
J. Vis. Commun. Image R. 75 (2021) 103015

A
1

Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier.com/locate/jvci

Full length article

Adaptive convolution kernel for artificial neural networks✩

F. Boray Tek a,∗, İlker Çam a,1, Deniz Karlı b

a Department of Computer Engineering, Işık University, Şile/İstanbul, 34980, Turkey
b Department of Mathematics, Işık University, Şile/İstanbul, 34980, Turkey

A R T I C L E I N F O

MSC:
62M45
62H35
68U10
44A35

Keywords:
Adaptive convolution
Multi-scale convolution
Image classification
Residual networks

A B S T R A C T

Many deep neural networks are built by using stacked convolutional layers of fixed and single size (often 3 × 3)
kernels. This paper describes a method for learning the size of convolutional kernels to provide varying size
kernels in a single layer. The method utilizes a differentiable, and therefore backpropagation-trainable Gaussian
envelope which can grow or shrink in a base grid. Our experiments compared the proposed adaptive layers to
ordinary convolution layers in a simple two-layer network, a deeper residual network, and a U-Net architecture.
The results in the popular image classification datasets such as MNIST, MNIST-CLUTTERED, CIFAR-10, Fashion,
and ‘‘Faces in the Wild’’ showed that the adaptive kernels can provide statistically significant improvements
on ordinary convolution kernels. A segmentation experiment in the Oxford-Pets dataset demonstrated that
replacing ordinary convolution layers in a U-shaped network with 7 × 7 adaptive layers can improve its
learning performance and ability to generalize.
1. Introduction

Neural network-based pattern recognition is the state-of-the-art ap-
proach to solving many visual problems. The most successful solutions
are based on stacked convolutional layers [1–3]. The stacked deep
hierarchy allows increasingly complex and discriminative representa-
tions (features) which also become easier to classify. Though biological
neurons are functionally different, there is firm evidence that biological
neurons in the visual cortex perform in a similar way to neurons
in convolutional layers [4]. In the late 1960s, Hubel and Wiesel [5]
discovered three types of cells in the visual cortex: simple, complex, and
hyper-complex (i.e. end-stopped cells). The simple cells are sensitive to
the orientation of the excitatory input, whereas the hyper-complex cells
are activated by particular types of orientation, motion, and size of the
stimuli.

The common convolutional layer in a neural network is composed of
several fixed-size convolution kernels with trainable/learnable weights
(coefficients) [6,7]. There are two important properties of a convolu-
tional neuron which differentiates it from a fully connected neuron:
(1) it has a local receptive field. (2) it shares its weights with all other
neurons at the same layer (assuming a single kernel). Therefore, the
same local (non)linear transformation is applied to all regions of the
input. Thus, it calculates the same transformation for an input window
regardless of its position in the image. However, it is neither scale- nor

✩ This paper has been recommended for acceptance by Zicheng Liu.
∗ Corresponding author.

E-mail address: boray.tek@isikun.edu.tr (F.B. Tek).
1

rotation-invariant, and the size, shape, or orientation of the kernel also
affect the output. Though many practitioners often employ basic 3 × 3
kernels for all tasks, others have tried varied size and shape kernels and
different input samplings to improve robustness [8–11]. These works
are reviewed in Section 2.

In this study, we describe a new and adaptive model of the convo-
lution layer where the kernel sizes are learned during training. In this
unique setting, a single convolution layer can tune and accommodate
several kernel sizes at the same time. Such a layer can compute a
multi-scale representation from the same input. This is achieved by
an additional function which limits and controls the size of the kernel
(illustrated in Fig. 1). Therefore, the first important question of this
paper is: can a differentiable and trainable functional form effectively
control the receptive field of a kernel? We tested this ability on an
auto-encoder network to learn ordinary image processing operators
(e.g., Sobel filter, Gaussian blur). The second question is whether the
new adaptively sized convolution kernels can provide any advantage
over ordinary fixed-size kernels. In two different network structures,
(simple CNN and residual) we substitute the ordinary convolution
layers with the adaptive layers to compare their learning and gener-
alization performances. We used the popular MNIST, MNIST-Cluttered,
CIFAR-10, Fashion, LFW-Faces (‘‘Labelled Faces in the Wild’’) datasets
for the comparisons. Finally, we replaced a single convolution layer in a
U-net architecture with an adaptive layer and tested it in segmentation.
vailable online 2 January 2021
047-3203/© 2021 Elsevier Inc. All rights reserved.

Work done when İ. Çam was with Dept. of Comp. Eng. at Işık University

https://doi.org/10.1016/j.jvcir.2020.103015
Received 14 September 2020; Received in revised form 24 November 2020; Accept
ed 30 December 2020

http://www.elsevier.com/locate/jvci
http://www.elsevier.com/locate/jvci
mailto:boray.tek@isikun.edu.tr
https://doi.org/10.1016/j.jvcir.2020.103015
https://doi.org/10.1016/j.jvcir.2020.103015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvcir.2020.103015&domain=pdf

Journal of Visual Communication and Image Representation 75 (2021) 103015F.B. Tek et al.
Fig. 1. Illustration of the proposed weight envelope: (a) An arbitrary differentiable
envelope function on a base grid. (b) An example Gaussian envelope (𝑈). (c) Randomly
generated weights (𝑊). (d) Weights are masked by envelope (b) through element-wise
multiplication (𝑈◦𝑊).

The main contributions of the current paper are as follows: (1) a
formal description of the two-dimensional adaptive kernel model based
on a Gaussian envelope function, (2) a demonstration that the adaptive
envelope makes the kernels less prone to overfitting than ordinary large
kernels, (3) a demonstration that their performance is comparable to
or better than the ordinary 3 × 3 kernels which are commonly used in
vision applications.

2. Related works

The concept of receptive field has attracted attention since the
earliest studies of artificial neural networks. The stacked topology of
networks enables a neuron in the deeper layers of the network to have
an enlarged effective field of view on the input. Recently Luo [12],
found that the effective receptive field grows with the square root of
the depth, and in contrary to general belief, the receptive fields of the
top-layer neurons may not extend to cover the whole input domain.

The importance of the receptive field in convolution was spotted by
signal processing researchers, long before the deep learning community
focused on it. The most relevant work is on atrous (dilated) convo-
lution [13] which used up-sampled convolution kernels by inserting
zeros between the coefficients. The atrous or dilated convolution is
widely used in a range of deep learning applications where multi-scale
processing is crucial. The applications include image classification [14],
semantic segmentation [15], speech synthesis&recognition [16], and
image denoising [17].

Dilated convolution enlarges the effective receptive fields. It has
been used to provide multi-scale representation in various network
configurations [14,18–20]. However, it does not solve the problem of
scale completely by itself. The network architectures such as U-net
aim to increase the scale tolerance of the network by creating multi-
scale feature maps [10], whereas others such as inception included
parallel convolution paths containing different fixed-size convolutions
to extract multi-scale information [21].

The shape or orientation of the kernels was also a concern. For
example, Li et al. [8] studied optimizing kernel shapes using Lasso to
create arbitrary shape kernels for audio inputs, as an alternative to com-
monly used square kernels optimal for natural images. Weiler et al. [22]
employed steerable kernels trained from a harmonic functional basis to
create orientation-sensitive kernels.

