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Abstract— Modern passenger vehicles are equipped with a
great number of control functions targeting versatile perfor-
mance aspects like safe drive-ability, comfortable or sporty
ride concerning assistance systems or a proper adjustment of
engine control functions in order to prevent noise vibration
and harshness issues. In this paper a methodology for a
performance optimal and robust controller design is presented.
This methodology is applied on a given idle-speed controller
implementation using a detailed nonlinear drive train model
in closed loop considering physical parameter uncertainties.
The results are discussed with exemplary selected performance
measures.

Index Terms— Automotive application, robust control design,
PI-controller, sensitivity analysis, parameter space approach.

I. INTRODUCTION

Modern passenger vehicles are equipped with a great num-
ber of control functions targeting versatile aspects like a safe
driveability, comfortable or sporty ride concerning assistance
systems following [1] or a good adjustment of engine control
functions in order to prevent noise vibration and harshness
issues as discussed by [2] regarding the idle speed controller.
This paper is focused on the latter target. One way to prevent
NVH phenomena is to design a novel controller structure or
reduce the delay time as discussed in e.g. in [2]. In contrast to
that, the goal of this paper is to find a robust parameterization
of a given idle-speed controller implementation. For this
reason certain criteria are required that evaluate the closed
loop behaviour in order to distinguish between an acceptable
and a rejectable parametrization. In order to ensure better
understanding and acceptance for users of this approach,
the performance requirements are calculated in time domain
with respect to measured signals. The presented approach
is performed on the basis of a detailed nonlinear model
of the closed loop system and takes into account physical
uncertainties like the quality of the engine calibration, tol-
erances of the drive train components caused by ageing and
manufacturing and different loads states of the vehicle. In
terms of interactions with other control functions like the
fuel balance controller or the anti-jerk control, these and

further functions may be integrated into the given software
structure. Robust design of an vehicle idle speed controller
has been investigated in numerous papers. At this point of
view two distinct systems are regarded: on one hand engine
dynamics are focused considering throttle control and on the
other hand drive train dynamics are focused with respect
to accurate modelling of the clutch dynamics and backlash
due to the gearbox and further transmission components.
Regarding these approaches, first the quantitative feedback
control by [3] considering an intake air path as simple
linear second order system in closed loop with two uncertain
parameters must be mentioned. The controller design takes
place in frequency domain by means of the nichols chart and
the subsequently analysis in time domain. In addition the
H∞ approach and µ-synthesis have received much attention
considering unstructured and structured uncertainties [4], [5].
It must be noticed that stability and performance demands are
analysed in frequency domain by means of the sensitivity
and complementary sensitivity transfer function such that
physical performance measures cannot be taken into account
directly, which have major significance in automotive appli-
cation. Moreover, stability tests in frequency domain provide
conservative results with respect to maximum permissible
uncertainty intervals [6]. The main draw back is that for the
design linearized models are required. In case of explicitly
incorporating nonlinearities like backlash, coulomb friction,
nonlinear crankshaft dynamics or nonlinearities within the
controller structure there are no alternatives to simulations in
time domain. Under this assumption performance portraits
are employed, where control parameters within a certain
region are grid and evaluated concerning particular perfor-
mance measures [7], [8]. In terms of further elaboration this
approach is taken in order to meet the initially stated require-
ments for an automated controller design in an automotive
application.

This paper is organized as follows. In section II the utilized
nonlinear vehicle model is introduced. In section III the
performance and robustness measures are defined and the
proposed methodology is described. The results are presented
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in section IV and finally a conclusion is given in section V.

II. VEHICLE MODEL

In this paper especially an accurate approximation of the
dynamic behavior at idle-speed is decisive. For this purpose
the drive train is assumed as three mass system that is shown
in Fig. 1 and is based on [2] and [9]. Jp represents the mass of
the crankshaft and the primary part of the dual mass flywheel
(DMF) and Js consists of the secondary side of the DMF
and a part of the rotational mass of the gear box. The DMF
furthermore exhibits coulomb friction characteristic, which
is represented by Tclmb. The spring is commonly an multi-
stage arc spring with backlash of width εclu. As the engine
torque remains at idle speed with low variations using a linear
stiffness cclu and damping coefficient dclu is sufficient. The
clutch is considered to be engaged. The output shaft of the
gearbox is connected with the wheels Jw respectively the
vehicle mass by an elastic drive shaft corresponding to the
stiffness cdrv and damping ddrv. Due to the gearbox a further
backlash of width εdrv must be taken into account. Torque
losses Tloss are assumed to be constant at idle-speed. This
leads to the equation of motion:

Jpϕ̈p = Teng − Tloss − Tclu − Tdclu
− Tclmb (1)

Jsϕ̈s = Tcclu
+ Tdclu

+ Tclmbclu
− 1

ig
(Tcdrv

+ Tddrv
) (2)

Jwϕ̈w = Tcdrv
+ Tddrv

(3)

with the input torque Teng and load torque Tload. With respect
to a physical backlash model by [10] two further states need
to be introduced:

λclu =

{
εclu sign(τclu), |τclu| ≥ εclu

τclu, |τclu| < εclu
(4)

with τclu = ϕp − ϕs and

λ̇clu =


min(0, δ̇clu), λclu = −εclu

δ̇clu, |τclu| < εclu

max(0, δ̇clu), λclu = εclu

(5)

with δ̇clu = τ̇clu − cclu

dclu
(τclu − λclu). In equivalence to the

coupling of the DMF the states for the backlash of the
drive shaft λdrv and λ̇drv are calculated in a similar way

Jp

Tclmb

εclu

cclu
ϕp, ωp ϕw, ωw

Teng − Tloss

Js

ddrv

cdrv

ϕs, ωs

Jw

εdrv Tload

ig

dclu

Fig. 1. Model structure of the drivetrain.

considering τdrv = ϕs

ig
−ϕw and δ̇drv = τ̇− cdrv

ddrv
(τdrv−λdrv).

Finally the torques from (1)-(3) can be obtained as follows:

Tclu =cclu(τclu − λclu) + dclu(τ̇clu − λ̇clu) (6)
+ Tclmbsign(τ̇clu)

Tdrv =cdrv(τdrv − λdrv) + ddrv(τ̇drv − λ̇drv). (7)

The engine torque Teng consists of the combustion torque
Tcmb, the compression and expansion torque Tc/e and the
mass torque Tj. As they arise from non-continuous com-
bustion and non-linear torque transmission on the crankshaft
drive, they depend on the angular position ϕp and speed of
the crankshaft ωp as follows:

Teng =

Ncyl∑
i=1

Tcmb(ϕp,i) + Tc/e(ϕp,i) + Tj(ϕp,i, ωp,i), (8)

with Tcmb = TecuKeng. According to the accuracy of the
engine calibration at certain operation points the desired
torque of the controller output Tecu is applied with respect to
the gain Keng on the drive train. This parameter is introduced
for robustness reasons. For more details in the terms of (8)
please see [11].

III. CONTROLLER DESIGN

For the introduced controller design approach in this paper
the entire closed loop system is required. This contains
the given implementation of the idle speed controller on
the device, a nonlinear model of the combustion engine
and the vehicle drive train dynamics. In modern vehicles
the idle speed controller is a PI-controller, that contains
nonlinear parts like engine speed based gain scheduling and
saturation functions. Designing a controller typically has two
aims. First, the control parameters shall be adjusted optimal
concerning certain performance measures, which will be
focused in the first subsection. Second, a good robustness
against model uncertainties must be ensured that will be
addressed subsequently by introducing physical parameter
uncertainties. In this paper we will take both aims in a closer
view and compare the results with each other.

A. Performance Measures

In terms of an optimal controller design commonly the aim
is to achieve good disturbance rejection, noise annotation,
reference tracking and low energy consumption of the actu-
ator, which are comprehended as performance requirements.
In order to meet all of them, a multicriterial optimization
is required. In this paper we assume to satisfy a maximum
settling time with a tolerance band and a maximum overshoot
of certain processed signals that are obtained on the basis the
measured engine speed np and the measured wheel speed ns

as shown in Fig. 2 by means of the presented simulation
model. In case of the wheel speed the delay time due to
filters and the gear ratio with respect to the engine speed



is corrected. Regarding Fig. 2(b) two processed signals are
pictured. The upper signal is calculated as n1 = nw−w, with
the reference value w. The lower signal is n2 = np−nw. On
this basis the following performance measures are defined:

1) settling time tε1 of n1 into a band width ε1,
2) overshoot h of n1,
3) settling time tε2 of n2 into a band width ε2.

