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CERTAIN SUBCLASS OF PASCU-TYPE BI-STARLIKE
FUNCTIONS IN PARABOLIC DOMAIN

K. VIJAYA', §

ABSTRACT. Estimates on the coeflicients |az| and |as| are obtained for normalized an-
alytic function f in the open disk with f and its inverse g = f~' satisfy the condition
2f'(2) + N2 (2) d 29’ (2) + A22¢"(2)
- NFE) +ref'() " (1= Ng(=) + heg/(2)
to an analytic function in parabolic region. Furthermore, we estimate the Fekete-Szegd

functional for f € Ps p(A, pa)-

that

(0 < X <1) are both subordinate
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functions, bi-convex functions, and subordination.
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1. INTRODUCTION

Let A denote the class of analytic functions of the form
f2) =2+ an2" (1)
n=2

normailzed by the conditions f(0) = 0 = f’(0) — 1 defined in the open unit disk A =
{2 € C: |z| < 1}. A function f € A is said to be bi-univalent in A if both f and f~! are
univalent in A. Let X denote the class of bi-univalent functions defined in the unit disk A.
Since f € ) has the Maclaurian series given by (1), a computation shows that its inverse
g = f~! has the expansion

g(w) = fH(w) = w — agw? + (2a% —az)w + - - (2)

An analytic function f is subordinate to an analytic function g, written f(z) < g(z),
provided there is an analytic function w defined on A with w(0) = 0 and |w(z)| < 1 satis-
fying f(z) = g(w(z)). Ma and Minda [8] unified various subclasses of starlike and convex

functions for which either of the quantity = f(;()z b or 142 f]:,(;()z ) is subordinate to a more

general superordinate function. For this purpose, they considered an analytic function
¢ with positive real part in the unit disk A, ¢(0) = 1,¢'(0) > 0, and ¢ maps A onto a
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region starlike with respect to 1 and symmetric with respect to the real axis. The class
of Ma-Minda starlike functions consists of functions f € A satisfying the subordination
2 112 ©(z). Similarly, the class of Ma-Minda convex functions of functions f € A sat-

f(z)
isfying the subordination 1 + = f]: (Z()Z ) < ©(z). A function f is bi-starlike of Ma-Minda type

or bi-convex of Ma-Minda type if both f and f~! are respectively Ma-Minda starlike or
convex. These classes are denoted respectively by S5 (p) and Kx(p).In the sequel, it is
assumed that ¢ is an analytic function with positive real part in the unit disk A, satisfying
©(0) =1,¢'(0) > 0, and p(A) is symmetric with respect to the real axis. Such a function
has a series expansion of the form

@(z) =1+ Biz+ Bz + Bgz® + -+, (By>0). (3)

Ali and Singh [2] introduced a new class of parabolic starlike functions denoted by S ()
of order a(0 < o < 1) salifies the following:

]

Equivalently,

res@ = () en.,

where 2, denotes the parabolic region in the right half-plane
Qo={w=u+iv:v <4(l-a)(u—a)}={w:|w—1] < (1 —-2a)+Rw)}. (5)

Ali and Singh [2]showed that the normalized Riemann mapping function ¢4 (2z) from the
open unit disk A onto €, is given by

41— «) 1+ 7]

o =1 1

Pa(2) R [0g1—\/2]
16 32 , 368 ;

= 1+ﬁ(1fa)z+ﬁ(lfoz)z +457T2(170z)z +
k=1
where
16(1 —a) o2 1

By = k € N). 7

Due to Ma and Minda [8], we state the following Lemma.
Lemma 1.1. If a function f € Sp(a), then

(49) e

where pq is given by (6).

Since univalent functions are one-to-one, they are invertible and the inverse functions
need not be defined on the entire unit disk A. In fact, the Koebe one-quarter theorem
[6] ensures that the image of A. under every univalent function f € S of the form (1),
contains a disk of radius i. Thus every univalent function f € S has an inverse f~! which
is defined by

) =2 (z€8)
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and
s ) = (Jul <o) = 7).
In fact, the inverse function f~! is given by
fHw) = w — asw? + (2a3 — a3) w® — (5a3 — Sasas + aq) wh + - -+ . (8)

Several authors have introduced and investigated subclasses of bi-univalent functions
¥ and obtained bounds for the initial coefficients (see [4, 3, 10, 12]). Motivated by the
work of Ali et al. [2, 7],in this paper, we introduce a new subclass Ps (A, ¢q) of bi-
univalent functions and obtain the estimates on the coefficients |az| and |a3| by subordi-
nation.Furthermore, we estimate the Fekete-Szego functional for f € Px p(A, ¢a).

