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LAGUERRE WAVELET SOLUTION OF BRATU AND DUFFING
EQUATIONS

D. ERSOY OZDEK, §

ABSTRACT. The aim of this study is to solve the Bratu and Duffing equations by using
the Laguerre wavelet method. The solution of these nonlinear equations is approximated
by Laguerre wavelets which are defined by well known Laguerre polynomials. One of the
advantages of the proposed method is that it does not require the approximation of the
nonlinear term like other numerical methods. The application of the method converts
the nonlinear differential equation to a system of algebraic equations. The method is
tested on four examples and the solutions are compared with the analytical and other
numerical solutions and it is observed that the proposed method has a better accuracy.
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1. INTRODUCTION

The Bratu equation is used to model many phenomena such as the fuel ignition of the
thermal combustion, thermal reaction, radiative heat transfer, chemical reactor theory
and the expansion of the universe. [1, 2]. Consequently, researchers pay attention towards
analytical and numerical solutions of this equation. Wazwaz [3] studied the analytical
solutions of Bratu-type equations using Adomian decomposition method. Restarted Ado-
mian decomposition method is used to solve the same problem numerically by Vahidi
and Hasanzade [4]. Al-Mazmumy et.al [5] used both the Adomian and restarted Ado-
mian decomposition methods with new techniques. Other numerical methods used in
the solution of Bratu equation can be listed as: the shooting method [1], the finite dif-
ference method [6], weighted residual method [7], decomposition technique [8], Legendre
wavelets [9, 11, 12], Bernoulli-collocation method [13], Chebyshev wavelets [14, 15], B-
spline method [16], Jacobi-Gauss collocation method [17], Laplace transform decomposi-
tion method [18], Variational iteration method [19, 20], perturbation-iteration algorithms
[21], Green’s functions [22, 23], Haar wavelets [24], the fifth order Runge-Kutta method
[25], Homotopy analysis method [26], Homotopy perturbation method [27], Differential
quadrature method [28], Nonstandard finite differences [29], Optimal Homotopy Asymp-
totic Method [30], sinc-Collocation method [31], Chebyshev pseudospectral method [32]
and Taylor wavelets [33].
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The Duffing equation is also a well known nonlinear equation which is used to model
some important practical phenomena such as orbit extraction, classical oscillator in chaotic
systems, nonlinear vibration of beams and plates, and the prediction of diseases. Hence,
Duffing equation has been widely investigated by many researchers using several numerical
methods. Among them one can mention: the improved Taylor matrix method [35], gen-
eralized differential quadrature rule [36], shifted Chebyshev polynomials [37], Daftardar-
Jafari method [34], Runge-Kutta-Fehlenberg algorithm [38], Laplace decomposition algo-
rithm [39], Differential transform method [40], Homotopy method [41], Legendre wavelets
[10, 11, 12], and restarted Adomian decomposition method [50].

Laguerre wavelet method has been used to solve many problems including fractional
order delay differential equations [42, 43], one dimensional partial differential equations
[44], Lane-Emden type differential equations [45, 46], nonlinear delay differential equa-
tions with damping [47], linear and nonlinear singular boundary value problems [48], and
Benjamina-Bona-Mohany equations [49]. The aim of this study is using Laguerre wavelet
method to solve the Bratu and Duffing equations:

2. LAGUERRE POLYNOMIALS AND SOME PROPERTIES

The Laguerre polynomials are m-th degree polynomials, which are known as the solu-
tions of the differential equation, which

zy" () + (1 - 2)y'(z) + my(z) =0, x € [0,0)

which is also called the Laguerre differential equation [51, 52]. The Laguerre polynomial
of degree m, usually denoted by L,,(x), satisfies

/ e Lp(x) Ly (x)dx = 6,
0

where d,,,, is the Kronecker delta symbol. This leads the orthogonality of these polynomials
with respect to the weight function w(x) = e~* over the interval [0, co). With the aid of the
multiplier e~ it is also possible to define the Laguerre polynomials as the eigenfunctions
of the Sturm-Liouville equation
e’ (ze "y (2)) + pmy(z) =0

corresponding to the eigenvalues p,, = m, m =0,1,2,...

