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THE THEORY OF UD DERIVATIVE AND ITS APPLICATIONS

AJAY DIXIT1, AMIT UJLAYAN2, §

Abstract. The sole purpose of this study is to propose a new concept to fractional
derivative as Ujlayan-Dixit derivative in the classical sense using limit approach. The
parameter α of the derivative is confined within a closed unit interval. It is easy to
apply and generates a convex combination of function and its derivative. We observe
its geometrical behavior and see, how it is different from the previous definitions of the
concerned derivatives. It works as an improved form of Conformable fractional deriv-
ative and fulfill the meaningful gaps. Some basic properties of calculus like continuity,
differentiability, Mean Value theorem, Comparison theorem and some numerical have
discussed.
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1. Introduction

One’s nature of understanding is calculus based in which the fractional order comes from
the sense of the behaviour of a function at many parameters of small scale. In modern
phenomenon, research on this core concept is important to understand the nature. In the
beginning it was not very popular in science and engineering being a non local property.
And so this theory was considered only for non-local distributed effects. But it gives
a better way to understand the natural things or phenomenon by adding some other
dimension.

Actually fractional calculus is a part of real analysis that studies all the aspects tak-
ing arbitrary powers of the differential operator. In the present scenario researchers are
showing more interest to work in the field of fractional calculus as the generalization of
ordinary calculus, they know that it is a challenging work equipped with a number of new
results. To study the history of fractional calculus one may see Podlubny [2], Miller and
Ross [3], Kilbas et al. [4], Machado et al. [6].
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Fractional calculus has now been applied in areas of science and engineering, finance,
bio engineering, control theory, operation research etc.. There are a number of research
articles-journals (see Bagley and Torvik [1] and Baleanu et al. [5]) in which problems have
been addressed involving fractional derivatives/fractional integral like fluid flow, visco
elasticity, diffusive transport properties, electrical circuits etc.. As shown by Caballero et
al. [8], Goodrich [9], Fec et al. [10] and Rezazadeh et al. [13], we see that a mathematical
formulation based on fractional derivative has presented and analytic and experimental
results are compared.

From last some decade, many explanation of fractional derivative have been investigated
as a concept for modelling real world problems. No doubt a fractional derivative is difficult
to compute analytically so that the researchers sometimes have to switch over to numerical
methods to solve the problems like in Li et al. [7], Odibat [11] and Bolandtalat et al.
[12]. The popular fractional derivatives like Riemann-Liouville, Mittag- Leffler, Caputio,
Grünwald-Letnikov fractional order derivative, are not always appropriate whenever we
model real world problems as physical field complications arise. Still, these definitions is
used for modelling the problems. R. Khalil et al. [14] and Katugampola [15] proposed
the ideas of Conformable derivative in simple form in order to get easy computation and
therefore, definitions are used for fractional derivative. Atagna et al. [17], Iyiola and
Nwaeze [18] and Abdeljawad [19] investigated some results and properties of Conformable
derivative. Hammad and Khalil [20], Ujlayan and Dixit [21-22] and Cenesiz and Kurt
[23] have shown analytical solution of some known Conformable fractional differential
equations. Guebbai anh Ghait [16] has presented their ideas for different conformable
fractional derivative but the computation is not easy.

The proposed derivative has been obtained from an analytic approach and not from any
physical phenomenon to find a fractional derivative in the classical sense. it is simple in
computation and may give better predictions with the used methodology.

This paper is organized as follows: In section 2, we first present relevant definitions,
properties of the derivatives, propositions and that will be used to prove our main results.
In section 3 we have discussed some important theorems based on fractional calculus.
In section 4, we establish anti-derivative corresponding to the proposed derivative. In
section 5, discuss examples to demonstrate the results of concerned physical phenomenon.
Finally, section 6 concludes this paper.

2. The UD derivative

Definition 2.1. For a given function f : [0,∞)→ R and α ∈ [0, 1], the UD derivative of
order α is defined as

Dαf(x) = lim
ε→0

eε(1−α)f(xe
εα
x )− f(x)

ε
. (1)

If this limit exists, then Dαf(x) is called the UD derivative of f for α ∈ [0, 1], with the

understanding that Dαf(x) = dαf(x)
dxα . Also, if f is UD differentiable in the interval (0, x)

for x > 0 and α ∈ [0, 1] such that limx→0+ f
α(x) exist then,

fα(0) = lim
x→0+

fα(x).

