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Abstract: In automotive application PI and PID controllers are widely used. Commonly
the controller parametrization is performed in a heuristic manner in the vehicle at different
operating points. Model-based approaches offer many advantages like a reduced effort of the
design process and a more systematically investigation of the parameter set. Circumventing
experiments at the vehicle is not feasible, however the goal is to achieve a significant reduction
of this part of work. The aim of this paper is to find the controller parameter region, that ensures
compliance with defined measures of the controller performance in time domain. On the basis of
the parameter space approach these measures need to be transferred into the s-domain, which
is shown exemplary for a second order system and a PI-controlled integrator system. The latter
serves as a simple vehicle drive train model for the design of the engine idle speed controller.
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1. INTRODUCTION

In automotive application PI and PID controllers are
widely used considering for example the cruise control
(Tiganasu et al. (2016)), lambda control or engine idle
speed control (Guzzella and Onder (2010)). Commonly
the controller parametrization is performed in a heuris-
tic manner in the vehicle at different operating points.
The adjustment stated in Schwarze et al. (2020) follows
the Ziegler/Nichols or Chain/Horns/Roswick approach or
meets a certain gain and phase margin in a nyquist chart
respectively in a bode plot. The plant is typically assumed
to be a first order system with time delay. These ap-
proaches are time consuming and don’t take performance
requirements into account, that arise from comfort de-
mands of the customer. In an automotive application such
specification are commonly formulated in time-domain like
settling time and overshoot. In contrast, model-based ap-
proaches offer many advantages like a reduced effort of the
design process and a more systematically investigation of
the parameter set. Moreover, structural uncertainties can
also be considered that arise from tolerances caused by
ageing and manufacturing. Circumventing experiments at
the vehicle is not feasible, however the goal is to achieve
a significant reduction of this part of work. The objective
of this paper is to develop a procedure in order to find an
admissible region of control parameters that corresponds
to time specification.

Regarding algebraic solutions, there are several approaches
reported in the literature. One is based on the relation
of the coefficients of the characteristic polynomial and

settling time as well as the overshoot, that are claimed
by Naslin (1969). The coefficient diagram method, in-
troduced by Manabe (1998) and the characteristic ratio
assignments developed by Kim et al. (2003), make use
of this and propose a design technique that is based on
the so-called characteristic ratios and the generalized time
constant. The drawback of this approach is that a proper
parameterization of these features with regard to the re-
quired performance measures cannot be given analytically.
The assignments are obtained in Kim et al. (2003) by
an iterative adjustment. A further comprehensive way is
using the parameter space approach (PSA) introduced
by Ackermann (2002). Given stability boundaries in s-
space are mapped into a two dimensional parameter space.
Ackermann (2002) discussed the relation between time
performance measures and the position of the eigenval-
ues of the characteristic polynomial regarding a dominant
pole pair. However an algebraic solution is not explicitly
given in order to capture certain performance measures.
Furthermore, it must be stated, that the step response is
affected not only by poles but also zeros, hence it is not
possible to carry out a generic solution for more complex
systems. In case of higher order system with poles and
zeros, these relations are valid only for certain conditions.
Generally, it must be regarded more carefully. This paper
focuses on finding accurate equivalent curves in s-plane in
order to map time performances into controller parameter
space using the PSA. The solution is obtained by applying
the inverse Laplace transformation. A related work was
done by Basilio and Matos (2002). Two types of systems
are regarded in an exemplary way, that will bring to light
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differences and similarities. The aim is to derive design
rules from the two exemplary analyzed systems, that can
be applied on a vehicle drive train model.

This paper is organized as follows. In Section 2 a vehicle
drive train is introduced. For design purpose a simplified
model is considered. Afterwards this contribution gives
a short overview of the PSA in Section 3, considering
common stability boundary curves. Subsequently, equiv-
alent curves for the overshoot and settling time are pre-
sented regarding a second order system and an integrator
plant governed by a PI controller. In order to examine
the accuracy of the proposed equivalent curves for the
simplified drive train model, an equidistant distribution
of the controller values is evaluated related to a priory
defined performance specification. Finally a short outlook
is given to discuss the capability for more complex systems.
The paper ends up with a conclusion.