The signals have to settle in within the boundaries that are
drawn in solid black lines. The measured performance values
correspond with the solid red lines in case of the settling
time and with the dashed red line in case of the overshoot.
Furthermore, a desirable value fopti can be assigned to each
performance measure representing the optimum that may
be in between 0 and the maximum admissible value fΓ,i.
Formulating a minimization problem for a nominal plant with
the parameters θ0 leads to the following equation:

JΓi

K =

{ ∣∣ fi(θ0i ,K)−fopti

fΓi
−fopti

∣∣ fi(θ0i
,K) < fΓi

1 else
, (9)

where Γi corresponds to a particular performance index.
Hence, the cost function value JΓi

K is the absolute distance
between the measured performance fi(θ0i ,K) and fopti
that is evaluated over every sample of the grid mesh of
K = {Kp,Ki}. A normalization with the worst case distance
fΓi
− fopti restricts the performance value to the range of

[0; 1]. Reaching the optimum value corresponds to a cost
function value 0 and violating the maximum admissible value
fΓi corresponds to the cost function value 1. Due to the
normalization all m performance measures can be combined
by a weighted sum:

JΓ
K =


m∑
i

wiJ
Γi

K ∀JΓi

K < 1

1 else
, (10)

with ωi ≥ 0,

m∑
i

ωi = 1.

The corresponding set KΓ, that meets the performance mea-
sures is:

KΓ = K(JΓ
K < 1) (11)

B. Robustness Measures
Considering the plant parameters to be uncertain, that are

bounded by upper and lower limits, leads to a hyper box Q:

Q =
{
qi ∈ [q−i ; q+

i ]
∣∣∣, i =

{
1, 2, · · · , l

}}
.

As stated in [12] the critical parameter sets can be found in
the corners of the Q-box, as long it is an convex problem.
The cost function is than extended to the following equation:

JΓi

k =

{ ∣∣max
(
fi(QE,k)−fopti

)
fΓi
−fopti

∣∣ ∀fi(QE, k) < fΓi

1 else
(12)

(a) (b)

Fig. 2. (a) shows measured and processed engine speed np, wheel speed nr

and the controller output Tecu of a negative disturbance step response. The
signals that are shown in (b) are used in order to determine the performance
measures. The signals are taken from a simulation with respect to the
introduced model whose parameters have been identified and validated by
means of real measurements of a passenger car.

A control parameter is robustly Γ-stable with respect to the
required performance measure Γi and the hyper box Q, if its
cost function is smaller than 1 for all considered points of
QE. Expanding the Q-Box step-wise causes the Γ-stable area
to shrink until there are no stabilizing parameters anymore.
The area that remains at longest with increasing Q-box
exhibits the greatest robustness and the area, that vanishes
first consequently has the least robustness.

Keeping this idea in mind a robustness characterizing
measure can be introduced. For this purpose the control
parameters are regarded to be fixed at a particular value.
Assuming the Q-Box is expanded by n incremental steps, the
interval of each uncertain parameter q : [q−, q+] is divided
into equidistant subintervals of width ∆p:

pj = j∆p, j = 0, . . . , n− 1. (13)

The Q-box is gradually increased with n steps. For each step
and parameter the following subinterval results:

q±i (pj) = qi,0(1± pi,j). (14)

Finally the level of robustness is defined as follows:

Rk =
z

n
, (15)

z equals the number each time JΓ
k (pj) < 1. A parameter

set with a robustness measure equal to 0 does not meet per-
formance requirements for the nominal plant corresponding



to θ0. Regarding the other extreme a robustness measure
equals m fulfills the performance requirements as long as the
parameters do not exceed the maximum assumed variation of
p = (n− 1)∆p.

C. Design Approach

Within the scope of the controller design methodology that
is pictured in Fig. 3 three aspects are considered and need to
be defined by the user:
• Physical uncertainties of the plant, which are represented

by the hyper box Q. It contains l parameters, that are
assigned to a nominal value qi,0 within an interval
[q−i ; q+

i ]. Initially, only the nominal values are regarded.
• Control parameters K, that need to be designed. In this

application a PI-controller with the control parameters
kp and ki are designed. The spanned parameter space
within the intervals [k−j ; k+

j ] is divided by 25× 25 grid
points.

• Performance requirements Γi containing the settling
time and overshoot with respect to n1 and n2 in Fig 2.