The receptive field of a convolution operation can be changed by
varying the locations where input is sampled while maintaining the size
of the kernel. The ordinary convolution uses fixed sampling locations
with respect to the current position (𝑖) of the kernel, (e.g., {𝑖 − 2 ,
𝑖 − 1, 𝑖, 𝑖 + 1, 𝑖 + 2}), whereas dilated convolution would sample
sparsely (e.g., {𝑖 − 4 , 𝑖 − 2, 𝑖, 𝑖 + 2, 𝑖 + 4}) using a fixed sampling
parameter. The active convolution model [11] attempted to learn input
sampling offsets (𝑝𝑛) from training data, (e.g., {𝑖 + 𝑝0 , 𝑖 + 𝑝1, 𝑖 + 𝑝2,
𝑖 + 𝑝3, 𝑖 + 𝑝4}). Similarly, Dai’s deformable convolution model [9]
dynamically computed sampling offsets per input and per location by
performing additional convolutions on the input.

The adaptive model proposed here differs from these approaches in
three ways: (1) it does not change the way that input is sampled, (2)
2

it does not use secondary convolutions to compute parameters, (3) it
learns the kernel size from training data. The parameters are static and
not computed per input, meaning that after training the kernels are
fixed.

The proposed model can be seen as an aperture-only, case-specific
exemplar of a generalized form, the adaptive locally connected neu-
ron [23,24] which can learn its receptive field location and aperture
using a Gaussian focus attachment.

3. Method

The proposed kernel model learns the receptive field size of the
kernel by training a smooth envelope function that can grow or shrink
in a base kernel grid. The following sections explain the role of the
envelope function, provide an appropriate functional form to construct
the envelope, and discuss its parameters. Before starting, note that
although commonly referred to as convolution, the operation that is
studied and used in neural networks is more appropriately termed
cross-correlation. Therefore, for mathematical consistency, we continue
with the term cross-correlation instead of convolution, although we
use the terms interchangeably for the sake of consistency with the
literature.

A 2-D-matrix cross-correlation computes its output 𝑂 = [𝑜𝑖,𝑗] by
calculating the weighted sum of the (𝑛 × 𝑛 shaped) kernel coefficients
𝑊 = [𝑤𝑘,𝑙] times the input 𝑋 = [𝑥𝑖,𝑗] across all possible locations 𝑖, 𝑗.
Therefore, the output matrix of valid size (𝑀 − 𝑛) × (𝑁 − 𝑛) can be
expressed in the following form:

𝑂 = 𝑋 ⋆𝑊 =
[

⌊𝑛∕2⌋
∑

𝑘=−⌊𝑛∕2⌋

⌊𝑛∕2⌋
∑

𝑙=−⌊𝑛∕2⌋
𝑥𝑖+𝑘,𝑗+𝑙𝑤𝑘+⌊𝑛∕2⌋,𝑙+⌊𝑛∕2⌋

]𝑀−⌊𝑛∕2⌋,𝑁−⌊𝑛∕2⌋

𝑖=⌊𝑛∕2⌋,𝑗=⌊𝑛∕2⌋

(1)

where, for simplicity, we can ignore the precise offsets, subscripts
(e.g., 𝑤𝑘+⌊𝑛∕2⌋,𝑙+⌊𝑛∕2⌋) and index limits to use the following form (2)
which is sufficient for our discussions:

𝑂 = 𝑋 ⋆𝑊 =

[𝑛
∑

𝑘

𝑛
∑

𝑙
𝑥𝑖+𝑘,𝑗+𝑙 𝑤𝑘,𝑙

]𝑀,𝑁

𝑖,𝑗

. (2)

3.1. The envelope function

In the adaptive model, the kernel coefficient matrix 𝑊 is paired
with an envelope 𝑈 = [𝑢𝑘,𝑙] which controls kernel growth through an
element-wise multiplication (i.e. the Hadamard product):

𝑂 = 𝑋 ⋆ (𝑊 ◦𝑈) =

[𝑛
∑

𝑘

𝑛
∑

𝑙
𝑥𝑖+𝑘,𝑗+𝑙 𝑤𝑘,𝑙 𝑢𝑘,𝑙

]𝑀,𝑁

𝑖,𝑗

. (3)

It may seem as if we are adding just another weight; however,
the envelope coefficients are not independent of each other. Here, we
define the envelope on a two-dimensional Euclidean space since it is the
most common case which can be generalized to further dimensions. We
omitted input channels in our notation; if the input contains channels,
the weight matrix is three or more dimensional, so the envelope 𝑈 must
be repeated on that dimension. As illustrated in Fig. 1, the envelope
resides in a base grid which is also the kernel domain. Let us assume
an 𝑛×𝑛 base grid for an odd-sized square kernel; and let 𝑈𝑓 be a smooth
and differentiable function defined in this domain by a parameter set
𝜽 ∈ R𝜌 (4):

𝑈𝑓 ∶ ((𝑘, 𝑙),𝜽) ↦ 𝑢𝑘,𝑙 ∈ R where
{(𝑘, 𝑙) | 𝑘, 𝑙 ∈ {1, 2, .., 𝑛}} and 𝜽 = {𝜃1, 𝜃2, ..𝜃𝜌}.

(4)

Thus, a functional form can be chosen or designed for 𝑈𝑓 to control
the envelope shape represented by the coefficients 𝑢𝑘,𝑙 which mask the
weights. When 𝑈 is differentiable with respect to the parameters 𝜽,
𝑓

Journal of Visual Communication and Image Representation 75 (2021) 103015F.B. Tek et al.
the error derivatives can be calculated using the chain rule; and the
updates can be performed using (5):

𝑤′
𝑘,𝑙 ∶= 𝑤𝑘,𝑙 − 𝜂 𝜕𝐸

𝜕𝑂
𝜕𝑂
𝜕𝑤𝑘,𝑙

𝜃′𝑝 ∶= 𝜃𝑝 − 𝜂 𝜕𝐸
𝜕𝑂

𝜕𝑂
𝜕𝜃𝑝

(5)

where 𝜂 denotes the learning rate, 𝑤′
𝑘,𝑙 and 𝜃′𝑝 denote the updated

kernel weight coefficient and envelope parameter respectively, and 𝐸
denotes an error term. Though they seem disconnected, the updates
of the envelope coefficients and weights are related. We elaborate this
point by inspecting the partial derivatives of 𝐸 with respect to 𝑤𝑘,𝑙
and 𝜃𝑝. The expression for the derivative 𝜕𝐸∕𝜕𝑤𝑘,𝑙(7) includes the focus
coefficient 𝑢𝑘,𝑙 as a scaler coefficient:

𝜕𝐸
𝜕𝑤𝑘,𝑙

=
𝑀
∑

𝑖

𝑁
∑

𝑗

𝜕𝐸
𝜕𝑜𝑖,𝑗

𝜕𝑜𝑖,𝑗
𝜕𝑤𝑘,𝑙

=
𝑀
∑

𝑖

𝑁
∑

𝑗

𝜕𝐸
𝜕𝑜𝑖,𝑗

𝑥𝑖+𝑘,𝑗+𝑙 𝑢𝑘,𝑙 (6)

= 𝑢𝑘,𝑙
𝑀
∑

𝑖

𝑁
∑

𝑗

𝜕𝐸
𝜕𝑜𝑖,𝑗

𝑥𝑖+𝑘,𝑗+𝑙 . (7)

Thus, the envelope not only controls the forward signal but also affects
the weight updates. Likewise, we calculate the derivative with respect
to the envelope parameter 𝜃𝑝:

𝜕𝐸
𝜕𝜃𝑝

=
𝑀
∑

𝑖

𝑁
∑

𝑗

𝜕𝐸
𝜕𝑜𝑖,𝑗

𝜕𝑜𝑖,𝑗
𝜕𝜃𝑝

(8)

where
𝜕𝑜𝑖,𝑗
𝜕𝜃𝑝

=
𝑛
∑

𝑘

𝑛
∑

𝑙
𝑥𝑖+𝑘,𝑗+𝑙 𝑤𝑘,𝑙

𝜕𝑢𝑘,𝑙
𝜕𝜃𝑝

. (9)

Thus, we can write the following expression:

𝜕𝐸
𝜕𝜃𝑝

=
𝑀
∑

𝑖

𝑁
∑

𝑗

𝜕𝐸
𝜕𝑜𝑖,𝑗

(𝑛
∑

𝑘

𝑛
∑

𝑙
𝑥𝑖+𝑘,𝑗+𝑙 𝑤𝑘,𝑙

𝜕𝑢𝑘,𝑙
𝜕𝜃𝑝

)

. (10)

We see that the derivative with respect to the envelope parameter is
accumulated over both the input image and kernel, unlike the weight
derivative (7) which is only accumulated over the whole image. This is
because 𝑢𝑘,𝑙 values are not independent of each other.

3.2. Choosing an envelope function

A Gaussian form is the primary candidate for the envelope function
because it is continuous and differentiable, and it neither creates nor
enhances extrema [25]. Its center parameter (𝝁) controls the position,
the covariance parameter (𝛴) smoothly controls the orientation and
spread of the form, and 𝑠 performs the normalization:

𝑈𝑓 (𝒈, (𝝁,Σ)) = 𝑠 𝑒−
1
2 (𝐠−𝝁)

′𝛴−1(𝐠−𝝁) . (11)

In two-dimensional Euclidean space 𝒈 ∈ R2, the center is two-
dimensional, 𝝁 = ⟨𝜇𝑥, 𝜇𝑦⟩ and covariance is a 2 × 2 matrix 𝛴 =
[𝜎2𝑥𝑥 𝜎2𝑥𝑦
𝜎2𝑦𝑥 𝜎2𝑦𝑦

]

. However, we exclude the rotation (and the ellipsoid kernels)
from the current discussion (for an extended introduction see [26,27]).
Although it is possible to train the kernel position (𝝁) as in [11], we
did not observe any benefit from doing so in our preliminary studies.
Hence, here 𝜇 is initialized to the center of the grid and not trained.
There remains only one trainable parameter 𝜎𝑢 which controls the
size of the circular envelope shape in the set of parameters: 𝜽 =
{𝜇𝑥 = 0.5𝑛, 𝜇𝑦 = 0.5𝑛, 𝜎𝑢}.

During the feed-forward execution the envelope function 𝑈𝑓 is
computed on the normalized grid coordinates 𝒈 = ⟨𝑘∕𝑛, 𝑙∕𝑛⟩ with the
current aperture 𝜎𝑢 to produce envelope coefficients 𝑢𝑘,𝑙 which are
multiplied element-wise with the weights 𝑤𝑘,𝑙 prior to the convolution.
Fig. 2 depicts the weight kernels, envelope matrices and product ker-
nels (𝑊 ◦𝑈) for two example cases with relatively smaller and larger
aperture (𝜎) values.
3

𝑢

Fig. 2. Examples of envelopes and effective (product) kernels.

Let us denote 𝑙2-norm of a vector as ‖𝒙‖2 =
√

𝑥21 + 𝑥22, for any given
𝒙 = ⟨𝑥1, 𝑥2⟩. Then the partial derivative with respect to 𝜎𝑢, which can
replace 𝜕𝑢𝑘,𝑙∕𝜕𝜃𝑝 in (11), can be expressed as below (12):

𝜕𝑈𝑓

𝜕𝜎𝑢
= 𝑠

‖𝒈 − 𝝁‖22
2𝜎3𝑢

𝑒(−‖𝒈−𝝁‖
2
2∕(2𝜎

2
𝑢)). (12)

3.3. Initialization of envelope parameters

Recent studies demonstrated that the initialization of weights in a
neural network is crucial to improve its training and generalization
capacity [28,29]. These studies usually inspect the forward signal and
backward gradient flows to suggest an optimal weight-initialization
strategy. A common approach is to adjust the variance of the weights
so that layer inputs and outputs have equal variance. However, in the
adaptive kernel, the envelope coefficients scale the weights and change
the variance of the propagated signals. Moreover, since the total fan-
in of an adaptive kernel is larger than its effective fan-in it is not
clear what value should be used for calculating the weight variance
as recommended by common initialization schemes [28,29].

Nevertheless, we could derive an appropriate initialization variance
for the weights in the envelope’s presence. However, during the train-
ing, the updates to 𝜎𝑢 would change the envelope, the product kernel,
and the output variance. Therefore, we approach this problem from an
alternative perspective where we normalize and scale the envelope 𝑈
to keep the variance of the weights unchanged by the element-wise
multiplication operation 𝑊 ◦𝑈 . Although it is not possible to keep the
variance of the individual weights 𝑤𝑘,𝑙 unchanged, it is possible to
maintain the mean of the variances. Let us write single summation
∑𝑛,𝑛

𝑘,𝑙 instead of ∑𝑛
𝑘
∑𝑛

𝑙 to simplify the notation and define the mean
of variances along an 𝑛 × 𝑛 matrix 𝐴 = [𝑎𝑘,𝑙]𝑛×𝑛 by:

MVar[𝐴] = 1
𝑛2

𝑛,𝑛
∑

𝑘,𝑙
Var(𝑎𝑘,𝑙) . (13)

Then, Theorem 3.1 states that the mean of the variances of the
weights will be unchanged by the Hadamard multiplication of the
envelope matrix if the mean of the expected value of the squared
envelope coefficients is 1.

Theorem 3.1. MVar[𝑊 ◦𝑈] = MVar[𝑊] = 𝜎2𝑤 when 1
𝑛2

∑𝑛,𝑛
𝑘,𝑙 E(𝑢

2
𝑘,𝑙) = 1.

Journal of Visual Communication and Image Representation 75 (2021) 103015F.B. Tek et al.
Proof. Since 𝑢𝑘,𝑙 and 𝑤𝑘,𝑙 are independent for any 𝑘, 𝑙 and weights are
i.i.d with zero mean (i.e. E(𝑤𝑘,𝑙 = 0)), we have

Var(𝑢𝑘,𝑙𝑤𝑘,𝑙) = E(𝑢2𝑘,𝑙𝑤
2
𝑘,𝑙) −

[

E(𝑢𝑘,𝑙)E(𝑤𝑘,𝑙)
]2 (14)

= E(𝑢2𝑘,𝑙)E(𝑤
2
𝑘,𝑙) = E(𝑢2𝑘,𝑙)𝜎

2
𝑤 . (15)

Next, we consider the mean of variances.

MVar(𝑈◦𝑊) = 1
𝑛2

𝑛,𝑛
∑

𝑘,𝑙
Var(𝑢𝑘,𝑙𝑤𝑘,𝑙) (16)

= 𝜎2𝑤
1
𝑛2

𝑛,𝑛
∑

𝑘,𝑙
E(𝑢2𝑘,𝑙) (17)

= MVar(𝑊) 1
𝑛2

𝑛,𝑛
∑

𝑘,𝑙
E(𝑢2𝑘,𝑙) . (18)

Hence the result follows.

