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Abstract
Entanglement lies at the core of emergent quantum technologies such as quantum-enhanced
metrology, quantum communication and cryptography, and quantum simulation and computing.
Spinor Bose-Einstein condensates (BECs) offer a promising platform for the generation and
application of entangled states. For example, a spin-1 BEC has served for the proof-of-principle
demonstration of a quantum-enhanced atomic clock. Ferromagnetic spin-1 BECs with zero
magnetization exhibit three ground-state quantum phases with different entanglement properties.
The control parameter can be tuned by a magnetic field or by microwave dressing. As already
experimentally demonstrated, an entangled ground state can be reached from a well accessible,
non-entangled one by driving the control parameter across quantum phase transitions (QPTs).

We investigate which of the entangled ground states afford quantum-enhanced interferometry.
The interferometric usefulness is quantified by the quantum Fisher information (QFI), which we
analyze throughout all ground-state phases. A large QFI at about half the Heisenberg limit, and
thus far above the standard quantum limit, is attained by the well-known Twin-Fock state and
by the central broken-axisymmetry (CBA) state. We detail how the CBA state can be used as a
probe for quantum-enhanced interferometry.

Furthermore, we observe that the large QFI of the CBA state can be traced back to enclosed
macroscopic superposition states (MSSs). Measuring the atom number in one out of three modes
generates, with high probability and heralded by the measurement outcome, a MSS similar to a
NOON state. Our proposal promises NOON-like MSSs of unprecedentedly many atoms.

Both proposed applications of the adiabatically prepared CBA state depend only on existent
technology. Our numerical results show that they tolerate a reasonably swift quasiadiabatic
passage in the presence of atom loss as well as uncertainties of atom counting.
Excited-state quantum phase transitions (ESQPTs) extend the concept of QPTs beyond the

ground state. While they have been extensively investigated theoretically, there are only few
experimental results. From the perspective of quantum-state engineering, it is furthermore
surprising how rarely order parameters of ESQPTs are discussed in the literature. Mean-field
models for spinor BECs imply ESQPTs, to which some experimental observations on the mean-
field dynamics can be attributed. However, so far, neither theoretical nor experimental studies
have specifically addressed ESQPTs in spinor BECs.

We extend the ground-state phase diagram of ferromagnetic spin-1 BECs with zero magnetiza-
tion across the spectrum. There are three excited-state phases, corresponding to one ground-state
phase each. The ESQPTs are signaled by a diverging density of states. The mean-field phase-
space trajectories can be characterized by a winding number that is in one-to-one correspondence
to the excited-state phases. We derive a closely related order parameter encoded in the dynamics
of coherent states and discuss how this order parameter can be interferometrically measured in
current experiments. Remarkably, the mean-field model governing the ESQPTs in spin-1 BECs
with zero magnetization is encountered also, e. g., in molecular and nuclear physics. Because of
the superior experimental control, spinor BECs can be considered as simulators of the ESQPTs
in those systems.

Our results contribute to quantum-state engineering and quantum-enhanced interferometry in
spinor BECs and to the characterization of excited-state quantum phases. The latter may, in
turn, lead on to applications in quantum-state engineering.
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1 Introduction
The endless, meticulous curves of the sea flamed for an instant
and then changed to a deep royal purple flecked with green. The
mist lifted in quick, lithe ribbons, and before us lay the island,
the mountains as though sleeping beneath a crumpled blanket of
brown, the folds stained with the green of olive-groves.

G. Durrell
in My family and other animals

Less than one hundred years ago the mere theoretical possibility of quantum entanglement
bewildered such great minds as Einstein, Podolsky, Rosen, [1] and Schrödinger [2]. To date, en-
tanglement has matured into a technological resource. Commercial applications of entanglement
include quantum annealers [3] and devices for quantum cryptography [4]. On the side of scien-
tific applications, e. g., state-of-the-art interferometers for gravitational-wave detection employ
entangled probe states [5–7]. At the same time, entanglement remains a fascinating and active
topic of theoretical and experimental research. Much interest is devoted to emerging quantum
technologies in the fields of quantum-enhanced metrology [8, 9], quantum communication [10]
and cryptography [11, 12], and quantum simulation [13, 14] and computing [15–18]. From the
perspective of theoretical physics, e. g., further investigating multipartite entanglement and
advancing numerical methods for quantum many-body systems is of outermost importance [19].
The salient long-term goal consists in a fault-tolerant scalable universal quantum computer.

Entangled states need to be designed, prepared, maintained, and characterized. These tasks
compose the area of quantum-state engineering. We are especially interested in its application to
quantum-enhanced metrology or, more precisely, interferometry [9]. Entangled probes enable
interferometric sensitivities that are fundamentally beyond the reach of non-entangled states.
The Fisher information (FI) [20] quantifies the interferometric usefulness of entangled states.
Furthermore, it is possible to derive an effective size of macroscopic superposition states (MSSs)
from the FI [21, 22]. MSSs probe the validity of quantum physics at macroscopic scales and
benchmark our ability to prepare and characterize highly entangled states. In Chapter 2,
we summarize some mathematical properties of the FI and detail how the FI is related to
quantum-enhanced interferometry and MSSs.
We focus on interferometers that rely on the interference of internal atomic states. Notably,

this includes atomic clocks, which can measure time with unprecedented precision [23]. So far,
high-precision atomic clocks do not exploit entanglement. However, quantum enhancement has
been already demonstrated in a number of proof-of-principle experiments [24–27].
In general, cooling is beneficial for precision measurements. At ultra-low temperatures, an

ensemble of bosonic atoms can form a Bose-Einstein condensate (BEC) [28]. This phase of matter
is characterized by a particularly high occupation of the ground state, which leads to a collective
behavior of atoms. The—typically weak—interaction between the atoms gives rise to non-trivial
phenomena. An even greater versatility is offered by spinor BECs [29, 30], where the atoms can
access several internal or spin states. A quantum-enhanced atomic clock based on a spinor BEC
has been demonstrated in Ref. [25]. Moreover, spinor BECs constitute a promising candidate for
quantum-enhanced gravity gradiometry [31]. This thesis explores quantum-state engineering in
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1 Introduction

ferromagnetic spin-1 BECs. Chapter 3 provides an introduction to spinor BECs.
Ferromagnetic spin-1 BECs with zero magnetization exhibit three ground-state quantum

phases [32]. The control parameter ξ, given by the ratio of the quadratic Zeeman energy to the
energy of spin-changing collisions, can be tuned by a magnetic field or by microwave dressing [33].
These quantum phases afford adiabatic quantum-state engineering [32]. In the polar (P) phase,
the ground state is non-entangled and experimentally well accessible. Highly entangled states
are, on the other hand, found in the broken-axisymmetry (BA) and Twin-Fock (TF) phases.
According to the adiabatic theorem [34], the ground state at some ξ0 can be transformed into
the ground state at ξ1 by an infinitely slow change of ξ. Thus, preparing the P ground state and
slowly ramping ξ into the BA or TF phase gives access to highly entangled states. This method
has been successfully used, e. g., to generate a TF state of about 11 000 87Rb atoms [35].
In Chapter 4, we further investigate the prospects of adiabatic quantum-state engineering in

ferromagnetic spin-1 BECs with zero magnetization. First, we analyze the FI throughout the
three ground-state quantum phases. The maximal FI is attained by the well-known TF state
and by the central broken-axisymmetry (CBA) state. We detail how the CBA state can serve as
a probe for quantum-enhanced interferometry. The large FI of the three-mode CBA state can be
traced back to constituent two-mode MSSs. More precisely, measuring the atom number in one
mode prepares, with high probability and heralded by the measurement outcome, a MSS in the
other two modes. These MSSs resemble NOON states, which constitute a paradigmatic example
of MSSs. So far, such states were limited to 30 massive particles [36–39], whereas we envisage
102-105 atoms. Both proposed applications of the adiabatically generated CBA state are feasible
with current technology.

The proposals in Chapter 4 are based on the ground-state phase diagram of a spin-1 BEC.
However, it turns out that their experimental feasibility depends on favorable properties of
low-lying excited states. More generally, experimental progress and the current interest in
many-body systems out of equilibrium draw increased attention to excited states. Quantum
phase transitions (QPTs) concern, by definition, exclusively the ground state [40]. The recently
introduced excited-state quantum phase transitions (ESQPTs) generalize this notion [41, 42].
While ESQPTs have been extensively investigated theoretically, the number of experimental
results remains unsatisfactory [43–47]. From the perspective of quantum-state engineering, it is
furthermore surprising that the literature on ESQPTs scarcely discusses order parameters. The
mean-field models for spinor BECs [29] imply ESQPTs, to which some experimental observations
on the mean-field dynamics [43, 44, 46] can be attributed. However, so far, neither theoretical
nor experimental studies have specifically addressed ESQPTs in spinor BECs. The excellent
experimental control offered by spinor BECs makes this omission particularly deplorable.
Chapter 5 extends the ground-state phase diagram of a ferromagnetic spin-1 BEC with zero

magnetization across the spectrum. We identify three excited-state phases. At the lowest energy,
they turn into the familiar ground-state phases. The ESQPTs are signaled by a divergent density
of states (DOS). Moreover, the mean-field phase-space trajectories can be characterized by a
winding number that is in one-to-one correspondence to the excited-state phases. This enables
us to define an order parameter that is based on the dynamics of coherent states and can be
accessed by interferometry. Remarkably, for large particle numbers ferromagnetic spin-1 BECs
simulate the ESQPTs in a wide class of quantum models including the Lipkin-Meshkov-Glick
(LMG) model, the vibron model for molecules, and the interacting boson model for nuclei. In the
present version, the proposed interferometric measurement is feasible but requires an outstanding
control over magnetic-field noise. We aim at designing a more robust measurement protocol, if
necessary based on an alternative order parameter, in the near future.

In summary, this thesis is devoted to ferromagnetic spin-1 BECs with zero magnetization. We
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perform a complete analysis of the FI throughout the ground-state phases. Furthermore, we
extend the ground-state phase diagram to excited states. In the ground-state domain, we detail
how adiabatic quantum-state engineering can be used for quantum-enhanced interferometry
and the heralded stochastic generation of MSSs. Regarding ESQPTs, we introduce an order
parameter and propose an interferometric measurement for its extraction. We, thus, address the
lack of experimental studies on ESQPTs and contribute to the characterization of excited-state
phases. In the longer term, we expect that excited-state phase diagrams will enter the rich
toolbox of quantum-state engineering.