Definition 1.1. A function f € ¥ is said to be in the class Ps (X, pa) if the following
subordination hold:

2f'(2) + A2 f"(2)
(1 =Nf(z) +Azf'(2)

2f'(2) + A2 f"(2)
(1 =M f(z) +Azf(2)

_1kq1_&w+m( ) (zeh) (9)

and
wg'(w) + dw?g" (w) wg'(w) + Aw?g" (w)
(1= A)g(w) + Awg'(w) (1 =A)g(w) + Awg'(w)
Due to Lemmal.l and by the above the definition we can state
2f(2) + 22 (2
(2) (/) < pul2)
(1 =A)f(z) +Azf'(2)

—1‘<(1—2a)+§)’-ﬁ< > (we A). (10)

(z € A) (11)

and
wg'(w) + Mw?g" (w)
(1= ANg(w) + Awg'(w)
where ¢, is given by (6).
We note that Ps p(0, pa) = S5 p(pa) [5] and Ps p(1, 0a) = Ks,p(¢a) as illustrated
below:

< pa(w) (we D), (12)

Example 1.1. [5] A function f € ¥ is said to be in the class S, p(@q) if the following
subordination hold:

Z;;S) _ 1‘ <(1-2a)+R (i{;?) (z€ D)
and ‘wgg(’ij;’) — 1l <(1-2a)+ R <wgg(’$))> wes)

Due to Lemmal.l and by the above the definition we can state

2f'(2) wy'(w)
e T gy e
where ¢, (z) is given by (6) and z,w € A.

< ¢a(2)

Example 1.2. A function f € ¥ is said to be in the class Kx p(va) if the following
subordination hold:

2f"(2)
f'(2)

‘wgg,/(/g;’) ‘ <(1-2a)+R (1 + wj,gg?) (we D).

2f"()
f'(2)

<(1—2a)+§R(1+

> (z € )

and
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Due to Lemmal.l and by the above the definition we can state
z 1 z w /" w
o o
f'(2) g'(w)
where ¢, (2) is given by (6) and z,w € A. In order to prove our main results, we require
the following Lemma due to [11].

1+ < pal(z) and 1+

Lemma 1.2. If h € P, then |cx| < 2 for each k, where P is the family of all functions h
analytic in A\ for which R{h(z)} > 0, where h(z) = 1+ c12 + co2® + -+ for z € A.
2. SECTION
Coefficient estimates for the function class Px p(A, ©a)

Theorem 2.1. Let f given by (1) be in the class Ps, p(X, ¢a). Then

o] < L (13)
VI 42X = A2)B? + (1 + \)2(By — By)|
and
By 1
< .
jasl < By ((1+>\)2 +2(1+2/\)> (14)
where By = %(1 —a) and By = %(1 —a) from (7).

Proof. Let f € Ps p(\, ¢a) and g = f~1. Then there are analytic functions u, v : A — A,
with u(0) = 0 = v(0), satisfying

2f'(2) + A2 f"(2)

s = ealu(a) (15)
and
wg(w) + Mg (w)
(T Mglu) + gty — P2 1o

Define the functions p(z) and ¢(z) by

1+ u(z) 2
p(z) = 1= a(z) TP ERE
and B
1+ov(z 9
q(2) = 1 — o(s) ~LT@Et @
or, equivalently,
p(z) — 1 1 P% 2
— _ _n 17
u(z) FOETE + -5 )+ (17)
and )
q(z) =1 1 4 2
— _1 _a . 1
v(2) FEESEE nzt|@-5 )7+ (18)

Then p(z) and ¢(z) are analytic in A with p(0) = 1 = ¢(0). Since u,v : A — A, the
functions p(z) and ¢(z) have a positive real part in A, and |p;| < 2 and |g;| < 2. Using
(17) and (18) in (15) and (16) respectively, we have

(fflg}(t;ffzﬁzz) = (; [plz + <p2 - pj) 22 4. D (19)
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D (o (oo f)ten]) o

In light of (1) - (3), from (19) and (20), it is evident that

and

14+ (14 Nagz+ [2(14+2N)az — (1 +N)2%a3]22 + - -

2
P1
5 — 21

1
2)4—7ng%]22+-“

1 1
=14 -Bipiz+ [zBi(p 1

2 2
and

1— (14 Nagw — [2(1 +2)\)az + (A — 6\ — 3)a3]w? + - --
2

1 1 q1 1., 9 9
—1+-B “Big—-8yy B
+ g Braiw + [2 1(q2 5 ) + 1 2q1|w” +

which yields the following relations.

