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CONTINUOUS K-G-FUSION FRAMES IN HILBERT SPACES

E. ALIZADEH1, A. RAHIMI2, E. OSGOOEI3, M. RAHMANI4, §

Abstract. This paper aims at introducing the concept of c-K-g-fusion frames, which
are generalizations of K-g-fusion frames, proving some new results on c-K-g-fusion frames
in Hilbert spaces, defining duality of c-K-g-fusion frames and characterizing the kinds of
the duals, and discussing the perturbation of c-K-g-fusion frames.
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1. Introduction

Discrete frames were introduced by Duffin and Schaeffer in 1952 [10] for studying some
profound problems in nonharmonic Fourier series. Discrete and continuous frames appear
in many applications in both pure and applied mathematics, particularly in the frame
theory, which has been extensively used in numerous fields such as filter bank theory,
signal and image processing, coding and communications [26].

Over the years, various extensions of the frames have been investigated. Some of these
are contained as special cases of the elegant theory for g-frames introduced by W. Sun
in [27]. Examples are bounded quasi-projectors, fusion frames, pseudo-frames, oblique
frames, and outer frames.

In quantum mechanics, specifically in the theory of coherent states [1, 2], this notion of
frames was generalized to a family of vectors indexed by a locally compact space endowed
with a positive Radon measure. They have been introduced originally by Ali, Gazeau and
Antoine [1, 2] and also, independently, by Kaiser [23]. Since then, several papers dealt with
various aspects of the concept, see for instance [12, 13] or [24]. The continuous wavelet
transformation and short time Fourier transformation are two well known examples of
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continuous frames. Some aspects of continuous frames on coherent states and specially on
wave packet systems studied in the series of papers [17, 18, 19, 20, 21, 22].

Traditionally, frames were studied for the whole space or for a closed subspace. Gavruta
in [14] gave another generalization of frames namely K-frames, which allows to reconstruct
elements from the range of a linear and bounded operator in a Hilbert space.

K-g-frames have been introduced in [6, 16], and some properties and characterizations
of them have been identified (for more information on K-g-frames, the reader can check
[16, 28]). Extending the above-mentioned notions, the new concept of c-K-g-frames is
introduced in [3].

Fusion frames were considered by Casazza, Kutyniok and Li in connection with dis-
tributed processing and are related to the construction of global frames [8].The fusion
frame theory is in fact more delicate due to complicated relations between the structure
of the sequence of weighted subspaces and the local frames in the subspaces and also due
to the extreme sensitivity to changes of the weights.

Recently, Arabyani and Arefijamaal have presented K-frames, K-fusion frames and
their duals in [4, 5], and c-K-fusion frames have been introduced in [25]; some properties
and characterizations of c-K-fusion frames have also been obtained.

In the current paper, we set out to generalize some results of [5] and [25] to c-K-g-
frames. Throughout this paper, H, (Ω, µ) and {Hω}ω∈Ω will be a separable Hilbert space,
a measure space with positive measure µ and a family of Hilbert spaces, respectively. πV
is the orthogonal projection from H onto a closed subspace V and B(H,Hω) is the set of
all bounded and linear operators from H to Hω. If H = Hω, then B(H,H) will be denoted
by B(H). Also, H will be the collection of all closed subspaces of H, and v : Ω→ R+ is a
measurable mapping such that v 6= 0 a.e.

Definition 1.1. Let K ∈ B(H). A sequence {fn}∞n=1 is called a K-frame for H, if there
exist constants A,B > 0 such that

A‖K∗f‖2 ≤
∞∑
n=1

|〈f, fn〉|2 ≤ B‖f‖2, f ∈ H. (1)

We call A,B the lower and the upper frame bounds of K-frame {fn}∞n=1, respectively. If
only the right inequality (1) holds, {fn}∞n=1 is called a Bessel sequence. If K = I, then it
is just the ordinary frame.