In the design step the nominal plant is simulated and eval-
uated with respect to the performance measures for each
sample within the set of K. On this basis a performance map
can be obtained. An accurate resolution of the maps requires
a high simulation effort, that can be minimized by means of
the parameter space approach (PSA). The overall aim of the
PSA is to have a rough estimation of the Γ-stabilized region
using a reduced linear model. For this purpose It provides
Γ-stable boundaries, that are mapped from s-domain into the
parameter space. They can be seen as preliminary conditions,
that must be full-filled. Otherwise the simulation for certain
parameter samples will be skipped and the corresponding
performance values are saved as NaN. The applied system on
the PSA is based on an integrator plant. This is admissible
in the sense as the system is ruled by the low frequency
behaviour, which is sufficiently described by this simplified
model. Hence, the parameter space can reduced a lot.

Considering uncertain parameters each control parameter
sample needs to be simulated with the worst case com-
bination, that arises from the given Q-box. In a convex
problem formulation it can be found in the corners of
the intervals. Instead if gridding the entire Q-box only 2l

points are representatively checked. However, the number of
corner points rises exponentially with l. Hence, it is likewise
reasonable to reduce the number of uncertain parameters
that can be achieved with the aid of a sensitivity analysis
(SA). Due to the large intervals of the Q-box and because of
nonlinear parameter dependencies a global approach must be
applied. In this paper a variance based sensitivity analysis is
performed [13]. This approach provides in addition unified
measures in the range between 0 and 1, representing a
negligible respectively a significant influence of the uncertain
parameters on the performance measures. Finding a proper

Design

Analysis

PSASA

Increase
Qred-Box

KΓ

KredQred

Q =
{
qi ∈ [q−i ; q+

i ]
∣∣

i = {1, 2, · · · ,m}
} K =

{
kj ∈ [k−

j ; k+
j ]
∣∣

j = {1, 2}
}

Ø

Selection

Fig. 3. Design Approach.

threshold that separates significant parameters from negligi-
ble parameters is not easy to suggest. In order to analyse
the proposed design approach for this application, we will
begin with a set of two uncertain parameters and subsequently
increase the number of uncertain parameters.

It must be noticed that in case of a non-convex formulation,
the worst case parameter combination may occur along the
egdes of the Q-box. Because of this reason subsequently to
the design a analysis step must be performed. A selected
sample within the preliminary set of KΓ is fixed in order
to test a randomly chosen set on the edges of Q. If any
samples of the test set fail, they have to pass the design
process additionally. Otherwise the approach will be proceed
with the resulting set KΓ. Assuming that after the design
and analysis step KΓ 6= Ø is obtained, the Q-box will be
extended by increasing the intervals about ∆p with respect
to (14). This is proceed until KΓ = Ø is satisfied. In every
further design and analysis iteration over the expanding Q-
box the previously determined set of KΓ is taken.

IV. RESULTS

In this section the results of the SA, the PSA and the
controller design are given. The applied methods, the SA
and PSA, are also briefly introduced.

A. Sensitity Analysis

By means of the SA the influence of the variation of
particular inputs X = {X1, X2, . . . , Xk} shall be quantified
with respect to particular outputs Y . Throughout this paper
the inputs are physical plant parameters and the outputs are
performance measures at a fixed value of Kp and Ki. Each
input is described by an individual and unified distribution



U (a, b). Furthermore, nonlinear dependencies lead to mutual
interactions, that need to be revealed. These challenges are
met by using a variance-based SA. With respect to the sensi-
tivity values two kinds of measures need to be distinguished
[13]:
• main effect SH: describes the influence that can be

assigned to a single input when varying only one pa-
rameter at a time,

• total effect ST: describes the influence that is caused
besides the main effect by any interactions of this input
with other inputs.