1
(I4+XNaz = 531]?1 (21)
2 2 1 p% 1 2
—(1+XN%a3 +2(1+2\)as = 531(]92 - 5) + 132101 (22)
1
—(1+XNaz = §Bl€h (23)
and
2 2 1 Q% 1 2
—(A*=6A—3)a; —2(1 +2X\)a3 = iBl(qQ — E) + Zqul. (24)
From (21) and (23), it follows that
P1=—q (25)
and
8(1+X)%a3 = B (pi +qi)- (26)

From (22), (24) and (26), we obtain

2 _ Bi(p2 + q2)
Ay = 2 5 3 . (27)
A(1+2X = X2)Bf + (1 + X\)?(B1 — By)]
Applying Lemma 1.2, for the coefficients py and ¢2, we immediately got the desired estimate
on |ag| as asserted in (2.2).
By subtracting (24) from (22) and using (25) and (26), we get
B _ BZ 2 2 B _
a5 = a2+ 1(P2 —q2) _ 1(P1+q21) n 1(p2 Q2)‘ (28)
8(1+ 2)) 8(1+A) 8(1+2X)
Applying Lemma 1.2 once again for the coefficients p1, p2, q1 and ¢z, we get the desired
estimate on |ag| as asserted in (2.2) O

Remark 2.1. For A =0 and By = }72’(1 —«a) and By = %(1 — ) the inequality (2.2)
reduces to the estimate of |az| and |as]. [5].

By taking A = 1 we get the following result for f € Ky p(¢a)
Theorem 2.2. Let f given by (1) be in the class Kx, p(pq). Then

BivB;
las| < 5
V/2B} + [4(B; — By)|
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and )
B2 B
g e
lasl < -+ 5

where By = %(1 —a) and By = 5%(1 —a) from (7).

2.1. Subsection. Fekete-Szegt inequalities for the Function Class Ps p(A, @) Making
use of the values of a2 and a3, and motivated by the recent work of Zaprawa [13], we prove
the following Fekete-Szegé result for the function class f € Py, p(\, ¢a).

Theorem 2.3. Let the function f(z) be in the class Px, p(X, pq) and p € C, then

(6 + ) + (00 s

_ Bi(1—p)
o) = 41+ 21 - /\2)31% + (1 + \)2(By — By)]
where By = 717(25(1 —a) and By = %(1 —a) from (7)

Proof. From (28), we have

lag — pa3| < 2B, , (29)

where
,B1 > 0.

B1(p2 — g2)
) 1\P2

9= 02T R0 o)
Using (27), by simple calculation we get

B2(1- .
where O(u) = 4[(1+2>\—>\2)Blf(+(1ljr)>\)2(Bl—Bg)]‘ Since all B; are real and B; > 0, we have

(0 gram) + (o0 -5

which completes the proof. ]

|az — pa3| < 2By

Remark 2.2. Specializing A = 0 we can obtain the Fekete-Szego inequality for the function
class Ss p(pa) as in [5] .

Specializing A = 1 we can obtain the Fekete-Szeg6 inequality for the function class
Ks, p(pa) as given below.

Corollary 2.1. Let the function f(z) be in the class Ks, p(¢a) and p € C, then

(600 +5) + (000 - 5;)

BE(1 - p)

) — 1

W) = iRB2 4 4(B, - By
where By = ;—2(1 —a) and By = %(1 —a) from (7)

lag — ,ua%| < 2B,

I

where

,B1 > 0.

3. CONCLUSIONS

By taking By = %(1 —a) and By = %(1 — «) and specializing the parameter A = 1
we state the results for the class of bi convex functions in parabolic domain which has
not been studied. Further by specializing A = 0 we can obtain the results for bi-starlike

functions in parabolic domain as in [5] .
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