Likewise, we may consider the backward propagation of the error
variance. Using (7) and the assumptions E(𝑥(𝑖+𝑘,𝑗+𝑙)) = 0 and E(𝑤𝑘𝑙) = 0,
we formulate the mean of the gradient variances of the weights as
follows (20)(see the appendix for the derivation):

MVar
(

𝜕𝐸
𝜕𝑊

)

= 1
𝑛2

𝑛,𝑛
∑

𝑘,𝑙
Var

(

𝜕𝐸
𝜕𝑤𝑘,𝑙

)

(19)

= 𝜎2𝑥

[

1
𝑛2

𝑛,𝑛
∑

𝑘,𝑙
E(𝑢2𝑘,𝑙)

]𝑀,𝑁
∑

𝑖,𝑗
E
[

(𝜕𝐸
𝜕𝑜𝑖,𝑗

)2
]

. (20)

Thus, Eq. (20) states that the envelope coefficients affect the mean
of the gradient variances of the weights minimally if the mean expected
value of the squared envelope coefficients is 1.0. However, the envelope
function is a deterministic function of the random parameter 𝜎𝑢 which
has an unknown probability density, because it will be learned by the
network. However, we see that the function 𝑈𝑓 can be scaled so that
𝑢𝑘,𝑙 sum to a constant value irrespective of the 𝜎𝑢 value. Therefore,
satisfying the condition on Theorem 3.1 translates to a condition on
the norm of the ‖𝑈‖

2
2 =

∑𝑛,𝑛
𝑘,𝑙 𝑢

2
𝑘,𝑙 = 𝑛2. In practice, a convolution layer

would have more than one kernel to calculate multiple outputs. Hence,
in the forward run, each kernel 𝑞 calculates its envelope using its own
𝜎𝑞𝑢 , then normalizes itself using 𝑠𝑞𝑢:

𝑠𝑞𝑢 =
𝑛

√

√

√

√

√

∑

𝐠∈𝐴×𝐴

(

𝑒
− (𝐠−𝝁)𝑇 (𝐠−𝝁)

2(𝜎𝑞𝑢)2

)2
. (21)

To test this proposition empirically, we set up a simple experi-
ment. In a loop of increasing aperture (𝜎𝑢) values, we calculated the
corresponding envelope matrix and also randomly sampled weight
matrices of size 𝑛 × 𝑛 × 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 × 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 from a uniform distribution
(normal distribution was also tested). The weight sample variance
was calculated along the channel and filter dimensions. Fig. 3 shows
the mean of the variances of the weight matrices (MVar[W]) against
the mean of the variances of the product kernels (MVar[𝑊 ◦𝑈]) for
increasing envelope (U) aperture 𝜎𝑢 value. It can be seen that when
we normalized 𝑈𝑓 using (21), negligibly small deviations occurred in
the product kernel variance at very low aperture values, whereas the
larger aperture envelopes maintained the mean of the weight variances
perfectly.

On the other hand, we do not have formal guidance on the initial-
ization of 𝜎𝑢, except that it must be positive and non-zero. In practice,
we have noticed that initializing 𝜎𝑢 in the range [1∕n,n] works well
(𝑛 = kernel size). However, during training the 𝜎𝑢 value must be
monitored and clipped to stay above a value (e.g., 1∕n) to prevent
over-shrinking by high gradient values and fluctuations that may occur.
4

Fig. 3. Mean of the kernel variances against increasing aperture 𝜎𝑢. 𝑈 : normalized,
𝑈0: unnormalized envelope.

4. Experiments

We divided the experiments into four sections. First, we investi-
gated whether the proposed adaptive kernel can learn common image
processing filters. Second, we set up a simple convolutional network
and compared the adaptive kernels against the ordinary convolutional
kernels in their learning and generalization performance. Next, we re-
peated the same comparison in a popular deep architecture, ResNet [3].
Finally, we tested the adaptive kernels in a U-net [10] architecture for
segmentation. We implemented the proposed model in Python 3 using
Keras & Tensorflow [30]. All code and a demo are available in [31].

4.1. Datasets

In the tests of the learning of image processing kernels, we used
a few examples from the MNIST character recognition dataset [6]
as input. We applied simple image processing operations from the
scikit-image library [32] to produce the target images.

In the classification experiments, MNIST was the first one to test.
More challenging datasets were also used: a cluttered version of MNIST
data (CLT), comprised of randomly transformed MNIST samples super-
imposed on cluttered 60 × 60 backgrounds [33]; the CIFAR-10 general
object classification dataset which is composed of 32 × 32 × 3 RGB
images of ten concrete categories such as car, plane, bird, horse [34];
and the FASHION (clothes) dataset which is arranged similarly to
MNIST [35] to include 10 categories such as t-shirt, pullover, and
coat. These almost-standard datasets had already been separated into
training (60000) and test (validation) instances (10000). The tests also
included the ‘‘Faces in the Wild’’ dataset (LFW-Faces) [36] as a bench-
mark for face verification. The LFW-Faces set contains 13233 images of
5749 people; to reduce the number of output classes, individuals with
less than 20 images were excluded from the experiments, resulting in
a dataset of 3023 (2267 training, 756 validation) images of 62 people.

In the segmentation experiments, we used the Oxford Pets-III dataset
[37] which includes 7349 pictures of different dog and cat breeds
together with their tri-map segmentation annotations. The tri-map
output classes are pet, border, and background.

4.2. Learning basic image processing kernels

We set up a simple auto-encoder network to test whether the new
adaptive kernels are able to synthesize some basic image processing
kernels. The network configuration can be found in the supplementary
materials. The network took a single image (e.g., Fig. 4(a)) as input to
learn the outputs of nine different image processing kernels of size 9 × 9
pixels. The targets included the output of 3 × 3 Laplace, horizontal and
vertical Sobel kernels, Gauss smoothing kernels of different variance,
and applications of Laplace and Sobel to the Gauss-smoothed outputs,
as shown in Fig. 4(d). Fig. 4(e) shows the outputs of the network
after 500 training iterations using stochastic gradient descent optimizer

Journal of Visual Communication and Image Representation 75 (2021) 103015F.B. Tek et al.
Fig. 4. The auto-encoder with the adaptive convolution kernels learning basic image kernels. (a) Input image. (b) Mean Squared Loss. (c) Change of 𝜎𝑢 during training. (d) Output
images (targets) created by image processing kernels (Laplace, Sobel, Gauss and combinations). (e) Network predicted outputs after 2500 training updates. (f) Initial weights. (g)
Initial envelopes. (h) Learned envelopes. (i) Effective (product) kernels.
with a learning rate and momentum of 0.1 and 0.9, respectively. The
training converged after 150–200 iterations, as seen in Fig. 4(b). In
addition, we observed that the minimum square error of the adaptive
convolution network was slightly lower than an ordinary convolution
network which contains kernels of equal size (9 × 9). However, both
networks were able to learn the kernels. Fig. 4(c) shows that most of the
5

aperture parameters (𝜎𝑢) converged at around 150–200 epochs in the
adaptive network. The initial weight (𝑊) and envelope (𝑈) kernels are
shown in Figs. 4(f) and 4(g) with the learned envelope and final product
kernels (𝑈◦𝑊) are given in Figs. 4(h) and 4(i), respectively. It can be
seen that the envelopes were successfully learned in the presence of the

Journal of Visual Communication and Image Representation 75 (2021) 103015F.B. Tek et al.

b
n
n
t

5
e
t
w
s
f
w
W
r
0
l
t
t
t
v
t
u

r
p
3
l
a

1
t
d
w
r
s

i
a
b
d
k

4

d
a
r
o
f
t
c
0
t

weights and vice versa. In conclusion, the adaptive kernels were able
to learn basic image processing kernels of different size and character.

