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A NEW CLASS OF MIXED MONOTONE OPERATORS

WITH CONCAVITY AND APPLICATIONS TO FRACTIONAL

DIFFERENTIAL EQUATIONS

H. SHOJAAT1, H. AFSHARI2, M. S. ASGARI1, §

Abstract. In this article, we investigate a class of mixed monotone operators with
concavity on ordered Banach spaces. As applications, we utilize the main results obtained
in this paper to study for solutions of fractional differential equations. An example is
also considered to illustrate the main result.
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1. Introduction

As an important branch of nonlinear functional analysis, the nonlinear operators and
their application in nonlinear differential equations are taken into consideration
(see [7, 8, 9]). In 2015 the sum operator

T1u+ T2u+ T3(u, u) = u, (1)

has been considered by Wang and Zhang, where T1 is a decreasing operator, T2 is an
increasing sub-homogeneous operator and T3 is mixed monotone operator. In this paper
we study (1) with different conditions. As an application, we apply our main fixed point
theorem to solution of the boundary value problems via nonlinear fractional differential
equations.
Suppose (E, ‖ . ‖) be a Banach space which is partially ordered by a cone P ⊆ E, that
is, u ≤ v if and only if v − u ∈ P . We denote the zero element of E by θ. Recall that a
non-empty closed convex set P ⊂ E is a cone if it satisfies (i) u ∈ P, λ ≥ 0 =⇒ λu ∈ P ;
(ii) u ∈ P, −u ∈ P =⇒ u = θ. A cone P is called normal if there exists a constant
N > 0 such that θ ≤ u ≤ v implies ‖ u ‖≤ N ‖ v ‖, also we define the order interval
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[u1, u2] = {u ∈ E|u1 ≤ u ≤ u2} for all u1, u2 ∈ E and
Ph = {u ∈ E|∃λ, µ > 0 such that λh ≤ u ≤ µh} for h > θ.

2. Preliminaries

Definition 2.1. [2, 3] T1 : P × P → P is said to be a mixed monotone operator if T1
is increasing in u and decreasing in v, i.e., ui, vi (i = 1, 2) ∈ P, u1 ≤ u2, v1 ≥ v2 imply
T1(u1, v1) ≤ T1(u2, v2). The element u ∈ P is called a fixed point of T1 if T1(u, u) = u.

Theorem 2.1. [9] Let P be a normal cone in a real Banach space E.
Assume that T1 : P × P → P is a mixed monotone operator and that satisfy the following
conditions:

(i) ∃ h ∈ P with h 6= θ such that T1(h, h) ∈ Ph;

(ii) for u, v ∈ P and t ∈ (0, 1) there exists φ(t) ∈ (t, 1] such that

T1(tu,
1

t
v) ≥ φ(t)T1(u, v).

Then

(1) T1 : Ph × Ph → Ph;

(2) ∃ x0, y0 ∈ Ph and r ∈ (0, 1) such that

ry0 ≤ x0 < y0, x0 ≤ T1(x0, y0) ≤ T1(y0, x0) ≤ y0;

(3) the operator equation T1(u, u) = u has a unique solution u∗ in Ph;

(4) for initial values u0, v0 ∈ Ph, construct

un = T1(un−1, vn−1)

vn = T1(vn−1, un−1), n = 1, 2, . . . ,

then un → u∗ and vn → u∗.

In paper [6], Sun and Zhao studied the equation

Dν
0+x(t) + g(t)f(t, x(t)) = 0, 0 < t < 1,

x(0) = x′(0) = 0, x(1) =

∫ 1

0
q(ζ)x(ζ)dζ,

where 2 < ν ≤ 3, Dν
0+ is the Riemann-Liouville fractional derivative.