We conclude and give an outlook on ensuing research topics in Chapter 6.
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2 Quantum-State Engineering
Entangled quantum states [48] lie at the core of emerging quantum technologies such as quantum-
enhanced metrology [8, 9], quantum communication [10] and cryptography [11, 12], and quantum
simulation [13, 14] and computing [15–18]. The current progress of these technologies is due to
our rapidly increasing ability to control various quantum systems.
Proof-of-principle experiments in quantum-enhanced metrology have been performed, e. g.,

with spinor Bose-Einstein condensates [25, 49], superconducting qubits coupled to microwave
cavities [50], and cold atoms in optical lattices [27]. State-of-the-art photonic interferometers for
gravitational-wave detection already benefit from quantum enhancement [6]. Impressive control
over single photons has led to commercial quantum cryptography [4]. Related research currently
focuses, e. g., on quantum key distribution over large distances [51, 52]. Quantum simulators based
on, e. g., Rydberg atoms, have become applicable at the forefront of fundamental physics [53].
Precise control over trapped ions is exploited, e. g., in variational classical-quantum simulation
with up to 20 ions [54]. Several large companies have developed universal quantum computers of
tens of superconducting qubits, and Google has recently demonstrated quantum supremacy for a
specific task [55]. Currently, one of the central goals in these devices is implementing quantum
error correction. Meanwhile, commercially available quantum annealers from superconducting
qubits [3] are being explored in industry [56].

Quantum-state engineering is the art of designing, preparing, maintaining, and characterizing
useful entangled states. The requirements on the design depend on the targeted application.
We focus on quantum-enhanced interferometry and macroscopic superposition states (MSSs).
Interferometers are widely used for precision measurements in science and industry. In Section 2.2,
we discuss how entanglement can fundamentally improve the interferometric precision. MSSs
constitute a technological challenge and probe the validity of quantum theory at macroscopic
scales. We specify our notion of MSSs in Section 2.3. Since we formulate our design targets in
terms of the Fisher information (FI), we start by introducing it in Section 2.1.

2.1 Fisher Information and Entanglement
Quantum states may be entangled or non-entangled. However, saying that a many-body
quantum state is entangled tells yet little about its properties. Obviously, not all entangled
states will be of equal use for a specific task at hand. Hence, understanding the rich structure
of multipartite entanglement is crucial for quantum-state engineering. The corresponding
classification and quantification can be approached in various ways [57]. In the context of
quantum-enhanced interferometry [58–60] and macroscopic superposition states [21], the FI [20]
has proven particularly useful. Following Refs. [61, 62], we introduce the FI and discuss some
relevant properties.

2.1.1 Classical Fisher Information
We consider a density operator ρ̂(θ) which is a differentiable function of a parameter θ ∈ R.
This quantum state becomes subject to a positive operator-valued measurement (POVM). We
assume that the possible measurement outcomes µj are discrete. The POVM assigns to each µj
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2 Quantum-State Engineering

a Hermitian, positive semi-definite operator M̂j with
∑
j M̂j = 1. The probability to obtain µj

when applying the POVM to ρ̂(θ) is

Pθ(µj) ≡ Tr
[
ρ̂(θ)M̂j

]
. (2.1)

In the following we will use that, for a given θ, there is no µj with Pθ+ε(µj) = 0 in some
neighborhood of θ. This can be always achieved by restricting the Hilbert space and, with it, the
POVM.
The difference between the probability distributions Pθ and Pθ+ε can be quantified by the

Hellinger distance:

[d(Pθ, Pθ+ε)]2 = 1
2
∑
j

(√
Pθ(µj)−

√
Pθ+ε(µj)

)2
(2.2)

The corresponding statistical speed [63],

lim
ε→0

∂εd(Pθ, Pθ+ε) = 1√
8

√
F (θ), (2.3)

can be expressed in terms of the classical Fisher information (CFI)

F (θ) ≡
∑
j

1
Pθ(µj)

[∂θPθ(µj)]2 =
∑
j

Pθ(µj) (∂θ ln[Pθ(µj)])2 . (2.4)

Thus, the CFI quantifies how fast Pθ changes with θ.

2.1.2 Quantum Fisher Information and Optimal Measurements
The CFI depends on the POVM applied to ρ̂(θ). Maximizing the CFI over all POVMs yields the
so-called quantum Fisher information (QFI) [64].

The QFI can be conveniently expressed in terms of the symmetric logarithmic derivative (SLD)
L̂(θ) of ρ̂(θ), which is defined to be a Hermitian solution1 of

∂θρ̂(θ) = 1
2
(
L̂(θ)ρ̂(θ) + ρ̂(θ)L̂(θ)

)
. (2.5)

One can show that

[∂θPθ(µj)]2 =
[
Re
(
Tr
[
ρ̂L̂M̂j

])]2
≤
∣∣∣Tr
[
ρ̂L̂M̂j

]∣∣∣2
≤ Tr

[
ρ̂M̂j

]
Tr
[
L̂ρ̂L̂M̂j

]
= Pθ(µj) Tr

[
L̂ρ̂L̂M̂j

]
,

(2.6)

where we have omitted the θ-dependence of ρ̂ and L̂ for readability. To get to the last line of
Eq. (2.6) we have used the Cauchy-Schwarz inequality |Tr[Â†B̂]|2 ≤ Tr[Â†Â] Tr[B̂†B̂]. Employing∑
j M̂j = 1 yields

F (θ) =
∑
j

1
Pθ(µj)

[∂θPθ(µj)]2 ≤
∑
j

Tr
[
L̂(θ)ρ̂(θ)L̂(θ)M̂j

]
= Tr

[
ρ̂(θ)L̂2(θ)

]
. (2.7)

1Note that L̂(θ) is ambiguous.
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2.1 Fisher Information and Entanglement

The upper bound on the CFI provided by Eq. (2.7) does not depend on the POVM. Let us
show that there is a POVM for which F (θ) saturates this bound. The left- and right-hand sides
of Eq. (2.6) become equal if and only if

Im
(
Tr
[
ρ̂L̂M̂j

])
= 0 and

(
ρ̂L̂M̂j = 0 or ∃λ ∈ C : ρ̂M̂j = λρ̂L̂M̂j

)
(2.8)

⇔ ρ̂L̂M̂j = 0 or ∃λ ∈ R : ρ̂M̂j = λρ̂L̂M̂j . (2.9)

Thus, F (θ) saturates the bound (2.7) if

∀j :
(
L̂(θ)M̂j = 0 or ∃λj ∈ R : M̂j = λjL̂(θ)M̂j

)
. (2.10)

Let us consider the eigenstates |j〉 and eigenvalues γj of L̂(θ). We can satisfy Eq. (2.10) by
setting M̂j = |j〉〈j| and, for all j with γj 6= 0, λj = 1/γj . Hence the QFI can be expressed as

FQ(θ) ≡ Tr
[
ρ̂(θ)L̂2(θ)

]
. (2.11)

Equation (2.9) can be used to check whether a measurement is optimal, i. e., F (θ) = FQ(θ).
For a pure state ρ̂(θ) = |ψ(θ)〉〈ψ(θ)|, we can set

L̂(θ) = 2 (|∂θψ⊥(θ)〉〈ψ(θ)|+ |ψ(θ)〉〈∂θψ⊥(θ)|) , (2.12)

where we have introduced |∂θψ⊥(θ)〉 ≡ (1 − |ψ(θ)〉〈ψ(θ)|)|∂θψ(θ)〉 and |∂θψ(θ)〉 ≡ ∂θ|ψ(θ)〉. If
M̂j is a one-dimensional projection, M̂j = |µj〉〈µj |, condition (2.9) becomes

〈∂θψ⊥(θ)|µj〉 = 0 or ∃λ ∈ R : 〈ψ(θ)|µj〉 = 2λ〈∂θψ⊥(θ)|µj〉 (2.13)

⇔ Im
(
〈ψ(θ)|M̂j |∂θψ⊥(θ)〉

)
= 0. (2.14)

In the previous paragraph we have seen that, for any given θ, we can construct an optimal
measurement. Note however that, in general, a θ-independent optimal measurement does not
exist [65].

2.1.3 Convexity and Additivity
Let us discuss two useful properties of the classical and quantum FI. First, we consider the
convex combination of some density matrices ρ̂(k)(θ),

ρ̂(θ) =
n∑
k=1

pk ρ̂
(k)(θ) with pk ≥ 0,

∑
k

pk = 1. (2.15)

Recall that, though usually not explicitly indicated, both FI depend on the quantum state. It
turns out that this dependency is convex:

F (θ) ≤
∑
k

pk F
(k)(θ) and FQ(θ) ≤

∑
k

pk F
(k)
Q (θ) (2.16)

Equation (2.16) can be readily demonstrated. For the CFI, we first note that Pθ(µj) =
Tr[ρ̂(θ)M̂j ] =

∑
k pk Tr[ρ̂(k)(θ)M̂j ] ≡

∑
k pk P

(k)
θ (µj). Then the convexity immediately follows

from the Cauchy-Schwarz inequality, which yields

[∂θPθ(µj)]2 =
[∑
k

pk ∂θP
(k)
θ (µj)

]2

≤
∑
l

pl P
(l)
θ (µj)

∑
k

pk
1

P
(k)
θ (µj)

[
∂θP

(k)
θ (µj)

]2
⇔ 1

Pθ(µj)
[∂θPθ(µj)]2 ≤

∑
k

pk
1

P
(k)
θ (µj)

[
∂θP

(k)
θ (µj)

]2
.

