\right)$ there exists $\lambda \in(0,1)$ such that

$$
f\left(t, \frac{1}{\lambda} v\right) \geq \lambda f(t, v), \quad g(t, \lambda u) \leq \frac{1}{\lambda} g(t, u), \quad e\left(t, \lambda u, \frac{1}{\lambda} v\right) \geq \lambda^{\gamma} e(t, u, v)
$$

for $t, \gamma \in(0,1), u, v \in[0, \infty)$.
Then the problem (2) has a unique positive solution x^{*} in P_{h}, where $h(t)=t^{\nu-1}, t \in[0,1]$ and for $x_{0} \in P_{h}$, construct

$$
\begin{array}{r}
u_{n+1}(s, t)=\int_{0}^{1} G(t, \zeta)\left[f\left(s, \frac{\partial}{\partial s} v_{n}(s, \zeta)\right)+g\left(s, u_{n}(s, \zeta)\right)+e\left(s, u_{n}(s, \zeta), \frac{\partial}{\partial s} v_{n}(s, \zeta)\right)\right] d \zeta, \\
v_{n+1}(s, t)=\int_{0}^{1} G(t, \zeta)\left[f\left(s, u_{n}(s, \zeta)\right)+g\left(s, \frac{\partial}{\partial s} v_{n}(s, \zeta)\right)+e\left(s, \frac{\partial}{\partial s} v_{n}(s, \zeta), u_{n}(s, \zeta)\right)\right] d \zeta, \\
n=0,1,2, \ldots, \text { then } u_{n}(s, t) \rightarrow x^{*}(s, t), v_{n}(s, t) \rightarrow x^{*}(s, t) \text { where } G(t, s) \text { is given as (4). }
\end{array}
$$

Example 3.1. Consider

$$
\begin{align*}
& D_{0}^{2.6} x(s, t)+\frac{1}{\frac{\partial}{\partial s} x(s, t)}+x(s, t)+\left(\frac{x(s, t)}{\frac{\partial}{\partial s} x(s, t)}\right)^{2.6} e^{t}+a=0, \tag{13}\\
& 0<s<\frac{1}{2}, \quad 0<t<1 \\
& x(s, 0)=\frac{\partial}{\partial t} x(s, 0)=0, \quad x(s, 1)=\int_{0}^{1} q_{1}(s, \zeta) x(s, \zeta) d \zeta,
\end{align*}
$$

where $a>0$. In this example, $q_{1}(s, t)=(s+t)^{2}$. Then $q_{1}:[0,1] \times[0,1] \rightarrow[0, \infty)$ with $q_{1} \in L^{1}([0,1] \times[0,1]), \omega_{1}=\int_{0}^{1} \zeta^{1.6}(1-\zeta)(\zeta+s)^{2} d \zeta>0$ and $\omega_{2}=\int_{0}^{1} \zeta^{1.6}(\zeta+s)^{2} d \zeta<1$. Take $0<b<a$ and $f, g:[0,1] \times(0, \infty) \times(0, \infty) \rightarrow[0, \infty)$ defined by:

$$
f(t, v)=\frac{1}{v}, \quad g(t, u)=u+b, \quad e(t, u, v)=\left(\frac{u}{v}\right)^{2.6} e^{t}+a-b
$$

f is decreasing respect to the second argument, g is increasing respect to the second argument and e is increasing with respect to the second argument, also decreasing respect to third argument, $f(t, 1)>0, g(t, 0)=b>0$ and $e(t, 0,1)=a-b>0$ for $\lambda \in(0,1)$, $t \in(0,1), u, v \in(0, \infty)$, also

$$
\begin{aligned}
& f\left(t, \frac{1}{\lambda} v\right) \geq \lambda f(t, v) \quad, g(t, \lambda u) \geq \lambda g(t, u) \\
& e\left(t, \lambda u, \frac{1}{\lambda} v\right) \geq \lambda^{2.6} e(t, u, v)
\end{aligned}
$$

So the conditions of corollary 3.2 are satisfied. Hence problem (13) has a solution in P_{h}, where $h(t, s)=(t+s)^{1.6}, 0<s<\frac{1}{2}$ and $0<t<1$.

References

[1] Feng, H. and Zhai, Ch., (2017), Existence and uniqueness of positive solutions for a class of fractional differential equation with integral boundary conditions, Nonlinear Analysis: modelling and control, 22(2), pp. 160-172.
[2] Guo, D. and Lakskmikantham, V., (1987), Coupled fixed points of nonlinear operators with applications. Nonlinear Anal., 11(5), pp. 623-632.
[3] Guo, D., (1988), Fixed points of mixed monotone operators with application, Appl. Anal., 34(34), pp. 215-224.
[4] Kilbas, A.A., Srivastava H.M. and Trujillo, j.j., (2006), Theory and applications of fractiona differential equations, North-Holland Mathematics Studies. 204(204), pp. 7-10.
[5] Podlubny, I., (1999), Fractional Differential Equations, Academic Press, New york.
[6] Sun, Y. and Zhao, M., (2014), Positive solutions for a class of fractional differential equations with integral boundary conditions, Appl. Math. Lett., 34(34), pp. 17-21.
[7] Wang, H. and Zhang, L., (2015), The solution for a class of sum operator equation and its application to fractional differential equation boundary value problems, Boundary Value Problem, 2015(2015).
[8] Yuan, C., (2013), Two positive solutions for (n-1,1)-type semigroup integral boundary value problems for coupled systems of nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 18(18), pp. 858-866.
[9] Zhai, C.B. and Zhang, L.L., (2011), New fixed point theorems for a mixed monotone operators and local existence-uniqueness of positive solutions for nonlinear boundary value problems, J. Math. Anal. Appl., 382(382), pp. 594-614.

Hojjat Afshari for the photograph and short biography, see TWMS J. Appl. and Eng. Math., V.6, No.2, 2016.

M. Sadegh Asgari received his B.S. degree in Arak University, M.S. in Shahid Beheshti University, and Ph.D. in Science and Research Branch, Islamic Azad University, all in mathematics. He published more than 60 ISI-indexed papers in well-known journals.

[^0]: ${ }^{1}$ Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
 e-mail: hadishojaat@yahoo.com; ORCID: https://orcid.org/ 0000-0002-6838-072x.
 e-mail: msasgari@yahoo.com; ORCID: https://orcid.org/ 0000-0002-0675-0262.
 ${ }^{2}$ Faculty of Basic Sciences, University of Bonab, Bonab - 5551761167, Iran.
 e-mail: hojat.afshari@yahoo.com; ORCID: https://orcid.org/0000-0003-1149-4336.
 § Manuscript received: April 20, 2019; accepted: June 26, 2019.
 TWMS Journal of Applied and Engineering Mathematics, Vol.11, No. 1 © Işık University, Department of Mathematics, 2021; all rights reserved.