Motivated by [6], in paper [1], Feng and Zhai considered the following form:

Dν
0+x(t) + f(t, x(t)) + g(t, x(t)) = 0, 0 < t < 1, (2)

x(0) = x′(0) = 0, x(1) =

∫ 1

0
q(ζ)x(ζ)dζ,

where 2 < ν ≤ 3, Dν
0+ is the Riemann-Liouville fractional derivative. The function q(t)

satisfies the following conditions:

q : [0, 1]→ [0,∞) with q ∈ L1[0, 1] and

ω1 =

∫ 1

0
ζν−1(1− ζ)q(ζ)dζ > 0, ω2 =

∫ 1

0
ζν−1q(ζ)dζ < 1.
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In that paper the authors obtained some alternative answers to the them main results by
using a sum operator.
In this paper we study the equation

Dν
0+x(s, t) + f(t,

∂

∂s
x(s, t)) + g(t, x(s, t)) + e(t, x(s, t),

∂

∂s
x(s, t)) = 0, (3)

0 < s, t < 1, x(s, 0) =
∂

∂t
x(s, 0) = 0, x(s, 1) =

∫ 1

0
q1(s, ζ)x(s, ζ)dζ,

where q1 satisfies the following:

(Q) q1 : [0, 1]× [0, 1]→ [0,∞) with q1 ∈ L1([0, 1]× [0, 1]) and

ω1 =

∫ 1

0
ζν−1(1− ζ)q1(s, ζ)dζ > 0, ω2 =

∫ 1

0
ζν−1q1(s, ζ)dζ < 1.

Definition 2.2. [4, 5] The Riemann-Liouville fractional derivative for a continuous func-
tion f is defined by

Dνf(t) =
1

Γ(n− ν)
(
d

dt
)n
∫ t

0

f(ζ)

(t− ζ)ν−n+1
dζ, (n = [ν] + 1),

where the right-hand side is point-wise defined on (0,∞).

Definition 2.3. [4, 5] Let [a, b] be an interval in R and ν > 0. The Riemann-Liouville
fractional order integral of a function f ∈ L1([a, b],R) is defined by

Iνaf(t) =
1

Γ(ν)

∫ t

a

f(ζ)

(t− ζ)1−ν
dζ,

whenever the integral exists.

Suppose;

G(t, ζ) = G1(t, ζ) +G2(t, ζ), (t, ζ) ∈ [0, 1]× [0, 1], (4)

where

G1(t, ζ) =
1

Γ(ν)

{
tν−1(1− ζ)ν−1 − (t− ζ)ν−1, 0 ≤ ζ ≤ t ≤ 1,
tν−1(1− ζ)ν−1, 0 ≤ t ≤ ζ ≤ 1

(5)

and

G2(t, ζ) =
tν−1

1− ω2

∫ 1

0
G1(τ, ζ)q1(ζ, τ)dτ. (6)

Lemma 2.1. [8] The function G1(t, ζ) defined by (5) has the following properties:

tν−1(1− t)ζ(1− ζ)ν−1

Γ(ν)
≤ G1(t, ζ) ≤ ζ(1− ζ)ν−1

Γ(ν − 1)
, t, ζ ∈ [0, 1].

From [6] and Lemma 2.1, we have

ω1ζ(1− ζ)ν−1tν−1

(1− ω2)Γ(ν)
≤ G(t, ζ) ≤ tν−1(1− ζ)ν−1

(1− ω2)Γ(ν)
, t, ζ ∈ [0, 1].

Theorem 2.2. [1] Assume (Q) and

(H1) f : [0, 1]× [0,∞)→ [0,∞) is continuous and increasing with respect to the second
argument, f(t, 0) 6≡ 0;
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(H2) g : [0, 1]× [0,∞)→ [0,∞) is continuous and decreasing with respect to the second
argument, g(t, 1) 6≡ 0;

(H3) for λ ∈ (0, 1), ∃ φi(λ) ∈ (λ, 1), i = 1, 2 with

f(t, λu) ≥ φ1(λ)f(t, u), g(t, λu) ≤ 1

φ2(λ)
g(t, u)

for t ∈ (0, 1), u ∈ [0,∞).