Definition 1.2. Let K ∈ B(H) and Λ = {Λi ∈ B(H,Hi) : i ∈ I}. We call Λ a K-g-
frame for H with respect to {Hi}i∈I , or simply a K-g-frame for H, if there exist constants
A,B > 0 such that

A‖K∗f‖2 ≤
∑
i∈I
‖Λif‖2 ≤ B‖f‖2, f ∈ H. (2)

The constants A,B are called the lower and upper bounds of K-g-frame, respectively.

Remark 1.1. Every K-g-frame is also a g-Bessel sequence for H. If K = I, K-g-frame
is a g-frame.

Definition 1.3. Let W = {Wj}j∈J be a family of closed subspaces of H and v = {vj}j∈J
be a family of weights (i.e. vj > 0 for any j ∈ J). We say that W is a fusion frame with
respect to v for H if there exist 0 < A ≤ B <∞ such that for each h ∈ H

A‖h‖2 ≤
∑
j∈J

v2
j ‖πWj (h)‖2 ≤ B‖h‖2.

The generalized continuous version of fusion frames are defined in [11] as follows:
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Definition 1.4. Let F : Ω→ H be such that for each h ∈ H, the mapping ω → πF (ω)(h)
is measurable (i.e. is weakly measurable) and let {Hω}ω∈Ω be a collection of Hilbert spaces,
For each ω ∈ Ω, suppose that Λω ∈ B(F (ω), Hω) and put

Λ = {Λω ∈ B(F (ω), Hω) : ω ∈ Ω}.
Then (Λ, F, v) is a c-g-fusion frame for H if there exist 0 < A ≤ B <∞ such that for all
h ∈ H

A‖h‖2 ≤
∫

Ω
v2(ω)‖Λω(πF (ω)(h))‖2 dµ(ω) ≤ B‖h‖2. (3)

where πF (ω) is the orthogonal projection onto the subspace F (ω).

(Λ, F, v) is called a tight-c-g-fusion frame for H if A = B, and Parseval if A = B = 1.
(Λ, F, v) is called a Bessel c-g-fusion for H if we only have the upper bound. Let H0 =⊕

ω∈ΩHω and L2(Ω, H0) be a collection of all measurable functions ϕ : Ω→ H0 such that
for each ω ∈ Ω, ϕ(ω) ∈ Hω and ∫

Ω
‖ϕ(ω)‖2dµ <∞.

It can be verified that L2(Ω, H0) is a Hilbert space with inner product defined by

〈ϕ,ψ〉 =

∫
Ω
〈ϕ(ω), ψ(ω)〉dµ,

for ϕ,ψ ∈ L2(Ω, H0) and the representation space in this setting is L2(Ω, H0). The
continuous version of K-g-frames have been introduced in [3] as following:

Definition 1.5. Suppose that (Ω, µ) is a measure space with positive measure µ and K ∈
B(H). A family Λ = {Λω ∈ B(H,Hω) : ω ∈ Ω}, which {Hω}ω∈Ω is a family of Hilbert
spaces, is called a continuous K-g-frame, or simply, a c-K-g-frame for H with respect to
{Hω}ω∈Ω, if

(i) for each f ∈ H; {Λωf}ω∈Ω is strongly measurable,
(ii) there exist constants 0 < A ≤ B <∞ such that

A‖K∗f‖2 ≤
∫

Ω
‖Λωf‖2dµ(ω) ≤ B‖f‖2, f ∈ H. (4)

The constants A, B are called lower and upper c-K-g-frame bounds, respectively.

If A, B can be chosen such that A = B, then {Λω}ω∈Ω is called a tight c-K-g-frame and
if A = B = 1, it is called Parseval c-K-g-frame. A family {Λω}ω∈Ω is called a c-g-Bessel
family if the right hand inequality in (4) holds. In this case, B is called the Bessel constant.

Now, we present some theorems in operator theory which will be needed in next sections.

Lemma 1.1. ([9]). Let L1 ∈ B(H1, H) and L2 ∈ B(H2, H) be on given Hilbert spaces.
Then the following assertions are equivalent:

(1) R(L1) ⊆ R(L2);
(2) L1L

∗
1 ≤ λ2L2L

∗
2 for some λ > 0;

(3) there exists a mapping X ∈ B(H1, H2) such that L1 = L2X.

