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ABSTRACT: 

 

Land use is an important variable in remote sensing which describes the functions carried out on a piece of land in order to obtain 

benefits and is especially useful to the personnel working in the fields of urban management and planning. The land use information 

is maintained by national mapping agencies in geo-spatial databases. Commonly, land use data is stored in the form of polygon objects; 

the label of the object indicates land use. The main goal of classification of land use objects is to update an existing database in an 

automatic process. Recently, Convolutional Neural Networks (CNN) have been widely used to tackle this task utilizing high resolution 

aerial images (and derived data such as digital surface model). One big challenge classifying polygons is to deal with the large variation 

in their geometrical extent. For this challenge, we adopt the method of Yang et al. (2019) to decompose polygons into regular patches 

of fixed size. The decomposition leads to two sets of polygons: small and large, where the former suffers from a lower identification 

rate. In this paper, we propose CNN methods which incorporate dense connectivity and integrate it with intermediate information via 

global average pooling to improve land use classification, mainly focusing on small polygons. We present different network variants 

by incorporating intermediate information via global average pooling from different stages of the network. We test our methods on 

two sites; our experiments show that the dense connectivity and integration of intermediate information has a positive effect not only 

on the classification accuracy on the whole but also on the identification of small polygons. 

 

 

1. INTRODUCTION 

Land use is an important variable in remote sensing which 

describes the socio-economic function of a piece of land in order 

to obtain benefits (Barnsley & Barr 2000). In the region of central 

Europe, the government surveying authorities maintain 

geospatial database containing objects whose boundaries are 

related to property boundaries. The information of land use of 

property objects becomes outdated quickly as the property 

owners are not obliged to inform the government of changes in 

land use. Thus, a system is required to analyse the change in land 

use of the objects stored in the geospatial database. This can be 

done by extracting land use information from recently acquired 

aerial images. The extracted information is checked against the 

information stored in the database and thus a database update can 

be performed (Gerke & Heipke, 2008; Albert et al., 2017). 

 

The land use information is maintained by national mapping 

agencies in geo-spatial databases in the form of polygon objects 

with class labels indicating the object’s land use. This setting is 

adopted in this paper, where the primitive considered for land use 

classification is a polygon object of the geospatial database. The 

main goal of land use classification is to update an existing 

database in an automatic process. Traditional approaches for land 

use classification require hand-crafted features derived from 

image data, and then apply a supervised classifier such as 

Random Forests to deal with these features. Here, contextual 

models like Conditional Random Fields (CRF) have also been 

applied for classification purpose, e.g. (Albert, et al., 2017). 

However, these methods incorporating hand-crafted features are 

strenuous and time consuming. The rapid progress in remote 

sensing technology has resulted in a bulk of images of the earth 

surface taken by satellites, airplanes or drones, with different 

imaging modalities. With the large availability of data, the focus 

shifts to the automatic extraction of valuable information. 

Approaches based on CNN are known to provide impressive 

results when large amount of training data is available; CNNs are 

currently being used in many remote sensing applications (Zhu 

et al., 2017). 

 

For land use classification, a major challenge is the large 

variation of polygons in terms of their geometrical extent; for 

instance, road objects are thin and long, whereas residential 

objects cover both, very large and quite small areas. Recently, 

CNN-based method for land use classification proposed by Yang 

et al. (2019) solved the problem by decomposing large polygons 

into smaller patches of fixed size which suits the input of CNN. 

To represent a polygon, they use a combination of its shape in the 

form of a binary mask and the image data (e.g. RGB) and 

decompose it to form patches of fixed size. We adopt this 

methodology for the generation of input patches from polygons. 

