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AN APPROACH TO BIPOLAR FUZZY SUBMODULES

B. P. VAROL, §

Abstract. We introduce the notion of bipolar fuzzy submodule of a given classical
module and study fundamental properties and characterizations.

Keywords: Bipolar valued fuzzy set, Bipolar fuzzy subgroup (resp. subring), Bipolar
fuzzy submodule.
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1. Introduction

In 1965, Zadeh [11] proposed the concept of fuzzy set theory. There are several ex-
tensions of fuzzy set theory, for example, intuitionistic fuzzy sets, interval- valued fuzzy
sets, neutrosophic sets, etc. In fuzzy sets, the membership degree of element range on
[0,1]. In 2000, Lee [5] defined bipolar-valued fuzzy set as an extension of fuzzy set. In
this set theory interval of membership value is [-1,1]. The bipolar valued fuzzy set have
positive and negative memberships. The membership degree 0 means that elements are
not satisfying the specific property, the membership degrees on (0,1] indicate that ele-
ments somewhat satisfy the property and the membership degrees on [-1,0) indicate that
elements satisfying implicit counter property. At present, studies on bipolar valued fuzzy
set and its applications are progressing rapidly. In 2009, K. J. Lee [7] applied the concept
of bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI algebras. In 2013, M. S.
Anitha et. al [1] introduced the notion of bipolar valued fuzzy subgroup and studied some
properties. In 2018, S.P. Subbian et. al. [10] worked on bipolar valued fuzzy ideals of ring.
The topological structure of bipolar valued fuzzy set was introduced by M. Azhagappan
and M. Kamaraj [2] in 2016. Then, in 2019, J. H. Kim et. al. [4] defined the concepts of
bipolar fuzzy base, subbase and neighborhood structure.

In this paper, we have initiated the concept of bipolar fuzzy submodule of a given
classical module and study some basic properties.

2. Preliminaries

In this section, we give some definitions and several results on bipolar valued fuzzy set
theory.
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of Mathematics, 2021; all rights reserved.

168

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Isik University Academic Open Access

https://core.ac.uk/display/421651143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


B. P. VAROL: AN APPROACH TO BIPOLAR FUZZY SUBMODULES 169

Definition 2.1 [5] Let X be a non-empty set. A bipolar- valued fuzzy set A on X
is an object having the form A = {< x, µ+A(x), µ−A(x) >: x ∈ X} where µ+A : X → [0, 1]

and µ−A : X → [−1, 0] are mappings. The positive membership degree µ+A(x) denotes
the satisfaction degree of an element x to the property corresponding to a bipolar valued
fuzzy set A = {< x, µ+A(x), µ−A(x) >: x ∈ X} and the negative membership degree µ−A(x)
denotes the satisfaction degree of x to some implicit counter property of bipolar valued
fuzzy set A = {< x, µ+A(x), µ−A(x) >: x ∈ X}.

If µ+A(x) 6= 0 and µ−A(x) = 0, it is the situation that x is regarded as having only positive

satisfaction A = {< x, µ+A(x), µ−A(x) >: x ∈ X}.
If µ+A(x) = 0 and µ−A(x) 6= 0, it is the situation that x does not satisfy property

of A = {< x, µ+A(x), µ−A(x) >: x ∈ X} but somewhat satisfies the counter property of

A = {< x, µ+A(x), µ−A(x) >: x ∈ X}.
It is possible for element x to be such that µ+A(x) 6= 0 and µ−A(x) 6= 0 when the

membership function of the property overlaps that of its counter property over some
portion of X.

Example 2.2 LetX = {a, b, c}. A = {< a, 0.4,−0.2 >,< b, 0.6,−0.1 >,< c, 0.3,−0.3 >
} is a bipolar valued fuzzy set of X.

Definition 2.3[2] The empty bipolar valued fuzzy set, denoted by 0bp = (0+bp, 0
−
bp), is a

bipolar valued fuzzy set in X defined by 0+bp(x) = 0 = 0−bp(x), for each x ∈ X.