Moreover, if those conditions are valid, then there exists a unique operator X so that

(a) ‖X‖2 = inf{α > 0 | L1L
∗
1 ≤ αL2L

∗
2};

(b) N (L1) = N (X);

(c) R(X) ⊆ R(L∗2).
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For the proof of the following lemma, refer to [15].

Lemma 1.2. Let V ⊆ H be a closed subspace and T be a bounded operator on H. Then

πV T
∗ = πV T

∗πTV .

If T is unitary (i.e. T ∗T = I), then

πTV T = TπV .

2. Continuous K − gFusion Frames

In this section, we introduce the notion of continuous K-g-fusion frames in Hilbert
spaces and discuss some of their properties.

Definition 2.1. Let F : Ω→ H be such that for each h ∈ H, the mapping ω → πF (ω)(h)
is weakly measurable, K ∈ B(H) and let

Λ = {Λω ∈ B(F (ω), Hω) : ω ∈ Ω}.

Then (Λ, F, v) is a continuous K-g-fusion frame, or simply a c-K-g-fusion frame for H
with respect to v, if there exist 0 < A ≤ B <∞ such that for all h ∈ H

A‖K∗h‖2 ≤
∫

Ω
v2(ω)‖ΛωπF (ω)(h)‖2 dµ(ω) ≤ B‖h‖2. (5)

where πF (ω) is the orthogonal projection of H onto the subspace F (ω).

(Λ, F, v) is called a tight c-K-g-fusion frame for H if A = B, and parseval if A = B = 1.
(Λ, F, v) is called a Bessel c-g-fusion for H if the right-hand inequality in (5) holds.
When K = I, a c-K-g-fusion frame is c-g-fusion frame as defined in Definition 1.4.
Since each c-K-g-fusion frame is c-g-fusion Bessel, so the synthesis, analysis and c-K-g-
fusion frame operators are defined. Indeed, the synthesis operator is defined weakly as
follows (for more details, refer to [11]):

T :L2(Ω, H0) −→ H,

〈T (ϕ), h〉 =

∫
Ω
v(ω)〈Λ∗ω(ϕ(ω)), h〉 dµ(ω),

where ϕ ∈ L2(Ω, H0) and h ∈ H. It is obvious that T is linear and by Remark 1.6 in [11],
T is a bounded linear operator. Its adjoint, that is called analysis operator

T ∗ : H −→ L2(Ω, H0),

T ∗(h)(ω) = v(ω)ΛωπF (ω)(h), h ∈ H.

Definition 2.2. Suppose that (Λ, F, v) is a c-K-g-fusion frame for H with frame bounds
A and B. We define S : H → H by

〈Sf, g〉 =

∫
Ω
v2(ω)〈πF (ω)Λ

∗
ωΛωπF (ω)(f), g〉 dµ(ω),

and we call it the c-K-g-fusion frame operator.

Lemma 2.1. Let (Λ, F, v) be a c-g-fusion Bessel for H. Then (Λ, F, v) is a c-K-g-fusion
frame for H if only if there exists A > 0 such that S ≥ AKK∗ where S is c-K-g-fusion
frame operator.
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Proof. We have for each h ∈ H,

〈Sh, h〉 = ‖T ∗(h)‖2 =

∫
Ω
v2(ω)〈πF (ω)Λ

∗
ωΛωπF (ω)(h), h〉dµ(ω)

=

∫
Ω
v2(ω)‖ΛωπF (ω)(h)‖2 dµ(ω).

So, (Λ, F, v) is a c-K-g-fusion frame for H with bounds A and B if and only if

A‖K∗h‖2 ≤
∫

Ω
v2(ω)‖Λω(πF (ω)(h)‖2 dµ(ω) ≤ B‖h‖2, h ∈ H.

That is,

A‖K∗h‖2 ≤ 〈Sh, h〉 ≤ B‖h‖2, h ∈ H.