During the decomposition, two types of polygons are 

differentiated: large polygons have multiple smaller patches 

whereas small polygons have exactly one patch. In the analysis 

of their classification results, the authors observed that the small 

polygons are hard to be classified correctly. Possible reasons for 

lower classification accuracy of small polygons are the 

following: (i) One problem of CNN is that as input passes 

through many layers of a neural network, the information can 

vanish by the time it reaches the end of the network. (ii) The final 

1-D feature vector before classification may not capture valid 

information of the small polygons due to many pooling 

operations. 
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In this paper, we build on the methods proposed in (Yang et al., 

2019) with the aim of improving the classification of land use 

objects, mainly focussing on small polygons. In our work, we 

only use the binary mask and RGB data as input. The scientific 

contribution of this paper can be summarized as follows: 

 

• We propose a network architecture incorporating dense 

connectivity (Huang et al., 2017) that strengthens 

information flow to improve the land use classification. The 

key is to create short paths from early layers to later layers, 

maximizing the data flow through the network. 

• We apply global average pooling (GAP) (Lin et al., 2013) at 

different stages of the network, resulting in many network 

variants, and utilize it as intermediate information in the 

classification process, to compensate the data loss caused by 

the many pooling operations in the network. 

• We conduct an extensive set of experiments to compare 

these network variants, and to highlight the benefits and 

drawbacks of the proposed methods. 

 

In section 2, we give a review of related work. Our approaches 

for land use classification are presented in sections 3. Section 4 

describes the experimental evaluation of our approach. 

Conclusions and an outlook are given in section 5. 

 

2. RELATED WORK 

We start with a brief introduction to land use classification. We 

then briefly discuss a history of deep learning (especially CNN) 

in land use classification. After that, we present the current state-

of-the-art in land use classification based on polygon objects in 

geospatial databases. 

 

Land cover is the physical material present on a piece of land 

(e.g., water, grass, concrete etc.). Land use corresponds to the 

socio-economic function of a piece of land (e.g., residential, 

agricultural etc.). Classification of land cover is simpler because 

there is a direct relationship between land cover and exitant 

spectral reflectance, but land use is an abstract concept. The 

technique suggested in Barnsley & Barr (2000) for land use 

classification is to divide the classification procedure into two 

stages: the first being semantic segmentation of the image for 

land cover classification; the second being land use classification 

based on the spatial pattern of land cover. The first stage can be 

performed by a number of techniques ranging from a standard 

maximum likelihood classifier to artificial neural networks. The 

disadvantage of such a two stage process is that the accuracy of 

the land use classification depends on the accuracy of land cover 

classification, i.e., an error in the first stage is propagated through 

the second stage. Johnsson (1994) and Bauer & Steinnocher 

(2001) investigated segment-based land use classification. 

Segments are obtained by spectral classification. Spatial 

information of segments such as size, neighbours etc., are used 

for rule-based classification of image segments into land use 

categories. An interesting work on land use object classification 

combining high spatial resolution imagery, LiDAR data and 

cadastral plots in given in Hermosilla et al. (2012). Land use 

objects are characterised by image based, geometric and 

contextual hand crafted features. With the emergence of 

classifiers that work on both spatial and spectral dimensions, e.g., 

neural network classifier, it is possible to perform land use classi-

fication is one step. 

 

As computers became more powerful and processing speed 

increased, computationally intensive but flexible neural network 

based classification has become more attractive. The LeNet-5 

architecture (LeCun et al., 1998) is one of the first successful 

applications of CNN and is the origin of most of the recent 

architectures. The building blocks of LeNet-5 are convolution, 

pooling and non-linearity layers. Then, Alexnet (Krizhevsky et 

al., 2012), a deep neural network architecture provided a seismic 

shift in the field of image classification. Another variant of 

classifiers called Support Vector Machines (SVMs) are frequent-

ly used for solving image classification problems. SVMs are 

independent of the dimensionality of feature space, therefore 

provide better classification results with limited training samples. 

Neural networks and SVMs show comparable results for land use 

classification (Dixon et al., 2008). However, neural network 

based classification is more robust to training site heterogeneity; 

and such heterogeneity is common in remote sensing images 

(Paola & Schowengerdt 1995). 