(2.17)
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To deduce the convexity of the QFI, recall that there is a POVM for which F (θ) = FQ(θ) and,
thus,

FQ(θ) = F (θ) ≤
∑
k

pk F
(k)(θ) ≤

∑
k

pk F
(k)
Q (θ). (2.18)

Next, we consider the tensor product of some density matrices ρ̂(k)(θ),

ρ̂(θ) =
⊗
k

ρ̂(k)(θ). (2.19)

Let us introduce L̂ ≡
∑
k L̂

(k), where L̂(k) denotes an SLD of ρ̂(k). One can easily check that L̂ is an
SLD of ρ̂(θ). Note that, for any density operator ρ̂ and its SLD L̂, Tr[ρ̂(θ)L̂(θ)] = ∂θ Tr[ρ̂(θ)] = 0.
Hence,

FQ(θ) =
∑
k,l

Tr
[
ρ̂(θ)L̂(k)(θ)L̂(l)(θ)

]
=
∑
k

Tr
[
ρ̂(k)(θ)[L̂(k)(θ)]2

]
=
∑
k

F
(k)
Q (θ). (2.20)

This is called the additivity of the QFI.
Also the CFI is additive—if the individual subsystems are measured independently. More

precisely, each ρ̂(k)(θ) is subjected to some POVM with measurement outcomes µ(k)
j and operators

M̂
(k)
j . Accordingly, the overall POVM admits the measurement outcomes µj ≡ (µ(1)

j1
, µ

(2)
j2
, . . .) cor-

responding to M̂j =
⊗
k M̂

(k)
jk

. Thus, Pθ(µj) = Tr[ρ̂(θ)M̂j] =
∏
k Tr[ρ̂(k)(θ)M̂ (k)

jk
] ≡

∏
k P

(k)
θ (µ(k)

jk
)

and

F (θ) =
∑

j

∏
i

P
(i)
θ (µ(i)

ji
)
∑
k,l

(
∂θ ln[P (k)

θ (µ(k)
jk

)]
) (
∂θ ln[P (l)

θ (µ(l)
jl

)]
)

(2.21)

=
∑
k

∑
jk

P
(k)
θ (µ(k)

jk
)
(
∂θ ln[P (k)

θ (µ(k)
jk

)]
)2

+
∑
k 6=l

∂θ∑
jk

P
(k)
θ (µ(k)

jk
)

∂θ∑
jl

P
(l)
θ (µ(l)

jl
)


=
∑
k

F (k)(θ).

Together with Eq. (2.20) this, particularly, entails that an optimal POVM for the entire ρ̂(θ) can
be realized by independently applying the respective optimal POVMs to all ρ̂(k)(θ).

2.1.4 Repeated Experiments

The additivity of the FI has a straightforward consequence on the important case of repeated
experiments. We, again, consider a quantum state ρ̂(θ) and a POVM with measurement outcomes
µj and corresponding operators M̂j . We assume that, at any given θ, state preparation and
measurement are repeated n times. This situation is appropriately described by the state
ρ̂[n](θ) ≡ [ρ̂(θ)]⊗n subjected to the POVM with measurement outcomes µj ≡ (µj1 , . . . , µjn) and
operators M̂j =

⊗n
k=1 M̂jk .

Let us denote the FI of a single experiment by F and FQ, respectively, and the FI of the n-fold
experiment by F [n] and F [n]

Q . Equations (2.20) and (2.21) immediately yield

F [n](θ) = nF (θ) and F
[n]
Q (θ) = nFQ(θ). (2.22)

Importantly, the bound F [n] ≤ F [n]
Q can be saturated by optimizing the one-fold POVM.
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2.1.5 Unitary Transformations

For the remainder of Section 2.1 we assume that ρ̂ depends on θ via a unitary transformation of
the form

ρ̂(θ) = e−iθR̂ ρ̂(0) eiθR̂ (2.23)

with R̂ Hermitian. The CFI, thus, becomes

F (θ) = −
∑
j

1
Tr
[
ρ̂(θ)M̂j

] Tr2
[
ρ̂(θ)[R̂, M̂j ]

]
. (2.24)

To specify the QFI, we expand ρ̂(θ) in its eigenbasis, ρ̂(θ) =
∑
k pk|kθ〉〈kθ| with |kθ〉 = e−iθR̂ |k0〉.

Note that the pk do not depend on θ. Then the SLD can be expressed as

L̂(θ) =
∑′

k,l

2
pk + pl

〈kθ|[∂θρ̂(θ)]|lθ〉 |kθ〉〈lθ| = 2i
∑′

k,l

pk − pl
pk + pl

〈kθ|R̂|lθ〉 |kθ〉〈lθ|, (2.25)

where terms with pk+pl = 0 are excluded from the summation. The resulting QFI is θ-independent
and reads

FQ = Tr
[
ρ̂(θ)L̂2(θ)

]
= 2

∑′

k,l

(pk − pl)2

pk + pl
|〈k0|R̂|l0〉|2. (2.26)

For a pure state ρ̂(θ) = |ψ(θ)〉〈ψ(θ)| this simplifies to

FQ = 4
(
〈ψ(0)|R̂2|ψ(0)〉 − 〈ψ(0)|R̂|ψ(0)〉2

)
= 4 ∆2R̂, (2.27)

where ∆2R̂ denotes the variance of R̂ in the state |ψ(0)〉.

2.1.6 Optimal Transformations

Let us have a closer look at the QFI of a pure state |ψ(θ)〉 = e−iθR̂ |ψ(0)〉, FQ = 4 ∆2R̂. Obviously,
the QFI can be enlarged by optimizing R̂. We assume that R̂ is restricted to linear combinations
of some R̂k,

R̂ =
∑
k

ukR̂k with uk ∈ R,
∑
k

u2
k = 1. (2.28)

We consider the covariance matrix Γ with elements

Γkl = 1
2〈ψ(0)|R̂kR̂l + R̂lR̂k|ψ(0)〉 − 〈ψ(0)|R̂k|ψ(0)〉〈ψ(0)|R̂l|ψ(0)〉. (2.29)

Setting u ≡ (u1, u2, . . .), we observe that

FQ = 4 uTΓu. (2.30)

Let γ be the largest eigenvalue and u(γ) the corresponding eigenvector of Γ. Equation (2.30)
entails that the QFI attains its maximum, FQ = 4γ, at R̂ =

∑
k u

(γ)
k R̂k.
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2.1.7 Entanglement Criterion
The FI can be used to quantify multipartite entanglement. We consider a system which consists
of N identical subsystems such as, e. g., atoms. There are various notions of multipartite
entanglement [57]. We use the following definitions. A pure state is separable or non-entangled if
it can be factorized into states of the individual subsystems:

|ψsep〉 = |ψ1〉 ⊗ · · · ⊗ |ψN 〉 (2.31)

Any pure state can be rewritten as a tensor product

|ψ〉 =
⊗
j

|ψ(Pj)
j 〉, (2.32)

where {Pj} is a partition of {1, 2, . . . , N} and |ψ(Pj)
j 〉 is a state of the subsystems indicated by Pj .

We denote the number of the respective subsystems, i. e., the cardinality of Pj , by Nj . A pure state
has an entanglement depth of k if minimizing maxj Nj over all possible decompositions (2.32)
yields k. A maximally entangled state is defined by k = N . A mixed state is separable if it can be
expressed as a convex combination of pure separable states. A mixed state has an entanglement
depth of k if it can be expressed as the convex combination of pure states with entanglement
depth k′ ≤ k but not with k′ ≤ k − 1.

Let us come back to the FI of a state ρ̂(θ). We further restrict the unitary dependence of ρ̂ on
θ, see Eq. (2.23), to collective local transformations: R̂ =

∑N
l=1 r̂

(l), where r̂(l) is a Hermitian
operator r̂ acting on the lth subsystem. We denote the largest and smallest eigenvalues of r̂ by
r+ and r−, respectively, and the corresponding eigenstates by |r+〉 and |r−〉.

The FI can certify that ρ̂(θ) has an entanglement depth greater than k. Let ρ̂(θ) = |ψ(θ)〉〈ψ(θ)|
be a pure state with entanglement depth k. We consider the decomposition (2.32) of |ψ(θ)〉.
Then

FQ =
∑
j

F
(j)
Q = 4

∑
j

∆2
j

∑
l∈Pj

r̂(l)

≤ (r+ − r−)2∑
j

N2
j ≤ (r+ − r−)2(ak2 + b2) (2.33)

with a = bN/kc and b = N − ak. To obtain Eq. (2.33), we have first used the additivity (2.20)
of the QFI and expressed the F (j)

Q according to Eq. (2.27). ∆2
j denotes the variance with respect

to |ψ(Pj)
j (θ)〉. Since the maximal and minimal eigenvalues of the operator

∑
l∈Pj r̂

(l) are Njr+

and Njr−, respectively, its variance is bounded from above by 1
4(r+ − r−)2N2

j . Recall that∑
j Nj = N and, for an entanglement depth of k, Nj ≤ k.

∑
j N

2
j is maximized by choosing the

Nj to be as large as possible.
The upper bound from Eq. (2.33) holds, in fact, for the QFI of any, pure or mixed, state with

an entanglement depth of k or less. To confirm this, note that the maximum of
∑
j N

2
j is a

non-decreasing function of k. This generalizes Eq. (2.33) to pure states with an entanglement
depth less than k. The extension to mixed states immediately follows from the definition of
mixed states with entanglement depth k and from the convexity (2.16) of the QFI. Hence, if ρ̂(θ)
has an entanglement depth of k or less, its QFI is bounded by

FQ ≤ (r+ − r−)2(ak2 + b2) with a =
⌊
N

k

⌋
, b = N − ak. (2.34)

Equivalently, if FQ > (r+ − r−)2(ak2 + b2), ρ̂(θ) must have an entanglement depth greater than
k. Since F (θ) ≤ FQ, these statements equally apply to F (θ).
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The bound (2.34) is tight: for an entanglement depth of k, it is saturated by the state

|ψ(0)〉 = 1
√

2 a+1

(
|r+〉⊗k + |r−〉⊗k

)⊗a
⊗
(
|r+〉⊗b + |r−〉⊗b

)
(2.35)

and the derived |ψ(θ)〉.

2.1.8 Standard Quantum Limit and Heisenberg Limit
Two special cases of Eq. (2.34) are particularly relevant. For separable states, i. e., k = 1,

FQ ≤ (r+ − r−)2N. (2.36)

This is the so-called standard quantum limit (SQL). Any quantum state of N subsystems has at
most an entanglement depth of N and, thus, satisfies

FQ ≤ (r+ − r−)2N2. (2.37)

This is known as the Heisenberg limit (HL). Again, both limits equally apply to F (θ). Typically,
r̂ is normalized such that r+ − r− = 1.

