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SOLUTION OF COMPLEX PARTIAL DERIVATIVE EQUATIONS

WITH CONSTANT COEFFIENTS VIA ELZAKI TRANSFORM

METHOD

M. DUZ, §

Abstract. In this study, the Elzaki Transform method is applied for general nth order
complex equations with constant coefficients.

Keywords: Elzaki transform, Complex equation.

AMS Subject Classification: 35N05,35N20.

1. Introduction

In R2, general solutions of some equations, especially of elliptic types, cannot be found.
A real partial differential equation system, of which number of independent variables is
even, can be transformed to a complex partial differential equation system. Solving a
complex equation can be easier with complex methods. For example,

uxx + uyy = 0

Laplace equation doesn’t have general solution in R2, but it can be written as

uzz = 0

and the solution of this equation is

u = f (z) + g (z)

where f is analytic, g is anti analytic arbitrary function [1] . The most elementary works in
the theory of complex differential equations are ”Theory of Pseudo Analytic Functions” [3],
and ”Generalized Analytic Functions” by [4]. First order linear complex differential equa-
tions can be solved by using Elzaki transform, Fourier Transform and Laplace transform
[1, 2, 5]. Higher order linear complex differential equations can be solved by approximate
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solution methods like Taylor and Chebyshev expansion method [6, 7]. In this study, to
obtain a solution for equations in the form (1) is studied.
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= F (z, z)

where w is dependant variable, z, z are independant variables and Ai,j (1 ≤ i ≤ n, 1 ≤ j ≤ n)
are real constants. Elzaki transform has been used for the solution of (1). This study
presents generalization of [1, 2, 5]. This paper is organized as follows: In section 2, basic
definitions and theorems are given. In section 3, formulization is obtained to solve the n
th order complex differential equations with constant coefficients and some examples are
given.

2. Basic Definitions and Theorems

Definition 2.1. Let F (t) be a function for t > 0. Elzaki transform of F (t) is defined as
follows:

E(F (t)) = v

∞∫
0

e−
t
v .f (t) dt

Theorem 2.1. [8, 9] Elzaki transforms of some functions are
F (t) E(F (t))
1 v2

tn n!vn+2

eat v2

1−av
cos at v2

1+a2v2

sin at av3

1+a2v2

Theorem 2.2. [10]Elzaki transforms of first order partial derivatives of f(x, t) are

i) E
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]
=

1

v
T (x, s) − vf(x, 0),
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]
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∂T (x, v)

∂x
, (2)

where T (x, v) = E [f(x, t)].

Lemma 2.1. [11]Elzaki transforms of nth order partial derivatives of f(x, t) are
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Theorem 2.3. [11]Elzaki transforms of (n + m)th order partial derivatives of f(x, t) are
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∂xn∂tm

]
=

∂n
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3. Solution of constant coeffients partial derivative equations from nth
order

Definition 3.1. Derivative operators

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
,
∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
are called complex derivative operators.

Lemma 3.1. Let n and r be positive integer numbers and n ≥ r, then(
n

r

)
+

(
n

r − 1

)
=

(
n + 1

r

)
.

Lemma 3.2.
n∑

k=0

ak
r∑

h=0

bh =
n∑

k=0

r∑
h=0

akbh

Theorem 3.1. Let w = w (z) be a complex valued function with complex variables. Then,

∂nw
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=

1

2n
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(−i)k
(
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)
∂nw

∂xn−k∂yk

Proof. Proof can be made by induction.
For n = 1, following equality can be written from the Definition 3.1

∂w
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∂y

)
=

1

2

[
(−i)0

(
1

0

)
∂w

∂x
+ (−i)

(
1

1

)
∂w

∂y

]
=

1

2

1∑
k=0

(−i)k
(

1

k

)
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As a result, it is true for n = 1.
Assume that it is true for n = r. Therefore, following equality can be written.

