CERTAIN SUBCLASS OF PASCU-TYPE BI-STARLIKE FUNCTIONS IN PARABOLIC DOMAIN

K. VIJAYA ${ }^{1}$, §

Abstract. Estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ are obtained for normalized analytic function f in the open disk with f and its inverse $g=f^{-1}$ satisfy the condition that $\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}$ and $\frac{z g^{\prime}(z)+\lambda z^{2} g^{\prime \prime}(z)}{(1-\lambda) g(z)+\lambda z g^{\prime}(z)}(0 \leq \lambda \leq 1)$ are both subordinate to an analytic function in parabolic region. Furthermore, we estimate the Fekete-Szegö functional for $f \in \mathcal{P}_{\Sigma, P}\left(\lambda, \varphi_{\alpha}\right)$.

Keywords: Analytic functions, univalent functions, bi-univalent functions, bi-starlike functions, bi-convex functions, and subordination.

AMS Subject Classification: 30C45.

1. Introduction

Let \mathcal{A} denote the class of analytic functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

normailzed by the conditions $f(0)=0=f^{\prime}(0)-1$ defined in the open unit disk $\triangle=$ $\{z \in \mathbb{C}:|z|<1\}$. A function $f \in \mathcal{A}$ is said to be bi-univalent in \triangle if both f and f^{-1} are univalent in \triangle. Let Σ denote the class of bi-univalent functions defined in the unit disk \triangle. Since $f \in \sum$ has the Maclaurian series given by (1), a computation shows that its inverse $g=f^{-1}$ has the expansion

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}+\cdots \tag{2}
\end{equation*}
$$

An analytic function f is subordinate to an analytic function g, written $f(z) \prec g(z)$, provided there is an analytic function w defined on \triangle with $w(0)=0$ and $|w(z)|<1$ satisfying $f(z)=g(w(z))$. Ma and Minda [8] unified various subclasses of starlike and convex functions for which either of the quantity $\frac{z f^{\prime}(z)}{f(z)}$ or $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}$ is subordinate to a more general superordinate function. For this purpose, they considered an analytic function φ with positive real part in the unit disk $\triangle, \varphi(0)=1, \varphi^{\prime}(0)>0$, and φ maps \triangle onto a

[^0]region starlike with respect to 1 and symmetric with respect to the real axis. The class of Ma-Minda starlike functions consists of functions $f \in \mathcal{A}$ satisfying the subordination $\frac{z f^{\prime}(z)}{f(z)} \prec \varphi(z)$. Similarly, the class of Ma-Minda convex functions of functions $f \in \mathcal{A}$ satisfying the subordination $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \varphi(z)$. A function f is bi-starlike of Ma-Minda type or bi-convex of Ma-Minda type if both f and f^{-1} are respectively Ma-Minda starlike or convex. These classes are denoted respectively by $\mathcal{S}_{\Sigma}^{*}(\varphi)$ and $\mathcal{K}_{\Sigma}(\varphi)$.In the sequel, it is assumed that φ is an analytic function with positive real part in the unit disk \triangle, satisfying $\varphi(0)=1, \varphi^{\prime}(0)>0$, and $\varphi(\triangle)$ is symmetric with respect to the real axis. Such a function has a series expansion of the form
\[

$$
\begin{equation*}
\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots, \quad\left(B_{1}>0\right) . \tag{3}
\end{equation*}
$$

\]

Ali and Singh [2] introduced a new class of parabolic starlike functions denoted by $\mathcal{S}_{p}(\alpha)$ of order $\alpha(0 \leq \alpha<1)$ salifies the following:

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<(1-2 \alpha)+\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right) . \tag{4}
\end{equation*}
$$

Equivalently,

$$
f \in \mathcal{S}_{p}(\alpha) \Longleftrightarrow\left(\frac{z f^{\prime}(z)}{f(z)}\right) \in \Omega_{\alpha}
$$

where Ω_{α} denotes the parabolic region in the right half-plane

$$
\begin{equation*}
\Omega_{\alpha}=\left\{w=u+i v: v^{2}<4(1-\alpha)(u-\alpha)\right\}=\{w:|w-1|<(1-2 \alpha)+\Re(w)\} . \tag{5}
\end{equation*}
$$