Then the problem (2) has a unique positive solution x∗ in Ph, where h(t) = tν−1, t ∈ [0, 1]
and for u0, v0 ∈ Ph,

un+1(t) =

∫ 1

0
G(t, ζ)[f(ζ, un(ζ)) + g(ζ, vn(ζ))]dζ,

vn+1(t) =

∫ 1

0
G(t, ζ)[f(ζ, vn(ζ)) + g(ζ, un(ζ))]dζ,

n = 0, 1, 2, ..., we have un(t)→ u∗(t), vn(t)→ u∗(t), where G(t, ζ) is given as (4).

Recall that T1 : P → P is said to be homogeneous if T1(tu) = tT1(tu) for t > 0, u ∈ E.
T1 : P → P is said to be sub-homogeneous if T1(tu) ≥ tT1(u) for all t > 0, u ∈ E.

Theorem 2.3. [7] Let P be a normal cone in a real Banach space E, T1 : P → P
is an increasing sub-homogeneous operator, T2 : P → P is a decreasing operator and
T3 : P × P → P is a mixed monotone operator that satisfy the following conditions:

T2(
1

t
v) ≥ tT2v, T3(tu,

1

t
v) ≥ tγT3(u, v), t ∈ (0, 1), γ ∈ (0, 1), u, v ∈ P.

Assume that

(i) ∃ h0 ∈ Ph such that T1h0 ∈ Ph, T2h0 ∈ Ph, T3(h0, h0) ∈ Ph;

(ii) ∃ δ0 > 0 with T3(u, v) ≥ δ0(T1u+ T2u) for u, v ∈ P .

Then

(1) T1 : Ph → Ph, T2 : Ph → Ph and T3 : Ph × Ph → Ph;

(2) ∃ x0, y0 ∈ Ph and r ∈ (0, 1) with

ry0 ≤ x0 < y0, x0 ≤ T1x0 + T2y0 + T3(x0, y0) ≤ T1y0 + T2x0 + T3(y0, x0) ≤ y0;
(3) the operator equation T1u+ T2u+ T3(u, u) = u has a unique solution u∗ in Ph;

(4) for u0, v0 ∈ Ph, construct

un = T1un−1 + T2vn−1 + T3(un−1, vn−1)

vn = T1vn−1 + T2un−1 + T3(vn−1, un−1), n = 1, 2, . . . ,

then un → u∗, vn → u∗.

3. main results

In this section we consider the generalization of Theorem 2.3.

Theorem 3.1. Let P be a normal cone, in a real Banach space E, T1 : P → P be a
decreasing, T2 : P → P be a increasing, T3 : P × P → P be a mixed monotone operators
and



126 TWMS J. APP. AND ENG. MATH. V.11, N.1, 2021

(H1) For u, v ∈ P and t ∈ (0, 1), ∃ φ1(t), φ2(t), φ3(t) ∈ (t, 1) with

T1(tv) ≤ 1

φ1(t)
T1v, T2(tu) ≥ φ2(t)T2u (7)

and

T3(tu,
1

t
v) ≥ φ3(t)T3(u, v); (8)

(H2) ∃ h0 ∈ Ph such that T1h0 + T2h0 + T3(h0, h0) ∈ Ph.

Then

(i) ∃ x0, y0 ∈ Ph and r ∈ (0, 1) such that

ry0 ≤ x0 < y0, x0 ≤ T1y0 + T2x0 + T3(x0, y0) ≤ T1x0 + T2y0 + T3(y0, x0) ≤ y0;

(ii) the equation T1u+ T2u+ T3(u, u) = u has a unique solution u∗ in Ph;

(iii) for u0, v0 ∈ Ph, construct

un = T1vn−1 + T2un−1 + T3(un−1, vn−1)

vn = T1un−1 + T2vn−1 + T3(vn−1, un−1), n = 1, 2, . . . ,

then un → u∗ and vn → u∗.