 

As mentioned in Section 1, the first challenge in the classification 

of land use polygons using CNN is the variation in geometric 

extent of polygons. To the best of our knowledge, LiteNet (Yang 

et al., 2018) is the first architecture to perform classification of 

land use polygons using CNN. The network was trained 

separately using RGB data and a label image encoding land 

cover. The input patches for CNN were generated by 

decomposing the polygons. In the input patch, the area inside the 

polygon is represented by RGB data or land cover encoding and 

the area outside the polygon is set to 0. However, this 

underutilization of data leads to a loss of context information. 

Yang et al. (2019) represent a polygon using a combination of its 

shape in the form of a binary mask and the image data (e.g. RGB), 

finally decomposing it to form patches of a fixed size. We adopt 

this methodology for patch generation from polygons. LuNet 

(Yang et al., 2019), which is based on LiteNet, consists of four 

convolutional blocks and two branches towards the end called 

two-branch-convolution. The upper branch of the two-branch-

convolution extracts global features that are representative of the 

complete image. The lower branch uses a region of interest (ROI) 

to focus on the most relevant regions in the image, which helps 

in the classification of polygons. We also adopt this two-branch 

convolution in our architecture, as it was demonstrated to 

enhance the classification of land use polygons.  

 

Another work on urban land use classification using object based 

CNN is presented in Zhang et al. (2018). The objects generated 

using mean shift clustering algorithm are classified into two 

types: linearly and non-linearly shaped objects. Two CNNs with 

different model structures and window sizes predict the labels for 

linearly and non-linearly shaped objects and a rule based decision 

fusion is performed to combine the results. However, such two-

scale feature representation might be insufficient to characterize 

complex geometric polygons. A joint deep learning framework 

for land cover and land use classification that involves Multi 

Layer Perceptron (MLP) and CNN classification models was 

proposed in Zhang et al. (2019). The intrinsically hierarchical 

relationships between land cover and land use were modelled via 

an iterative Markov process. However, their method focuses 

solely on urban and suburban areas, leading to an insufficient 

model transferability. 

 

Recent work by He et al. (2016) and Huang et al. (2017) has 

shown that shorter connections between layers close to input and 

those close to output in very deep CNNs leads to more accurate 

and efficient to train networks; ResNet (He et al., 2016) uses 

identity connections to bypass signal and summation operations 

when combining input and output layers. These networks are 

easier to optimize and gain accuracy from considerably increased 

depth. Many ResNet layers contribute very little and there is a 

large amount of redundancy in deep residual networks. 

Stochastic depth (Huang et al., 2016) randomly drops the layers 
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during training to overcome this problem. Feed-forward neural 

network can be considered as an algorithm with a state variable, 

where the state is passed on from layer to layer. Every neural 

network layer reads the state from its previous layer and writes to 

the subsequent layer its own state in addition to the previous state. 

The network architectures that make the state preservation 

implicit are desirable to overcome redundancy in network layers.  

 

The DenseNet architecture (Huang et al., 2017) differentiates be-

tween the information that is added to the network and infor-

mation that is preserved. DenseNet allows maximum information 

flow within the network, by connecting all layers within a dense 

block. The DenseNet architecture encourages improved flow of 

information and gradients throughout the network, alleviates the 

vanishing-gradient problem, and helps in strengthening feature 

propagation. Also, this architecture significantly reduces the 

number of parameters to be learnt and encourages feature reuse. 

GAP (Lin et al., 2013) computes the average value of each fea-

ture map at a particular layer of the network. An advantage of 

GAP is that it sums up the spatial information which might be 

useful in classification of data. GAP also introduces global con-

text (Yu et al., 2018) providing high level sematic information.  