The whole bipolar valued fuzzy set, denoted by 1bp = (1+bp, 1
−
bp), is a bipolar valued fuzzy

set in X defined by 1+bp(x) = 1 and 1−bp(x) = −1, for each x ∈ X.

Definition 2.4 [6] Let A and B be two bipolar- valued fuzzy sets of X. Then
(1) A ⊆ B if and only if µ+A(x) ≤ µ+B(x) and µ−A(x) ≥ µ+A(x), for all x ∈ X.

(2) A = B if and only if µ+A(x) = µ+B(x) and µ−A(x) = µ−B(x), for all x ∈ X.

(3) A∩B = {< x, µ+A∩B(x), µ−A∩B(x) >: x ∈ X}, where µ+A∪B(x) = min{µ+A(x), µ+B(x)}
and µ−A∩B(x) = max{µ−A(x), µ−B(x)}

(4) A∪B = {< x, µ+A∪B(x), µ−A∪B(x) >: x ∈ X}, where µ+A∪B(x) = max{µ+A(x), µ+B(x)}
and µ−A∪B(x) = min{µ−A(x), µ−B(x)}

(5) Ac = {< x, 1− µ+A(x),−1− µ−A(x) >: x ∈ X}
Proposition 2.1. [4] Let A,B and C be bipolar valued fuzzy sets on the common universe
X. Then we have followings:

(1) A ∪B = B ∪A,A ∩B = B ∩A.
(2) A ∪ (B ∪ C) = (A ∪B) ∪ C,A ∩ (B ∩ C) = (A ∩B) ∩ C.
(3) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C), A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
(4) A ∩B ⊂ A and A ∩B ⊂ B
(5) A ⊂ A ∪B and B ⊂ A ∪B
(6) (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc.

Definition 2.5 [4] Let g : X → Y be a function and A,B be the bipolar valued fuzzy
sets on X and Y , respectively. The image of a bipolar valued fuzzy set A is a bipolar
valued fuzzy set on Y and it is defined as by
g(A)(y) = (µ+g(A)(y), µ−g(A)(y)) = (g(µ+A)(y), g(µ−A)(y)),∀y ∈ Y
where

g(µ+A)(y) =

{∨
µ+A(x), if x ∈ g−1(y);

0, otherwise
,

g(µ−A)(y) =

{∧
µ−A(x), if x ∈ g−1(y);

0, otherwise.
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The preimage of a bipolar fuzzy set B is a bipolar valued fuzzy set on X and it is defined
by
g−1(B)(x) = (µ+

g−1(B)
(x), µ−

g−1(B)
(x)) = (µ+B(g(x)), µ−B(g(x))), ∀x ∈ X.

Definition 2.6 [1] A bipolar valued fuzzy set A = {< x, µ+A(x), µ−A(x) >: x ∈ X} of
classical group G is called bipolar fuzzy subgroup of G if

(i) µ+A(xy) ≥ µ+A(x) ∧ µ+A(y) and µ−A(xy) ≤ µ−A(x) ∨ µ−A(y)

(ii) µ+A(x−1) ≥ µ+A(x) and µ−A(x−1) ≤ µ−A(x)
for all x, y ∈ G.
Definition 2.7 [10] A bipolar valued fuzzy set A = {< x, µ+A(x), µ−A(x) >: x ∈ X} of

classical ring R is called bipolar fuzzy subring of R if
(i) µ+A(x+ y) ≥ µ+A(x) ∧ µ+A(y) and µ−A(x+ y) ≤ µ−A(x) ∨ µ−A(y)

(ii) µ+A(−x) ≥ µ+A(x) and µ−A(−x) ≤ µ−A(x)

(iii) µ+A(xy) ≥ µ+A(x) ∧ µ+A(y) and µ−A(xy) ≤ µ−A(x) ∨ µ−A(y)
for all x, y ∈ R.

3. Bipolar fuzzy submodules

In this section, we introduce the concept of bipolar fuzzy submodule of a given classical
module over a ring and also investigate its elementary properties. Throughout this paper,
R denotes a commutative ring with unity 1.