Proof. From (7) we obtain

T1(
1

t
v) ≥ φ1(t)T1v, T2(tu) ≥ φ2(t)T2u, (9)

T3(tu,
1

t
v) ≥ φ3(t)T3(u, v), t ∈ (0, 1), u, v ∈ P.

Since T1h0 + T2h0 + T3(h0, h0) ∈ Ph, ∃ λ1, λ2 > 0 with

λ1h ≤ T1h0 + T2h0 + T3(h0, h0) ≤ λ2h.

From h0 ∈ Ph, ∃ t0 ∈ (0, 1) such that

t0h ≤ h0 ≤
1

t0
h.

Let φ(t) = min{φ1(t), φ2(t), φ3(t)}. Then φ(t) ∈ (t, 1) for t ∈ (0, 1). From (H1) and (9),

T1h+ T2h+ T3(h, h) ≥ T1(
1

t0
h0) + T2(t0h0) + T3(t0h0, t

−1
0 h0)

≥ φ1(t0)T1h0 + φ2(t0)T2h0 + φ3(t0)T3(h0, h0)

≥ φ(t0)[T1h0 + T2h0 + T3(h0, h0)]

≥ λ1φ(t0)h,

T1h+ T2h+ T3(h, h) ≤ T1(t0h0) + T2(
1

t0
h0) + T3(t

−1
0 h0, t0h0)

≤ 1

φ1(t0)
T1h0 +

1

φ2(t0)
T2h0 +

1

φ3(t0)
T3(h0, h0)

≤ 1

φ(t0)
[T1h0 + T2h0 + T3(h0, h0)]

≤ λ2
φ(t0)

h.
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Note that λ1φ(t0),
λ2
φ(t0)

> 0, we get T1h+ T2h+ T3(h, h) ∈ Ph.

We define T = T1 + T2 + T3 by T (u, v) = T1v + T2u+ T3(u, v), then T : P × P → P is a
mixed monotone and T (h, h) = T1h+ T2h+ T3(h, h) ∈ Ph.
Moreover, for u, v ∈ P and t ∈ (0, 1), we have

T (tu, t−1v) = T1(t
−1v) + T2(tu) + T3(tu, t

−1v)

≥ φ1(t)T1v + φ2(t)T2u+ φ3(t)T3(u, v)

≥ φ(t)[T1v + T2u+ T3(u, v)]

= φ(t)T (u, v).

Hence, all the conditions of Theorem 2.1 are satisfied. Application of Theorem 2.1 implies
that:
∃ x0, y0 ∈ Ph and r ∈ (0, 1) with

ry0 ≤ x0 < y0, x0 ≤ T (x0, y0) ≤ T (y0, x0) ≤ y0
and T (u, u) = u has a unique solution u∗ in Ph; for u0, v0 ∈ Ph, construct

un = T (un−1, vn−1)

vn = T (vn−1, un−1), n = 1, 2, . . . ,

then un → u∗ and vn → u∗. That is,

(i) ∃ x0, y0 ∈ Ph and r ∈ (0, 1) with

ry0 ≤ x0 < y0, x0 ≤ T1y0 + T2x0 + T3(x0, y0) ≤ T1x0 + T2y0 + T3(y0, x0) ≤ y0;

(ii) equation T3(u, u) + T1u+ T2u = u has a unique solution u∗ in Ph;

(iii) for u0, v0 ∈ Ph, construct

un = T1vn−1 + T2un−1 + T3(un−1, vn−1)

vn = T1un−1 + T2vn−1 + T3(vn−1, un−1), n = 1, 2, . . . ,

we have un → u∗ and vn → u∗.

�

If in Theorem 3.1, we put φ1(t) = φ2(t) = t and φ3(t) = tγ , then we can obtain the
following result.

Corollary 3.1. Let P be a normal cone in a real Banach space E, T1 : P → P be a
decreasing operator, T2 : P → P be a sub-homogeneous operator, T3 : P × P → P be a
mixed monotone operators and γ ∈ (0, 1), that satisfies the following conditions:

(H1) For u, v ∈ P and t ∈ (0, 1)

T1(
1

t
v) ≥ tT1v, T3(tu,

1

t
v) ≥ tγT3(u, v); (10)

(H2) ∃ h0 ∈ Ph such that T1h0 + T2h0 + T3(h0, h0) ∈ Ph.