4.3. Comparisons in simple convolutional network

Next, we compared the proposed adaptive kernels (ACONV) to the
ordinary convolution (CONV) kernels in a simple convolutional clas-
sification network. The basic network configuration is summarized in
Table 1 (see the supplementary figures for a plot of the network graph).
The network was built using two consecutive convolutional layers
(CONV or ACONV) of 32 kernels followed by a single max-pool layer
of size 2 × 2 and a dense classification layer of 256 units surrounded
y two drop-out layers. All neuronal layers were followed by batch
ormalization (BN) and rectified linear activation units (RELU). The
etwork output was formed of 𝑐 Softmax units, where 𝑐 was equal to
he number of dataset categories.

All comparisons were repeated with different kernel sizes 𝑛 (3 × 3,
× 5, 7 × 7, 9 × 9) and with 5 different random initializations. To

nsure a fair comparison, we fine-tuned the ordinary kernel network
o get the best validation accuracy, then replaced the ordinary kernel
ith the adaptive kernel. We then tuned the model-specific parameters

uch as the initial 𝜎𝑢’s before comparing the two cases. In other words,
or the given configuration, we compared the maximum performance
e could achieve using the ordinary kernel with the adaptive kernel.
e used stochastic gradient descent optimizer with an initial learning

ate of 0.1 × 𝜂𝑑𝑠𝑒𝑡 (dataset specific multiplier) and a momentum of
.9 and gradient clip value of 1.0. We further employed an adaptive
earning rate schedule which monitors the validation loss and drops
he learning rate by a factor of 0.9 when no improvement is seen in
he past 10 epochs. Table 1 lists other important parameters used in
raining. We initialized the aperture values 𝜎𝑞𝑢 with linearly spaced
alues in the range [0.1,0.5]. In addition, we attached a clip function to
he optimizer to clip the 𝜎𝑢 values within the range [1∕𝑛, 𝑛] after each
pdate.

Fig. 5 shows a comparison of the mean validation accuracies with
espect to training epochs. In all five datasets, the adaptive layers
erformed better than their fixed-size counterparts. As anticipated, the
× 3 ACONV kernels performed the least effective, since there is

imited room to operate the adaptive aperture. In contrast, the 7 × 7
nd 9 × 9 kernels often performed the best.

Table 2 summarizes the results that were calculated using Algorithm
across five repeats. Comparing the mean peak validation accuracies,

he adaptive filter reached higher validation accuracies in all five
atasets. The t-tests compared the means of peak validation accuracies
hen using the kernel size of the maximum peak performance and

esults confirmed that the accuracy improvements were all statistically
ignificant.

Another observation was about the performance of ordinary kernels
n different sizes. Although 3 × 3 sized kernels are preferred in most
pplications, we observed that the larger kernels produced significantly
etter results in our setting. Finally, Fig. 5(e) depicts the learned kernels
uring the Fashion dataset training which demonstrates the varying
ernel sizes.

.4. Comparisons in deep residual network (ResNet)

Next, we compared the proposed adaptive kernel (ACONV) to or-
inary convolution (CONV) kernels in a modern successful network
rchitecture for classification: ResNet [3]. For the comparison, we
edefined the basic convolutional block to employ either an adaptive
r ordinary convolutional layer selectively (see the supplementary
igures). We used the same datasets as the previous experiments. To
rain the networks faster (and avoid local minima) we employed a one-
ycle learning rate schedule function that starts the learning rate from
.001 before rising 0.5 × 𝜂𝑑𝑠𝑒𝑡 (𝜂𝑑𝑠𝑒𝑡: dataset learning rate multiplier) in
he first half of the training session and then dropping down to 0.001
6

again towards the end of the training. We used data augmentation in
the Fashion, CIFAR-10 and Faces datasets. Table 1 lists the remaining
parameters.

The comparison plots of the validation performances are shown
in Fig. 6. By inspecting the plots, we observed clear performance
gains from adaptive 5 × 5 and 7 × 7 kernels in the MNIST-CLUT,
CIFAR-10, and Fashion datasets. It was difficult to identify the best
performers in the MNIST and Faces tests from the accuracy plots.
Table 3 demonstrates that the peak performances were those of the
adaptive convolution (ACONV), with the exception of the Faces dataset.
The mean peak validation accuracy differences in MNIST-CLUT, CIFAR-
10, and Fashion were statistically significant. Further inspection of the
Faces dataset results (see also Fig. 6e), revealed that the highest mean
peak accuracy was achieved by the ACONV 5 × 5 network (96.28%);
however, all comparisons were made at the kernel size which achieved
the maximum peak accuracy, which was (CONV) 3 × 3 in this case.

The active convolution model by Jeon [11] was also tested on the
CIFAR-10 dataset, and test accuracy was reported as 92.46% (single
value) for an active convolution ResNet of 5 blocks and 32 layers. In
contrast, we used 3 blocks and 20 layers which produced a maximum
accuracy of 92.68% and mean of 92.21%.

To explain the differences between the adaptive and ordinary con-
volutions, we computed the deep Taylor [38,39] decompositions for
three examples selected from the MNIST, Fashion and CIFAR-10 val-
idation sets. The decompositions depicted in Fig. 6(f) represent the
relevancy of individual input pixels back-traced from the network
predictions. The heatmaps computed for CONV 3 × 3 and CONV 7 × 7
networks show that the larger kernel size network caused smoother
and fuzzier relevancy regions. On the flip side, ACONV 7 × 7 input
heatmaps were smoother than CONV 3 × 3 but sharper than CONV
7 × 7. Moreover, the CIFAR-10 heatmaps revealed that ACONV 7 × 7
input representation and focus was even more precise than CONV 3 × 3.

4.5. Comparisons in U-net for segmentation

The next experiment investigated the performance of the adaptive
convolution in a U-shaped network architecture [10] which allows end-
to-end image segmentation. The baseline code collected from Keras
library [30] implements an efficient U-net architecture by using con-
volution, separable convolution, and deconvolution layers (see the
supplementary for the configuration used). We took the first, ordinary
convolution layer and the following separable convolution layers and
replaced them with respective adaptive kernel layers, then compared
them against the original. The deconvolution layers in the network
were not replaced because they were not implemented in our adaptive
kernel framework.

We resized all images from the Oxford Pets dataset [37] to
128 × 128 and then used the splits provided in the dataset to create
training and validation sets of 3680 and 3669 instances. We used sparse
categorical entropy loss and Adam optimizer using a batch size of 64
and a fixed learning rate of 0.01. We employed and compared 7 × 7
adaptive kernels with 7 × 7 and 3 × 3 (baseline) ordinary kernels. All
three networks were trained with five random initializations. Figs. 7(a)
and 7(b) plot the mean loss and validation accuracies over 75 training
epochs. We observed that the networks started overfitting at shifted
iterations (>≈ 40 epochs). However, the mean training loss value
reached by ACONV 7 × 7 was lower than that of the ordinary kernels.
Moreover, the mean peak validation accuracy achieved by ACONV
7 × 7 (86.45%±3e-3) was significantly higher than those of CONV
7 × 7 (85.54%±3e-3, p-value=0.0016) and CONV 3 × 3 (85.89%±3e-3,
p-value=0.023).