Ali and Singh [2]showed that the normalized Riemann mapping function $\varphi_{\alpha}(z)$ from the open unit disk \triangle onto Ω_{α} is given by

$$
\begin{align*}
\varphi_{\alpha}(z) & =1+\frac{4(1-\alpha)}{\pi^{2}}\left[\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right]^{2} \\
& =1+\frac{16}{\pi^{2}}(1-\alpha) z+\frac{32}{3 \pi^{2}}(1-\alpha) z^{2}+\frac{368}{45 \pi^{2}}(1-\alpha) z^{3}+\cdots \\
& =1+\sum_{k=1}^{\infty} B_{k} z^{k} \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
B_{k}=\frac{16(1-\alpha)}{k \pi^{2}} \sum_{j=0}^{k-1} \frac{1}{2 j+1} \quad(k \in \mathbb{N}) . \tag{7}
\end{equation*}
$$

Due to Ma and Minda [8], we state the following Lemma.
Lemma 1.1. If a function $f \in \mathcal{S}_{p}(\alpha)$, then

$$
\left(\frac{z f^{\prime}(z)}{f(z)}\right) \in \varphi_{\alpha}(z)
$$

where φ_{α} is given by (6).
Since univalent functions are one-to-one, they are invertible and the inverse functions need not be defined on the entire unit disk \triangle. In fact, the Koebe one-quarter theorem [6] ensures that the image of \triangle. under every univalent function $f \in \mathcal{S}$ of the form (1), contains a disk of radius $\frac{1}{4}$. Thus every univalent function $f \in \mathcal{S}$ has an inverse f^{-1} which is defined by

$$
f^{-1}(f(z))=z \quad(z \in \triangle)
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

In fact, the inverse function f^{-1} is given by

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{8}
\end{equation*}
$$

Several authors have introduced and investigated subclasses of bi-univalent functions Σ and obtained bounds for the initial coefficients (see $[4,3,10,12]$). Motivated by the work of Ali et al. [2, 7], in this paper, we introduce a new subclass $\mathcal{P}_{\Sigma, P}\left(\lambda, \varphi_{\alpha}\right)$ of biunivalent functions and obtain the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ by subordination.Furthermore, we estimate the Fekete-Szegö functional for $f \in \mathcal{P}_{\Sigma, P}\left(\lambda, \varphi_{\alpha}\right)$.
Definition 1.1. A function $f \in \Sigma$ is said to be in the class $\mathcal{P}_{\Sigma, p}\left(\lambda, \varphi_{\alpha}\right)$ if the following subordination hold:

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}-1\right|<(1-2 \alpha)+\Re\left(\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}\right) \quad(z \in \triangle) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{w g^{\prime}(w)+\lambda w^{2} g^{\prime \prime}(w)}{(1-\lambda) g(w)+\lambda w g^{\prime}(w)}-1\right|<(1-2 \alpha)+\Re\left(\frac{w g^{\prime}(w)+\lambda w^{2} g^{\prime \prime}(w)}{(1-\lambda) g(w)+\lambda w g^{\prime}(w)}\right) \quad(w \in \triangle) \tag{10}
\end{equation*}
$$

Due to Lemma1.1 and by the above the definition we can state

$$
\begin{equation*}
\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)} \prec \varphi_{\alpha}(z) \quad(z \in \triangle) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w g^{\prime}(w)+\lambda w^{2} g^{\prime \prime}(w)}{(1-\lambda) g(w)+\lambda w g^{\prime}(w)} \prec \varphi_{\alpha}(w) \quad(w \in \triangle) \tag{12}
\end{equation*}
$$

where φ_{α} is given by (6).
We note that $\mathcal{P}_{\Sigma, P}\left(0, \varphi_{\alpha}\right)=\mathcal{S}_{\Sigma, P}^{*}\left(\varphi_{\alpha}\right)$ [5] and $\mathcal{P}_{\Sigma, P}\left(1, \varphi_{\alpha}\right)=\mathcal{K}_{\Sigma, P}\left(\varphi_{\alpha}\right)$ as illustrated below:

Example 1.1. [5] A function $f \in \Sigma$ is said to be in the class $\mathcal{S}_{\Sigma, P}\left(\varphi_{\alpha}\right)$ if the following subordination hold:

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<(1-2 \alpha)+\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right) \quad(z \in \triangle)
$$

and

$$
\left|\frac{w g^{\prime}(w)}{g(w)}-1\right|<(1-2 \alpha)+\Re\left(\frac{w g^{\prime}(w)}{g(w)}\right) \quad(w \in \triangle)
$$

Due to Lemma1.1 and by the above the definition we can state

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \varphi_{\alpha}(z) \quad \text { and } \quad \frac{w g^{\prime}(w)}{g(w)} \prec \varphi_{\alpha}(w)
$$

where $\varphi_{\alpha}(z)$ is given by (6) and $z, w \in \Delta$.
Example 1.2. A function $f \in \Sigma$ is said to be in the class $\mathcal{K}_{\Sigma, P}\left(\varphi_{\alpha}\right)$ if the following subordination hold:

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<(1-2 \alpha)+\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \quad(z \in \triangle)
$$

and

$$
\left|\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right|<(1-2 \alpha)+\Re\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right) \quad(w \in \triangle)
$$

Due to Lemma1.1 and by the above the definition we can state

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \varphi_{\alpha}(z) \quad \text { and } \quad 1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)} \prec \varphi_{\alpha}(w)
$$

where $\varphi_{\alpha}(z)$ is given by (6) and $z, w \in \Delta$. In order to prove our main results, we require the following Lemma due to [11].

Lemma 1.2. If $h \in \mathcal{P}$, then $\left|c_{k}\right| \leq 2$ for each k, where \mathcal{P} is the family of all functions h analytic in \triangle for which $\mathfrak{R}\{h(z)\}>0$, where $h(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ for $z \in \triangle$.

2. SECTION

Coefficient estimates for the function class $\mathcal{P}_{\Sigma, P}\left(\lambda, \varphi_{\alpha}\right)$
Theorem 2.1. Let f given by (1) be in the class $\mathcal{P}_{\Sigma, P}\left(\lambda, \varphi_{\alpha}\right)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{\left|\left(1+2 \lambda-\lambda^{2}\right) B_{1}^{2}+(1+\lambda)^{2}\left(B_{1}-B_{2}\right)\right|}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq B_{1}\left(\frac{B_{1}}{(1+\lambda)^{2}}+\frac{1}{2(1+2 \lambda)}\right) \tag{14}
\end{equation*}
$$

where $B_{1}=\frac{16}{\pi^{2}}(1-\alpha)$ and $B_{2}=\frac{32}{3 \pi^{2}}(1-\alpha)$ from (7).
Proof. Let $f \in \mathcal{P}_{\Sigma, P}\left(\lambda, \varphi_{\alpha}\right)$ and $g=f^{-1}$. Then there are analytic functions $u, v: \triangle \longrightarrow \triangle$, with $u(0)=0=v(0)$, satisfying

$$
\begin{equation*}
\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}=\varphi_{\alpha}(u(z)) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w g^{\prime}(w)+\lambda w^{2} g^{\prime \prime}(w)}{(1-\lambda) g(w)+\lambda w g^{\prime}(w)}=\varphi_{\alpha}(v(w)) \tag{16}
\end{equation*}
$$

Define the functions $p(z)$ and $q(z)$ by

$$
p(z):=\frac{1+u(z)}{1-u(z)}=1+p_{1} z+p_{2} z^{2}+\cdots
$$

and

$$
q(z):=\frac{1+v(z)}{1-v(z)}=1+q_{1} z+q_{2} z^{2}+\cdots
$$

or, equivalently,

$$
\begin{equation*}
u(z):=\frac{p(z)-1}{p(z)+1}=\frac{1}{2}\left[p_{1} z+\left(p_{2}-\frac{p_{1}^{2}}{2}\right) z^{2}+\cdots\right] \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
v(z):=\frac{q(z)-1}{q(z)+1}=\frac{1}{2}\left[q_{1} z+\left(q_{2}-\frac{q_{1}^{2}}{2}\right) z^{2}+\cdots\right] \tag{18}
\end{equation*}
$$