The Laguerre polynomials are easily determined by the recurrence relation with Ly(x) =
land Li(z) =1 — =,

(m+2)Lpmta(z) = 2m +3 — ) Lipt1(x) — (m+ 1)Ly (z), m=0,1,...
(=1)°m! s

or equivalently, by the closed form » " (CEDI LR

3. LAGUERRE WAVELETS AND SOME RESULTS ON LAGUERRE WAVELETS

Wavelets constitute orthonormal set of functions, which are obtained by dilation and
translation of a single function ¢(t) as

bust) =120 (“20) L abe R a0, m

if the dilation parameter ¢ and the translation parameter b are chosen by a = 27% and
b =n2"% for a nonnegative integer k [53, 54]. Here, ¢(t) is the generating function which
is called mother wavelet.

Legendre wavelets, Chebyshev wavelets, Laguerre wavelets and Haar wavelets are some
examples of the wavelets which form a basis in L?(R) [53, 54]. These wavelets combine
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the basic properties of corresponding polynomials with a compact support and this gives
them the advantage of being good at modeling localized features in applications [54]. Due
to this and such advantages, Haar wavelet [24], Legendre wavelet [9, 11, 12], Chebyshev
wavelet [14, 15] are frequently used to solve varieties of differential and integral equations.

If the dilation and translation parameters are chosen respectively as a = 2~*+1 and
b= (2n + 1)2=*+1 in (1), then the Laguerre wavelets ¢nm = Gnm(k,n,m,t) with four
arguments can be defined on [0, 1) for integers k = 0,1,2,...n=0,1,2,...,2¥ — 1., using
the Laguerre polynomials L,,, of order m as

(k+1)/2 k+1yp _ eon n+1
G (t) = 2 Ly(2¥t—2n—1), if 3 < t < 5
0, otherwise
where m = 0,1,2,..., M and ¢ is the normalized time. Here, the Laguerre wavelets are or-

thogonal with respect to the dilated and translated weight function w,, (t) = e~ (@M t=2n-1)

Moreover, the Laguerre wavelets ¢y, form a wavelet basis in L?(R) so that a square in-
tegrable function f(¢), defined in [0, 1] can be expanded by an infinite series of Laguerre
wavelets

5" Bunbuml(t), (2)

n=0m=0
where B, are Laguerre wavelet coefficients in the form B, =< f(t), pnm(t) > and
< +,- > is the inner product. If the series is truncated then,

2k—1 M

k=0 m=0

The convergence of the Laguerre wavelet expansion in (2) and error estimation of the
truncated series (3) are analyzed by the given theorems.

Theorem 3.1. The Laguerre wavelet series expansion y > o> > Bum®nm(t) converges

to f(t).

Proof. Let L?>(R) denote the Hilbert space. Since the Laguerre wavelets form a wavelet
basis in L?(R), any function f(¢) can be expanded by the series f(t) = Zj]\/io Bjo,i(t)
for a fixed p, where B,; =< f(t), ¢,; >

In order to show the convergence of this series to f(t), a partial sum S,, of the sequence
{Bpjﬁspj}?:o, for m < n < M, is defined in the form S,, = Z?:l B;¢,(t). Here, the main
aim is to show that S, is a Cauchy sequence in Hilbert space.

< f(1),Sn >=<f(t) ZBM%J Z t), dp;j(t) Z|Bm‘2

On the other hand, it is clear that S, — Sy, = 327 | Byj¢p;(t), for m <n < M. Then
consider

n
150 = Sml]* = Z Bljgpi(t)|]> =< Z Byidpi(t) Z Byjdp;(t)
j=m+1 i=m+1 Jj=m+1
n n n

= Z Z BpiEpj < ¢pi(t)’¢pj(t) >= Z ’BPJ|2'

i=m+1 j=m+1 j=m+1
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By Bessel’s inequality, Y37 1 [Bpi[* < Y7o |Bpi> < [[f(t)]|* [51], this implies that
D immt1 |B,;|? is bounded and therefore, ||S, — Sy,||* = D im |B,;|? is convergent as
m,n — co. Hence, S, is Cauchy sequence in Hilbert space and therefore, it converges to

a sum S, then
<E = [0, 0ilt) > = <8, yi(t) > — < f(1). 6ps(t) >=< lim Sy, 0y(t) > ~By,
= ILm < Sny dpi(t) > =By

= HIEEOZ;BM < Ppj(t), Ppi(t) > =By,
‘7:
= lim (Bpj - Bpj) =0.

n—oo

As a result, < S — f(t), ¢,;(t) >= 0 which implies that S = f(t) and therefore, the series
> 521 Bpjdpj(t) converges to f(t). The justification of this theorem has been done for a
fixed n = p. Similar explanations can be provided for also fixed m as n — oo. ]

Lemma 3.1. The Laguerre wavelet series expansion (2) of a continuous function f(t)
converges to f(t).