Figs. 7(c) through 7(q) compare the segmentation outputs qualita-
tively. While the output maps look very similar, the adaptive convolu-

tion layer network produced slightly more accurate border regions.

Journal of Visual Communication and Image Representation 75 (2021) 103015F.B. Tek et al.
Fig. 5. Simple Convolutional Network Comparisons: (a–e) Validation Accuracy Plots. (f) Learned product kernels (of ACONV 7 × 7) on FASHION dataset.
4.6. Time complexity

The additional complexity of the adaptive kernel is due to the calcu-
lation of the envelope function which depends on the kernel size only;
it is independent of the input width and height. During training, the
envelope function must be calculated for each batch using the current
aperture values of individual filters 𝜎𝑞𝑢 while during back-propagation,
an extra gradient is calculated for 𝜎𝑞𝑢 . In the MNIST training, we
recorded the following forward+backward mean batch (128) step-times
for different kernel sizes of ACONV, where the time for the ordinary
CONV kernel of the same size is given in parentheses: {3 × 3 : 215us
(166us), 5 × 5: 238us (180us), 7 × 7: 321us (282us), 9 × 9: 340us
(285us) }, on a laptop equipped with i7-8565U and NVIDIA 1650 GPU.
Therefore, the adaptive network was ≈1.2 to ≈1.3 times slower than
an ordinary kernel of the same size in training. However, we must note
that the current implementation was not optimized for speed at all. In
7

addition, in run-time, the overhead of the envelope can be removed by
using the learned product kernels (𝑈◦𝑊).

5. Discussions

The experiments demonstrated the feasibility of the proposed adap-
tive kernel model. First, the adaptive kernel was able to learn differ-
ent image processing filters without encountering any difficulty. The
learned kernel shapes demonstrated that the envelope and weights were
able to co-adapt successfully during the training.

Second, the comparative tests in a simple convolutional network
configuration demonstrated the learning and generalization perfor-
mances on popular image classification datasets. In all datasets, the
adaptive kernels provided significant but slight improvements in gen-
eralization performance, more than the potential gains that would
be achieved by using the ordinary kernels of larger size. Training

Journal of Visual Communication and Image Representation 75 (2021) 103015F.B. Tek et al.

O
b

Algorithm 1: Training, validation, and optimization procedure
Input: network, dataset, 𝑁𝑟𝑒𝑝𝑒𝑎𝑡𝑠, 𝑁𝑒𝑝𝑜𝑐ℎ𝑠, 𝑛: kernel size, 𝜂𝑑𝑠𝑒𝑡: learning rate multiplier, 𝑚 = 0.9: momentum rate. OPT: SGD (stochastic gradient

descent with momentum) or Adam or SGD with Cyclic Schedule
utput: BestTestResults: list of best test accuracies.
egin

BestTestResults = []
for 𝑟 ← 0 to 𝑁𝑟𝑒𝑝𝑒𝑎𝑡𝑠 − 1 do

EpochAccuracyList = []
trainX, trainy, testX, testy = split(dataset)
for 𝑒 ← 0 to 𝑁𝑒𝑝𝑜𝑐ℎ𝑠 − 1 do

for each batch (Xinputs, targets) in (trainX, trainy) do
params ← network.trainableparams
pred ← network.output(Xinputs)
loss ← categoricalcrossentropy(targets, pred)
updates ← OPT(loss, params, 0.1* 𝜂𝑑𝑠𝑒𝑡, 𝑚, clipvalue=1.0)
if 𝑡𝑦𝑝𝑒(network) == focused then

updates.append(clip(params.sigma, 1/n, n))
network.update(updates)

score ← accuracyscore(network, testX, testy)
EpochAccuracyList.append(score)

maxscore ← max(EpochAccuracyList)
BestTestResults.append(maxscore)
Table 1
Left: simple convolutional network. Right: ResNet network and training parameters.

Simple Network MNIST CLUT CFR10 Fashion Faces ResNet Params MNIST CLUT CFR10 Fashion Faces

Num Params 1.6M 75K 1.4M 0.9M 0.9M Filters 16 16 16 16 16
Batch 128 128 64 256 8 Num Blocks 1 1 3 2 2
Augment False False False False True Num Layers 11 11 20 14 14
Epoch 100 100 120 100 100 Num Params 75K 75K 1.4M 0.9M 0.9M
Dropouts 0.5 0.5 0.5 0.5 0.5 Batch 128 128 128 128 8
𝜂𝑑𝑠𝑒𝑡 (x 0.1) 0.1 1.0 0.1 0.1 0.01 Augment False False True True True

Epoch 50 50 200 100 150
Dropout 0.5 – – – –
𝜂𝑑𝑠𝑒𝑡 (×[1e-3→0.5]) 1.0 1.0 0.1 0.1 0.1
Table 2
Validation performances of simple ordinary (CONV) and adaptive (ACONV) convolution networks on popular image classification sets. The
two-tailed t-tests are included for each case. N (repeats) = 5, p: 𝑝-value, highlights indicate *: 𝑝-value <0.05. Best size indicates the best
performing (and t-test comparison) kernel size.

MNIST CLT CIFAR-10 Fashion LFW-Faces

Mn±std Max Mn±std Max Mn±std Max Mn±std Max Mn±std Max

CONV 99.58 ± 2e−4 99.61 95.59 ± 2e−3 95.9 78.74 ± 2e−3 78.95 93.31 ± 6e−4 93.38 83.87 ± 7e−3 85.66

ACONV 99.63 ± 2e-4 99.66 95.9 ± 9e-4 96.06 79.63 ± 5e-3 80.1 93.84 ± 2e-3 94.12 85.79 ± 6e-3 86.93

T-Test (t,p) 2.88 0.02* 2.46 0.039* 3.28 0.011* 6.16 2.7e−4* 3.89 4.5e−3*

Best size 9 × 9 9 × 9 9 × 9 7 × 7 9 × 9
Table 3
Validation performances of Residual ordinary (CONV) and adaptive (ACONV) convolution networks (ResNet) in popular image classification
sets. The two-tailed t-tests are included for each case. N (repeats) = 5, p: 𝑝-value, highlights indicate *: 𝑝-value <0.05.

MNIST CLT CIFAR-10 Fashion LFW-Faces

Mn±std Max Mn±std Max Mn±std Max Mn±std Max Mn±std Max

CONV 99.69 ± 2e−4 99.71 98.93 ± 4e−4 99.01 91.3 ± 2e−3 91.71 93.95 ± 1e−4 94.12 96.15 ± 7e-3 97.48

ACONV 99.70 ± 1e-4 99.73 99.06 ± 8e-4 99.17 92.21 ± 3e-3 92.68 94.72 ± 2e-3 95.01 94.83 ± 9e−3 96.06

T-Test (t,p) 0.67 0.51 2.72 0.02* 5.12 9e-4* 7.01 1e-4* −2.19 0.059

Best size 5 × 5 7 × 7 5 × 5 7 × 7 3 × 3
f

the ordinary kernels further (for more epochs) did not improve the
results in their favor because the larger kernels are prone to overfitting
whereas the smaller kernels have limited receptive fields.