Then $p(z)$ and $q(z)$ are analytic in \triangle with $p(0)=1=q(0)$. Since $u, v: \triangle \rightarrow \triangle$, the functions $p(z)$ and $q(z)$ have a positive real part in \triangle, and $\left|p_{i}\right| \leq 2$ and $\left|q_{i}\right| \leq 2$. Using (17) and (18) in (15) and (16) respectively, we have

$$
\begin{equation*}
\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}=\varphi\left(\frac{1}{2}\left[p_{1} z+\left(p_{2}-\frac{p_{1}^{2}}{2}\right) z^{2}+\cdots\right]\right) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w g^{\prime}(w)+\lambda w^{2} g^{\prime \prime}(w)}{(1-\lambda) g(w)+\lambda w g^{\prime}(w)}=\varphi\left(\frac{1}{2}\left[q_{1} w+\left(q_{2}-\frac{q_{1}^{2}}{2}\right) w^{2}+\cdots\right]\right) \tag{20}
\end{equation*}
$$

In light of (1) - (3), from (19) and (20), it is evident that

$$
\begin{aligned}
1+(1+\lambda) a_{2} z+[2(1 & \left.+2 \lambda) a_{3}-(1+\lambda)^{2} a_{2}^{2}\right] z^{2}+\cdots \\
& =1+\frac{1}{2} B_{1} p_{1} z+\left[\frac{1}{2} B_{1}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} p_{1}^{2}\right] z^{2}+\cdots
\end{aligned}
$$

and

$$
\begin{aligned}
1-(1+\lambda) a_{2} w-[2(1 & \left.+2 \lambda) a_{3}+\left(\lambda^{2}-6 \lambda-3\right) a_{2}^{2}\right] w^{2}+\cdots \\
& =1+\frac{1}{2} B_{1} q_{1} w+\left[\frac{1}{2} B_{1}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} q_{1}^{2}\right] w^{2}+\cdots
\end{aligned}
$$

which yields the following relations.

$$
\begin{align*}
(1+\lambda) a_{2} & =\frac{1}{2} B_{1} p_{1} \tag{21}\\
-(1+\lambda)^{2} a_{2}^{2}+2(1+2 \lambda) a_{3} & =\frac{1}{2} B_{1}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} p_{1}^{2} \tag{22}\\
-(1+\lambda) a_{2} & =\frac{1}{2} B_{1} q_{1} \tag{23}
\end{align*}
$$

and

$$
\begin{equation*}
-\left(\lambda^{2}-6 \lambda-3\right) a_{2}^{2}-2(1+2 \lambda) a_{3}=\frac{1}{2} B_{1}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} q_{1}^{2} \tag{24}
\end{equation*}
$$

From (21) and (23), it follows that

$$
\begin{equation*}
p_{1}=-q_{1} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
8(1+\lambda)^{2} a_{2}^{2}=B_{1}^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{26}
\end{equation*}
$$

From (22), (24) and (26), we obtain

$$
\begin{equation*}
a_{2}^{2}=\frac{B_{1}^{3}\left(p_{2}+q_{2}\right)}{4\left[\left(1+2 \lambda-\lambda^{2}\right) B_{1}^{2}+(1+\lambda)^{2}\left(B_{1}-B_{2}\right)\right]} \tag{27}
\end{equation*}
$$

Applying Lemma 1.2 , for the coefficients p_{2} and q_{2}, we immediately got the desired estimate on $\left|a_{2}\right|$ as asserted in (2.2).

By subtracting (24) from (22) and using (25) and (26), we get

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{B_{1}\left(p_{2}-q_{2}\right)}{8(1+2 \lambda)}=\frac{B_{1}^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{8(1+\lambda)^{2}}+\frac{B_{1}\left(p_{2}-q_{2}\right)}{8(1+2 \lambda)} \tag{28}
\end{equation*}
$$

Applying Lemma 1.2 once again for the coefficients p_{1}, p_{2}, q_{1} and q_{2}, we get the desired estimate on $\left|a_{3}\right|$ as asserted in (2.2)

Remark 2.1. For $\lambda=0$ and $B_{1}=\frac{16}{\pi^{2}}(1-\alpha)$ and $B_{2}=\frac{32}{3 \pi^{2}}(1-\alpha)$ the inequality (2.2) reduces to the estimate of $\left|a_{2}\right|$ and $\left|a_{3}\right|$. [5].