2.2 Quantum-Enhanced Interferometry
Interferometers are measuring devices which exploit the phenomenon of interference. Most
commonly, they are based on interfering electromagnetic waves. The Michelson [66] and Mach-
Zehnder [67, 68] configurations are particularly prominent examples. Ramsey spectroscopy [69],
instead, relies on the interference of internal atomic states. A sufficiently large de Broglie
wavelength enables the observation of interfering matter waves. Accordingly, laser cooling has
facilitated a rapid development of atomic matter-wave interferometers [70–72].

Modern science and technology cannot be imagined without interferometry. Laser interferome-
ters are a ubiquitous tool for precise length measurements. Recently, large laser interferometers
have enabled the first-ever direct observation of gravitational waves [73]. Ramsey interferometers
lie at the core of atomic clocks. The second, as defined by the International System of Units (SI),
is realized by atomic clocks referencing a microwave transition [74]. Optical atomic clocks are lead-
ing the race for ever better time measurements [23, 75–78]. Atomic matter-wave interferometers
have become competitive with or even better than other inertial sensors [79–81]. The technology
currently transitions from laboratories into industry [70, 82]. Present research, particularly,
targets the ambitious goal of developing atomic sensors for navigation [83, 84]. Because of their
striking precision and accuracy, both atomic clocks and matter-wave interferometers increasingly
contribute to the search for new physics [85–89].

The interferometric precision is fundamentally limited by the Cramér-Rao bound (CRB) [90–
92]. The CRB states the least variance with which a parameter may be estimated. The seminal
Ref. [93] introduced a method to improve the interferometric precision exploiting entanglement,
and triggered further research in this direction. The theoretical framework of quantum-enhanced
metrology was established in Ref. [94]. Particularly, Ref. [94] clarified that, for separable probe
states of N photons or atoms, the CRB scales with 1/N . Like for the FI, see Section 2.1.8, this is
called the SQL. Entangled probes, instead, can reach the HL with a CRB proportional to 1/N2.
Today’s gravitational-wave detectors routinely use squeezed light to exceed the SQL [5–7].

Quantum-enhanced atomic clocks have been demonstrated in a number of proof-of-principle
experiments [24–27]. Applying entanglement to improve cutting-edge atomic clocks is targeted
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(a) (b)

Figure 2.1: Bloch-sphere representation of a minimalist single-qubit interferometer. (a) State
|ψ(π/2, φ)〉 whose phase φ is sought. (b) A rotation around the y-axis encodes φ in the probability
of |↑ 〉.

in Refs. [95, 96]. So far, atomic inertial sensors are limited by technical noise. However,
particularly gradiometers are approaching the SQL, and prospects of quantum-enhancement are
being investigated [31, 97–99]. Note that beating the SQL is not per se useful. Instead, the
optimal advancement of a specific device depends on the particular goals and constraints, which
requires a detailed analysis [94, 100, 101].

Below, we illustrate the concept of an interferometer. Following Refs. [9, 61, 62], we detail our
mathematical framework, derive the CRB, and discuss its relation to the FI. This enables us to
elaborate on the concept of quantum-enhanced interferometry.

2.2.1 A Minimalist Interferometer
To set the stage we start with a minimalist example of an interferometer. Consider a two-level
quantum system—a qubit. We choose two orthonormal basis states and denote them by |↑ 〉 and
|↓ 〉. Any pure state of a single qubit can be parameterized in the following way:

|ψ(θ, φ)〉 = cos
(
θ

2

)
|↑ 〉+ eiφ sin

(
θ

2

)
|↓ 〉, θ ∈ [0, π], φ ∈ [−π, π) (2.38)

Hence, |ψ(θ, φ)〉 can be represented by a point with spherical coordinates (θ, φ) on a sphere,
which, in this context, is called the Bloch sphere.

Figure 2.1a depicts a state with θ = π/2,

|ψ(π/2, φ)〉 = 1√
2

(
|↑ 〉+ eiφ |↓ 〉

)
. (2.39)

The interferometric task is to determine φ. To this end, one applies e−i
π
2 σ̂y with σ̂y ≡ 1

2i(|↑ 〉〈 ↓ |−
|↓ 〉〈 ↑ |). Since

e−i
π
2 σ̂y |↑ 〉 = 1√

2
(|↑ 〉+ |↓ 〉), e−i

π
2 σ̂y |↓ 〉 = 1√

2
(|↓ 〉 − |↑ 〉), (2.40)

e−i
π
2 σ̂y is called an (internal-state) beamsplitter. On the Bloch sphere, it induces a rotation

around the y-axis, see Fig. 2.1b. Equation (2.40) yields

e−i
π
2 σ̂y |ψ(π/2, φ)〉 = 1

2
[
(1− eiφ)|↑ 〉+ (1 + eiφ)|↓ 〉

]
. (2.41)
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For a qubit in the state (2.41), the probability to find it in |↑ 〉 is

p↑ ≡ |〈 ↑| e−i
π
2 σ̂y |ψ(π/2, φ)〉|2 = sin2

(
φ

2

)
. (2.42)

To estimate p↑, one repeatedly prepares |ψ(π/2, φ)〉 and measures σ̂z ≡ 1
2(|↑ 〉〈 ↑ |−|↓ 〉〈 ↓ |). Then

φ is deduced via Eq. (2.42). The precision of the result is finite and increases with the number of
experimental cycles.

2.2.2 The General Interferometer

We define a general interferometric protocol in terms of four steps. First, a probe state ρ̂(0) is
prepared. Second, the probe interacts with its environment. We assume that the interaction can
be parameterized by θ ∈ R and yields a differentiable ρ̂(θ). We say that a phase θ is imprinted on
ρ̂. If the corresponding transformation is unitary, ρ̂(θ) = e−iθR̂ ρ̂(0) eiθR̂ with R̂ Hermitian, we
call R̂ the phase imprinting operator. Third, ρ̂(θ) is measured by a POVM. Any measurement
outcome µj is obtained with some probability Pθ(µj). Multiple experimental cycles can be
treated as if they were performed in parallel. For n repetitions, ρ̂(θ) becomes [ρ̂(θ)]⊗n, and
µj ≡ (µj1 , . . . , µjn) comprises the n successive measurement outcomes. Note that, so far, our
framework is the same as in Section 2.1.

Forth, θ has to be deduced from the n measurement outcomes summarized in µj. This is done
by means of an estimator Θ(µj), which assigns a presumable value Θ of θ to any µj. Θ follows a
probability distribution which is determined by Pθ(µj). At a given θ, its expectation value and
variance are

〈Θ〉θ =
∑

j
Pθ(µj) Θ(µj), (2.43)

∆2
θΘ =

∑
j
Pθ(µj) (Θ(µj)− 〈Θ〉θ)2. (2.44)

An estimator with

〈Θ〉θ = θ (2.45)

is called unbiased. Note that Eq. (2.45) implies ∂θ〈Θ〉θ = 1.
To improve the precision of an interferometer one has to minimize ∆2

θΘ.

2.2.3 Cramér-Rao Bound and Quantum Enhancement

The precision of an interferometer is, unfortunately, fundamentally limited by the CRB: ∆2
θΘ ≥

∆2
θΘCR. Interestingly, the classical Cramér-Rao bound (CCRB) is a simple function of the CFI2.

For the case of n experimental cycles and an unbiased estimator, it reads

∆2
θΘCR = 1

F [n](θ)
= 1
nF (θ)

. (2.46)

2See Eq. (2.4) for the definition of the CFI.
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As in Section 2.1.4, F [n](θ) and F (θ) denote the CFI of [ρ̂(θ)]⊗n and ρ̂(θ), respectively. Equa-
tion (2.46) follows from the Cauchy-Schwarz inequality:

∆2
θΘ · F [n](θ) =

∑
j
Pθ(µj) (Θ(µj)− θ)2 ∑

k
Pθ(µk) (∂θ ln[Pθ(µk)])2

≥
∣∣∣∑

j
Pθ(µj) (Θ(µj)− θ) ∂θ ln[Pθ(µk)]

∣∣∣2
=
∣∣∣∂θ∑

j
Pθ(µj) Θ(µj)− θ ∂θ

∑
k
Pθ(µk)

∣∣∣2
= |∂θ〈Θ〉θ|2 = 1.

(2.47)

How can we enlarge F (θ) and thereby reduce ∆2
θΘCR? First, we may optimize the measurement.

As we know from Section 2.1.2, the CFI is bounded by the QFI, F (θ) ≤ FQ(θ). For an optimal
POVM,3 F (θ) = FQ(θ). The corresponding CRB is called the quantum Cramér-Rao bound
(QCRB),

∆2
θΘQCR = 1

F
[n]
Q (θ)

= 1
nFQ(θ)

. (2.48)

Second, we may optimize the phase imprinting. We have discussed the case of a pure probe state
and unitary phase imprinting in Section 2.1.6.
Third, we may optimize the probe state. As in Section 2.1.7, we consider a probe which

consists of N identical subsystems such as, e. g., atoms. The phase imprinting is unitary and
generated by a collective local phase-imprinting operator R̂ =

∑N
l=1 r̂

(l), where r̂(l) is a Hermitian
operator r̂ acting on the lth subsystem. Recall that the corresponding QFI does not depend on θ.
We denote the largest and smallest eigenvalues of r̂ by r+ and r−, respectively. Then we know
from Section 2.1.8 that, for a separable state, the FI is bounded by the SQL:

FQ ≤ (r+ − r−)2N ⇒ ∆2ΘQCR ≥
1

n(r+ − r−)2N
(2.49)

For a general quantum state, the FI can instead reach the HL:

FQ ≤ (r+ − r−)2N2 ⇒ ∆2ΘQCR ≥
1

n(r+ − r−)2N2 (2.50)

The same statements hold for F (θ) and ∆2
θΘCR. The limits on the CRB are, again, called SQL

and HL, respectively.
The HL can be saturated, see Section 2.1.7. Hence, there are entangled states which facilitate

a better interferometric precision than any separable probe. This is the foundation of quantum
enhanced interferometry. We call the entanglement of a probe state interferometrically useful if
the corresponding CRB is below the SQL and thus beyond the reach of any separable probe.
Crucially, entanglement turns out to be interferometrically useful if and only if the FI exceeds
the SQL.
We have discussed that we can reduce the CRB by optimizing the probe state, the phase

imprinting, and the POVM. But can the CRB, at all, be attained? The best general statement
we can make is that, for large n, the CRB is asymptotically saturated by the maximum likelihood
estimator [20, 61, 62, 102].