In the ResNet architecture, the use of adaptive kernels resulted in
better generalization performance compared to the ordinary kernels
in all datasets except Faces, in which the maximum peak validation
8

i

accuracy was in favor of the ordinary kernel of size 3 × 3. However, we
noted that the mean accuracy of the 5 × 5 adaptive kernel was higher.
Therefore, we recommend employing 5 × 5 or 7 × 7 adaptive kernels
or potential performance gains in ResNet architectures. An additional
nsight gained from our experiments was that, in contrast to the widely

Journal of Visual Communication and Image Representation 75 (2021) 103015F.B. Tek et al.
Fig. 6. Experiment 3: Resnet Comparisons. (a–e) Validation Accuracy Plots. (f) Deep Taylor Decompositions.
accepted usage of 3 × 3 ordinary convolution kernels, the larger kernels
may work better in ResNet for some datasets.

The kernels learned in the Fashion dataset (Fig. 5(f)) verified that
the adaptive layers were able to create varying-sized kernels. Further-
more, the deep Taylor decomposition analysis of the compared Resnets
(Fig. 6(f)) displayed evidence for multi-scale representation computed
by the adaptive convolution networks.

In a brief segmentation experiment, we tested the adaptive kernels
in an efficient U-net architecture by replacing the convolution lay-
ers, which resulted in an improved segmentation performance against
both the same (larger) size kernels and smaller 3 × 3 kernel layer.
However, the current state-of-the-art image segmentation methods use
more complex architectures and architecture-search algorithms [40,
9

41]. Therefore, it would be appropriate to study adaptive kernels for
segmentation in a dedicated study.

In summary, the experiments demonstrated that the adaptive kernel
model is an effective alternative to the ordinary convolution kernel. It
can create varying-sized kernels in a single layer. It is less prone to
overfitting than an ordinary large convolution kernel (5 × 5, 7 × 7,
9 × 9) while providing better or comparable performance to the widely
employed 3 × 3 ordinary kernel.

6. Conclusion

In conclusion, we here propose an adaptive convolution kernel
which is able to learn its size by training with backpropagation. The
new model is standalone, modular and compatible with existing Keras

Journal of Visual Communication and Image Representation 75 (2021) 103015F.B. Tek et al.
Fig. 7. U-Net segmentation comparisons. (a–b) Training and validation accuracy plots of U-net with adaptive convolution (ACONV 7 × 7) and ordinary convolutions (CONV 7 × 7
and CONV 3 × 3). (c–q) Input, true mask, and predictions of the networks for three different input images from the validation set.
and Tensorflow backends. Hence, one can easily import and attach the
proposed adaptive layer into a network and train it with any stride
or dilation factor. The single additional requirement is to apply a clip
(callback) to the aperture parameter (𝜎𝑢) to keep it above a minimum
positive value during training iterations.

There were some limitations to our study, which may be addressed
by future work. The current state-of-the-art networks require large
resources to set up, tune and optimize on larger datasets. It will be
interesting to observe the learning performance of the adaptive kernels
in a state-of-the-art network on one of the large datasets. Next, it will
be necessary to set up a dedicated segmentation study to compare the
adaptive kernel model against the ordinary kernels and other adaptive
methods such as deformable or active convolution models.

Funding

This work was supported by The Scientific and Technological Re-
search Council of Turkey programme (TUBITAK-1001 no: 118E722),
10
Isik University BAP programme, Turkey (no: 16A202), and NVIDIA
hardware donation of a Tesla K40 GPU unit, Turkey.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Earlier implementation and experiments were conducted by İ. Çam;
a draft was prepared by İ. Çam, F. B. Tek coded the kernels again
in Keras/Tensorflow performed the current experiments, and wrote
the current paper. D. Karlıcontributed to the mathematical model and
proofs. Thanks to Mert Mısırlıoğlu for helping with the ResNet experi-
ment setup.

Journal of Visual Communication and Image Representation 75 (2021) 103015F.B. Tek et al.

0

M

t

V

=

f

V

Appendix A. Derivation of mean of the variances of the weight
derivatives

We assume that the inputs and weights are i.i.d (independent and
identically distributed) and the expected values are zero, i.e. E(𝑥(𝑖,𝑗)) =

and E(𝑤𝑘𝑙) = 0. Let us recall the expression for the mean of variances,

Var
(

𝜕𝐸
𝜕𝑊

)

= 1
𝑛2

𝑛,𝑛
∑

𝑘,𝑙
Var

(

𝜕𝐸
𝜕𝑤𝑘,𝑙

)

. (A.1)

Here, the expected value of the derivative is also zero E
(

𝜕𝐸
𝜕𝑤𝑘,𝑙

)

= 0 by
he independence of variables and E(𝑥𝑖,𝑗) = 0. Hence:

ar
(𝜕𝐸
𝜕𝑤𝑘,𝑙

)

= E
(

[𝜕𝐸
𝜕𝑤𝑘,𝑙

]2
)

= E

(

(𝑢2𝑘,𝑙)
[𝑀,𝑁
∑

𝑖,𝑗

𝜕𝐸
𝜕𝑜𝑖,𝑗

𝑥𝑖+𝑘,𝑗+𝑙

]2
)

. (A.2)

By independence, the last line equals:

E(𝑢2𝑘,𝑙)

[𝑀,𝑁
∑

𝑖,𝑗
E
([

𝜕𝐸
𝜕𝑜𝑖,𝑗

𝑥𝑖+𝑘,𝑗+𝑙

]2)

+2
𝑀,𝑁
∑

𝑖,𝑗

𝑖−1,𝑗−1
∑

𝑝,𝑟
E
(

𝜕𝐸
𝜕𝑜𝑖,𝑗

𝜕𝐸
𝜕𝑜𝑝,𝑟

𝑥𝑖+𝑘,𝑗+𝑙 𝑥𝑖+𝑝,𝑗+𝑟

)

]

. (A.3)

The second term is zero since E(𝑥𝑖,𝑗) = 0 and independence of input 𝑥𝑖,𝑗
rom the other variables. Then,

ar
(𝜕𝐸
𝜕𝑤𝑘,𝑙

)

= E(𝑢2𝑘,𝑙)
𝑀,𝑁
∑

𝑖,𝑗
E(𝑥2𝑖+𝑘,𝑗+𝑙) E

(

[𝜕𝐸
𝜕𝑜𝑖,𝑗

]2
)

. (A.4)

Since 𝑥𝑖,𝑗 are i.i.d with variance 𝜎2𝑥 and expectation zero, we can write

Var
(𝜕𝐸
𝜕𝑤𝑘,𝑙

)

= 𝜎2𝑥 E(𝑢2𝑘,𝑙)
𝑀,𝑁
∑

𝑖,𝑗
E
(

[𝜕𝐸
𝜕𝑜𝑖,𝑗

]2
)

. (A.5)

Then the mean of variances is as follows:

MVar
(𝜕𝐸
𝜕𝑊

)

= 𝜎2𝑥

[

1
𝑛2

𝑛,𝑛
∑

𝑘,𝑙
E(𝑢2𝑘,𝑙)

]𝑀,𝑁
∑

𝑖,𝑗
E
[

(𝜕𝐸
𝜕𝑜𝑖,𝑗

)2
]

. (A.6)

References

[1] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, in: Communications of the ACM, 2017.

[2] F.N. Iandola, M.W. Moskewicz, K. Ashraf, S. Han, W.J. Dally, K. Keutzer,
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model
size, 2016, arXiv abs/1602.07360.

[3] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: IEEE CVPR, 2015.