Theorem 2.1. Let f : [0,∞)→ R be a differentiable function and α ∈ [0, 1]. Then, f is
UD differentiable.
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Proof. By Definition 2.1, we have

Dαf(x) = lim
ε→0

eε(1−α)f(xe
εα
x )− f(x)

ε

= lim
ε→0

{1 + ε(1− α) + o(ε2)}[f{x+ εα+ o(ε2)}]− f(x)

ε

= lim
ε→0

{1 + ε(1− α)}[f(x) + f ′(x){εα}]− f(x)

ε

= lim
ε→0

f(x) + ε(1− α)f(x) + εαf ′(x)− f(x)

ε

= (1− α)f(x) + αf ′(x), (2)

where α ∈ [0, 1]. �

Remark 2.1. The UD derivatives of order α, α ∈ [0, 1], of some elementary real-valued
differentiable functions in [0,∞), can be given as following:

(i) Dα(λ) = (1− α)λ for all constants λ ∈ R,
(ii) Dα((ax+ b)n) = (1− α)(ax+ b)n + anα(ax+ b)n−1 for all a, b ∈ R,

(iii) Dα(eax+b) = ((1− α) + aα)eax+b for all a, b ∈ R,
(iv) Dα(sin(ax+ b)) = (1− α) sin(ax+ b) + aα cos(ax+ b) for all a, b ∈ R,
(v) Dα(cos(ax+ b)) = (1− α) cos(ax+ b)− aα sin(ax+ b) for all a, b ∈ R,

(vi) Dα(log(ax+ b)) = (1− α) log(ax+ b) + aα(ax+ b)−1 for all a, b ∈ R.

Theorem 2.2. Let f and g be two differentiable functions in [0,∞) and 0 ≤ α, γ ≤ 1,
then the following properties hold:

(i) Linearity: Dα(af + bg) = aDαf + bDαg for all a, b ∈ R.
(ii) Product rule: Dα(fg) = (Dαf)g + α(Dg)f .

(iii) Quotient rule: Dα
(
f
g

)
= (Dαf)g−α(Dg)f

g2
, provided g(x) 6= 0 for all x ∈ [0,∞).

(iv) Change of variable: Let f is a function of x, 0 ≤ x < ∞, and x is function of t,
0 ≤ t <∞. Then,

Dαf = (1− α)f + α
df

dx

dx

dt
.

(v) Commutativity: Dα(Dγ)f = Dγ(Dα)f .

Proof. Using the equation (2), we get

Dα(Dγ)f = (1− α)(1− γ)f + α(1− γ)f ′ + γ(1− α)f ′ + αγf ′′

= Dγ(Dα)f.

This completes the proof of part (v) and the proof of the rest of the parts are obvious. �

Remark 2.2. The UD derivative of order α, α ∈ [0, 1], as given in Definition 2.1, violets
the Leibnitz’s rule for fractional derivatives, Dα(fg) 6= gDαf + fDαg. It also violets the
law of indices, Dα(Dγ)f 6= Dα+γf .

Remark 2.3. The equation (2) asserts that the UD derivative of order α, α ∈ [0, 1], of
a differentiable function f : [0,∞) → R, is a convex combination of the function and the
first derivative itself. Also, Dαf(x) = f(x), for α = 0 and Dαf(x) = f ′(x), for α = 1,
i.e., the UD derivative posses conformable property of conformable fractional derivatives.

The geometrical interpretation of the UD derivative of order α, α ∈ [0, 1], of some
real-valued differentiable functions can be visualized as follows:
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Figure 1. For α ∈ [0, 1], the figures in this graph show that Dαf(x) =
f(x), for α = 0 and Dαf(x) = f ′(x), for α = 1. Also, Dαf(x) tends to
f ′(x) uniformly as α tends from 0 to 1.

Definition 2.2. Let f : [0,∞) → R is a n times differentiable function. Then, the UD
derivative of of order α, α ∈ (n, n+ 1], is defined as

Dαf(x) = lim
ε 7→0

eε(1−α)f dαe−1(xe
εα
x )− f dαe−1(x)

ε
,

where dαe represents the smallest integer greater than or equal to α.