2. VEHICLE MODEL IN CLOSED LOOP

The proposed design method shall be applied on an
engine idle speed controller of a vehicle in neutral gear.
In order to apply the proposed method, a linear model is
required. Taking the low-frequency dynamics into account,
a simplified model can be derived from the drive train
model that was introduced in Popp et al. (2019). For
this purpose the following linear model with time delay
is assumed:

Jω̇(t) = Ta(t− TD),
y(t) = 30

π ω(t),
(1)

where J is the total rotational mass, Ta is the applied
torque less the amount of torque load acting on the crank
shaft, y is the mean valued measured engine speed, ω the
angular frequency of crank shaft and TD the delay time.
Out of the simplifications the following concerns arise to
the design process:

(1) Regarding the transient step response of the reference
value, an integrator plant is sufficient for a first
controller design step as long as the controller values
are limited to reasonable gains. Moreover, this is also
a countermeasure to reduce high-frequency content of
the actuator signal and in respect to amplification of
sensor noise (see Ackermann (2002)).

(2) The objective of the controller design using a sim-
plified model is to reduce the set of controller pa-
rameters to an admissible small region. Accordingly,
explicit solutions for the performance specifications
are required so that the subsequent controller design
based on the nonlinear model incorporate the results
as limiting conditions.

Considering a PI controller with the transfer function

C(s) =
Kps+Ki

s and for the plant Gveh(s) = 30/π
Js e

−sTD ,
the closed loop transfer function is:

Fveh(s) =
y(s)

Ta(s)
=

Ki

J (1 +
Kp

Ki
s) 30

π e
−sTD

s2 + (
Kp

J s+ Ki

J ) 30
π e
−sTD

, (2)

with controller parameters Kp and Ki. The delay time is
approximated with pade of third order:

e−sTD =
−T 3

Ds
3 + 12T 2

Ds
2 − 60TDs+ 120

T 3
Ds

3 + 12T 2
Ds

2 + 60TDs+ 120
. (3)

3. PARAMETER SPACE APPROACH

On the basis of the given closed loop transfer function
some performance requirements of the step response must
be met by proper parameters of the PI controller. In order
to utilize the PSA on the given performance requirements
equivalent boundaries in the complex plane are defined.
Finally these boundaries are mapped into the controller
parameter space which is spanned by Kp-Ki axes. For
this purpose a short introduction of the PSA is given.
Regarding the characteristic polynomial of F (s) the sys-
tem is stable if its roots do not leave the left-half s-plane.
Following the boundary crossing theorem by Frazer and
Duncan (1929) the roots of this polynomial are continuous
if the coefficients of the polynomial are continuous. This
implies they cannot jump from the left-half s-plane to
the right-half s-plane. Finding all roots of the polynomial
that cross the imaginary boundary in dependence on some
freely mapped parameters q reveals the boundaries of
the stable region in parameter space. This concepts also
holds for other boundary curves ∂Γ in s-plane than the
imaginary axis, e.g. negative real part or constant damping
in case of further performance requirements of the system.
A polynomial is called Γ-stable in Ackermann et al. (1991),
if the roots are located in a prescribed region Γ in the
s-plane. The Γ-region may consist of several composed
curves ∂Γ. Crossing of eigenvalues over boundaries can
occur in one of three ways: real root boundaries (RRB)
at s = 0, infinite root boundaries (IRB) at s = ∞ and
complex root boundaries (CRB) at s = σ+jω. More details
can be found in Ackermann (2002).

3.1 Mapping ∂Γ-boundaries into parameter space

Consider a closed-loop system with an arbitary plant
transfer function G(s) and a controller C(s) as introduced
in Section 2. The transfer function of the closed-loop
system and resulting characteristic polynomial is:

F (s) =
G(s)C(s)

1 +G(s)C(s)
, (4)

P (s) = num{G(s)}(Kps+Ki) + den{G(s)}s. (5)

The main idea is to find a solution for each case:

RRB : P (s = 0,Kp,Ki) = 0 (6)

CRB : P (s = σ + jω,Kp,Ki) = 0 (7)

IRB : lim
ω→∞

P (s = σ + jω,Kp,Ki) = 0 (8)

For the special case if ∂Γ is described by the imaginary
axis (s = jω) the idea is to leave ω as a parameter
and calculate the control parameters by a sweep over ω,
which is restricted to non-negative values. For the general
case the boundary has to be described by a generalized
parameter α that is analogously swept along the segments
of ∂Γ. The formulation of this boundary is:

∂Γ = {s|s = σ(α) + jω(α), α ∈ [α−;α+]}. (9)

So-called singular frequencies are not of our concern in
this case, so they are not described here. Ackermann
and Kaesbauer formulated in Ackermann (2002) a short
notation for CRB mapping:



[
d0(α) d1(α) · · · dn(α)

0 d0(α) · · · dn−1(α)

]
a(q) =

[
0
0

]
, (10)

D(α)a(q) = 0,

where

d0(α) = 1

d1(α) = 2σ(α) (11)

di+1(α) = 2σ(α)di(α)− [σ2(α) + ω2(α)]di−1(α),

i = 1, 2, . . . , n− 1.

a(q) is a parameter-depend coefficient function of the
freely mapped parameters q, while D(α) is a description of
∂Γ. Solving this equation according to the control param-
eters represented in this contribution by q = [Kp,Ki]

T,
yields the set of ∂Γ in parameter space for each gridded
value of α.

3.2 S-Domain Specification

In this Section common boundary curves are presented.
Regarding a second order system the transfer function is

F (s) =
ω2
0

s2 + 2ζω0s+ ω2
0

. (12)

According to Ackermann (2002) and Voßwinkel et al.
(2019), a reasonable Γ-stable region in order to match time
performance measures can be specified by:

(i) A damping ζ, which is bounded by a line with an
angle to the imaginary axis. This curve corresponds to
an equivalent overshoot. Consider, that the following
remarks regard only the underdamped case, such
that ζ ∈ [0, 1). An equivalent Γ-boundary for the
overdamped case can be obtained analogously, but
will not be covered by this proceeding.

(ii) A real part σ, which is bounded by a left-sided parallel
to the imaginary axis. This curve corresponds to an
equivalent settling time.

(iii) A bandwidth ω0, which is bounded by a circular arc
around the origin with radius R. This bound is needed
to limit the control parameters to reasonable values.

In order to define the matrix D(α), the curves need to be
parameterized by the real part σ and the imaginary part
ω of complex eigenvalues. Considering the equations

s= σ ± jω = −ζω0 ± jωe (13)

ω0 =
√
σ2 + ω2, (14)

ζ =
−σ√
σ2 + ω2

(15)

ωe = ω0

√
1− ζ2 (16)

the parameterization of the curves (i)-(iii) with respect to
α can be obtained as follows:

(i) ω = σ

√
1− ζ2h
ζh

, σ = α, α ∈ [0,−∞), (17)

(ii) ω2 = α, σ = σε, α ∈ [0,∞), (18)

(iii) ω2 = R2 − σ2, σ = α, α ∈ [−R,R]. (19)

Using the symbolic toolbox the polynomial coefficients in
a(q) are substituted with respect to the regarded system
and D(α) is composed according to (11). Finally the solu-
tion can be obtained by rewriting (10) after Kp(α, tε, ε, h)
and Ki(α, tε, ε, h). In the following of this paper the use of
h or ε as an index implies the proposed correspondence of
the overshoot respectively the settling time to the variable.

4. EQUIVALENT TIME-DOMAIN SPECIFICATION

Finding an accurate equivalent represenation of perfor-
mance measures according to (17)-(19) are required. In
this context we want to find a parameterization of σε
as well as ζh and examine how suitable the proposed
boundaries of Section 3.2 are. The following time-domain
specifications are considered:

• A settling time tε ≤ tε,max with a tolerance band of
width 2ε and

• a overshoot h ≤ hmax.

The specification of performance requirements in s-domain
is an indirect approach in order to meet time-domain
demands. The step response depends primarily on the
dominant pole, which has the smallest distance to the
origin. In case further poles and zeros have less than twice
the distance with respect to the dominant pole, these
significantly affect the initial part of the step response.
Thus, time specification cannot be satisfied by simple
correspondences according to Section 3.1.

For an accurate mapping the time-domain specification
have to be transformed into the s-domain according to
the transfer function. To this end, the following method is
pursued in this paper:

• Perform the inverse Laplace-transformation of the
step response into time-domain.