The fundamental calculation of the sensitivity indices are:

SHi
=
V (E(Y |Xi))

V (Y )
(16)

STi
= 1− V (E(Y |X−i))

V (Y )
(17)

In this formula the numerator is defined as a conditional
variance with respect to the input Pi that is divided by the
absolute variance of the output Y . The expected mean is
obtained when one input, Xi, is fixed to a particular value
x∗i and all other inputs are varied such as EX−i(Y |Xi) and
in short notation E(Y |Xi). Finally the variance is taken over
all possible values of Xi [13]. Further important properties
are:

SHi ∈ [0; 1], (18)
k∑
i=1

SHi = 1, (19)

STi
≈ SHi

in absence of interactions (20)
STi

>> SHi
in presence of interactions. (21)

In this paper the sobol approximation is used that is based
on a monte-carlo simulation. According to the amount of
inputs k and an appropriate number of independent samples
n the following number of simulation runs are required:

N = n(k + 2). (22)

The parameters are uniformly distributed with different levels
of uncertainty:

U (q−; q+), q± = q0(1± p) (23)

The gain of the engine Keng and the vehicle mass Jr are
assumed to vary about p1 = 20%, which may be caused by
loading of the car respectively a improper engine calibra-
tion at a certain operation point. The remaining parameters
Jp, Js, cclu, εclu, dclu, Tclmb, cdrv, εdrv, ddrv are assumed to
have relatively low variation of p2 = 5%, which may
occur only by manufacturing tolerances and ageing. As the
information about real parameter variations are not available,
these are just assumptions that were made by the authors of
this paper in order to exemplary show the methodology. Ac-
cording to n = 2000 samples the results of the SA are shown

Fig. 4. Main effects and total effects of the SA considering uncertainty
intervals that correspond to p1 and p2. The indices on the x-axis correspond
to the performance measures.

in Fig. 4 in bar charts. Regarding the first two performance
measures, there is no interactions between the parameters,
which is indicated by

∑k=11
i=1 SΓ1

i = 1 and
∑k=11
i=1 SΓ2

i = 1.
In both cases Keng and Jr show a significant influence and
the other parameters are negligible. However the case is
different concerning the third performance index which is
indicated by

∑k=11
i=1 SΓ3

i = 0.75. Regarding the main effects
besides Keng and Jr an influence of Tclmb must be noticed
that is about 0.09. Regarding the total effect ddrv has the
smallest value of 0.06. The other parameters show values
in the range of 0.14 < ST − SH < 0.18. As mentioned in
section III-C we start with the set of Keng and Jr and extend
it subsequently from top down accordingly to the values of
SΓ3

Ti
. The results are discussed in section IV-C.

B. Parameter Space Approach

In order to reduce the number of grid points boundary lines
in parameter space are required that cover some performance
requirements. For this reason the parameter space approach
is applied in this paper. This approach provides an analytical
way to find these boundaries. Two aspects need to be consid-
ered. First is that the PSA maps so-called Γ-stabilized regions
from s-domain into parameter space. However, it is possible
to find an equivalent mapping between performance require-
ments in s-domain and physically interpretable requirements
in time domain. The second aspect is that an analytical
solution can only be found for simple models. With respect to
the results of [14] accurate results can be found for the step
response of the reference variable considering an integrator
plant. Based on that approach the following mapping rules



(a) Parameter space (b) Disturbane step response

Fig. 5. Applying the PSA on a simplified model considering (25) and (26)
with ε = 0.5 and tε = 5 sec.

in s-domain can be established for the disturbance step:

σ =
ln (εKω)

tε
, (24)

It must be noticed that the underdamped case ζ ∈ [0; 1] is
considered with respect to the following reduced model:

P (s) =
K

s
e−sTD , C(s) =

Kps+Ki

s
(25)

⇒ G(s) =
P (s)

1 + P (s)C(s)
, (26)

with K = 30
πJ and J = Jp + Js + Jr/i

2
g . The resulting

boundary in parameter space with respect to tε = 5 sec and
ε = 0.5 is shown in Fig.5. By means of the PSA the total
amount simulation runs can be reduced from 625 to 327.
Notice the conservatism for Kp > 0.5 due to the fact that in
(24) the underdamped case is considered.

C. Design and Analysis

The presented approach is applied on a test case, that is
shown in Fig. 2. The idle speed controller is enabled and
drives the vehicle with constant idle speed. After a negative
step of a disturbance torque applied on the engine side, the
closed loop behavior is evaluated by means of three intro-
duced performance measures. Fig. 6 illustrates the control
parameter space, which is obtained by 25x25 equidistant
values within the shown grid mesh. The performance is
divided into six performance levels. According to the color
bar, the best performance region is black colored and the
worst performance region is white colored. In Fig. 6(d), the
combined total performance is shown. For the nominal case
the optimal parameterization is obtained with Kp = 0.4 and
Ki = 0.5. It can be stated that the overshoot of n1 and
the settling of n2 can be adjusted mainly over Kp, while the
settling time of n1 reacts more sensitive to changes of K i. In
total, there is a quit spacious Γ-stabilizing region in parameter
space considering the nominal plant. Increasing the Q-Box
the region of KΓ shrinks, as shown in Fig 3. Considering
only two uncertain parameters the case of KΓ = Ø is