Proof. Assume that the infinite series of the Laguerre wavelet basis of the function g(t)
converges to the function f(¢) that is

= Z Z Bnm¢nm<t)

n=0m=0

where By, =< g(t), dnm > . Now f(t) is multiplied by ¢,s(t)wy,(t) for fixed values of r
and s then integration term by term gives the inner product

1 00 00
(brs / f (brs wn( ) = / Z Z Bnm¢nm(t)¢rs(t)wn(t)dt

n=0m=0

- zanm/¢nm )ors (£ (£)dt

n=0m=0
— Brs =< g(t)a ¢rs >

This implies f(t) = g(t), which is the desired result. O

These theorems stated above imply the convergence of the infinite series of the Laguerre
wavelets > > (> Bpm®nm(t) to a unique function f(t). If the only finite terms of the
approximation are considered then the error bound |f(¢) — 22 ! E B ®nm ()| can
be determined by the next theorem.
Theorem 3.2. Let f(t) be i-times differentiable function on [O 1], then there exists a

mean error bound for the approrimation of Laguerre wavelets 22 e Z B ®nm (t) to

f(t) as follows

2k—1 M

I1£(t) ZZ%%wame

n=0 m=0

Proof. The justification of this theorem can be done similar to [46]. Assume that f(¢) is
a i-times continuously differentiable function in [0, 1]. There exists an approximation of
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the Laguerre wavelets, say fras(t) = Zik;ol Z%:o Bpm®nm(t) to f(t), the error bound for
this approximation follows

—— sup f(i) t
Z!2Zk te[o’l] ‘ ( )’

I1f(t) = fenr ()] <

To show this inequality, the interval [0, 1] is divided into subintervals [, ”2—4,;1] and f(t) is
approximated by i—th degree polynomial f;y/(¢) in these subintervals. Then

2k_1 n+1
k

170 = S ®IF = 3 [ * wa)lr(e) - fiar(o)ae

n=0 v 2k
2k 1 n?+1

> / wa(BIF (1) — £ (O] dt
n=0 Y 3k

where f*(t) is the i—th order interpolation of f(¢) on these subintervals with the maximum
error bound

£ (&) = f(B)] < sup |f@(t)]

a2 o)
Then
2k_1 ntl 1
2 i
F(t) = fene(B])* < Z/ wn(t) [ sup [FO(8)])%dt
r QL% 12 40,1
< o swp [FOOd = || sup [FO@?
>~ Wn, Y sup = ||z Sup
0 i12ik te[0,1] 12k te[0,1]
Taking square roots of both sides gives the desired result. O

4. APPLICATIONS OF LAGUERRE WAVELETS
In this section, the application of the method to the second order nonlinear differential

equations of Bratu and Duffing type is discussed.

4.1. Application to Bratu’s Equation. The boundary value problem (BVP) of the
classical Bratu equation can be expressed as [3]

u(x) + Ae"® =0, 0<z<1 (4)
u(0) =u(l) =0. (5)
. . . cosh ((%1)%)
Here A is a constant. This problem has the exact solution u(xz) = —21n —9) ,
cosh (3

for X\ > 0, where 6 is the solution of § = V2 cosh (%).
In order to solve Bratu’s problem, the solution of (4)-(5) is expressed as an expansion
of the Laguerre wavelets of the form

2k—1 M

u(z) = Z Z Brm@nm () (6)

n=0 m=0
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where B, are unknown coefficients. Note that for the determination of 2¥(M + 1) un-
known coefficients, 2% (M + 1) algebraic equations are required and two of these equations
are obtained by the boundary conditions in Eq.(5)

2k_1 M

n=0 m=0
k1 M

u(l) = DY) Bum$nm(1) =0 (8)

n=0 m=0

In order to obtain the other 2¥(M — 1) equations, the differential equation (4) is expressed
using (6) as follows

2k—1 M

2b—1 M O~ Bumbnm(x))
Z Z Brm @ (2) + e n=0 m=0 =0

n=0 m=0

and then = can be replaced by the first 28(M — 1) roots, z;, of very well-known shifted
Chebyshev polynomials Tyx(p/41) as collocation points in the form

2k—1 M

2b—1 M Y Bum®um (i)
> ) Bum@pm (i) + Ae n=0 m=0 =0 (9)

n=0 m=0

fori =1,2,...,28(M—1). The system of algebraic equations (7), (8) and (9) with the same
number of unknown coefficients { Bum }—0.1,.. 26— 1:m—0,1,...0m can be solved successfully by
using MATLAB tools to find the solution (6) of the problem (4)-(5).