By taking $\lambda=1$ we get the following result for $f \in \mathcal{K}_{\Sigma, P}\left(\varphi_{\alpha}\right)$
Theorem 2.2. Let f given by (1) be in the class $\mathcal{K}_{\Sigma, P}\left(\varphi_{\alpha}\right)$. Then

$$
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{2 B_{1}^{2}+\left|4\left(B_{1}-B_{2}\right)\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{B_{1}^{2}}{4}+\frac{B_{1}}{6}
$$

where $B_{1}=\frac{16}{\pi^{2}}(1-\alpha)$ and $B_{2}=\frac{32}{3 \pi^{2}}(1-\alpha)$ from (7).
2.1. Subsection. Fekete-Szegö inequalities for the Function Class $\mathcal{P}_{\Sigma, P}\left(\lambda, \varphi_{\alpha}\right)$ Making use of the values of a_{2}^{2} and a_{3}, and motivated by the recent work of Zaprawa [13], we prove the following Fekete-Szegö result for the function class $f \in \mathcal{P}_{\Sigma, P}\left(\lambda, \varphi_{\alpha}\right)$.
Theorem 2.3. Let the function $f(z)$ be in the class $\mathcal{P}_{\Sigma, P}\left(\lambda, \varphi_{\alpha}\right)$ and $\mu \in \mathbb{C}$, then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq 2 B_{1}\left|\left(\Theta(\mu)+\frac{1}{8(1+2 \lambda)}\right)+\left(\Theta(\mu)-\frac{1}{8(1+2 \lambda)}\right)\right|, \tag{29}
\end{equation*}
$$

where

$$
\Theta(\mu)=\frac{B_{1}^{2}(1-\mu)}{4\left[\left(1+2 \lambda-\lambda^{2}\right) B_{1}^{2}+(1+\lambda)^{2}\left(B_{1}-B_{2}\right)\right]}, B_{1}>0 .
$$

where $B_{1}=\frac{16}{\pi^{2}}(1-\alpha)$ and $B_{2}=\frac{32}{3 \pi^{2}}(1-\alpha)$ from (7)
Proof. From (28), we have

$$
a_{3}=a_{2}^{2}+\frac{B_{1}\left(p_{2}-q_{2}\right)}{8(1+2 \lambda)}
$$

Using (27), by simple calculation we get

$$
a_{3}-\mu a_{2}^{2}=B_{1}\left[\left(\Theta(\mu)+\frac{1}{8(1+2 \lambda)}\right) p_{2}+\left(\Theta(\mu)-\frac{1}{8(1+2 \lambda)}\right) q_{2}\right]
$$

where $\Theta(\mu)=\frac{B_{1}^{2}(1-\mu)}{4\left[\left(1+2 \lambda-\lambda^{2}\right) B_{1}^{2}+(1+\lambda)^{2}\left(B_{1}-B_{2}\right)\right]}$. Since all B_{j} are real and $B_{1}>0$, we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq 2 B_{1}\left|\left(\Theta(\mu)+\frac{1}{8(1+2 \lambda)}\right)+\left(\Theta(\mu)-\frac{1}{8(1+2 \lambda)}\right)\right|,
$$

which completes the proof.
Remark 2.2. Specializing $\lambda=0$ we can obtain the Fekete-Szegö inequality for the function class $\mathcal{S}_{\Sigma, P}\left(\varphi_{\alpha}\right)$ as in [5].

Specializing $\lambda=1$ we can obtain the Fekete-Szegö inequality for the function class $\mathcal{K}_{\Sigma, P}\left(\varphi_{\alpha}\right)$ as given below.
Corollary 2.1. Let the function $f(z)$ be in the class $\mathcal{K}_{\Sigma, P}\left(\varphi_{\alpha}\right)$ and $\mu \in \mathbb{C}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq 2 B_{1}\left|\left(\Theta(\mu)+\frac{1}{24}\right)+\left(\Theta(\mu)-\frac{1}{24}\right)\right|
$$

where

$$
\Theta(\mu)=\frac{B_{1}^{2}(1-\mu)}{4\left[2 B_{1}^{2}+4\left(B_{1}-B_{2}\right)\right]}, B_{1}>0 .
$$

where $B_{1}=\frac{16}{\pi^{2}}(1-\alpha)$ and $B_{2}=\frac{32}{3 \pi^{2}}(1-\alpha)$ from (7)