Definition 3.1 Let M be a module over a ring R. A bipolar valued fuzzy set A on M
is called a bipolar fuzzy submodule of M if

(M1)A(0) = X̃, i.e.,
µ+A(0) = 1, µ−A(0) = −1.
(M2)A(x+ y) ≥ A(x) ∧A(y), for each x, y ∈M i.e.,
µ+A(x+ y) ≥ µ+A(x) ∧ µ+A(y) and µ−A(x+ y) ≤ µ−A(x) ∧ µ−A(y)
(M3)A(rx) ≥ A(x), for each x ∈M, r ∈ R, i.e.,
µ+A(rx) ≥ µ+A(x) and µ−A(rx) ≤ µ−A(x).
The collection of all bipolar fuzzy submodules of M is denoted by BFM(M).
Example 3.2 Let R = Z4 = {0, 1, 2, 3}. Let consider M = Z4 as a classical module.

Define the bipolar valued fuzzy set A by
A = {< 1,−1 > /0+ < 0.6,−0.6 > /1+ < 0.8,−0.4 > /2+ < 0.6,−0.6 > /3}.
Hence the bipolar valued fuzzy set A is a bipolar fuzzy submodule of the module M.
Definition 3.3 Let A and B be bipolar valued fuzzy sets on M. Then we define their

sum A+B as the bipolar valued fuzzy set on M by
µ+A+B(x) = ∨{µ+A(y) ∧ µ+B(z) | x = y + z, y, z ∈M},
and
µ−A+B(x) = ∧{µ−A(y) ∨ µ−B(z) | x = y + z, y, z ∈M}.
Definition 3.4 Let A be a bipolar valued fuzzy set on M, then −A is a bipolar valued

fuzzy set on M, defined by
µ+−A(x) = µ+A(−x) and µ−−A(x) = µ−A(−x), for each x ∈M.
Definition 3.5 Let A be a bipolar valued fuzzy set on M and r ∈ R. Define bipolar

valued fuzzy set rA on M by
µ+rA(x) = ∨{µ+A(y) | y ∈M, x = ry} and µ−rA(x) = ∧{µ−A(y) | y ∈M, x = ry}.

Proposition 3.1. If A is a bipolar valued fuzzy submodule of an R-module M, then
1.A = A and (−1)A = −A.

Proof. Let x ∈M .
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µ+(−1)A(x) =
∨
{µ+A(y) : y ∈M, x = (−1)y} =

∨
{µ+A(y) : y ∈M, y = −x} = µ+A(−x) =

µ+−A(x)

Similarly µ−(−1)A(x) = µ−−A(x), for all x ∈M .

We have (−1)A = −A. �

Proposition 3.2. If A is a bipolar valued fuzzy set on M, then r(sA) = (rs)A, for each
r, s ∈ R.

Proof. Let x ∈M and r, s ∈ R.

µ−r(sA)(x) =
∧
x=ry

µ−sA(y) =
∧
x=ry

∧
y=sz

µ−A(z) =
∧

x=r(sz)

µ−A(z) =
∧

x=(rs)z

µ−A(z) = µ−(rs)A(x).

Similarly we get the other equality, so r(sA) = (rs)A. �

Proposition 3.3. If A and B are bipolar valued fuzzy sets on M , then r(A+B) = rA+rB,
for each r ∈ R.

Proof. Let A and B are bipolar valued fuzzy sets on M , x ∈M and r ∈ R.
µ+r(A+B)(x) =

∨
x=ry

µ+A+B(y)

=
∨
x=ry

∨
y=y1+y2

(µ+A(y1) ∧ µ+B(y2))

=
∨

x=ry1+ry2

(µ+A(y1) ∧ µ+B(y2))

=
∨

x=x1+x2

((
∨

x1=ry1

µ+A(y1)) ∧ (
∨

x2=ry2

µ+B(y2)))

=
∨

x=x1+x2

(µ+rA(x1) ∧ µ+rB(x2)) = µ+rA+rB(x).

Similarly, we show that µ−r(A+B)(x) = µ−rA+rB(x), ∀x ∈M .