• Formulate the requirements in time domain. Consid-
ering a unit step response it follows:

Overshoot An overshoot can be described as:

h = y(tmax)− 1 = L−1
{
F (s)

1

s

}∣∣∣
t=tmax

− 1. (20)

The time of maximum overshoot tmax can be found
by setting the derivation of y(t) to zero:

dy(t)

dt
= L−1{F (s)} !

= 0. (21)

Settling time For the settling time tε considering a
tolerance band of width 2ε it holds, that:∣∣∣y(tε)− 1

∣∣∣ =
∣∣∣L−1{F (s)

1

s

}
− 1
∣∣∣ ≤ ε. (22)

• Solve the equation for a suitable variable, that is the
real part or the imaginary part of the pole.

In the following Section the method is applied to a second
order system and PI controller with an integrator plant,
that shall meet specified values of the above defined
performance measures. The corresponding step responses
to the given transfer functions F (s) can be found e.g. in
Lutz and Wendt (2019).

4.1 Second Order System

For the transfer function of a second order system the step
response can be described as follows:



F (s) =
ω2
0

s2 + 2ζω0s+ ω2
0

, (23)

y(t) = 1− 1√
1− ζ2

e−ζω0t sin
(
ωet+ arccos (ζ)

)
(24)

Overshoot In order to find the maximum overshoot, time
tmax is needed. Using equation (21) yields:

dy(t)

dt
=

ω0√
1− ζ2

e−ζω0tmax sin
(
ωetmax

)
!
= 0, (25)

⇒ tmax =
π

ωe
. (26)

Substituting tmax into equation (20) and neglecting the
sine term yields:

e
σ
ωe
π = h⇒ ω = σ

π

lnh
. (27)

This equation can be rewritten with (15) such that an
equivalent damping is obtained:

ζh =
−σ√
σ2 + ω2

=
1√

1 +
(
π

lnh

)2 . (28)

Settling time Next, the settling time is calculated. Con-
sider the approach in (22) and use (24) leads to

− 1√
1− ζ2

eζω0tε = ε (29)

by neglecting the sine term again. Solving this equation
after σ = −ζω0 yields:

σ =
ln(ε

√
1− ζ2)

tε
= σε +

ln(
√

1− ζ2)

tε
, (30)

with σε = ln ε/tε. According to the proposed correspon-
dence of the settling time (18) a simple solution for the real
part σε is obtained. However this holds only for weakly
damped second order systems. A precise curve can be
found by solving (29) after ω. In the intermediate step

ζ2 = 1− e2tε(σ−σε) (31)

is substituted by (15) and yields:

ω2 = σ2 e2tε(σ−σε)

1− e2tε(σ−σε)
. (32)

Fig. 1 illustrates the boundaries in s-domain for a maxi-
mum overshoot and maximum settling time into a range
of 2ε. Consider the real part σε as characteristic feature.

4.2 PI-Controller with Integrator Plant

In this Section the procedure is applied to a PI-controlled
integrator plant G(s) = 1

Js . The step response can be
described as follows:

F (s) =
w2

0(1 + Tvs)

s2 + 2ζω0s+ ω2
0

, (33)

ω0 =

√
Ki

J
, ζ =

Kp

2
√
KiJ

, Tv =
Kp

Ki
=

2ζ

ω0
,

y(t) = 1− e−ζω0t
(

cos(ωet) +
ζ − Tvω0√

1− ζ2
sin(ωet)

)
(34)

(a) (b)

Fig. 1. PT2-system: ∂Γ-boundaries of the overshoot h =
0.35 (orange line) and settling time tε = 1s into a
range of ε = 0.05 (blue line) and the corresponding
step responses of samples on the combined boundary
lines.