4.2. Application to Duffing Equation. The initial value problem (IVP) of Duffing
type differential equation is given by the second order nonlinear differential equation and
the initial conditions as [35]

!/

u () + pu/ (z) + pru(z) + paud(z) = g(x), (10)
u(0) = a, u'(0) = 8. (11)

where p, p1,p2 and «a, 8 are real constants and g(z) is a given forcing function. Let u(z)
be the solution of (10)-(11), then u(z) can be expanded by

2k—1 M

n=0 m=0
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where By, are unknown coefficients. Substituting the expansion in Eq.(12) into the initial
conditions (11) and into the differential equation (10) gives a system of nonlinear equations

261 M

Z ZBanﬁnm(O) = «

n=0 m=0

2k—1 M

> ) Bum@hm(0) = B,

n=0 m=0

2k—1 M 21 M

n=0 m=0 n=0 m=0
2k—1 M 261 M 3
n=0 m=0 n=0 m=0

where z;, i = 1,2,...,2%(M — 1) are the first 2¥(M — 1) roots of the shifted Chebyshev
polynomial Tok(pr41y (7). Finally the obtained system is solved by MATLAB tools for the
coefficients { Bum },—01,.. 2k—1:m=0.1,.. m to find the solution (12) of the IVP (10)-(11).

5. NUMERICAL EXAMPLES AND DISCUSSION

In this section, the proposed method is applied to different cases of Bratu and Duffing
equations. Results are presented in terms of absolute errors calculated at each point
x; € [a,b], and compared with the analytical and other numerical solutions.

5.1. Example 1: Bratu’s problem. The solution of Bratu’s problem (4)-(5) is inves-
tigated for the cases A =1 and A = 2.

5.1.1. Case 1: Consider the Bratu’s problem (4)-(5) when A =1

u'(x) +e"® =0, 0<z<1
u(0) =u(1)=0

This problem is solved by taking M = 6. Recall that M refers to the order of the
approximation polynomial. Table 1 presents the comparison of the absolute errors ob-
tained from the present method, Laplace transform decomposition method (LTDM) [18],
decomposition method (DM) [8], perturbation iteration algorithm (PIA) [21], and varia-
tional iteration method (VIM) [20]. It can be seen that the present method has a similar
accuracy with LTDM [18] and has a better accuracy than the other methods.

5.1.2. Case 2: As the second case, Bratu’s problem is considered with A = 2 as follows

u(2) +2e"®) =0, 0<az<1
u(0) =u(l) =0
The problem is solved by taking M = 6. Table 2 presents the comparison of the abso-
lute errors obtained from the present method, Laplace transform decomposition method
(LTDM) [18], decomposition method (DM) [8], restarted Adomian decomposition method
with Taylor series (RADM) [5], and variational iteration method (VIM) [20]. One can ob-
serve that the absolute errors are increased in all methods compared to the previous case.
The accuracy of the present method is better than all of the numerical methods compared
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TABLE 1. Comparison of the present method with other numerical methods

x; Present Method VIM [20] PIA (1,1) [21] LTDM [18] DM [g§]

0.1 2.09e-06 6.46e-05 1.10e-03 1.97e-06  2.68e-03
0.2 4.10e-06 1.20e-04 2.20e-03 3.93e-06  2.02e-03
0.3 6.15e-06 1.94e-04 2.80e-04 5.85e-06  1.52e-04
0.4 8.14e-06 2.64e-04 3.80e-04 7.70e-06  2.20e-03
0.5 9.90e-06 3.51e-04 4.00e-04 9.46e-06  3.01e-03
0.6 1.15e-05 4.76e-04 3.80e-04 1.11e-05  2.20e-03
0.7 1.34e-05 6.77e-04 2.80e-04 1.25e-05  1.52e-04
0.8 1.47e-05 1.01e-03 2.20e-03 1.34e-05  2.02e-03
0.9 1.25e-05 1.59e-03 1.10e-03 1.19e-05  2.68e-03