So, r(A+B) = rA+ rB. �

Proposition 3.4. If A is a bipolar valued fuzzy set on M, then µ+rA(rx) ≥ µ+A(x) and

µ−rA(rx) ≤ µ−A(x).

Proof. Straightforward. �

Proposition 3.5. Let A and B are bipolar valued fuzzy sets on M . Then we obtain
followings:

(1) µ+B(rx) ≥ µ+A(x), ∀x ∈M ⇔ µ+rA ≤ µ
+
B.

(2) µ−B(rx) ≤ µ−A(x), ∀x ∈M, ⇔ µ−rA ≥ µ
−
B.

Proof. (1) Let µ+B(rx) ≥ µ+A(x), for each x ∈ M, then µ+rA(x) =
∨

x=ry,y∈M
µ+A(y). Hence,

µ+rA ≤ µ
+
B.

Conversely, let µ+rA ≤ µ+B. Then µ+rA(x) ≤ µ+B(x), for each x ∈ M. By Proposition 3.4

we have µ+B(rx) ≥ µ+rA(rx) ≥ µ+A(x), for each x ∈M .
(2) Straightforward. �

Proposition 3.6. Let A and B are bipolar valued fuzzy sets on M , then have followings:
(1) µ+rA+sB(rx+ sy) ≥ µ+A(x) ∧ µ+B(y),

(2) µ−rA+sB(rx+ sy) ≤ µ−A(x) ∨ µ−B(y), ∀x, y ∈M, r, s ∈ R.

Proof. Straightforward. �
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Proposition 3.7. Let A be a bipolar valued fuzzy set on M and r, s ∈ R. Then
(1) µ+rA ≤ µ

+
A ⇔ µ+A(rx) ≥ µ+A(x) and µ−rA ≥ µ

−
A ⇔ µ−A(rx) ≤ µ−A(x), ∀x ∈M.

(2) µ+rA+sA ≤ µ
+
A ⇔ µ+A(rx+ sy) ≥ µ+A(x) ∧ µ+A(y) and µ−rA+sA ≥ µ

−
A ⇔ µ−A(rx+ sy) ≤

µ−A(x) ∨ µ−A(y).

Proof. Straightforward. �

Theorem 3.1. Let A be a bipolar valued fuzzy set on M . Then A is a bipolar fuzzy
submodule of M iff

(i) µ+A(0) = 1, µ−A(0) = −1

(ii) µ+A(rx + sy) ≥ µ+A(x) ∧ µ+A(y) and µ−A(rx + sy) ≤ µ−A(x) ∨ µ−A(y), for each x, y ∈
M, r, s ∈ R.

Proof. Let A be a bipolar fuzzy submodule of M and x, y ∈M . Since A ∈ BFM(M), we
have (i). By (M2) and (M3), we have followings,
µ+A(rx+ sy) ≥ µ+A(rx) ∧ µ+A(sy) ≥ µ+A(x) ∧ µ+A(y),
and
µ−A(rx+ sy) ≤ µ−A(rx) ∨ µ−A(sy) ≤ µ−A(x) ∨ µ−A(y) for each x, y ∈M, r, s ∈ R.
Conversely, let A satisfies (i) and (ii). So we have
µ+(0) = 1, µ+(0) = −1.
µ+A(x+ y) = µ+A(1.x+ 1.y) ≥ µ+A(x) ∧ µ+A(y) and

µ−A(x+ y) = µ−A(1.x+ 1.y) ≤ µ−A(x) ∨ µ−A(y).
So, the condition (M2) is satisfied.
By the hypothesis,
µ+A(rx) = µ+A(rx+ r0) ≥ µ+A(x) ∧ µ+A(0) = µ+A(x) and µ−A(rx) = µ−A(rx+ r0) ≤ µ−A(x) ∨

µ−A(0) = µ−A(x), for each x, y ∈M, r ∈ R.
Hence, A is a bipolar fuzzy submodule of M . �

Theorem 3.2. If A and B are bipolar fuzzy submodules of a classical module M , then
the intersection A ∩B is also a bipolar fuzzy submodule of M .