 

Our approach follows the concepts of Huang et al. (2017) and Lin 

et al. (2013). We use dense block as main classification unit and 

GAP to obtain intermediate information, which we believe helps 

in feature propagation and compensates the data loss in our CNN 

architecture. 

 

3. LAND USE CLASSIFICATION USING CNN 

In this section, we propose a CNN for land use classification 

which is based on LuNet (Yang et al., 2019). As mentioned 

earlier, the large variation of polygons in terms of geometrical 

extent is a challenge, because our CNN requires a fixed input size 

(256 x 256 pixels) while returning a land use label. In this work, 

the way in which the image patches are prepared follows the 

method of Yang et al., (2019), which is introduced in section 3.1. 

The concept of dense connectivity is introduced in section 3.2. 

Section 3.3 outlines the network architecture used for land use 

classification. Section 3.4 describes the network variants and 

section 3.5 describes the procedure. 

 

3.1 Patch preparation 

The basic approach to prepare the input data is to extract a 

window of 256 x 256 pixels centred at the centre of gravity of the 

object from all data (RGB bands and binary object mask) and 

present it to the CNN. This is unproblematic if the polygon size 

corresponds well to the window size at the ground sampling 

distance (GSD); otherwise the window is either dominated by 

information outside the object (for very small objects) or the 

object does not fit into the window. The method we adopt to cope 

with the latter problem is cropping: we split the window 

enclosing the object into tiles (patches) of the desired size and 

classify all patches having a meaningful overlap with the object 

independently. Finally, the results for the individual input 

patches are combined (cf. section 3.5). 

 

3.2 Dense connectivity 

We adopt the dense block concept from Huang et al. (2017) as 

network component for classification. The key is to create short 

paths from early layers to later layers, maximizing the data flow 

through the network. The spatial size of feature maps remains 

constant in a dense block (Fig. 2), where each layer within the 

block obtains input (i.e. feature maps) from all the previous layers 

of the block. Suppose, each layer in a dense block produces k 

feature maps, then the lth layer has 𝑛 + 𝑘 × (𝑙 − 1) input feature 

maps, where 𝑛 is the number of input feature maps to the dense 

block. The feature maps from previous layers of the dense block 

are concatenated to build the feature maps of the lth layer. The 

number of feature maps generated by each layer within a dense 

block, 𝑘, is called growth rate (Huang et al. 2017), which is very 

small (𝑘 = 12 in our paper), thus adding only a small number of 

feature maps at every layer. Therefore, if there are 𝐿 layers in a 

dense block, there are (𝐿 × (𝐿 + 1)) ÷ 2 connections, as 

opposed to just 𝐿 connections in a traditional CNN architecture 

(Krizhevsky et al., 2012). 

 

A dense block can consist of an arbitrary number of layers (we 

use 4 layers per dense block in our paper). Each layer in the dense 

block performs a composite function of three consecutive 

operations: batch normalization (BN), rectified linear unit 

(ReLU) processing and 3 × 3 convolution (Conv). According to 

Huang et al. (2017), the dense connectivity strengthens feature 

propagation which is the key of its success in visual recognition. 

 

 

 
 

Figure 2.  A 3-layer dense block with n input channels and k 

growth rate. Please refer to texts for the abbreviations. 

 

Figure 1. The architecture of DenseLuNet-2. TL: Transition layer, DenseBlock: cf. Fig. 2, Two-Branch-Convolution: cf. Yang et 

al. (2019) 
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3.3 DenseLuNet 

This network is based on LuNet (Yang et al., 2019) and consists 

of three dense blocks (cf. Section 3.2) with transition layers 

between them. A transition layer (TL) consist of BN, ReLU, 

3 × 3 convolution and 2 × 2 max-pooling with stride 2 and the 

number of output channels is equal to the number of input 

channels. TL facilitates down-sampling in our network. Every 

dense block contains four layers, each layer generates 12  feature 

maps. After the last dense block, two-branch convolution (Yang 

et al., 2019) is applied for generating a 512 dimensional feature 

vector for classification. The upper branch of the two-branch-

convolution extracts global features that are representative of the 

complete image by performing max-pooling, followed by three 

convolution layers, BN and ReLU. The lower branch uses an 

ROI, to focus on the most relevant regions in the image. In this 

branch, we focus on these regions by aligning a rectangular 

image grid enclosing the polygon. The output of the two branches 

are concatenated and given as input to the fully connected layer. 