3Recall that a θ-independent optimal POVM usually does not exist. This problem can be addressed by adaptive
measurements [65].
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Let us finally remark that, in practice, neither the probe, nor the phase imprinting, nor the
POVM can be chosen at will. Restrictions are posed, particularly, by the actual interferometric
task, i. e., by the physical quantity of interest which has to be encoded in θ, and by limited
experimental control.

2.3 Macroscopic Superposition States

We know quantum theory as a precise description of the microscopic world. By contrast, at the
macroscopic scale Schrödinger’s famous thought experiment commonly known as Schrödinger’s
Cat [103] demonstrates the apparent absurdity of quantum phenomena. Indeed, a cat being in
the superposition of “dead” and “alive” strongly contradicts our everyday experience. How can
we reconcile this with the fact that this same cat consists of microscopic objects obeying quantum
theory? A crucial observation is that, unlike in classical physics, typical macroscopic quantum
systems cannot be treated as being isolated [104]. The decoherence due to interactions with
the environment may render macroscopic quantum phenomena hardly observable [105]. On the
other hand, quantum theory might be just incomplete. Collapse models extend the Schrödinger
equation by adding nonlinear stochastic terms. While these models reproduce the standard
quantum theory at microscopic scales, they, at the same time, circumvent paradoxical predictions
for macroscopic objects [106]. Collapse models may be motivated by various underlying theories.
A particularly intriguing speculation is their relation to quantum gravity [107–110]. It is of
obvious fundamental interest to test the validity of quantum theory at macroscopic scales.
Therefore, physicists strive for MSSs, of which Schrödinger’s Cat is a paradigmatic example.

From the perspective of quantum-state engineering, MSSs benchmark our ability to control
large quantum systems. Progress in preparing, maintaining, and characterizing MSSs brings us
substantially closer to quantum-enhanced technologies such as quantum metrology or computing.
The preparation of photonic MSSs is typically based on spontaneous parametric down-conversion
or the coupling of an electromagnetic cavity field to a well-controlled quantum system—for
instance, a transmon. The first method has been used, e. g., to prepare 15 dB squeezed vacuum
states [111], while the second one led to superpositions of coherent states [112]. With massive
particles, the preparation of Greenberger-Horne-Zeilinger (GHZ) states of 20 Rydberg atoms [37],
24 ions [38], or 27 superconducting qubits [39] has been recently demonstrated. Collectively
addressing cold atoms produced 20 dB of spin squeezing [26]. Spinor Bose-Einstein condensates
with atom numbers of the order of 104 have served, e. g., for preparing Twin-Fock states [113] with
at least 450 entangled atoms [35]. Instead of entangling internal degrees of freedom, matter-wave
interferometry targets large spatial separations of heavy particles. A particularly large separation
of half a meter has been realized with atoms [114], and masses beyond 10 000 Da have been
achieved with molecules [115]. Recently, significant experimental progress has raised the interest
in optomechanical systems [116–118]. This list of achievements intends only to give a flavor of
the current state of play.

From a theoretical point of view, first of all we have to define MSSs. Similarity to Schrödinger’s
Cat is, obviously, a somewhat vague requirement. Furthermore, we would like to have a figure of
merit—some measure of macroscopic quantumness—by which we can order MSSs and compare
different experimental settings. Both the definition and the figure of merit should reflect our
central question—if quantum theory is valid at macroscopic scales. A first formalization has been
attempted in Ref. [119], whereupon many further proposals followed, see Ref. [22] for a review.
Some definitions restrict MSSs to states of the form |ψ〉 ∝ |A〉+ |D〉 [119], while others admit
general density matrices [120]. The figure of merit may be composed, in various proportions,
from the quantumness of the overall state [121], the quantumness of |ψ〉 as opposed to |A〉 and
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|D〉 [122], and the difference between |A〉 and |D〉 [123]. Macroscopicity typically enters as a
prerequisite for a large quantumness or distinguishability. Quantumness may be defined, e. g., in
terms of unconventional theories which can be ruled out by a given experiment [124], in terms of
GHZ states that can be attained by local operations and classical communication [125], or in
terms of the Wigner function [126]. Distinguishability may refer, e. g., to expectation values of
extensive observables [119] or to coarse-grained measurements [127].

2.3.1 Quantification by Fisher Information
Reference [21] suggests to quantify macroscopic quantumness by means of the QFI. Let ρ̂ be the N -
particle state of interest. We consider collective local unitary transformations ρ̂(θ) = e−iθR̂ ρ̂ eiθR̂
with R̂ =

∑N
l=1 r̂

(l) and r̂(l) acting as r̂ on particle l, cf. Sections 2.1.7 and 2.2.3. Similarly to
Ref. [21], we define the effective size of ρ̂ as

N (ρ̂) ≡ 1
N

max
r̂:‖r̂‖=1/2

FQ[ρ̂, r̂]. (2.51)

For clarity, we explicitly indicate that the QFI FQ of ρ̂(θ) depends on ρ̂ and r̂. The maximization
is restricted to operators r̂ with operator norm ‖r̂‖ = 1/24. Note that N is a lower bound to
the effective size defined in Ref. [21], where the r̂(l) may differ from each other and may affect
more than one particle. According to Eq. (2.34), N (ρ̂) > k implies that ρ̂ has an entanglement
depth greater than k5. Hence, a large N certifies many entangled particles and thus macroscopic
quantumness. Recall, at this occasion, that N ≤ N and that this bound can be saturated, see
Eq. (2.35).

A figure of merit for MSSs becomes particularly appealing if it corresponds to a useful quantum
effect. As we have seen in Section 2.2, the QFI FQ[ρ̂, r̂] quantifies the ultimate precision of a
quantum-enhanced interferometer which estimates θ from ρ̂(θ), see Section 2.2.3. Particularly, the
precision of any interferometer with probe state ρ̂ provides a lower bound to N (ρ̂). Alternative
ways to experimentally access the QFI exploit further lower bounds, such as the tightly bounding
CFI [128] or functions of few collective measurements [113, 129]. Reference [130] compares lower
bounds on the effective size of MSSs obtained in various experiments.
We define MSSs ρ̂ by 1� N (ρ̂)�| N , where �| means “not much less than”. Note that this

especially requires N � 1. For completeness, let us mention that Ref. [21] reserves the term
MSS for |ψ〉 = 1√

2(|A〉+ |D〉) with a large relative QFI

Nr(|ψ〉〈ψ|) ≡
2N (|ψ〉〈ψ|)

N (|A〉〈A|) +N (|D〉〈D|) . (2.52)

General states with a large N are called macroscopic quantum states, instead. We refrain from
this distinction.

4Let r± be the largest and smallest eigenvalues of r̂, respectively. Note that the constraint ‖r̂‖ = 1/2 in Eq. (2.51)
could be equivalently replaced by r+− r− = 1. Since FQ[ρ̂, αr̂+β] = |α|2FQ[ρ̂, r̂], see Eq. (2.26), the maximum
of FQ under the restriction ‖r̂‖ = 1/2 is always attained at r+ = −r− = 1/2.

5Note that bN
k
ck2 +

(
N − bN

k
c
)2 ≤ Nk.
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3 Spin-1 Bose-Einstein Condensates
When the temperature of a Bose gas, i. e. a gas of bosons, approaches the absolute zero, there
may be a critical temperature below which the ground-state occupation drastically increases.
This phase transition is called Bose-Einstein condensation and has been predicted by Einstein in
1925 [131].

The discovery of superfluid helium [132, 133] significantly boosted the interest in Bose-Einstein
condensation, which was supposed to provide a key to understanding superfluidity [134, 135]. The
theory of Bose-Einstein condensation evolved hand in hand with the theories of superfluidity and
superconductivity [136]. Let us, however, stress that these phenomena are related but distinct.

Observing Bose-Einstein condensation in a weakly interacting gas was a long-lasting problem.
1995 was a breakthrough year, marked by the Bose-Einstein condensation of three different
species of alkali atoms: 23Na [137], 7Li [138], and 87Rb [139]. The experiments with 23Na and
87Rb have been awarded the Nobel prize. Before, Bose-Einstein condensation had been observed
in superfluid helium, see Ref. [140] for a review, and in semiconductor excitons [141]. However,
Bose-Einstein condensates (BECs) of alkali atoms have a number of conceptual and experimental
advantages. Therefore, their first preparation lead to an explosion of interest in ultracold atoms.
Meanwhile, many more atomic species [142] and even small molecules [143, 144] have been
successfully condensed. Besides this, also BECs of, e. g., exciton-polaritons and photons [145] or
quantum magnets [146] are experimentally investigated.
The first BECs of atomic gases were trapped magnetically and therefore consisted of atoms

in a single spin state. However, the spin-independent confinement of optical dipole traps was
soon used for preparing BECs with spin degrees of freedom—so-called spinor BECs [147]. The
additional degrees of freedom lead to a plethora of exciting phenomena. Spinor BECs exhibit
a variety of ground-state quantum phases, whose number further increases in the presence of
a magnetic field [29, 30, 32, 33, 148]. The interparticle interaction leads to a coherent spin
dynamics [43, 46, 149]. Both the quantum phases and spin dynamics can be employed for the
preparation of entangled states. In the first case, a separable ground state is quasiadiabatically
driven into the entangled ground state of another quantum phase [32, 35, 150]. In the second case,
the evolution of a dynamically unstable separable state produces a spin-squeezed state [151–153]
that is a superposition of Twin-Fock states [113, 154]. Entangled states of both kinds have been
used for proof-of-principle demonstrations of quantum-enhanced metrology [25, 49]. Further
methods for creating entanglement in spinor BECs are provided, e. g., by quantum nondemolition
measurements [155] or an analog of the dynamical Casimir effect [156]. Recently, entanglement
has been successfully transferred from spin to momentum states, thus approaching quantum-
enhanced matter-wave interferometry [31]. Other exciting studies with spinor BECs concern,
e. g., topological defects [157], synthetic spin-orbit coupling [158], the quantum Zeno effect [159],
quantum droplets [160], dynamical phase transitions [161], and magnetometry [162]. For a review
of spinor BECs see Refs. [29, 30].