[4] T. Poggio, T. Serre, Models of visual cortex, Scholarpedia 8 (4) (2013) 3516.
[5] D..T.W. Hubel, Receptive fields, binocular interaction and functional architecture

in the cat’s visual cortex, J. Physiol. 160 (1962) 106–154.
[6] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to

document recognition, in: Proc. of the IEEE, Vol. 86, 1998, pp. 2278–2324.
[7] I. GoodFellow, Y. Bengio, A. Courville, Deep Learning, The MIT Press, 2016.
[8] X. Li, F. Li, X. Fern, R. Raich, Filter shaping for convolutional neural networks,

in: ICLR, 2017.
[9] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, Y. Wei, Deformable convolutional

networks, in: ICLR, 2017.
[10] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for

biomedical image segmentation, in: MICCAI, 2015, pp. 18–29.
[11] Y. Jeon, J. Kim, Active convolution: Learning the shape, in: IEEE CVPR, 2017.
[12] W. Luo, Y. Li, R. Urtasun, R. Zemel, Understanding the effective receptive field

in deep convolutional neural networks, in: Adv. in Neural Information Processing
Systems, 2016, pp. 4898–4906.
11
[13] M. Holschneider, R. Kronland-Martinet, J. Morlet, P. Tchamitchian, A real-time
algorithm for signal analysis with the help of the wavelet transform, in: Wavelets:
Time-Frequency Methods and Phase Space, 1989, pp. 289–297.

[14] F. Yu, V. Koltun, T. Funkhouser, Dilated residual networks, in: IEEE CVPR, 2017.
[15] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, Deeplab: Semantic

image segmentation with deep convolutional nets, atrous convolution, and fully
connected CRFs, IEEE Trans. Pattern Anal. Mach. Intell. 40 (4) (2018) 834–848.

[16] A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. Senior, K. Kavukcuoglu, Wavenet: a generative model for raw audio,
2016, ArXiv, Corr abs/1609.03499.

[17] C. Tian, Y. Xu, W. Zuo, Image denoising using deep CNN with batch
renormalization, Neural Netw. 121 (2020) 461–473.

[18] F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, in:
ICLR, 2016.

[19] B. Guo, K. Song, H. Dong, Y. Yan, Z. Tu, L. Zhu, NERNet: Noise estimation
and removal network for image denoising, J. Vis. Commun. Image R. 71 (2020)
102851.

[20] H. Li, F. Qi, G. Shi, C. Lin, A multiscale dilated dense convolutional network for
saliency prediction with instance-level attention competition, J. Vis. Commun.
Image R. 64 (2019) 102611.

[21] C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, Inception-v4, inception-resnet and
the impact of residual connections on learning, in: Conf. on Artificial Intelligence,
2017.

[22] M. Weiler, F.A. Hamprecht, M. Storath, Learning steerable filters for rotation
equivariant CNNs, in: IEEE CVPR, 2018.

[23] F.B. Tek, Uyarlanır Yerel Bağlı Nöron modelinin incelemesi, Bilişim Teknol. Derg.
12 (2019) 307–317.

[24] F.B. Tek, Adaptive locally connected neural network, Neurocomputing 419
(2021) 306–321.

[25] T. Lindeberg, Generalized Gaussian scale-space axiomatics comprising linear
scale-space, affine scale-space and spatio-temporal scale-space, J. Math. Imaging
Vision 40 (1) (2011) 36–81.

[26] İlker. Çam, Learning Filter Scale and Orientation In Convolution Neural
Networks, Isik University, 2019.

[27] İlker. Cam, F.B. Tek, Learning filter scale and orientation in CNNs, 2018, arXiv
preprint arXiv:1803.00388.

[28] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification, in: ICCV, 2015, pp.
1026–1034.

[29] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, in: Proc. of Machine Learning Research, Vol. 9, 2010, pp.
249–256.

[30] F. Chollet, et al., Keras, 2015, https://keras.io.
[31] F.B. Tek, 2020, URL https://github.com/btekgit/AdaptiveCNN.
[32] S. van der Walt, J.L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J.D. Warner,

N. Yager, E. Gouillart, T. Yu, the scikit-image contributors, Scikit-image: image
processing in python, PeerJ 2 (2014) e453.

[33] M. Jaderberg, K. Simonyan, A. Zisserman, K. Kavukcuoglu, Spatial Transformer
Networks, in: NeurIPS, Vol. 28, 2015.

[34] A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images, Technical
Report, Canadian Institute For Advanced Research, 2009.

[35] H. Xiao, K. Rasul, R. Vollgraf, Fashion-MNIST: a novel image dataset for
benchmarking machine learning algorithms, 2017, arXiv cs.LG/1708.07747.

[36] G.B. Huang, M. Ramesh, T. Berg, E. Learned-Miller, Labeled Faces in the
Wild: A Database for Studying Face Recognition in Unconstrained Environments,
Technical Report, (07–49) University of Massachusetts, Amherst, 2007.

[37] O.M. Parkhi, A. Vedaldi, A. Zisserman, C.V. Jawahar, Cats and dogs, in: IEEE
CVPR, 2012.

[38] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, K.-R. Müller, Explaining non-
linear classification decisions with deep Taylor decomposition, Pattern Recognit.
65 (2017) 211–222.

[39] M. Alber, S. Lapuschkin, P. Seegerer, M. Hägele, K.T. Schütt, G. Montavon, W.
Samek, K.-R. Müller, S. Dähne, P.-J. Kindermans, iNNvestigate neural networks!,
2018, arXiv, cs.LG 1808.04260.

[40] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, Z. Zhang, H. Lin, Y. Sun, T. He, J. Mueller,
R. Manmatha, M. Li, A. Smola, Resnest: Split-attention networks, 2020, arXiv,
Corr 2004.08955.

[41] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu,
R. Pang, V. Vasudevan, Q.V. Le, H. Adam, Searching for mobilenetv3, 2019,
arXiv, Corr 1905.02244.

http://refhub.elsevier.com/S1047-3203(20)30225-X/sb1
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb1
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb1
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb2
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb2
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb2
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb2
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb2
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb4
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb5
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb5
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb5
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb7
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb12
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb12
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb12
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb12
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb12
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb13
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb13
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb13
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb13
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb13
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb15
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb15
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb15
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb15
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb15
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb16
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb16
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb16
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb16
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb16
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb17
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb17
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb17
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb19
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb19
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb19
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb19
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb19
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb20
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb20
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb20
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb20
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb20
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb23
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb23
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb23
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb24
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb24
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb24
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb25
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb25
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb25
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb25
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb25
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb26
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb26
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb26
http://arxiv.org/abs/1803.00388
https://keras.io
https://github.com/btekgit/AdaptiveCNN
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb32
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb32
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb32
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb32
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb32
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb34
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb34
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb34
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb35
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb35
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb35
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb36
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb36
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb36
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb36
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb36
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb38
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb38
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb38
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb38
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb38
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb39
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb39
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb39
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb39
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb39
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb40
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb40
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb40
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb40
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb40
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb41
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb41
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb41
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb41
http://refhub.elsevier.com/S1047-3203(20)30225-X/sb41

	Adaptive convolution kernel for artificial neural networks
	Introduction
	Related works
	Method
	The envelope function
	Choosing an envelope function
	Initialization of envelope parameters

	Experiments
	Datasets
	Learning basic image processing kernels
	Comparisons in simple convolutional network
	Comparisons in deep residual network (ResNet)
	Comparisons in U-net for segmentation
	Time complexity

	Discussions
	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Derivation of mean of the variances of the weight derivatives
	References