Therefore,

AKK∗ ≤ S ≤ B. (6)

�

Remark 2.1. In c-K-g-fusion frame, like c-K-g-frames and c-K-fusion frames, the c-K-
g-fusion frame operator is not invertible. But if K ∈ B(H) has closed range, then the
operator S is an invertible operator on the subspace R(K) ⊆ H. Indeed, suppose that
f ∈ R(K), then

‖f‖2 = ‖(K†|R(K))
∗K∗f‖2 ≤ ‖K†‖2‖K∗f‖2.

Thus, we have

A‖K†‖−2‖f‖2 ≤ 〈Sf, f〉 ≤ B‖f‖2, (7)

which implies that S : R(K) → S(R(K)) is a homeomorphism. Furthermore, for each
f ∈ S(R(K)) we have

B−1‖f‖2 ≤ 〈(S|R(K))
−1f, f〉 ≤ A−1‖K†‖2‖f‖2, f ∈ H. (8)

Remark 2.2. By Lemma 2.1, S ∈ B(H) is positive and self-adjoint. Since B(H) is a
C∗-algebra, then

(S−1)∗ = (S∗)−1 = S−1,

Thus, S−1 is self-adjoint and positive too whenever K ∈ B(H) is surjective. Hence, for
each f ∈ S(R(K)), we can write

〈Kf, f〉 = 〈Kf, SS−1f〉
= 〈S(Kf), S−1f〉

=

∫
Ω
v2(ω)〈πF (ω)Λ

∗
ωΛωπF (ω)(Kf), S−1f〉dµ(ω)

=

∫
Ω
v2(ω)〈S−1πF (ω)Λ

∗
ωΛωπF (ω)(Kf), f〉 dµ(ω).

Theorem 2.1. Let U ∈ B(H) be an invertible operator on H and (Λ, F, v) be a c-K-g-
fusion frame for H with bounds A and B. Then (Γ, G, v) is a c-UK-g-fusion frame for H
where Γ = {Γω}ω∈Ω = {ΛωπF (ω)U

∗ ∈ B(H,Hω);ω ∈ Ω} and G(ω) = UF (ω).
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Proof. By applying Lemma 1.2, and the fact that U is invertible, for each f ∈ H, we have∫
Ω
v2(ω)‖ΛωπF (ω)U

∗πUF (ω)f‖2 dµ =

∫
Ω
v2(ω)‖ΛωπF (ω)U

∗f‖2 dµ

≤ B‖U∗f‖2

≤ B‖U‖2‖f‖2.
So, (Γ, G, υ) is a c-g-fusion Bessel sequence for H, on the other hand,∫

Ω
v2(ω)‖ΛωπF (ω)U

∗πUF (ω)f‖2 dµ =

∫
Ω
v2(ω)‖ΛωπF (ω)U

∗f‖2 dµ

≥ A‖K∗U∗f‖2

= A‖(UK)∗f‖2

Therefore, (Γ, G, υ) is a c-UK-g-fusion frame for H . �

Corollary 2.1. Let U ∈ B(H) be an invertible operator on H and (Λ, F, v) is a c-K-g-
fusion frame for H with bounds A and B and UK = KU . Then (Γ, G, v) is a c-K-g-fusion
frame for H with bounds A‖U−1‖−2 and B‖U‖2 where Γ = {Γω}ω∈Ω = {ΛωπF (ω)U

∗ ∈
B(H,Hω);ω ∈ Ω} and G(ω) = UF (ω).

Proof. We have for each f ∈ H,

‖K∗f‖2 = ‖(U−1)∗U∗K∗f‖2 ≤ ‖U−1‖2‖K∗U∗f‖2.
So,

A‖U−1‖−2‖K∗f‖2 ≤ ‖K∗U∗f‖2

and by Theorem 2.1 the proof is completed. �

Theorem 2.2. Let U ∈ B(H) be a unitary operator on H and (Λ, F, v) be a c-K-g-fusion
frame for H with bounds A and B. Then (ΛωU

−1, UF, v) is a c- (U−1)∗K-g-fusion frame
for H.