3. Some additional properties of the UD derivative

Theorem 3.1. Let the function f is not unbounded in [0,∞). If f is UD differentiable
for some α ∈ [0, 1] at x = a, then f continuous at x = a.
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Proof. We show that lim
ε7→0

f(x+ εα) = f(x).

lim
ε7→0

f(x+ εα)− f(x) = lim
ε7→0

(
(1 + ε(1− α))f(x+ εα)− ε(1− α)f(x+ εα)− f(x)

ε

)
ε

= lim
ε7→0

(
(1 + ε(1− α))f(x+ εα)− f(x)

ε

)
ε− lim

ε7→0
ε(1− α)f(x+ εα)

= lim
ε7→0

(Dαf) ε− lim
ε 7→0

ε(1− α)f(x+ εα)

= 0 (as f is not unbounded for all 0 ≤ x <∞).

�

Theorem 3.2 (Rolle’s theorem for the UD derivative). Let a > 0 and f : [a, b]→ R is a
given function such that

(a) f is continuous in [a, b],
(b) f is differentiable in ]a, b[,
(c) f(a) = f(b).

Then, there exists a point c ∈ ]a, b[, such that

Dαf(c) = (1− α)f(c),

where α ∈ [0, 1].

Proof. As we know that Dα(c) = (1− α)f(c) + αf ′(c) and from classical Rolle’s theorem
of f , f ′(c) = 0 implies Dαf(c) = (1− α)f(c). �

Theorem 3.3 (Mean Value theorem for the UD derivative). Let a > 0 and f : [a, b]→ R
is a given function such that

(a) f is continuous in [a, b],
(b) f is differentiable in ]a, b[.

Then, there exists a point c ∈ ]a, b[, such that

Dαf(c) = (1− α)f(c) + α
f(b)− f(a)

b− a
,

where α ∈ [0, 1].

Proof. Result follows from classical Lagrange’s mean value theorem of f . �

Theorem 3.4. Let f ,g are two functions such that

(a) f, g are continuous in [a, b],
(b) f ,g are UD differentiable in ]a, b[ for 0 ≤ α ≤ 1,
(c) Dαf(x) = Dαg(x) for all x in (a, b) and 0 < α ≤ 1.

Then,

(f − g)(x) = ηe
(α−1)x
α ,

where η is a constant.

Proof. Let y(x) = f(x)− g(x) for all x ∈ (a, b), then

Dα(f − g)(x) = 0

⇒ Dαy = 0

⇒ y(x) + αDy(x) = 0

⇒ y(x) = ηe
(α−1)x
α .

�
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Corollary 3.1. If Dαf(x) = 0, then f is not constant, infact f(x) = ηe
(α−1)
α

x.

Theorem 3.5. Let y is UD differentiable for α ∈ (0, 1] and p(x), q(x) are continuous
functions in x ∈ (a, b). Then, the initial value problem

Dαy + p(x)y = q(x); y(x0) = y0 (3)

has unique solution in the interval (a, b) for x0 ∈ (a, b).

Proof. Using the equation (2), the equation (3) can be written as:

αy′ + (p(x) + (1− α))y = q(x)

and result follows from the Uniqueness theorem of ordinary differential equations. �

Theorem 3.6. Let y1, y2 be two linearly independent solutions of

DαDαy(x) + p(x)Dαy(x) + q(x)y(x) = 0, (4)

where p(x), q(x) are continuous functions on (a, b) and α ∈ (0, 1]. Then y1 has a zero
between any two consecutive zeroes of y2. that is, zeros of y1, y2 occur alternately.

Proof. Using the equation (2), the equation (4) can be written as

y′′(x) + P (x)y′(x) +Q(x)y(x) = 0,

where P (x) = 1
α(2(1 − α) + p(x)), Q(x) = 1

α2 ((1 − α)2 + (1 − α)p(x) + q(x)) and result
follows from Sturm separation theorem of ordinary differential equations. �

4. The UD integral or anti-UD derivative of order α

In this section, we define a UD integral of order α, α ∈ (0, 1], which is an inverse operator
of the proposed UD derivative as defined in Definition 2.1.