(a) (b)

(c) (d)

Fig. 6. Nominal performance portraits. (a) and (b) correspond to the settling
time and overshot of n1, (c) corresponds to the settling time of n2 and (d)
shows the overall performance portrait.

reached at p = 70%. The robust parameterization is obtained
inside a small band with Kp = 0.35 and Ki = [0.85; 1].
In comparison with seven uncertain parameters almost the
same robust parameterization is determined with Kp = 0.4
and Ki = 0.9. However it must be noticed that KΓ = Ø
appears already at p1 = 60% respectively p2 = 15%. Due to
the low sensitivities of the neglected uncertain parameters a
significantly different result is not conceivable.

D. Parameter Secelection and Discussion

By reaching KΓ = Ø the algorithm is finished and some
data is available to select a particular control parameteriza-
tion. The following strategies can be derived:

1) optimal performance Kopt = [0.4; 0, 5]: considering the
nominal system with j = 0 the parameter sample with
the lowest value of JΓ

K is selected.
2) robust performance Krob = [0.4; 0, 9]: considering the

results from j = n − 1 the parameter sample that still
remains in KΓ is selected. If KΓ contains more than
one sample the Q-box has to be expanded in smaller
steps of. It is also conceivable to select a parameter with
the biggest distance to the boundaries of KΓ.

3) optimal performance with certain robustness level
Khyb = [0.4; 0, 7] and w = 0.5: with respect to the
selection from (1) and (2) a hybrid solution can be ob-
tained. According to a weighting w a linear interpolation
between these two samples is determined.



(a) (b)

(c) (d)

Fig. 7. Robust performance portait considering two uncertain
parameters and subsequently added further uncertain parameter.
The following sets correspond to the graphs (a)-(d): {Keng, Jr},
{Keng, Jr, Tclmb}, {Keng, Jr, Tclmb, Jp, cdrv, εclu} and
{Keng, Jr, Tclmb, Jp, cdrv, εclu, Js}. The colorbar indicates the
admissible regions of the control parameters corresponding to the
uncertainty levels of p1 and p2 = p1/4.

Comparing the results, the difference between three solution
Kopt,Krob,Khyb seems to be very small. Regarding the
performance portrait in Fig. 6(d) the parameterization with
K = [0.6; 0.4] has an insignificantly performance such that
level of J = 0 is still given. Comparing this solution again
with the performance portrait in Fig. 7(d) a considerable
smaller robustness value of 30% instead of 60% is achieved.
In the opposite case comparing Krob = [0.4; 0, 9] with the
performance portrait a performance value of 0.2 remains. In
summary the elaborated methodology provides deep insights
and a valid suggestion for a controller application. On this
basis a trade-off between performance and robustness can be
obtained.

V. CONCLUSION

In conclusion, a model-based controller design approach
is presented in this work that is applicable on any controller
structure. The user is able to define performance measures
in order to find an optimal parameterization. Furthermore
by introducing uncertain intervals that are assigned to plant
parameters robust control parameters can be obtained. In the
sense of robust performance it is necessary to define thresh-
olds according to the performance measures in order to accept
of neglect certain parameter samples. Under this condition

typically used criteria like the integral absolute error (IAE),
total variance (TV) are also considerable. However due to
the grid search it must be noticed that this approach means a
high computational effort that scales exponentially with the
number of uncertain parameters. As a countermeasure on one
hand the PSA is integrated in order to restrict the grid points
in parameters space. On the other hand a global sensitivity
analysis is performed in order to reduce the dimensions of
the Q-box. With respect to the results of the SA the main and
total effects can be quantitatively compared with each other,
but finding a viable threshold in order to neglect uncertain
parameters is a matter of required accuracy and computing
resources. By means of the resulting top down sequence that
corresponds to the SA a systematical procedure is shown.
Furthermore in terms of time consuming vehicle tests in real
applications the results offer insights about the system and
can be used for optimizing a design of experiment.
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