TABLE 2. Comparison of the present method with other numerical methods

x; Present Method VIM [20] RADM [5] LTDM [18] DM 8]

0.1 8.13e-05 3.65e-03  6.50e-05 2.12e-03  1.52e-02
0.2 1.59e-04 7.22e-03  1.30e-04 4.20e-03  1.46e-02
0.3 2.35e-04 1.39e-03  1.80e-04 6.18e-03  5.88e-03
0.4 3.05e-04 1.78¢-02  2.10e-04 8.00e-03  3.24e-03
0.5 3.63e-04 2.10e-02  2.30e-04 9.5%-03  6.98e-03
0.6 4.12¢-04 2.31e-02  2.10e-04 1.09e-02  3.24e-03
0.7 4.58e-04 2.36e-02  1.80e-04 1.19e-02  5.88e-03
0.8 4.83e-04 2.18e-02  1.30e-04 1.23e-02  1.46e-02
0.9 3.96e-04 1.68e-02  6.50e-05 1.08e-02  1.52e-02

in this case. Considering these two cases, it can be seen that the present method is more
effective than the other methods.

5.2. Example 2: The Damped/Undamped Duffing problem. The effect of the
damping coeflicient p is investigated in two cases.

5.2.1. Case 1: Let us consider the damping case of the Duffing equation, (when p # 0)

The exact solution of the problem is u(x) = %e*x. The problem is solved by taking

M = 5. The absolute errors at the points x; € [0, 1] obtained from the present method,
the Adomian decomposition method (ADM) and the restarted Adomian decomposition
method (RADM) [50] are presented in Table 3. It can be seen that the difference in the
absolute errors obtained from ADM and RADM are similar and furthermore the present
method have a better accuracy than the other two methods. Thus, it is more effective
than these methods in the solution of this case.

5.2.2. Case 2: Finally, let us consider the undamping case, (p = 0)
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TABLE 3. Comparison of the present method with differential transform
method (DTM) and restarted Adomian decomposition method (RADM)

x; Present Method ADM [4] RADM [4]

0.1 1.61e-09 4.53e-09  4.53e-09
0.2 1.08e-09 5.47e-07  5.47e-07
0.3 3.27e-09 8.85e-06  8.81e-06
0.4 5.13e-09 6.29e-05  6.24e-05
0.5 1.04e-09 2.86e-04  2.81e-04
0.6 7.99e-10 9.86e-04  9.57e-04
0.7 1.36e-08 2.80e-03  2.67e-03
0.8 5.08e-11 6.93e-03  6.48e-03
0.9 2.93e-07 1.54e-02  1.40e-02

1 1.58e-06 3.18e-02  2.80e-02

TABLE 4. Comparison of the present method with other numerical methods)

x; Present Method DJM [34] ITM [35]

0.1 5.07e-09 5.07e-09  4.62e-08
0.2 4.57e-09 4.47e-09  6.12e-07
0.3 1.17e-08 8.29e-09  4.28e-07
0.4 1.95e-08 1.57e-08  2.29e-07
0.5 1.15e-08 1.53e-07  4.23e-07
0.6 6.82e-09 2.32e-07  4.03e-07
0.7 4.49e-08 1.99e-06  3.32e-07
0.8 2.20e-08 1.76e-05  5.66e-07
0.9 7.06e-07 8.66e-05  8.87e-06

1 4.04e-06 3.26e-04  1.43e-05

u"(z) + 3u(z) — 2u3(z) = coszsin (2z),

The exact solution of the problem is u(z) = sinz. The problem is solved by taking
M = 6. The absolute errors obtained from the present method and other numerical
methods such as Daftardar-Jafari method (DJM) [34] and improved Taylor matrix method
(ITM) [35] are presented in Table 4. As one can observe that the present method has a
better accuracy than the other two methods.

6. CONCLUSION

In this study, Laguerre wavelet method is applied to solve the Bratu and Duffing equa-
tions which are stiff ordinary differential equations. One of the advantages of the method
is that it converts the problem of nonlinear differential equation to a system of algebraic
equations, and hence simplifies the solution of the problems. The other advantage is that
unlike many numerical methods, it does not require the approximation of the nonlinear
term. Test problems show that the proposed method is simple to implement and more
effective than some other numerical methods.
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