Let g be a UD differentiable function as needed and 0 < α ≤ 1. Then,

Dαg(x) = f(x), where Dα ≡ dα

dxα

⇒ (1− α)g(x) + αD(g(x)) = f(x); where D ≡ d

dx

⇒ dg(x)

dx
+

(1− α)

α
g(x) =

1

α
f(x)

⇒ g(x) =
1

α
e

(α−1)
α

x

∫
f(x).e

(1−α)
α

xdx+ Ce
(α−1)
α

x,

where C is constant.
Also g(x) = Iα(f(x)), is called anti-UD derivative of f(x) for α ∈ (0, 1]. One may verify
that, at α = 1, this integral coincides with the classical integral.

Definition 4.1. Let f be a continuous function in [a, b]. The UD integral, Iαa f , is defined
as follows:

Iαa f(x) =
1

α

x∫
a

e
(1−α)
α

(t−x)f(t)dt, where α ∈ (0, 1].
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5. Numerical Problems

In this section, it is assumed that Dα ≡ dα

dxα , the functions involved in the considered
fractional differential equations are all differentiable in [0,∞), range of the fractional order
lies in (0, 1], and the UD derivative is used as given by the equation (2).

Example 5.1. Consider the fractional differential equation,

Dγ(Dα)y(x) = 0. (5)

Using UD derivative, the equation (5) can be written as,

αγy′′(x) + (α+ γ − 2αγ)y′(x) + (1− α)(1− γ)y(x) = 0.

This yields the solution,

y(x) = Ae(
α−1
α )x +Be

(
γ−1
γ

)
x
, (6)

where A, B are arbitrary constants.
It should be noted that solution (6) depends on parameter α only (when x 6= 0) if one use
Conformable derivative (see [15],[16]).

Example 5.2. Consider the fractional differential equation,

D1/2y(x) + y(x) = xe−3x. (7)

Using Conformable derivative, D1/2y(x) = x1/2 dy(x)dx , the equation (7) can be written as,

dy(x)

dx
+

1√
x
y(x) =

√
xe−3x

having the solution as an integral problem

y(x) = e−2
√
x

(∫ √
xe2
√
xe−3xdx+ k1

)
, (8)

where k1 is an arbitrary constant.
But with UD derivative, the equation (7) can be written as,

dy(x)

dx
+ 3y(x) = 2xe−3x

and solution in closed form is obtained as

y(x) = k2e
−3x + x2e−3x, (9)

where k2 is an arbitrary constant.

Example 5.3. The relaxed equation in fractional space is described by the equation

dαy(t)

dtα
+ cαy(t) = 0, (10)

where c > 0, t > 0 and 0 < α < 1 has the solution,

y(t) = Eα(−cαtα) (11)

in terms of Mittag-Leffler function.
And, using Conformable derivative, the solution of the fractional differential equation (10)
is given as

y(t) = Aexp

(
−(ct)α

α

)
(12)
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where A is an arbitrary constant.
Again, using the proposed UD derivative, the solution of (10) is given as

y(t) = Bexp

(
(α− 1)− cα

α

)
t, (13)

where B is an arbitrary constant.
Above all the obtained solutions coincide at α = 1.

Example 5.4. Using UD derivative, the fractional initial value problem for damped simple
harmonic oscillator

d2y(t)

dt2
+ b

dαy(t)

dtα
+ ω2

0y(t) = f(t); 0 < α < 1, t > 0, with

y(0) = c0,
dαy(0)

dtα
= c1

may be wtitten as,
d2y(t)

dt2
+ λ

dy(t)

dt
+ µy(t) = f(t).

In which complementary function of the solution will be

e−λt/2

(
A sin

√
µ− λ2

4
t+B cos

√
µ− λ2

4
t

)
,

where λ = αb and µ = b(1 − α) + ω2
0. As well, the particular integral and the values of

arbitrary constants A,B can be find using initial conditions when f(t) is known.

6. Conclusion

We have a different idea to deal with fractional derivative as UD derivative to solve the
related problems. A numerical method or series solution is used in the absence of an
appropriate analytic method, which raises an error in the result. Present work is analytic
thoroughly and generalizes the ordinary results. The novelty of the work reflects from
the methodology and examples. One may obtain UD derivative of a function defined on
interval [a, b]; a, b ∈ R.
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