Then

(i) ∃ x0, y0 ∈ Ph and r ∈ (0, 1) such that

ry0 ≤ x0 < y0, x0 ≤ T1y0 + T2x0 + T3(x0, y0) ≤ T1x0 + T2y0 + T3(y0, x0) ≤ y0;

(ii) equation T1u+ T2u+ T3(u, u) = u has a unique solution u∗ in Ph;
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(iii) for u0, v0 ∈ Ph, construct

un = T1vn−1 + T2un−1 + T3(un−1, vn−1)

vn = T1un−1 + T2vn−1 + T3(vn−1, un−1), n = 1, 2, . . . ,

then un → u∗ and vn → u∗.

Lemma 3.1. Assume (Q) holds. Let v ∈ C([0, 1]× [0, 1]), 2 < ν ≤ 3, then the problem

Dν
0+x(s, t) + v(s, t) = 0, (11)

0 < s, t < 1, x(s, 0) =
∂

∂t
x(s, 0) = 0, x(s, 1) =

∫ 1

0
q1(s, ζ)x(s, ζ)dζ,

has the solution

x(s, t) =

∫ 1

0
G(t, ζ)v(s, ζ)dζ,

where G(t, ζ) is given as (4).

Proof. We reduce problem (11) to an equivalent integral equation

x(s, t) = −Iν0+v(s, t) + c1t
ν−1 + c2t

ν−2 + c3t
ν−3,

for some c1, c2, c3 ∈ R. Consequently the general solution of the problem (11) is

x(s, t) = −
∫ t

0

(t− ζ)ν−1

Γ(ν)
v(s, ζ)dζ + c1t

ν−1 + c2t
ν−2 + c3t

ν−3.

By x(s, 0) = ∂
∂tx(s, 0) = 0, x(s, 1) =

∫ 1
0 q1(s, ζ)x(s, ζ)dζ, we have

c2 = c3 = 0, c1 =

∫ 1

0

(1− ζ)ν−1

Γ(ν)
v(s, ζ)dζ +

∫ 1

0
q1(s, ζ)u(s, ζ)dζ.

Hence the unique solution of (11) is

x(s, t) =−
∫ t

0

(t− ζ)ν−1

Γ(ν)
v(s, ζ)dζ +

tν−1

Γ(ν)

∫ 1

0
(1− ζ)ν−1v(s, ζ)dζ

+ tν−1
∫ 1

0
q1(s, ζ)u(s, ζ)dζ

=

∫ 1

0
G1(t, ζ)v(s, ζ)dζ + tν−1

∫ 1

0
q1(s, ζ)u(s, ζ)dζ.

Therefore ∫ 1

0
q1(s, t)x(s, t)dt =

∫ 1

0
q1(s, t)(

∫ 1

0
G1(t, ζ)v(s, ζ)dζ)dt

+

∫ 1

0
(q1(s, t)t

ν−1
∫ 1

0
q1(s, ζ)x(s, ζ)dζ)dt

=

∫ 1

0
(

∫ 1

0
q1(s, t)G1(t, ζ)dt)v(s, ζ)dζ

+ (

∫ 1

0
tν−1q1(s, t)dt)(

∫ 1

0
q1(s, ζ)x(s, ζ)dζ),
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0
q1(s, ζ)x(s, ζ)dζ =