The fully connected layer delivers a vector of class scores 

(𝑍𝐿𝑈1 , … , 𝑍𝐿𝑈𝑀)𝑇, where ℂ𝐿𝑈 =  {𝐶𝐿𝑈1 , … , 𝐶𝐿𝑈𝑀} is a set of 

land use classes and 𝑍𝐿𝑈𝑐 is the class score of an image in a mini-

batch 𝑋 for class 𝐶𝐿𝑈𝑐. To obtain a probabilistic class score, the 

softmax function is applied to the class scores: 

 

 𝑃(𝐶𝐿𝑈𝑐|𝑋)  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝐿𝑈 , 𝐶𝐿𝑈𝑐) =  
𝑒𝑥𝑝(𝑍𝐿𝑈)

∑ 𝑒𝑥𝑝(𝑍
𝐿𝑈𝑖)𝑀

𝑖=1

, (1) 

 

Training is based on mini-batch Stochastic Gradient Descent 

(SGD) and step learning policy. The function to be optimized is 

the cross-entropy loss: 

 

               𝐿 =  −
1

𝑁
 ∙  ∑ [𝑦𝐿𝑈𝑐

𝑘  ∙  log(𝑃(𝐶𝐿𝑈𝑐|𝑋𝑘))]𝑐,𝑘 , (2) 

 

where 𝑋𝑘 is the 𝑘𝑡ℎ image in the mini-batch, 𝑁 is the number of 

images in a mini-batch, 𝑦𝐿𝑈𝑐
𝑘  is 1 if the training label of 𝑋𝑘 is 

𝐶𝐿𝑈𝑐 and 0 otherwise. 

 

3.4 Network variants 

The many stages of convolution and pooling operations can cause 

the final 1-D feature vector to capture no valid information of the 

input image. The intermediate information from different pooling 

stages could be helpful for classification. We introduce the 

intermediate information via GAP (Lin et al., 2013). GAP, when 

applied on the output of a network layer, computes the average 

value of each feature map and results in a 1-D vector. GAP is 

performed on the output of dense block and is concatenated to the 

1-D feature vector obtained from the two-branch convolution 

(Yang et al., 2019), which serves as the final feature vector for 

classification.  

 

In this paper, we investigate four network variants differing by 

the stages at which the intermediate information using GAP is 

extracted on the DenseLuNet base architecture: i). DenseLuNet 

architecture as described in Section 3.3. ii). Applying the GAP at 

the output of the first dense block of DenseLuNet, referred to as 

DenseLuNet-1. iii). Applying the GAP at the output of the second 

dense block of DenseLuNet, referred to as DenseLuNet-2 (cf. 

Fig. 1). iv). Applying the GAP at the output of the first and 

second dense block of DenseLuNet, referred to as DenseLuNet-

12. For training these variants, the mini-batch size is set to 10. 

All networks are trained for five epochs, using a base learning 

rate of 0.001 and reducing it to 0.0001 after two epochs. 

 

3.5 Inference of polygons 

All network variants output a probabilistic score for each patch. 

If a polygon results in exactly one patch during cropping, its pre-

diction is straightforward, the prediction score of the polygon is 

the same as the patch score; if a polygon is split into multiple 

patches, the product of the probabilistic patch scores is deter-

mined first, and then the prediction is made based on this product. 