∂rw
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1
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r

k

)
∂rw
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Then, accuracy of equality must be seen for n = r + 1.
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If the above equality takes the common multiplier in parenthesis, then the following
equality is obtained.
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As a result, proof is completed. �

Theorem 3.2. Let w = w (z, z) be a complex valued function with complex variables.
Then,

∂nw
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Proof. Proof is similar to the proof of the previous theorem. �

Theorem 3.3. Let w = w (z, z) be a complex valued function with complex variables.
Then,
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Proof. From Theorem 3.1 and Theorem 3.2, following equality is obtained
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Theorem 3.4. A special solution of the following complex equation
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Proof. Using Theorem 3.3, the complex equation, which is stated in the theorem, can be
written as follows
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If elzaki transform is used for the equation above, the following equality is obtained by
using Theorem 2.4.
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In the equation above, the terms which are equal to sum of the indices can be written
under a single total symbol. If T (x, v) and its derivatives are added to the left side of the
equation and by using definition of A (x, v), the following equality is obtained.
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All terms can be written on the right and left side of the equation inside a single parenthesis
and the following equation is obtained.[
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As a result, using the inverse operator method, by the definition of P (D) in theorem,
T (x, v) is obtained as follows
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Thus, solution of the equation is found from inverse elzaki transform as w (x, y) = E−1 (T (x, v)) .
�

Example 3.1. Find the solution for the following differential equation

∂2w

∂z∂z
= 4

with the conditions

w(x, 0) = 5x2 + 3x + 2

∂w

∂y
(x, 0) = i(2x− 1)

Solution 3.1. Coefficients of the equation are A1,1 = 1, A2,0 = A0,2 = A1,0 = A0,1 =
A0,0 = 0 and n = 2. Using theorem 3.4

T (x, v) =
16v2 + 5x2 + 3x + 2 + iv(2x− 1)

D2 + 1
v2

w (x, y) = E−1 (T (x, v))

w (z, z) = E−1

[
16v2 + 5x2 + 3x + 2 + iv(2x− 1)

D2 + 1
v2

]
= E−1

[
v2
(
1 − v2D2 + v4D4 − ...

) (
16v2 + 5x2 + 3x + 2 + iv(2x− 1)

)]
= E−1

[
v2
(
16v2 + 5x2 + 3x + 2 + iv(2x− 1) − 10v2

)]
= 3y2 + 5x2 + 3x + 2 + i(2x− 1)y

= z2 + 4zz + 2z + z + 2

Example 3.2. Find the solution for the following differential equation

∂2w

∂z2
+ 2

∂w

∂z
= 12z + 18z + 9



M.DUZ: SOLUTION OF COMPLEX PARTIAL DERIVATIVE EQUATIONS... 235

with the conditions

w(x, 0) = 2x3 + 3x2 + 8x

∂w

∂y
(x, 0) = i(6x2 − 6x + 2)

Solution 3.2. Coefficients of the equation are A2,0 = 1, A0,1 = 2 , A0,2 = A1,1 = A1,0 =
A0,1 = A0,0 = 0 and n = 2. Using theorem 3.4
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w (x, y) = E−1 (T (x, v))
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6iv − 1

(
D2 + (6 − 2i

v
)D

)
+

v4

(6iv − 1)2

(
D2 + (6 − 2i

v
)D

)2

+ ...

)]

= E−1
[
2x3v2 − 3x2v2

6iv − 1
− 6v3x2 (6v − 2i)

6iv − 1
+

v2x

6iv − 1

(
108v2 + 42iv − 8

)
+
v2x

(
36v2 − 12iv

)
(6iv − 1)2

]
+ E−1

[
12v4

6iv − 1

(
36v2 − 24iv − 4

)
+

v2

6iv − 1

(
36v2 − 24iv3 − 18iv

)
+

6v4

(6iv − 1)2
+

8v3 (6v − 2i)

(6iv − 1)2

]
+E−1

[
−v3 (6v − 2i)

(6iv − 1)2
(
120v2 + 42iv

)
− 6v4

(6iv − 1)3
(
36v2 − 24iv − 4

)]

w (z, z) = E−1
[(

2x3v2 − 12xv443v2
)
x2 − 6v4 + 8xv2 + i

(
6x2v3 − 12v5 − 6xv3 + 2v3

)]
= 2x3 − 6xy2 + 3x2 − 3y2 + 8x + i

(
6x2y − 2y3 − 6xy + 2y

)
= z3 + 3z2 + 5z + 3z

4. Conclusion

In this article, it can be seen that the most general linear constant coefficient complex
differential equations can be solved by Elzaki transformation. A formula for a specific
solution of such equations has been obtained. It can be seen that the results are consistent
with the literature.
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