1

1− ω1

∫ 1

0
(

∫ 1

0
G1(t, ζ)q1(s, t)dt)v(s, ζ)dζ

=
1

1− ω1

∫ 1

0
(

∫ 1

0
G1(τ, ζ)q1(s, τ)dτ)v(s, ζ)dζ.

We have

x(s, t) =

∫ 1

0
G1(t, ζ)v(s, ζ)dζ +

tν−1

1− ω2

∫ 1

0
(

∫ 1

0
G1(τ, ζ)q1(s, τ)dτ)v(s, ζ)dζ

=

∫ 1

0
G1(t, ζ)v(s, ζ)dζ +

∫ 1

0
G2(t, ζ)v(s, ζ)dζ

=

∫ 1

0
G(t, ζ)v(s, ζ)dζ.

This completes the proof. �

In this section we consider the Banach space E as the follows,

E = {y(s, t) ∈ C([0, 1]× [0, 1])| ∂
∂s
y(s, t) ∈ C([0, 1]× [0, 1])},

with the norm

‖y‖ = max{ max
s,t∈[0,1]

{|y(s, t)|, max
s,t∈[0,1]

| ∂
∂s
y(s, t)|}},

also let E be endowed with an order relation ∂
∂sy(s, t)) ≤ ∂

∂sy
′(s, t)) if y(s, t) ≤ y′(s, t). let

P = {y ∈ E : y(s, t),
∂

∂s
y(s, t)) ≥ 0, s, t ∈ [0, 1]}. (12)

It’s easy to see that, P is a normal cone and Ph ⊆ E.
We can obtain the following consequences.

Theorem 3.2. Assume (Q) and

(H1) f : [0, 1]× [0,∞)→ [0,∞) is continuous and decreasing with respect to the second
argument, f(t, 1) 6≡ 0;

(H2) g : [0, 1]× [0,∞)→ [0,∞) is continuous and increasing with respect to the second
argument, g(t, 0) 6≡ 0;

(H3) e : [0, 1]× [0,∞)× [0,∞)→ [0,∞) is continuous and increasing with respect to the
second argument, also decreasing with respect to the third argument, e(t, 0, 1) 6≡ 0;

(H4) for λ ∈ (0, 1), ∃ φi(λ) ∈ (λ, 1), i = 1, 2, 3 such that

f(t,
1

λ
v) ≥ φ1(λ)f(t, v), g(t, λu) ≤ 1

φ2(λ)
g(t, u), e(t, λu,

1

λ
v) ≥ φ3(λ)e(t, u, v)

for t ∈ (0, 1), u, v ∈ [0,∞).

Then (2) has a solution x∗ in Ph, where h(t) = tα−1, t ∈ [0, 1] and for u0 ∈ Ph, construct

un+1(s, t) =

∫ 1

0
G(t, ξ)[f(s,

∂

∂s
vn(s, ξ)) + g(s, un(s, ξ)) + e(s, un(s, ξ),

∂

∂s
vn(s, ξ))]dξ,

vn+1(s, t) =

∫ 1

0
G(t, ξ)[f(s, un(s, ξ)) + g(s,

∂

∂s
vn(s, ξ)) + e(s,

∂

∂s
vn(s, ξ), un(s, ξ))]dξ,

n = 0, 1, 2, ..., and un(s, t)→ u∗(s, t), vn(s, t)→ u∗(s, t) where G(t, s) is given as (4).
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Proof. From Lemma (3.1) we know that problem (3) has an integral formulation given by

x(s, t) =

∫ 1

0
G(t, ζ)[f(ζ,

∂

∂s
y(s, ζ)) + g(ζ, x(s, ζ)) + e(s, x(s, ζ),

∂

∂s
y(s, ζ))]dζ,

Define, T1 : P → P , T2 : P → P and T3 : P × P → P by

T1y(s, t) =

∫ 1

0
G(t, ζ)f(ζ,

∂

∂s
y(s, ζ))dζ, T2x(s, t) =

∫ 1

0
G(t, ζ)g(ζ, x(s, ζ))dζ

T3(x(s, t), y(s, t)) =

∫ 1

0
G(t, ζ)e(s, x(s, ζ),

∂

∂s
y(s, ζ))dζ.

Then u is the solution of problem (3) if and only if

u = T1u+ T2u+ T3(u, u).