Proof. By Lemma 1.2, we can write for any f ∈ H,

A‖((U−1)∗K)∗f‖2 = A‖K∗U−1f‖2 ≤
∫

Ω
v2(ω)‖ΛωU

−1πUF (ω)f‖2 dµ

=

∫
Ω
v2(ω)‖ΛωπF (ω)U

−1f‖2 dµ

≤ B‖U−1‖2‖f‖2.
�

Corollary 2.2. Let U ∈ B(H) be a unitary operator on H and (Λ, F, v) be a c-K-g-
fusion frame for H with bounds A and B and K∗U = UK∗. Then (ΛωU

−1, UF (ω), v) is
a c-K-g-fusion frame for H.

Proof. We can write for any f ∈ H,

‖K∗f‖2 = ‖UU−1K∗f‖2 = ‖UK∗U−1f‖2 ≤ ‖U‖2‖K∗U−1f‖2.
So,

A‖U‖−2‖K∗f‖2 ≤ A‖K∗U−1f‖2.
By the proof of Theorem 2.2, we conclude the result. �

Proposition 2.3. Let U ∈ B(H), (Λ, F, v) be a c-K-g-fusion frame for H with bounds A,
B and R(U) ⊆ R(K). Then (Λ, F, v) is a c-U-g-fusion frame for H.
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Proof. Via Lemma 1.1, there exists λ > 0 such that UU∗ ≤ λ2KK∗. Thus, for each f ∈ H
we have

‖U∗f‖2 = 〈UU∗f, f〉 ≤ λ2〈KK∗f, f〉 = λ2‖K∗f‖2.
It follows that

A

λ2
‖U∗f‖2 = A‖K∗f‖2 ≤

∫
Ω
v2(ω)‖ΛωπF (ω)f‖2 dµ.

�

Theorem 2.4. Let K ∈ B(H) be closed range, (Λ, F, v) be a c-K-g-fusion frame for H

with bounds A , B and U ∈ B(H) with R(U∗) ⊆ R(K). Then (ΛωπF (ω)U
∗, UF (ω), v) is

a c-K-g-fusion frame for H if and only if there exists a constant δ > 0 such that for every
f ∈ H,

‖U∗f‖ ≥ δ‖K∗f‖.

Proof. Let f ∈ H, U ∈ B(H) and (ΛωπF (ω)U
∗, UF (ω), v) be a c-K-g-fusion frame for H

with the lower bound C . So, by Lemma 1.2, we obtain

C‖K∗f‖2 ≤
∫

Ω
v2(ω)‖ΛωπF (ω)U

∗π
UF (ω)

f‖2 dµ =

∫
Ω
v2(ω)‖ΛωπF (ω)U

∗f‖2 dµ.

On the other hand, we have∫
Ω
v2(ω)‖ΛωπF (ω)U

∗f‖2 dµ ≤ B‖U∗f‖2,

therefore,
√

C
B‖K

∗f‖ ≤ ‖U∗f‖.
For the opposite implication, we can write for each f ∈ H,

‖U∗f‖ = ‖(K†)∗K∗U∗f‖ ≤ ‖K†‖.‖K∗U∗f‖.

Thus,

Aδ2‖K†‖−2‖K∗f‖2 ≤ A‖K†‖−2‖U∗f‖2

≤ A‖K∗U∗f‖2

≤
∫

Ω
v2(ω)‖ΛωπF (ω)U

∗f‖2 dµ

=

∫
Ω
v2(ω)‖ΛωπF (ω)U

∗π
UF (ω)

f‖2 dµ

≤ B‖U‖2‖f‖2.

So, (ΛωπF (ω)U
∗, UF ((ω), v) is a c-K-g-fusion frame for H. �

3. Duality of Continuous K − gFusion Frames

In this section, we present some descriptions for duality of c-K-g-fusion frames. Then,
we try to characterize and identity duals of c-K-g-fusion frames.