Proof. Let A,B ∈ BFM(M). It is enough to show that Theorem 3.1 is satisfied.
We have µ+A(0) = 1, µ−A(0) = −1 and µ+B(0) = 1, µ−B(0) = −1.

µ+A∩B(0) = µ+A(0) ∧ µ+B(0) = 1

µ−A∩B(0) = µ−A(0) ∨ µ−B(0) = −1.
Let x, y ∈M, r, s ∈ R.
µ+A∩B(rx+ sy) ≥ µ+A∩B(x) ∧ µ+A∩B(y) and µ−A∩B(rx+ sy) ≤ µ−A∩B(x) ∨ µ−A∩B(y).

µ+A∩B(rx+ sy) = µ+A(rx+ sy) ∧ µ+B(rx+ sy)
≥ (µ+A(x) ∧ µ+A(y)) ∧ (µ+B(x) ∧ µ+B(y))
= (µ+A(x) ∧ µ+B(x)) ∧ (µ+A(y) ∧ µ+B(y)) = µ+A∩B(x) ∧ µ+A∩B(y).

The other inequality is similarly obtained. So, A ∩B ∈ BFM(M). �

Definition 3.6 [12] Let λ ∈ [0, 1], β ∈ [−1, 0]. Define the level sets of A:
A+
λ = {x ∈ X : µ+A(x) ≥ λ} is called positive λ-cut of A.

A−β = {x ∈ X : µ−A(x) ≤ β} is called negative β- cut of A.

For all γ ∈ [0, 1], the set A+
γ ∩A−−γ is called the γ- cut of A.

Proposition 3.8. Let M be a module over R. A ∈ BFM(M) if and only if
(i) for all λ ∈ [0, 1], (A+

λ 6= ∅) A
+
λ is a classical submodule of M

(ii) for all β ∈ [−1, 0], (A−β 6= ∅) A
−
β is a classical submodule of M

where A(0) = X̃.



B. P. VAROL: AN APPROACH TO BIPOLAR FUZZY SUBMODULES 173

Proof. Let A ∈ NSM(M), λ ∈ [0, 1], x, y ∈ A+
λ and r, s ∈ R. We have µ+A(x) ≥ λ,

µ+A(y) ≥ λ and µ+A(x) ∧ µ+A(y) ≥ λ. By Theorem 3.1, µ+A(rx + sy) ≥ µ+A(x) ∧ µ+A(y) ≥ λ.

So, we obtain rx+ sy ∈ A+
λ . Hence, A+

λ is a classical submodule of M for each λ ∈ [0, 1].

Similarly, for x, y ∈ A−β we obtain rx+ sy ∈ A−β for each β ∈ [−1, 0].

Conversely, assume that (i) and (ii) are valid. Let x, y ∈M , λ = µ+A(x) ∧ µ+A(y). Then

µ+A(x) ≥ λ and µ+A(y) ≥ λ. Hence, x, y ∈ A+
λ . Since A+

λ is a classical submodule of M , we

have rx+ sy ∈ A+
λ for all r, s ∈ R. Then, µ+A(rx+ sy) ≥ λ = µ+A(x) ∧ µ+A(y).

Similarly let x, y ∈ M , β = µ−A(x) ∨ µ−A(y). Then µ−A(x) ≤ β and µ−A(y) ≤ β. Hence,

x, y ∈ A−β . Since A−β is a submodule of M , we have rx+ sy ∈ A−β for all r, s ∈ R.
�

Definition 3.7 [1] The cartesian product of A and B which is denoted by A × B is a
bipolar valued fuzzy set on X × Y and it is defined as
A×B = {< (x, y), µ+(A×B)(x, y), µ−(A×B)(x, y) >: x ∈ X, y ∈ Y }
where µ+(A×B)(x, y) = µ+A(x) ∧ µ+B(y) and µ−(A×B)(x, y) = µ−A(x) ∨ µ−B(y), for all x ∈

X, y ∈ Y .

Proposition 3.9. Let A and B be bipolar valued fuzzy sets on X and Y . Then the
followings are satisfied:

(A×B)+λ = A+
λ ×B

+
λ and (A×B)−β = A−β ×B

−
β .