3. Conclusions

By taking $B_{1}=\frac{16}{\pi^{2}}(1-\alpha)$ and $B_{2}=\frac{32}{3 \pi^{2}}(1-\alpha)$ and specializing the parameter $\lambda=1$ we state the results for the class of bi convex functions in parabolic domain which has not been studied. Further by specializing $\lambda=0$ we can obtain the results for bi-starlike functions in parabolic domain as in [5].

References

[1] Ali R.M.and Singh V. , (1994), Coeffcients of parabolic starlike functions of order α, Computational Methods and Function Theory(Penang), Ser. Approx. Decompos., Vol.5, pp.23-36. World Scientific Publishing, New Jersey(1995).
[2] Ali R.M., Leo S.K., Ravichandran V., Supramaniam S.,(2012), Coefficient estimates for bi-univalent Ma-Minda star-like and convex functions, Appl. Math. Lett. 25, pp344-351.
[3] Brannan D.A., Clunie J.,(1970), W.E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math. 22, pp476-485.
[4] Brannan D.A., Taha T.S.,(1986), On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math. 31(2), pp 70-77.
[5] Bulut S.,(2018), Coefficient estimates for a subclass of parabolic bi-starlike functions, Afr. Mat. 29 Issue 34, pp 331-338.
[6] Duren P.L.,(1983), Univalent Functions, in: Grundlehren der Mathematischen Wissenchaften, Vol. 259, Springer, New York.
[7] Lewin M.,(1967) On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18, pp 63 - 68.
[8] Ma W.C., Minda D.,(1992), A unified treatment of some special classes of functions, in: Proceedings of the Conference on Complex Analysis, Tianjin,, pp 157-169, Conf. Proc. Lecture Notes Anal. 1. Int. Press, Cambridge, MA, 1994.
[9] Netanyahu E.,(1969), The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$. Arch. Ration. Mech. Anal. 32 pp 100-112.
[10] Murugusundaramoorthy, G., Cho, N.E.,(2019) On λ - pseudo bi-starlike functions in parabolic domain, Nonlinear Functional Analysis and Applications, 24(1), pp. 185-194
[11] Pommerenke Ch.,(1975), Univalent functions, Vandenhoeck and Rupercht, Göttingen,.
[12] Srivastava H.M., Mishra A.K., Gochhayat P.,(2010), Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23(10) pp 1188-1192.
[13] Zaprawa P. ,(2014), On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21(1), pp1-192.
[14] Erdelyi, A., (1956), Asymptotic expansions, Dover publications, New York.
[15] Anderson, J. D., Campbell, J. K., Ekelund, J. E., Ellis, J. and Jordan, J. F., (2008), Physical Review Letters, 100, 091102.
[16] Mould, R. A., (1994), Basic Relativity, Springer-Verlag Newyork Inc.
[17] Thompson, K. W., (1987), Time dependent boundary conditions for hyperbolic systems, J. Comp. Phys., 68, pp. 1-24.
[18] Hixon, R. and Turkel, E., (2000), Compact implicit MacCormack-type schemes with high accuracy, J. Comp. Phys., 158, pp. 51-70.
[19] Fan, E. and Jian, Z., (2002), Applications of the Jacobi elliptic function method to special-type nonlinear equations, Phys. Lett. A, 305 (6), pp. 383-392.

Vijaya Kaliyappan for the photography and short autobiography, see TWMS J. App. and Eng. Math., V.11, N.2, 2021, p.469-479

[^0]: ${ }^{1}$ School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, India.
 e-mail: kvijaya@vit.ac.in; ORCID: http://orcid.org/0000-0002-3216-7038.
 § Manuscript received: April 10, 2109; accepted: May 5, 2020.
 TWMS Journal of Applied and Engineering Mathematics, Vol.11, No. 2 © Issık University, Department of Mathematics, 2021; all rights reserved.