Definition 3.1. Let (Λ, F, v) be a c-K-g-fusion frame for H. A c-g-fusion Bessel sequence

(Λ̃, F̃ , ṽ) is called Q-dual c-K-g-fusion frame (or cQKg-dual) for (Λ, F, v) if there exists a
bounded linear operator Q : L2(Ω, H0)→ L2(Ω, H0) such that

TΛQ
∗T ∗

Λ̃
= K. (9)

The following theorem presents equivalent conditions of the above definition:
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Proposition 3.1. Let (Λ̃, F̃ , ṽ) be a cQKg-dual for (Λ, F, v).The following conditions are
equivalent:

(1) TΛQ
∗T ∗

Λ̃
= K;

(2) T
Λ̃
QT ∗Λ = K∗;

(3) for each f, f ′ ∈ H, we have

〈Kf, f ′〉 = 〈TΛQ
∗T ∗

Λ̃
(f), f ′〉 = 〈T ∗

Λ̃
(f), QT ∗Λ(f ′)〉 = 〈Q∗T ∗

Λ̃
(f), T ∗Λ(f ′)〉.

Proof. By an easy calculation, the proof is clear. �

Proposition 3.2. If (Λ̃, F̃ , ṽ) is a cQKg-dual for c-K-g-fusion frame (Λ, F, v).Then (Λ̃, F̃ , ṽ)
is a c-K∗-g-fusion frame for H.

Proof. We can write,

‖Kh‖4 = |〈Kh,Kh〉|2

= |〈TΛQ
∗T ∗

Λ̃
(h),Kh〉|2

= |〈T ∗
Λ̃

(h), QT ∗Λ(Kh)〉|2

≤ ‖T ∗
Λ̃

(h)‖2‖Q‖2B‖Kh‖2

= ‖Q‖2B‖Kh‖2
∫

Ω
ṽ2(ω)‖Λ̃ωπF̃ (ω)

h‖2 dµ.

for every f ∈ H, where B is an upper bound of (Λ, F, v). Therefore by definition, this
completes the proof. �

Suppose that (Λ, F, v) is a c-K-g-fusion frame for H. Since S ≥ AKK∗, then by Lemma
1.1, there exists an operator V ∈ B(H,L2(Ω, H0)) such that

TΛV = K. (10)

By this operator, we can construct some cQKg-fusion duals for (Λ, F, v).

Theorem 3.3. Let (Λ, F, v) be a c-K-g-fusion frame for H. If V be an operator as in

(10) and (Λ̃, F̃ , ṽ) is a c-g-fusion frame where Λ̃ = ΛV ∗V and F̃ = V ∗V F . Then (Λ̃, F̃ , ṽ)
is a cQKg-dual for (Λ, F, v).

Proof. Define the mapping

ϕ : R(T ∗
Λ̃

)→ L 2(Ω, H0),

ϕ(T ∗
Λ̃
f) = V f.

Since Λ̃ is a c-g-fusion frame, so it is clear that ϕ is well-defined, bounded and linear.
Therefore, it has a unique linear extension to R(T ∗

Λ̃
). Define ψ on L2(Ω, H0) by setting

ψ =

{
ϕ, on R(T ∗

Λ̃
),

0, on R(T ∗
Λ̃

)
⊥

and let Q = ψ∗. This implies that Q∗ ∈ B(L2(Ω, H0), L2(Ω, H0)) and

TΛQ
∗T ∗

Λ̃
= TΛψT

∗
Λ̃

= TΛV = K.

�
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4. Perturbation of c-Kg-Fusion Frames

Perturbation of discrete frames and frames associated with measurable spaces (c-frame)
have been discussed in [7] and [13], respectively. Stability and perturbation of K-g-frames
and c-K-g-frames have been investigated in [3, 16]; also perturbations of K-fusion frames
and gc-fusion frames have been discussed in [5, 11] . In this section, we introduce pertur-
bation of c-K-g-fusion frames.

Definition 4.1. Let Λ = {Λω ∈ B(F (ω), Hω) : ω ∈ Ω} and Λ̃ = {Λ̃ω ∈ B(F̃ (ω), Hω) : ω ∈
Ω} where F : Ω→ H and F̃ : Ω→ H are weakly measurable and ṽ : Ω→ R+ be measurable

function. Let 0 < λ1, λ2 < 1 and ε > 0. We say that (Λ̃, F̃ , ṽ) is a (λ1, λ2, ε)-Perturbation
of (Λ, F, v) if for each h ∈ H and , ω ∈ Ω

‖v(ω)ΛωπF (ω)(h)− ṽ(ω)Λ̃ωπF̃ (ω)
(h)‖ ≤ λ1‖v(ω)ΛωπF (ω)(h)‖+ λ2‖ṽ(ω)Λ̃ωπF̃ (ω)

(h)‖
+ εv(ω)‖K∗h‖.