Overshoot Using (21) for calculating tmax the derivation
dy(t)/dt is:

dy(t)

dt
= ω0e

−ζω0t(
Tv cos(ωetmax) +

1− ζTvω0

ωe
sin(ωetmax)︸ ︷︷ ︸

!
=0

)
!
= 0 (35)

⇒ tmax =
(
π − arctan

( −2σω

σ2 − ω2

)) 1

ω
. (36)

Using (20) and (21) yields:

h = −eσtmax

(
cos(ωtmax) +

σ

ω
sin(ωtmax)︸ ︷︷ ︸

=−1

)
(37)

⇒ tan
(

ln (h)
ω

σ

)
=
−2σω

σ2 − ω2
. (38)

A solution for ω of the nonlinear equation

f1(σ, ω) = ω2 − 2σω

µ
− σ2 = 0, (39)

with µ = tan (ln (h)ω/σ) can be obtained by finding the
roots by means of numeric optimization. The resulting
boundary is likewise a straight line with constant damping,
as shown in Fig. 2(a). However, an explicit solution for
the equivalent damping cannot be given. The minimum
overshoot is obtained for a maximum damping ratio of
ζ = 1 respectively ω → 0 and σ is fixed. In the opposite
case ζ = 0 is reached if σ → 0 and ω is fixed. This leads
to hmin > h > hmax:

lim
ω→0

tan
(

ln (hmin)
ω

σ

)
= ln (hmin)

ω

σ
=
−2σω

σ2 − ω2
,

⇒ hmin = e−2, (40)

lim
σ→0

−2σω

σ2 − ω2
= 0 = tan

(
ln (hmax)

ω

σ

)
,

⇒ hmax = e0. (41)

Settling time Using (14),(15) and (34) in (22) yields:∣∣∣eσt( cos(ωt) +
σ

ω
sin(ωt)

)∣∣∣ ≤ ε. (42)



(a) s-domain with ε = 0.05 (b) time-domain with ε = 0.05

(c) s-domain with ε = 0.15 (d) time-domain with ε = 0.15

Fig. 2. PDT2-system: ∂Γ-boundaries of the overshoot h =
0.35 (orange line) and settling time tε = 1s into
different ranges of ε (blue line) and the corresponding
step responses of samples on the combined boundary
lines.

In this case three solutions must be considered. The first
solution is obtained by neglecting the trigonometric term
in the brackets of y(t), so that it holds:

σ =
ln(ε)

tε
= σε. (43)

This is true if |σ| � |ω|, such that cos(ωt)+ σ
ω sin(ωt) < 1.

Otherwise the neglected term in (42) becomes critical.
According to the upper bound 1 + ε and the lower bound
1− ε a solution for both cases can be obtained by solving
the implicit equation:

f2(σ, ω) = −
∣∣∣eσt( cos(ωt) +

σ

ω
sin(ωt)

)∣∣∣± ε = 0, (44)

Once again a numerical solver is used. The resulting curves
are illustrated in Fig 2(a). Along the dashed line all step
responses cross tε at 1 + ε as shown in Fig 2(b). The
dashed-dotted line corresponds to step responses that go
through y(t = tε) = 1 − ε. In order to avoid, that the
step responses leave the requested band width after once
crossing the boundaries, the eigenvalues must lie on the
left side of σe. In summary, the solid blue line is obtained,
which is composed of all three solutions. Regarding the
case ε > hmin as shown in Fig 2(c) and 2(d), the equivalent
damping ratio of hmin must be also considered, which is
pictured by the dashed line.

4.3 Mapping Rules

Comparing the results with the proposed correspondence
from Section 3.2 similar results of the two systems are re-
vealed. The overshoot complies with an equivalent damp-
ing. In terms of the settling time a real part must be taken
into account as one of further limiting ∂Γ-boundaries.
Unfortunately a solution for an explicit parameterization
could not be found in Section 4.2.

(a) s-domain using s∗ for pa-
rameterization of ∂Γ.

(b) time-domain using s∗ for pa-
rameterization of ∂Γ.

Fig. 3. PDT2-system: ∂Γ-boundaries of the overshoot h =
0.05 (orange line) and settling time tε = 1s into
different ranges of ε (blue line) and the corresponding
step responses of samples on the combined boundary
line.