We are particularly interested in ferromagnetic spin-1 BECs such as obtained from 87Rb atoms
in their ground state with hyperfine spin 1 [163]. Below we first detail, in Section 3.1, the
concept of Bose-Einstein condensation. In Section 3.2 we review the Hamiltonian describing a
gas of weakly interacting spin-1 bosons. Under some conditions, the spatial and spin degrees of
freedom of a spinor BEC can be separated by means of the single-mode approximation (SMA).
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3 Spin-1 Bose-Einstein Condensates

In Section 3.3, we apply the SMA, derive the corresponding spin Hamiltonian, and show that
the spatial degrees of freedom are governed by the Gross-Pitaevskii equation. We review the
collective unitary transformations in a spin-1 system in Section 3.4 and employ them to describe
the manipulation of spinor BECs by the interaction with electromagnetic radiation in Section 3.5.
Real BECs are subject to atom loss, which can significantly impair entangled states. We study
the precise impact by means of the Monte-Carlo wave-function method described in Section 3.6.
The identification of quantum phases strongly relies on the limit of an infinite particle number.
Therefore, we close by considering this mean-field limit in Section 3.7.

3.1 Bose-Einstein Condensation
In this section we consider an ideal Bose gas, i. e., free, non-interacting, identical bosons. For
simplicity we assume that the bosons have spin zero. Let N bosons occupy a three-dimensional
cube with edge length L and volume V = L3. The single-particle energy eigenstates can be
uniquely labeled by q ≡ (qx, qy, qz) with qi ∈ N, and the corresponding eigenenergies read

Eq = ~2π2

2mL2 (q2 − 3), (3.1)

where m is the mass of a boson and q2 ≡ q2
x + q2

y + q2
z . Note that we have deliberately set the

ground-state energy E(1,1,1) to zero. At thermal equilibrium, the expectation value of the particle
number N̂q in the q-th eigenstate obeys the Bose-Einstein distribution [164, 165]:

〈N̂q〉 = 1
eβ(Eq−µ)−1

, (3.2)

where β ≡ 1
kbT

, T is the temperature, and kB denotes the Boltzmann constant. The chemical
potential µ < 0 is implicitly fixed by ∑

q
〈N̂q〉 = N (3.3)

and, thus, depends on N and β. One can easily ascertain that µ is a strictly increasing function
of β.

To reveal the concept of Bose-Einstein condensation [28, 131, 165–167], we study the thermo-
dynamic limit, which is defined by N → ∞ at constant ρ ≡ N/V . We will use the following
lemma, which provides an upper bound on the error of approximating sums by integrals:

Lemma 1. Let f : R≥0 → R≥0 be a continuous, absolutely bounded, non-increasing function
with

∃I ∈ R :
∫ ∞

0
dx f(x) = I. (3.4)

Then ∣∣∣∣∣I −
∞∑
x=0

f(x)
∣∣∣∣∣ ≤ f(0). (3.5)

Proof. As illustrated in Fig. 3.1a,
∞∑
x=1

f(x) ≤ I ≤
∞∑
x=0

f(x) ⇒ −f(0) ≤ I −
∞∑
x=0

f(x) ≤ 0. (3.6)
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Figure 3.1: Bose-Einstein condensation. (a) Illustration for the proof of Lemma 1. The area I
under f(x) satisfies

∑∞
x=1 f(x) ≤ I ≤

∑∞
x=0 f(x). (b) The condensed fraction n0 of an ideal Bose

gas in the thermodynamic limit as a function of T/Tc. The derivative n′0(T ) exhibits a jump
discontinuity at Tc.

We denote the chemical potential in the thermodynamic limit by µ∞ and conclude from the
properties of µ at finite N that µ∞ ≤ 0 and that µ∞ is a non-decreasing function of β. First, we
assume that β is sufficiently small such that µ∞ < 0. We consider the thermodynamic limit of
the normalization condition in Eq. (3.3),

1 = lim
N→∞

∑
q

1
N(eβ(Eq−µ∞)−1)

. (3.7)

Employing Lemma 1 one can show that in the thermodynamic limit the sum in Eq. (3.7) can be
replaced by the respective integral1. Thus,

1 = lim
N→∞

1
N

∫ ∞
1

d3q
1

e
β

(
~2π2
2mL2 (q2−3)−µ∞

)
−1

∣∣∣k ≡ π

L
q

= lim
N→∞

L3

π3N

∫ ∞
π/L

d3k
1

e
β

(
~2
2m (k2− 3π2

L2 )−µ∞
)
−1

∣∣∣L = 3

√
N

ρ

= 1
π3ρ

∫ ∞
0

d3k
1

eβ( ~2
2mk

2−µ∞)−1

= 1
2π2ρ

∫ ∞
0

dk k2

eβ( ~2
2mk

2−µ∞)−1
.

(3.8)

This establishes the relation between β and µ∞ when µ∞ < 0. To determine the critical βc at
which µ∞ approaches zero, we have to solve

1 = 1
2π2ρ

∫ ∞
0

dk k2

eβ
~2
2mk

2 −1
= 1
π2~3ρ

√
m3

2β3 Γ(3/2)ζ(3/2), (3.9)

1Lemma 1 can be subsequently applied to each qi. In the thermodynamic limit the upper bound on the overall
error vanishes.
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3 Spin-1 Bose-Einstein Condensates

where Γ and ζ denote the gamma function and the Riemann zeta function, respectively. This
yields the critical temperature

Tc = 2π~2

kBm

(
ρ

ζ(3/2)

)2/3
(3.10)

with ζ(3/2) ≈ 2.612. Hence T > Tc goes along with µ∞ < 0 and T ≤ Tc with µ∞ = 0.
For T > Tc and thus µ∞ < 0 the Bose-Einstein distribution (3.2) implies that the relative

occupation of the ground state—and, actually, of any particular eigenstate—vanishes in the
thermodynamic limit:

n0 ≡ lim
N→∞

〈N̂(1,1,1)〉
N

= 0 ∀T > Tc. (3.11)

For T ≤ Tc, instead, we cannot determine n0 from Eq. (3.2) without specifying how, precisely, µ
approaches zero when N →∞. As a consequence, our proof that the sum in Eq. (3.7) can be
replaced by an integral breaks down. However, excluding the ground state from the sum, we can
show that2

lim
N→∞

∑
q 6=(1,1,1)

1
N(eβEq −1)

= 1
2π2ρ

∫ ∞
0

dk k2

eβ
~2
2mk

2 −1
= ζ(3/2)

~3

√
m3

8π3
1

ρ
√
β3 . (3.12)

Hence, by Eqs. (3.7) and (3.10),

n0 = 1− ζ(3/2)
~3

√
m3

8π3
1

ρ
√
β3 = 1−

(
T

Tc

)3/2
∀T ≤ Tc. (3.13)

This macroscopic accumulation of bosons in the ground state is called condensation. Figure 3.1b
depicts n0(T ). At the critical temperature Tc the derivative of n0(T ) becomes discontinuous.
Thus, Bose-Einstein condensation is a phase transition with the order parameter n0(T ).

As we see from Eqs. (3.10) and (3.13), Bose-Einstein condensation requires high densities at
low temperatures. Recall, furthermore, that we have assumed that the bosons do not interact
with each other. Reconciling these requirements is non-trivial.

3.2 Weakly Interacting Spin-1 Bosons
Let F̂ ≡ (F̂x, F̂y, F̂z) be a spin operator and |f,m〉 denote the joint eigenstates of F̂2 ≡ F̂ 2

x +F̂ 2
y +F̂ 2

z
and F̂z with F̂2|f,m〉 = ~2f(f + 1)|f,m〉, F̂z|f,m〉 = ~m|f,m〉, f ∈ N0/2, and m ∈ {f, f −
1, . . . ,−f} [168]. The states |f,m〉 constitute an orthonormal basis of the spin space. Hence, a
boson with spin f = 1 has three internal states labeled by m ∈ {1, 0,−1}. In analogy, bosons
with three internal states that do not correspond to a physical spin of 1 are called pseudospin-1
bosons. Our general discussion equally applies to spin-1 and pseudospin-1 bosons. Occasionally,
we will refer to the exemplary case of 87Rb atoms in their ground state 52S1/2 with hyperfine
spin f = 1 [169, 170].
In the following, we construct the second-quantized Hamiltonian [171] for weakly interacting

spin-1 bosons [29]. The field operators ψ̂m(r) and ψ̂†m(r) correspond, respectively, to the
annihilation and creation of a boson in the spin state m at position r. They fulfill the canonical
bosonic commutation relations

[ψ̂m(r), ψ̂l(r′)] = [ψ̂†m(r), ψ̂†l (r
′)] = 0 and [ψ̂m(r), ψ̂†l (r

′)] = δmlδ(r− r′), (3.14)
2We observe that limN→∞〈N̂q〉/N = 0 for all q 6= (1, 1, 1). We set aq ≡ 〈N̂q〉/N , bq ≡ aq ∀q 6= (1, 1, 1), and
b(1,1,1) ≡ a(1,1,2). Then limN→∞

∑
q 6=(1,1,1) aq = limN→∞

∑
q bq. That the sum in limN→∞

∑
q bq can be

replaced by an integral can be shown as in the case of µ∞ < 0.
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Figure 3.2: Relative energy E of the spin states |1,m〉 parameterized by the effective linear (p)
and quadratic (q) Zeeman effect.

where the first δ denotes a Kronecker delta and the second one a Dirac delta distribution. We
assume that the bosons experience a spin-independent external potential Ve(r). Together with
the kinetic energy, this contributes

Ĥ0 =
∑
m

∫
d3r ψ̂†m(r)

[
−~

2∇2

2M + Ve(r)
]
ψ̂m(r) (3.15)

with the boson mass M to the total Hamiltonian. Typically, Ve is a confining potential which
can be well approximated by a three-dimensional harmonic oscillator:

Ve(r) = m

2 (ω2
xx

2 + ω2
yy

2 + ω2
zz

2) (3.16)

For cold neutral atoms, such a potential can be realized by an optical dipole trap [25, 172].
In general the internal states differ in energy. For three spin states the spacing of the energy

levels Em can be parameterized by p ≡ 1
2(E−1 − E1) and q ≡ 1

2(E1 + E−1) − E0, see Fig. 3.2.
Including these energy shifts into Ĥ0 yields

Ĥ ′0 =
∑
m

∫
d3r ψ̂†m(r)

[
−~

2∇2

2M + Ve(r)− pm+ qm2
]
ψ̂m(r). (3.17)