Proof. Let (x, y) ∈ (A×B)+λ . So,

µ+A×B(x, y) ≥ λ ⇔ µ+A(x) ∧ µ+B(y) ≥ λ
⇔ µ+A(x) ≥ λ and µ+B(y) ≥ λ
⇔ (x, y) ∈ A+

λ ×B
+
λ .

Let (x, y) ∈ (A×B)−β . Hence,

µ−A×B(x, y) ≤ β ⇔ µ−A(x) ∨ µ−B(y) ≤ β
⇔ µ−A(x) ≤ β, µ−B(y) ≤ β
⇔ (x, y) ∈ A−β ×B

−
β .

�

Theorem 3.3. Let A,B ∈ BFM(M). Then the product A × B is also a bipolar fuzzy
submodule of M .

Proof. Straightforward. �

Proposition 3.10. Let A and B be bipolar valued fuzzy sets on X and Y , g : X → Y be
a mapping. Then we have followings:

(i) g(A+
λ ) ⊂ (g(A))+λ , g(A−β ) ⊃ (g(A))−β

(ii) g−1(B+
λ ) = (g−1(B))+λ , g−1(B−β ) = (g−1(B))−β .

Proof. (i) Let y ∈ g(A+
λ ). Then ∃x ∈ A+

λ : g(x) = y. So, µ+A(x) ≥ λ. Hence,∨
x∈g−1(y)

µ+A(x) ≥ λ, i.e., g(µ+A)(y) ≥ λ and y ∈ (g(A))+λ .

Let y ∈ g(A−β ). Then ∃x ∈ A−β : g(x) = y. So, µ−A(x) ≥ β. Hence,∧
x∈g−1(y)

µ−A(x) ≥ β, i.e., g(µ−A)(y) ≥ β and y ∈ (g(A))−β .

(ii)
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g−1(B+
λ ) = {x ∈ X : g(x) ∈ B+

λ }
= {x ∈ X : µ+B(g(x)) ≥ λ}
= {x ∈ X : µ+( g

−1(B)(x)) ≥ λ}
= (g−1(B))+λ

�

Theorem 3.4. Let M,N be the classical modules and g : M → N be a homomorphism of
modules. If A ∈ BFM(M), then the image g(A) ∈ BFM(N).

Proof. Let y1, y2 ∈ (g(A+
λ ). Then µ+g(A)(y1) ≥ λ and µ+g(A)(y2) ≥ λ. Then ∃x1, x2 ∈ M :

µ+A(x1) ≥ µ+g(A)(y1) ≥ λ and µ+A(x2) ≥ µ+g(A)(y2) ≥ λ. Hence, µ+A(x1) ∧ µ+A(x2) ≥ λ. Since

A is a bipolar fuzzy submodule of M , we get µ+A(rx1 + sx2) ≥ µ+A(x1) ∧ µ+A(x2) ≥ λ, for
any r, s ∈ R. Therefore,
rx1 + sx2 ∈ A+

λ ⇒ g(rx1 + sx2) ∈ g(A+
λ ) ⊆ (g(A))+λ

⇒ rg(x1) + sg(x2) ∈ (g(A))+λ ⇒ ry1 + sy2 ∈ (g(A))+λ .

So, (g(A))+λ is a submodule of N . Similarly, we can show that g(A−β ) is a classical

submodules of N for each β ∈ [−1, 0]. By Proposition 3.8, g(A) ∈ BFM(N).
�

Theorem 3.5. Let M and N be the classical modules and let g : M → N be a homo-
mophism of modules. If B ∈ BFM(N), then the preimage g−1(B) ∈ BFM(M).

Proof. By Proposition 3.10 (ii) and Proposition 3.8, we obtain the result.
�

4. Conclusions

Our approach in this paper combines the bipolar valued fuzzy set and module structure
for defining bipolar fuzzy submodule. We defined bipolar fuzzy submodule of a given
classical module and focused on its fundamental properties. Future research may be done
to explore further aspects of this structure.
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