In order to derive generic specifications, the prescribed
concerns from Section 2 need to be responded. In order to
limit the controller gains, a minimum overshoot shall be
demanded. According to ζ ∈ [0, 1), (28) and (40) , we pro-
pose hmin = 0 in case of a second order system closed loop
system respectively hmin = e−2 in case of an additional
zero. Moreover, a lower limit of the settling time tε,min

must also be introduced with respect to the limitation of
controller gains. Responding to the second design concern
an explicit solution of an equivalent ∂Γ shall be derived
in case of the PI-controlled integrator system. The results
from Section 3.2 indicate that ∂Γ concerning the settling
time may be approximately composed of a real part and
a circular arc. Considering the intersection point at the
complex eigenvalues

s∗ = σ∗ + jω∗, with σ∗ =
ln (ε)

tε
, ω∗ =

π

tε
(45)

yield proper parameterization of (18) and (19) as follows:

σε = σ∗, (46)

Rε =
√

(σ∗)2 + (ω∗)2, (47)

which is shown in Fig. 3(a) and 3(b). In case of the lower
limit of tε,min the corresponding real part curve must be
omitted (compare to Fig. 4). The equivalent curve of the
explicit simplification entails a slight violation of the crite-
ria. Regarding the step response at the critical case pointed
out in red, the process variable is about 0, 6% beneath the
lower boundary at tε. Typically, this error does not exceed
1%, varying the time-domain requirements. Concerning
the overshoot yields:

ζh =
−σ√
σ2 + ω2

(48)

evaluating f1(σ, ω) in (39) in an assigned point.

5. RESULTS

In this Section the results will be applied on the simplified
drive train model that was introduced in Section 2 with
J = 0.3 kg m2 and TD = 0.03 sec. First, the time-domain
requirements on the controller design are presented, which
are used to design a Γ-stable region in s-domain accord-
ing to mapping rules from Section 4.3. The transformed
region in parameter space using the PSA are shown in



4(b). As Kp(α) and Ki(α) are broken rational functions
depending on α with order up to seven due to the pade-
approximation, the functions are not explicitly stated.
The enclosed Γ-region is validated by simulations in time-
domain. With respect to a higher order system, finally the
approach is examined based on a linear two-mass system
coupled with a spring-damper element.

5.1 Performance Requirements

In order to verify the mapping and the lack of accuracy due
to explicit parameterization, the closed loop of the vehicle
model is designed following the presented methodology.
For the PI-controller design a step size of ∆ = 50 min−1

from y = 780 min−1 to y = 830 min−1 is assumed. The
selected performance requirements with respect to a unit
step response and the equivalent parameterization ∂Γ are
shown in Table 1. Applying these to the proposed step
size of the reference value, the following specifications are
obtained:

Tolerance range : 827.50 min−1 < y <832.50 min−1,

Settling time : 1 s < tε<2 s,

Peak : 836.75 min−1 < h<847.5 min−1.

Table 1. Performance requirements and equiv-
alent Γ-specification

Requirement Equivalent
parameterization

∆ · ε = 2.5 min−1, tε,max = 2 s Rmin = 2.170
σmax = −1.498

∆ · ε = 2.5 min−1, tε,min = 1 s Rmax = 4.34

hmax = 35% ζmin = 0.418

hmin = 13.5% ζmax = 1

5.2 Controller Design for the Vehicle Model

The obtained Γ-stable region and its immediate neighbor-
hood is explored by 900 simulated step responses, that are
sampled from the gridded parameter space along equidis-
tant distributed values. In this way each parameter set
can be verified with respect to the time specifications
and compared with Γ-stable region provided by the PSA.
Fig. 4(b) illustrates the Γ-stable region in parameter space,
that covers time-domain specification. Regarding the cor-
responding ∂Γ curves in parameter space, there are two
solutions: one represents the CRB and the other the RRB.
Except of ∂Γ-boundary of the real part, the RRB lie on the
Kp axis. The IRB does not exist. Comparing the results
of the PSA and the evaluated gridded parameter sets,
the region enclosed by ∂Γ meets the requirements well,
apart from a small border area. This is due to the curve
simplification and the delay time. Valid parameter sets
that are located outside the Γ-stable region, can be found
along the CRB of ζmax. In the given example a generally
good coverage can be confirmed despite of the additional
delay time.