 

4. EXPERIMENTS 

4.1 Datasets and test setup 

4.1.1. Datasets: Our experiments for classification of land use 

are evaluated on two test sites, located in the cities of Hameln and 

Schleswig (Germany). Hameln covers an area of 2 𝑘𝑚 × 6 𝑘𝑚. 

It contains densely built-up residential areas in the centre of the 

city as well as detached houses, rural areas, industrial areas and 

rivers. Schleswig covers an area of 6 𝑘𝑚 × 6 𝑘𝑚, showing 

similar characteristics as Hameln. For both Hameln and Schles-

wig, digital orthophotos (DOP), and land use objects (corres-

ponding to cadastral parcels) from the German Authoritative Real 

Estate Cadastre Information System (ALKIS) are available. The 

DOP are multispectral images (RGB + infrared / IR) with a 

ground sampling distance (GSD) of 20 𝑐𝑚. The reference for 

land use is derived from the German geospatial land use database. 

 

Network 

Variant 

F1 [%] avg. F1 

[%] 

OA 

[%] 
res. non-res. green traf. square cropl. grassl. forest water others 

Hameln 

LuNet 76.5 60.5 57.1 87.8 40.2 55.9 30.9 66.0 34.6 46.0 55.6 69.2 

DenseLuNet 81.2 65.8 70.8 89.5 47.9 73.1 32.6 66.9 34.3 43.7 60.6 74.0 

DenseLuNet-1 84.4 69.4 74.8 87.9 44.8 72.8 26.3 72.8 38.9 44.0 61.6 74.9 

DenseLuNet-2 82.6 67.4 71.0 89.6 41.0 67.1 20.5 68.2 37.5 48.6 59.4 74.4 

DenseLuNet-12 84.8 69.6 72.7 89.6 39.6 70.2 25.9 70.7 35.8 47.6 60.7 75.8 

Schleswig 

LuNet 79.4 27.1 58.2 87.7 14.9 73.5 76.5 78.1 57.1 28.1 58.1 70.6 

DenseLuNet 77.6 51.9 48.3 88.1 12.7 71.2 73.7 79.3 53.3 26.1 58.2 69.8 

DenseLuNet-1 80.7 56.3 59.3 86.8 19.2 76.1 78.9 77.9 61.6 25.8 62.2 72.9 

DenseLuNet-2 82.9 57.2 60.1 87.8 22.7 75.6 75.5 81.3 58.6 30.7 63.2 73.4 

DenseLuNet-12 84.6 58.1 61.8 87.8 20.4 77.0 79.0 76.0 53.5 20.8 61.9 74.5 

 

Table 1.  Results of land use classification. Network variants cf. section (3.4). F1: F1 score, OA: Overall Accuracy, both evaluated on 

the basis of objects. Best scores are printed in bold. 
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We distinguish 10 land use classes for the Hameln and Schleswig 

test sites: residential (res.), non-residential (non-res.), urban 

green (green), traffic (traf.), square, cropland (cropl.), grassland 

(grassl.), forest, water body (water) and others. The class 

structure of land use is same as in (Yang et al., 2019). 

 

4.1.2. Test setup: There are 2945 polygons in Hameln and 4345 

polygons in Schleswig. Each test data set is split into two blocks 

for cross validation. The block size is 10000 × 15000 pixels 

(6 𝑘𝑚2) and 30000 × 15000 pixels (18 𝑘𝑚2) for Hameln and 

Schleswig, respectively. In each test run, one block is used for 

training and the other one for testing. We evaluate land use 

classification based on the number of correctly classified 

database objects. We report overall accuracy (OA), i.e., the 

percentage of land use objects assigned the correct class label by 

the classification process, and F1 score, i.e., the harmonic mean 

of precision and recall. All the networks were implemented using 

tensorflow framework (Abadi et al., 2015). We use a GPU 

(Nvidia GeForce GTX 1080 TI, 11GB) to accelerate training and 

inference. 