The energy splitting can be due to a magnetic field, in which case p and q are called the linear
and quadratic Zeeman effect, respectively. Let us focus on atomic states with electronic spin
s = 1/2 and orbital angular momentum l = 0, which includes the hyperfine ground state of 87Rb.
Then the energy shifts induced by a z-directed homogeneous magnetic field with magnitude B
are provided by the Breit-Rabi formula [169, 170, 173]. Neglecting the nuclear magneton and
Taylor expanding in B yields

p = (−1)f−i+1/2 gjµBB

2i+ 1 and q = (−1)f−i+1/2 2(gjµBB)2

(2i+ 1)2∆Ehf
, (3.18)

where i is the nuclear spin, µB the Bohr magneton, ∆Ehf the hyperfine splitting3, and gj the
Landé g-factor. Approximating the electron spin g-factor gs by 2 gives gj = 2. The Zeeman effect
is not the only way to tune the relative energy of atomic spin states. Off-resonant electromagnetic
dressing [46, 174] constitutes an important experimental technique to vary q independently

3∆Ehf is the energy difference between states with hyperfine spin f = i+ 1/2 and f = i− 1/2 at B = 0. For the
ground state of 87Rb, ∆Ehf/~ ≈ 6.835× 2πGHz [29].
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3 Spin-1 Bose-Einstein Condensates

of p. Note that the sign of the quadratic Zeeman effect is fixed by f and i. Conveniently,
electromagnetic dressing faces no restrictions on the sign of q. Independently of their specific
physical origin, we will henceforth call p and q the effective linear and quadratic Zeeman effect,
respectively.
Finally, we include an isotropic short-range interaction among the bosons. We assume that

the gas is sufficiently dilute to consider only binary collisions. Since we focus on extremely low
temperatures, we can restrict ourselves to s-wave scattering [168]. An interaction range that is
negligible compared with the mean interparticle distance allows us to approximate the spatial
dependence of the interaction potential by δ(r).

For binary s-wave collisions, conservation of the total angular momentum turns into conservation
of the total spin F of any two colliding bosons. For spin-1 particles we, in general, have
F ∈ {2, 1, 0}. Since the two colliding particles are bosons, their total state has to be symmetric
under particle exchange. S-wave scattering implies a symmetric spatial wave function and, hence,
requires a symmetric spin state |F ,M〉. The latter can be expressed in terms of the states
|m1,m2〉 ≡ |f,m1〉 ⊗ |f,m2〉,

|F ,M〉 =
∑

m1,m2

〈m1,m2|F ,M〉|m1,m2〉, (3.19)

where 〈m1,m2|F ,M〉 are known as the Clebsch-Gordon coefficients4 [29, 168, 175] and satisfy

〈m1,m2|F ,M〉 = (−1)F−2f 〈m2,m1|F ,M〉. (3.20)

Property (3.20) implies that spin states with F ∈ {0, 2} are symmetric, while those with F = 1
are antisymmetric.

A scalar operator which describes a binary interaction with a spatial dependence of the form
δ(r) and conserves F ∈ {0, 2} must be of the following form [29]:

Ĥint = 1
2

∑
F∈{0,2}

gF

F∑
M=−F

∫
d3r Â†FM(r)ÂFM(r) with

ÂFM(r) ≡
∑
m,l

〈F ,M|m, l〉ψ̂m(r)ψ̂l(r) and gF ≡
4π~2aF
M

(3.21)

The scattering lengths aF can be determined experimentally. Plugging the explicit Clebsch-
Gordan coefficients for f = 1 into Eq. (3.21) and adding Ĥint to Ĥ ′0 yields [176]

Ĥtot =
∑
m

∫
d3r ψ̂†m

[
−~

2∇2

2M + Ve(r)− pm+ qm2
]
ψ̂m

+ c0
2
∑
m,l

∫
d3r ψ̂†mψ̂

†
l ψ̂mψ̂l (3.22)

+ c1
2

∫
d3r

(
ψ̂†1ψ̂

†
1ψ̂1ψ̂1 + ψ̂†−1ψ̂

†
−1ψ̂−1ψ̂−1 + 2ψ̂†1ψ̂

†
0ψ̂1ψ̂0 + 2ψ̂†−1ψ̂

†
0ψ̂−1ψ̂0 − 2ψ̂†1ψ̂

†
−1ψ̂1ψ̂−1

+ 2ψ̂†0ψ̂
†
0ψ̂1ψ̂−1 + 2ψ̂†1ψ̂

†
−1ψ̂0ψ̂0

)
,

4The numeric values of Clebsch-Gordon coefficients depend on phase conventions. We assume the Condon-Shortley
convention for |f,m〉 and |F ,M〉, which is equivalent to requiring that γ in (F̂x + iF̂y)|f,m〉 = γ|f,m+ 1〉 be
positive and the analogous condition for |F ,M〉. As is common practice, we set the Clebsch-Gordon coefficients
to be real.
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3.3 Single-Mode Approximation

where c0 ≡ 1
3(g0 + 2g2), c1 ≡ 1

3(g2 − g0), and we have omitted the r-dependence of the field
operators ψ̂(†)

m for readability. Interaction terms of the form ψ̂†mψ̂
†
l ψ̂mψ̂l are called spin preserving,

while the spin-changing collisions in the Hamiltonian (3.22) are given by

c1

∫
d3r

(
ψ̂†0ψ̂

†
0ψ̂1ψ̂−1 + ψ̂†1ψ̂

†
−1ψ̂0ψ̂0

)
. (3.23)

Note that we do not consider the dipolar interaction of the bosons since it is typically—and,
particularly, for the hyperfine ground state of 87Rb—negligible with respect to the short-range
interaction.

3.3 Single-Mode Approximation
To obtain a BEC, the kinetic energy of the Bose gas is reduced, e. g., by laser and evaporative
cooling [142, 177]. We might expect that this drives the Bose gas into its many-body ground
state5. However, since the cooling addresses only the spatial degrees of freedom, attaining the
overall ground state requires that the spin and spatial degrees of freedom thermalize. If the
characteristic energies of the spatial and spin excitations have a different order of magnitude,
thermalization gets inhibited. Particularly, if the energy scale of the spatial degrees of freedom is
significantly larger, we can argue that, approximately, cooling ultimately prepares the Bose gas
in the spatial ground state without restricting the spin degrees of freedom.
In the following we assume that, indeed, the total energy of a Bose gas described by the

Hamiltonian (3.22) is essentially given by the kinetic energy and the spin-preserving collisions
proportional to c0. A large relative kinetic energy can be ensured by a sufficiently weak trap6 [178],
and |c0| � |c1| is fulfilled for a range of species, including the hyperfine ground state of 87Rb.
Under this condition, we can approximate the quantum state of the BEC by assuming that the
bosons share a common, spin-independent spatial wave function ψ(r) [176]. This is known as the
SMA.

The field operators can be always expanded as

ψ̂(†)
m (r) =

∑
j

φ
(∗)
j (r) â(†)

mj , (3.24)

where the φj(r) constitute an orthonormal basis of the space of square-integrable functions, â†mj
creates a boson in the state φj(r)|1,m〉, and [âmj , âlk] = [â†mj , â

†
lk] = 0, [âmj , â†lk] = δmlδjk. Under

the SMA, the spatial degrees of freedom are frozen and Eq. (3.24) reduces to

ψ̂(†)
m (r) = ψ(∗)(r) â(†)

m . (3.25)

Below we assume that almost all N � 1 bosons are condensed and apply the SMA to the
Hamiltonian (3.22). In Section 3.3.1 we derive an effective Hamiltonian for the spin degrees of
freedom, and in Section 3.3.2 we introduce the Gross-Pitaevskii equation that determines the
spatial wave function ψ(r).
Before proceeding we note that the SMA is not always applicable to typical experiments on

spinor BECs [179]. However, in our case of interest, where c1 < 0, there is strong theoretical
evidence that the SMA is appropriate [180]. Furthermore, the SMA has been successfully employed
to describe experimental setups closely related to those studied in the present thesis [25].

5Note that, in the presence of a symmetry, i. e., of an operator Ŝ that commutes with the Hamiltonian Ĥ, an
eigenstate of Ŝ can reach only the lowest-energy state within the respective eigenspace.

6Naively, one might expect that the trap should be tight since this increases the energy gap ∆E between the
ground state and the first excited state of a particle in the trap Ve(r). However, for a harmonic trap with
trapping frequency ω, ∆E ∝ ω grows slower with ω than the energy of the c1-interaction, see Eq. (3.43).
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3 Spin-1 Bose-Einstein Condensates

3.3.1 Spin Degrees of Freedom

Plugging ψ̂m(r) = ψ(r)âm into the Hamiltonian (3.22) yields

Ĥtot =
∫

d3r ψ∗(r)
[
−~

2∇2

2M + Ve(r) + c0
2 |ψ(r)|2(N̂ − 1)

]
ψ(r)N̂

+
∑
m

(qm2 − pm)â†mâm

+ λ

2
(
â†1â
†
1â1â1 + â†−1â

†
−1â−1â−1 + 2â†1â

†
0â1â0 + 2â†−1â

†
0â−1â0 − 2â†1â

†
−1â1â−1

+ 2â†0â
†
0â1â−1 + 2â†1â

†
−1â0â0

)
with λ ≡ c1

∫
d3r |ψ(r)|4,

(3.26)

where N̂m ≡ â†mâm counts the bosons in the spin state |1,m〉 and N̂ ≡
∑
m N̂m is the conserved

total boson number. Since pure quantum states of massive particles always have a definite particle
number N , it is sufficient to consider a single eigenspace of N̂ with an arbitrary eigenvalue N ∈ N.
Then the term in the first line of Eq. (3.26) becomes proportional to the identity operator and
thus has no influence on the evolution of the BEC. The dynamics of the spin degrees of freedom
is, hence, governed by [176]

Ĥspin = q(N̂1 + N̂−1)− pD̂ + λ

[
â†20 â1â−1 + â†1â

†
−1â

2
0 + N̂0

(
N̂1 + N̂−1 + 1

2

)
+ D̂2

2

]
(3.27)

with D̂ ≡ N̂1−N̂−1. One can readily check that Ĥspin commutes with D̂ and Î ≡ (−1)N̂0 = eiπN̂0 ,
[Ĥspin, D̂] = [Ĥspin, Î ] = 0, which means that D̂ and Î are conserved during the evolution.