T1 is decreasing, T2 is increasing. We show that T3 is increasing operator respect to the
second argument, also decreasing respect to third argument. For (x, y), (x′, y′) ∈ P × P
with x ≥ x′ and y ≤ y′, we have

T3(x(s, t), y(s, t)) =

∫ 1

0
G(t, ζ)f(ζ, x(s, ζ),

∂

∂s
y(s, ζ))dζ

≥1

∫ 1

0
G(t, ζ)f(ζ, x′(s, ζ),

∂

∂s
y′(s, ζ))dζ

= T3(x
′(s, t), y′(s, t)).

We can prove that T1, T2 and T3 are satisfies (7) and (13). So we only need to prove that
T1h+ T2h+ T3(h, h) ∈ Ph. From H1, H2, H3 and 2.1,

T1h(t) + T2h(t) + T3(h(t), h(t)) =

∫ 1

0
G(t, ζ)[f(ζ, 0) + g(ζ, ζν−1) + e(ζ, ζν−1, 0)]dζ

≤ tν−1

(1− ω2)Γ(ν)

∫ 1

0
(1− ζ)ν−1[f(ζ, 0) + g(ζ, 1) + e(ζ, 1, 0)]dζ,

T1h(t) + T2h(t) + T3(h(t), h(t)) =

∫ 1

0
G(t, ζ)[f(ζ, 0) + g(ζ, ζν−1) + e(ζ, ζν−1, 0)]dζ

≥ ω1t
ν−1

(1− ω2)Γ(ν)

∫ 1

0
ζ(1− ζ)ν−1[f(ζ, 1) + g(ζ, 0) + e(ζ, 0, 1)]dζ.

From (H3) and (H1) we have

f(ζ, 0) + g(ζ, 1) + e(ζ, 1, 0) ≥ f(ζ, 1) + g(ζ, 0) + e(ζ, 0, 1) > 0.

Note that ν − 1 > 0 and f(ζ, 1) + g(ζ, 0) + e(ζ, 0, 1) 6≡ 0, we get∫ 1

0
(1− ζ)ν−1[f(ζ, 0) + g(ζ, 1) + e(ζ, 1, 0)]dζ

≥1

∫ 1

0
ζ(1− ζ)ν−1[f(ζ, 1) + g(ζ, 0) + e(ζ, 0, 1)]dζ > 0.

Let

l1 :=
ω1

(1− ω2)Γ(ν)

∫ 1

0
ζ(1− ζ)ν−1[f(ζ, 1) + g(ζ, 0) + e(ζ, 0, 1)]dζ > 0,

l2 :=
1

(1− ω2)Γ(ν)

∫ 1

0
(1− ζ)ν−1[f(ζ, 0) + g(ζ, 1) + e(ζ, 1, 0)]dζ > 0.



H. SHOJAAT, H. AFSHARI, M. S. ASGARI: A NEW CLASS OF MIXED MONOTONE... 131

Then l2 ≥ l1 > 0 and thus l1h(t) ≤ T1h(t) + T2h(t) + T3(h(t), h(t)) ≤ l2h(t), t ∈ [0, 1],
hence T1h(t) + T2h(t) + T3(h(t), h(t)) ∈ Ph.
Finally, by Theorem 3.1, T1u + T2u + T3(u, u) = u has a unique solution x∗ ∈ p; for
u0, v0 ∈ Ph, construct

un = T1vn−1 + T2un−1 + T3(un−1, vn−1)

vn = T1un−1 + T2vn−1 + T3(vn−1, un−1), n = 1, 2, . . . ,

then un → x∗ and vn → x∗. That is, problem (3) has a unique positive solution x∗ ∈ Ph,
where h(t) = tν−1, t ∈ [0, 1] and for u0, v0 ∈ Ph, construct

un+1(s, t) =

∫ 1

0
G(t, ζ)[f(s,

∂

∂s
vn(s, ζ)) + g(s, un(s, ζ)) + e(s, un(s, ζ),

∂

∂s
vn(s, ζ))]dζ,

vn+1(s, t) =

∫ 1

0
G(t, ζ)[f(s, un(s, ζ)) + g(s,

∂

∂s
vn(s, ζ)) + e(s,

∂

∂s
vn(s, ζ), un(s, ζ))]dζ,

n = 0, 1, 2, ..., then un(s, t)→ x∗(s, t), vn(s, t)→ x∗(s, t). �

From the previous theorem and Corollary 3.1, we obtain the following result.