 

We perform data augmentation on the patches generated from 

cropping. Here, we differentiate two scenarios: Large polygons, 

i.e. polygons that had to be split because they do not fit into the 

input window of the CNN, are augmented by horizontal and 

vertical flipping and by applying random rotations in intervals of 

30°. In the other case, i.e. small polygons which fit the input size 

of the CNN, are augmented by horizontal and vertical flipping 

and by applying random rotations in intervals of 5°. In the end, 

there are 354178 and 479978 patches for Hameln and Schleswig, 

respectively. 

 

4.2 Evaluation of land use classification 

4.2.1. Evaluation and comparison of network variants: In this 

section, we compare four variants of networks (cf. Section 3.4) 

using two datasets Hameln and Schleswig. The LuNet network 

serves as a baseline for all other variants. The evaluation results 

for land use classification evaluated on land use objects are given 

in Table 1. The best values achieved for every accuracy measure 

on each dataset are printed in bold font. To summarize the 

performance of the models, the F1 scores with respect to each 

land use class along with average F1 scores and OA are provided. 

Analysing Table 1, it is evident that DenseLuNet and its variants 

perform better than LuNet in terms of either OA or average F1 

score on both datasets. The best performing variant on Hameln is 

DenseLuNet-12 which shows an improvement of 6.6% and 5.1% 

in OA and F1 scores, respectively, in comparison with LuNet. 

For Schleswig, an improvement of 3.9% and 3.8% in terms of 

OA and F1 scores, respectively, was reached by DenseLuNet-12, 

which is the best performing model on this dataset, in comparison 

with LuNet. On the contrary, DenseLuNet shows about 1% 

decrease in OA on Schleswig dataset, whereas the F1 score 

remains the same. The reason for this is unclear and requires 

further investigation. Overall, we point out that incorporating 

dense connectivity leads to better classification results. 

 

In general, all the network variants face difficulties in classifying 

objects belonging to the classes square, grassland and others 

which can be attributed to the fact that only a very small amount 

of training data is available for these classes, also others is a class 

of heterogeneous appearance. DenseLuNet-1 shows highest 

improvement of the F1 score for the class green by a margin of 

17.7% on Hameln. On Schleswig, DenseLuNet-12 shows the 

highest improvement by a margin of 31% on non-residential. 

 

4.2.2. Effectiveness of using global average pooling: In our 

network variants DenseLuNet-1 and -2, we apply GAP at the 

output of the 1st and 2nd dense block, respectively, and 

concatenate it to the 1-D feature vector obtained towards the end 

of the network. In the variant DenseLuNet-12, we apply GAP at 

the output of both 1st and 2nd dense block. We believe that the 

intermediate information computed using GAP is helpful in the 

classification as it can compensate for information that was lost 

due to many pooling operations in the network. Analysing Table 

1, it is easy to notice that the DenseLuNet variants with GAP 

perform better than DenseLuNet on both, Hameln and Schleswig 

in terms of either OA or average F1 score. However, when 

compared to the performance of DenseLuNet, for Hameln the 

difference is not so pronounced: DenseLuNet-2 shows a slight 

decrease (1.2%) in average F1 score and OA being almost 

identical when compared to DenseLuNet. However, on the 

Schleswig dataset, improvements are seen in both OA and 

average F1 score by all the three DenseLuNet variants 

incorporating GAP. Therefore, we consider that GAP has a 

positive impact on the classification of land use polygons. 

 

Among the three DenseLuNet variants incorporating GAP, 

DenseLuNet-12 is the best performing variant on both Hameln 

and Schleswig in terms of OA, although, the results pertaining to 

average F1 score do not show a particular trend. We take this as 

an indication that the more intermediate information added to the 

classification process, the better are the classification results. 