Theorem 4.1. Let (Λ, F, v) be a c-K-g-fusion frame for H with respect to v ∈ L2(Ω) with
bounds A and B. Choose 0 ≤ λ1 < 1 and ε > 0 such that

0 < (1− λ1)
√
A− ε‖K‖

(∫
Ω
v2(ω) dµ

) 1
2
. (11)

Furthermore, if (Λ̃, F̃ , ṽ) is a (λ1, λ2, ε)-Perturbation of (Λ, F, v), then (Λ̃, F̃ , ṽ) is a c-K-
g-fusion frame for H with respect to ṽ with bounds((1 + λ1)

√
B + (1− λ1)

√
A

1− λ2

)2

and (√A(1− λ1)(‖K‖ − 1)

‖K‖(1 + λ2)

)2
.

Proof. We first verify the upper frame bound condition. For each h ∈ H and ω ∈ Ω, we
get (∫

Ω

‖ṽ2(ω)Λ̃ωπF̃ (ω)(h)‖2 dµ
) 1

2

=
(∫

Ω

‖ṽ(ω)Λ̃ωπF̃ (ω)(h)− v(ω)ΛωπF (ω)(h) + v(ω)ΛωπF (ω)(h)‖2 dµ
) 1

2

≤
(∫

Ω

{
(1 + λ1)‖v(ω)ΛωπF (ω)(h)‖+ λ2‖ṽ(ω)Λ̃ωπF̃ (ω)(h)‖+ εv(ω)‖K∗h‖

}2

dµ
) 1

2

≤ (1 + λ1)
(∫

Ω

‖v(ω)ΛωπF (ω)(h)‖2 dµ
) 1

2

+ λ2

(∫
Ω

‖ṽ(ω)Λ̃ωπF̃ (ω)(h)‖2 dµ
) 1

2

+ ε‖K∗h‖
(∫

Ω

v2(ω) dµ
) 1

2

.

By (11), we have∫
Ω
ṽ2(ω)‖Λ̃ωπF̃ (ω)

(h)‖2 dµ ≤
((1 + λ1)

√
B + (1− λ1)

√
A

1− λ2

)2
‖h‖2.
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Therefore, (Λ̃, F̃ , ṽ) is a c-g-fusion Bessel for H with respect to ṽ. Now, we show that

(Λ̃, F̃ , ṽ) has the lower c-K-g-fusion frame condition. For each h ∈ H, we have(∫
Ω

‖ṽ(ω)Λ̃ωπF̃ (ω)(h)‖2 dµ
) 1

2

=
(∫

Ω

‖ṽ(ω)Λ̃ωπF̃ (ω)(h)− v(ω)ΛωπF (ω)(h) + v(ω)ΛωπF (ω)(h)‖2 dµ
) 1

2

≥
(∫

Ω

{
(1− λ1)‖v(ω)ΛωπF (ω)(h)‖ − λ2‖ṽ(ω)Λ̃ωπF̃ (ω)(h)‖ − εv(ω)‖K∗h‖

}2

dµ
) 1

2

≥ (1− λ1)
(∫

Ω

‖v(ω)ΛωπF (ω)(h)‖2 dµ
) 1

2 − λ2

(∫
Ω

‖ṽ(ω)Λ̃ωπF̃ (ω)(h)‖2 dµ
) 1

2

− ε‖K∗h‖
(∫

Ω

v2(ω) dµ
) 1

2

.

Thus ∫
Ω
ṽ2(ω)‖Λ̃ωπF̃ (ω)

(h)‖2 dµ ≥
(√A(1− λ1)(‖K‖ − 1)

‖K‖(1 + λ2)

)2
‖K∗h‖2,

and the proof is complete. �
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