Corollary 3.2. Assume (Q) and

(H1) f : [0, 1]× [0,∞)→ [0,∞) is continuous and decreasing with respect to the second
argument, f(t, 1) 6≡ 0;

(H2) g : [0, 1]× [0,∞)→ [0,∞) is continuous and increasing with respect to the second
argument, g(t, 0) 6≡ 0;

(H3) e : [0, 1]× [0,∞)× [0,∞)→ [0,∞) is continuous and increasing with respect to the
second argument, also decreasing with respect to the third argument, e(t, 0, 1) 6≡ 0;

(H4) there exists λ ∈ (0, 1) such that

f(t,
1

λ
v) ≥ λf(t, v), g(t, λu) ≤ 1

λ
g(t, u), e(t, λu,

1

λ
v) ≥ λγe(t, u, v)

for t, γ ∈ (0, 1), u, v ∈ [0,∞).

Then the problem (2) has a unique positive solution x∗ in Ph, where h(t) = tν−1, t ∈ [0, 1]
and for x0 ∈ Ph, construct

un+1(s, t) =

∫ 1

0
G(t, ζ)[f(s,

∂

∂s
vn(s, ζ)) + g(s, un(s, ζ)) + e(s, un(s, ζ),

∂

∂s
vn(s, ζ))]dζ,

vn+1(s, t) =

∫ 1

0
G(t, ζ)[f(s, un(s, ζ)) + g(s,

∂

∂s
vn(s, ζ)) + e(s,

∂

∂s
vn(s, ζ), un(s, ζ))]dζ,

n = 0, 1, 2, ..., then un(s, t)→ x∗(s, t), vn(s, t)→ x∗(s, t) where G(t, s) is given as (4).

Example 3.1. Consider

D2.6
0+x(s, t) +

1
∂
∂sx(s, t)

+ x(s, t) +
( x(s, t)
∂
∂sx(s, t)

)2.6
et + a = 0, (13)

0 < s <
1

2
, 0 < t < 1

x(s, 0) =
∂

∂t
x(s, 0) = 0, x(s, 1) =

∫ 1

0
q1(s, ζ)x(s, ζ)dζ,
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where a > 0. In this example, q1(s, t) = (s + t)2. Then q1 : [0, 1] × [0, 1] → [0,∞) with

q1 ∈ L1([0, 1]× [0, 1]), ω1 =
∫ 1
0 ζ

1.6(1− ζ)(ζ + s)2dζ > 0 and ω2 =
∫ 1
0 ζ

1.6(ζ + s)2dζ < 1.
Take 0 < b < a and f, g : [0, 1]× (0,∞)× (0,∞)→ [0,∞) defined by:

f(t, v) =
1

v
, g(t, u) = u+ b, e(t, u, v) = (

u

v
)2.6et + a− b.

f is decreasing respect to the second argument, g is increasing respect to the second ar-
gument and e is increasing with respect to the second argument, also decreasing respect
to third argument, f(t, 1) > 0, g(t, 0) = b > 0 and e(t, 0, 1) = a − b > 0 for λ ∈ (0, 1),
t ∈ (0, 1), u, v ∈ (0,∞), also

f(t,
1

λ
v) ≥ λf(t, v) , g(t, λu) ≥ λg(t, u)

e(t, λu,
1

λ
v) ≥ λ2.6e(t, u, v).

So the conditions of corollary 3.2 are satisfied. Hence problem (13) has a solution in Ph,
where h(t, s) = (t+ s)1.6, 0 < s < 1

2 and 0 < t < 1.
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