 

4.2.3. Influence of the object size: Table 2 shows the OA and 

average F1 scores of small and large polygons along with the 

combined results which are the same as the ones shown in Table 

1. The results are given for all the network variants on Hameln 

and Schleswig. The small set consists of polygons that were 

represented as a single patch in the classification process. The 

 

Network 

Variant 

Hameln  Schleswig 

OA[%] avg. F1 [%] OA[%] avg. F1 [%] 

Large 

(1955) 

Small 

(990) 

All 

(2945) 

Large 

(1955) 

Small 

(990) 

All 

(2945) 

Large 

(3435) 

Small 

(910) 

All 

(4345) 

Large 

(3435) 

Small 

(910) 

All 

(4345) 

LuNet 72.5 62.7 69.2 56.5 38.9 55.6 73.9 58.1 70.6 58.5 39.7 58.1 

DenseLuNet 76.7 68.7 74.0 60.5 47.6 60.6 74.1 53.7 69.8 57.5 39.1 58.2 

DenseLuNet-1 78.2 68.4 74.9 63.0 45.9 61.6 77.1 57.1 72.9 62.4 43.6 62.2 

DenseLuNet-2 77.6 68.1 74.4 59.9 49.5 59.4 77.5 57.7 73.4 63.6 42.2 63.2 

DenseLuNet-12 79.1 69.2 75.8 62.3 48.2 60.7 78.4 59.7 74.5 62.0 42.0 61.9 

 

Table 2.  Results of land use classification represented separately for large, small and all polygons (cf. Table 1). The results are provided 

for all the network variants on Hameln and Schleswig dataset. The number of polygons in each set is given in parenthesis. 
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large set consists of polygons that were split into patches during 

the input patch generation (cf. Section 4.1.2). In general, the large 

set accuracy is greater when compared to the small set because 

large numbers of patches belonging to the large set are available 

during classification. DenseLuNet-12 shows best performance on 

Hameln and Schleswig in terms of OA of small, large and all 

polygons, however, the average F1 scores do not show a 

particular trend. Coming to the classification of small set, 

DenseLuNet-12 shows 6.5% improvement in the OA in 

comparison to LuNet on Hameln. This can be attributed to a 

maximization of data flow due to dense connectivity and 

utilization of intermediate information from two stages of the 

network. However, in Schleswig, DenseLuNet-12 shows 1.6% 

improvement in the OA of small set in comparison to LuNet, 

while the other DenseLuNet variants show similar performance 

to that of LuNet in classification of small polygons. 

 

5. CONCLUSION 

In this paper, we proposed a CNN architecture for classification 

of land use objects in a geospatial database incorporating dense 

connectivity; we call it DenseLuNet. We investigate four variants 

of networks differing by the stages at which the intermediate 

information is extracted using GAP on two test sites. 

DenseLuNet and its variants perform better than LuNet (Yang et 

al., 2019) in terms of either overall accuracy or the average F1 

score on both datasets. Also, we observe that intermediate 

information obtained using GAP has a positive impact on the 

classification of land use polygons. Compared to LuNet, 

DenseLunet-12 shows an improvement of 6.6% and 5.1% in OA 

and F1 scores, respectively, for the Hameln dataset. DenseLuNet-

12 shows best performance on Hameln and Schleswig in terms 

of OA of small, large and all polygons. We conclude that the 

more the intermediate information via GAP is utilized in the 

classification process, the better are the classification results. 

 

Future research should focus on including more object 

knowledge, e.g., in terms of height information. We are also 

interested to incorporate a hierarchical and more detailed class 

structure (Yang et al., 2020) into our approach and to investigate 

the influence of partly incorrect training data; the latter as a way 

to be able to use large parts of existing geospatial database 

content for training. Although some of that information will be 

outdated and thus wrong, the problem of needing vast amounts 

of training data could be alleviated in this way. Finally, dense 

connectivity requires significant amounts of GPU memory and 

we faced memory issues implementing the network with more 

than three dense blocks. To overcome these issues, network 

implementations using shared memories and gradient 

checkpointing (Pleiss et al., 2017) can be performed. 
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