5.3 Higher Order Systems

Consider the following plant:

Gdms(s) =
30/π

(J1 + J2)s

J2s
2 + ds+ c

J1J2
J1+J2

s2 + ds+ c
e−sTD (49)

(a) Γ-stable region in s-domain (b) Corresponding region in pa-
rameter space

Fig. 4. The solid lines result from the maximum and
dashed lines from the minimum requirements. Red
colored dots represent gridded parameter sets, that
violate the requirements. The opposing case is shown
in green.

and its characteristic polynomial:

Pdms(s) = num{G(s)}(Kps+Ki) + den{G(s)}s. (50)

Assuming J = J1 + J2 the two systems Gdms(s) and
Gveh(s) show the same behaviour at lower frequencies as
stated in Popp et al. (2019):

Gdms(s→ 0) =
30/π

Js
. (51)

Hence, it is conceivable, that the introduced Γ-region is
also valid for this higher order system. However, due to
the additional complex eigenvalue pair the region must be
contracted by a further boundary. Despite the PSA is not
limited to the analyzed models, it must be noticed that
the mapping rules between time-domain and s-domain
specification cannot be transferred. An analytic approach
is not feasible in order to find an ∂Γ-boundary. A promis-
ing way is to assign an admissible damping ratio to the
additional complex eigenvalue, such that the initial peak
of the step response of Fdms(s) in reference to the step
response of Fveh(s) decays into a requested band width
εdms as illustrated in Fig 5(a). This can be obtained by
simulating the step response with a set of Kp and Ki that
is only about to meet the requirement with respect to εdms

and tε,dms. The corresponding damping ratio ζdms is either
determined from the transfer function or is estimated from
the measurement as follows:

n= floor
( tε,dms − t∗

Tn
), (52)

Λ =
1

n
ln
( q∗

∆εdms

)
, (53)

ζdms =
Λ√

4π2 + Λ2
, (54)

where Tn is the period time of one oscillation and q∗

is the measured amplitude at the time t∗. The chart in
Fig. 4(b) can be consulted for a proper choice of the
control parameter values. Setting J1 = 0.18 kg m2, J2 =
0.12 kg m2, c = 220 Nm/rad and d = 0.2 Nm/rad/s a
closed region in parameter space is obtained, that is shown
in Fig. 5. In addition to the boundaries from Fig. 4(b)
a further curve with equivalent damping ζdms is drawn,
where D(α) is parameterized according to (15) and a(q)
contains the coefficients of the characteristic polynomial
Pdms(s). In this case the band width εdms is identically



(a) step responses and time-
domain specifications

(b) Corresponding region in pa-
rameter space

Fig. 5. Step responses of the vehicle model and higher order
system in closed loop. The black marker in parameter
space depicts the selected control parameters.

set to ε from Section 5.2 and tε,dms is equal to tε,min.
Nevertheless, it could also be set independently.

6. DISCUSSION

In this contribution an approach has been presented that
associates the PSA directly with time-domain specifica-
tions. In the light of the results it becomes evident, that
finding a satisfying region in respect to the requirements
is possible. The proposed result is an accurate approxima-
tion. The derivation of equivalent ∂Γ-boundaries requires
a complex calculation, that may provide implicit solutions
as the simple vehicle model shows. Nevertheless, the two
examined systems in comparison show similar curves of
∂Γ, that primarily differ in its parameterization. This
especially turned out in case of the overshoot. Introducing
e.g. a delay time or regarding a higher order plant ends up
in more complex calculation in order to provide accurate
solutions. However, in case of a moderate delay time, the
deviation is still negligible. In case of more complex sys-
tems, the higher order dynamics can also be neglected in
a first design step, as the low-frequency dynamic still rules
the systems behaviour significantly. In a subsequent design
step the complete system must be regarded. The PSA
provides the stability boundary corresponding to σ = 0 for
weak performance measures. Requesting a certain settling
time as presented in Section 5.3 a corresponding damping
ratio can be determined with respect to a critical step
response. On this basis, it would be interesting to analyze
further system as mentioned in view of achievable accu-
racy.

7. CONCLUSION

In any case, utilizating the PSA as controller design tool
in automotive applications offers a direct relation between
time-domain and s-domain. Thus, the boundaries can be
parameterized on the basis of physically motivated per-
formance measures. Summing up, the proposed method
provides exact results in order to map a Γ-stable de-
scription in s-domain with performance measures in time-
domain. An important result is, even-though considering
the settling time only as a corresponding constant real
part is not sufficient, composing ∂Γ in addition with a
circular arc provides an accurate solution. The given im-
plicit boundaries are suitable for a graphical solution. An

approximation by an explicit solution provides admissible
results accepting some trade-off in the accuracy, but still
an analytically description in parameter space is retained.
Utilizing the PSA, further analyzes concerning e.g. robust-
ness are viable.
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