The properties of the BEC strongly depend on the sign of λ, which is identical to the sign of the
scattering-length difference a2 − a0. Let us illustrate this by considering the ground-state in the
absence of an effective Zeeman effect. We introduce the collective spin-1 operator L̂ ≡ (L̂x, L̂y, L̂z)
that is defined by L̂i ≡

∑N
j=1 F̂

(j)
i , where F̂ (j)

i denotes the i-th component of the single-boson
spin-1 operator acting on the j-th boson. As we detail in Section 3.4, the components of L̂ can
be expressed as

L̂x = 1√
2

(â†0â1 + â†0â−1 + â†1â0 + â†−1â0),

L̂y = 1
i
√

2
(â†0â1 − â†0â−1 − â†1â0 + â†−1â0),

L̂z = â†−1â−1 − â†1â1.

(3.28)

The L̂i obey the defining commutation relation for dimensionless angular momentum operators,
[L̂α, L̂β] = i

∑
γ εαβγL̂γ , where εαβγ is the Levi-Civita symbol. Notably,

Ĥspin = q(N̂1 + N̂−1)− pD̂ + λL̂2 (3.29)

with L̂2 = L̂2
x + L̂2

y + L̂2
z . Hence, for q = p = 0 the eigenstates of Ĥspin are the eigenstates of L̂2.

The symmetric eigenstates7 of L̂2 have eigenvalues l(l + 1) with 0 ≤ l ∈ {N,N − 2, . . .} [176].
Thus, for λ > 0 the spin ground state of the BEC goes along with the smallest possible value of
l, while for λ < 0 the ground state has a maximal collective spin of N . Therefore, a spin-1 BEC

7The joint symmetric eigenstates of L̂2 and L̂z are sometimes called spin-1 Dicke states.
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3.3 Single-Mode Approximation

with λ < 0 is called ferromagnetic. The present thesis is devoted to ferromagnetic BECs as have
been realized, e. g., with 87Rb atoms in their hyperfine ground state.

Since D̂ is a conserved quantity, the effective linear Zeeman effect pD̂ induces a trivial evolution,
which we can absorb into a rotating frame. We define â′(†) ≡ Û â(†)Û † with Û = eipD̂t/~, which is a
function of the time t. Then â′† creates a boson in the “rotating” state eipmt/~ |1,m〉. Expressing
an operator Â in terms of the â′(†) and omitting the primes yields Â′ = Û †ÂÛ . Importantly, we
want to treat the new creation and annihilation operators as not explicitly time dependent. At the
same time, we intend to preserve the standard form of the Heisenberg equations of motion [168],

d
dtÂH = i

~
[Ĥspin, ÂH] + (∂tÂ)H, (3.30)

where the subscript H indicates the transition to the Heisenberg picture. Hence, we define the
spin Hamiltonian in the rotating frame, Ĥ, by requiring [177]

i

~
[Ĥ, Â′H] + (∂tÂ′)H = Û †

(
i

~
[Ĥspin, ÂH] + (∂tÂ)H

)
Û . (3.31)

Equation (3.31) can be satisfied by setting Ĥ = Û †ĤspinÛ + i~(∂tÛ †)Û . To confirm this we
observe that Û †Û = Û Û † = 1 is the identity operator and 0 = ∂t(Û †Û) = (∂tÛ †)Û + Û †(∂tÛ).
Since Ĥspin commutes with D̂ and, thus, with Û , evaluating Ĥ is straightforward and yields

Ĥ = q(N̂1 + N̂−1) + λ

[
â†20 â1â−1 + â†1â

†
−1â

2
0 + N̂0

(
N̂1 + N̂−1 + 1

2

)
+ D̂2

2

]
. (3.32)

To study how various properties of the BEC scale with N , we have to specify the N -dependence
of q and λ. We set λ = c/N and assume that q and c do not depend on N . This ensures a
sensible treatment of the thermodynamic limit N → ∞, see Sections 3.3.2 and 3.7. As will
become obvious in Section 3.3.2, the spatial wave function ψ and, thus, λ is fixed by the trapping
potential Ve and the particle number N . To obtain the desired scaling of λ, the trap has to be
adjusted with N .

We summarize that the Hamiltonian

Ĥ = q(N̂1 + N̂−1) + c

N

[
â†20 â1â−1 + â†1â

†
−1â

2
0 + N̂0

(
N̂1 + N̂−1 + 1

2

)
+ D̂2

2

]
(3.33)

describes the spin degrees of freedom of a spin-1 BEC in a rotating frame. It conserves the
magnetization D̂ ≡ N̂1 − N̂−1 and the parity Î ≡ (−1)N̂0 . We will study the ferromagnetic
case, which is characterized by a negative interaction strength c < 0. Of course, Eq. (3.33) is
meaningful only in the scope of the SMA.

3.3.2 Spatial Degrees of Freedom
As we see from Eq. (3.26), the spatial wave function ψ(r) contributes

E =
∫

d3r ψ∗(r)
[
−~

2∇2

2M + Ve(r) + c0
2 |ψ(r)|2N

]
ψ(r)N (3.34)

to the total energy of the BEC. Note that we have replaced N̂ by N , as discussed in the previous
section, and approximated N − 1 by N since N � 1. Because ψ(r) shall describe the ground
state of the Bose gas, we require that it minimizes E:

δψ∗

(
E − µN

∫
d3r |ψ(r)|2

)
= 0, (3.35)
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3 Spin-1 Bose-Einstein Condensates

where δψ∗ denotes the variation with respect to ψ∗(r), and the chemical potential µ constitutes a
Lagrange multiplier which ensures that ψ is normalized,∫

d3r |ψ(r)|2 = 1. (3.36)

Applying the calculus of variations [181] yields[
−~

2∇2

2M + Ve(r) + c0
2 |ψ(r)|2N

]
ψ(r) = µψ(r). (3.37)

This is the time-independent form of the famous Gross-Pitaevskii equation [28, 182–184]. In
general, Eq. (3.37) admits multiple solutions. The ground state of the Bose gas is described by
the solution with the lowest energy8. We will consider only repulsive short-range interactions,
for which c0 > 09.

If the interaction energy is sufficiently large, the kinetic energy in Eq. (3.34) can be neglected,
such that Eq. (3.37) becomes [

Ve(r) + c0
2 |ψ(r)|2N

]
ψ(r) = µψ(r). (3.38)

This is known as the Thomas-Fermi limit [28]. Typically, this approximation can be applied
when the characteristic length scale of the condensate-density variations is much larger than the
average distance between two bosons. The lowest-energy solution of Eq. (3.38) is [185]

|ψ(r)|2 =
{ 2
c0N

[µ− Ve(r)] for µ ≥ Ve(r)
0 otherwise

, (3.39)

where µ is fixed by the normalization condition (3.36).
Let us apply the Thomas-Fermi approximation to the important case of a spherical harmonic

trap,
Ve(r) = M

2 ω2r2, r ≡ |r|. (3.40)

Ve(R) = µ defines the Thomas-Fermi radius R, in terms of which

|ψ(r)|2 =


Mω2R2

c0N

(
1− r2

R2

)
for r ≤ R

0 otherwise
. (3.41)

The normalization condition (3.36) yields

R =
( 15c0N

8πMω2

)1/5
. (3.42)

We can now, e. g., compute the higher moments of the probability distribution |ψ(r)|2:

∫
d3r |ψ(r)|4 = 32π

105

(
Mω2

c0N

)2

R7 = 32π
105

( 15
8π

)7/5
(
Mω2

c0N

)3/5

,

∫
d3r |ψ(r)|6 = 64π

315

(
Mω2

c0N

)3

R9 = 64π
315

( 15
8π

)9/5
(
Mω2

c0N

)6/5

= 7
6

(∫
d3r |ψ(r)|4

)2
(3.43)

8The “excited” solutions of the time-independent Gross-Pitaevskii equation are also physically relevant. A famous
example is the vortex solution, which describes the ground state of a fast rotating Bose gas [28].

9As can be easily imagined, for attractive interactions the BEC may collapse.
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Note that N
∫

d3r |ψ(r)|4 and N2 ∫ d3r |ψ(r)|6 are the average of the particle number density
N |ψ(r)|2 and of its square, respectively.

In the previous section we have introduced the interaction strength c = λN and have required
c to not depend on N . Recalling the definition of λ, see Eq. (3.26), we observe that in the
Thomas-Fermi limit this is equivalent to fixing the average density of the BEC. Therefore, taking
N to infinity at constant c corresponds to the usual definition of the thermodynamic limit [186].
According to Eq. (3.43), c becomes independent of N if the trap is widened with increasing
particle number as ω ∝ 1/N1/3. Note that, hence, increasing N at constant c eventually violates
the assumptions of the SMA. However, this does not devaluate the thermodynamic limit, whose
relevance is not based on its exact attainability but on its applicability to large but finite systems.

3.4 Collective Transformations
In Chapter 2 we have repeatedly referred to unitary transformations generated by collective local
operators,

Û = e−iθR̂ with R̂ =
N∑
k=1

r̂(k), θ ∈ R, (3.44)

where r̂(k) denotes a Hermitian single-particle operator r̂ acting on the k-th particle. We call Û
a collective transformation and R̂ a collective generator. In the present section we review the
collective transformations on the spin space of N indistinguishable spin-1 bosons. We consider
only the spin degrees of freedom because the SMA restricts the spinor BEC to a definite spatial
wave function, see Section 3.3. Collective transformations are particularly important since they
describe typical experimental manipulations of spinor BECs, as we will see in the following
section.

3.4.1 Single-Boson Transformations
We start by considering a single boson. The spin states |1,m〉 with m ∈ {1, 0,−1} form an
orthonormal basis of the corresponding Hilbert space H. The unitary transformations on H
constitute the Lie group [187–189] U(3). Any element û ∈ U(3) can be expressed as û = e−ir̂,
where r̂ is a Hermitian operator on H. In turn, any Hermitian operator r̂ on H generates a
û = e−ir̂ ∈ U(3). The 9-dimensional vector space of Hermitian operators on H constitutes the
Lie algebra u(3).
The Lie algebra su(3) consists of the traceless Hermitian operators on H. It generates the

special unitary group SU(3) of unitary operators with determinant 1. Any û ∈ U(3) can be
expressed as û = eiφ v̂ with φ ∈ R and v̂ ∈ SU(3). Recall that quantum theory is gauge invariant
under global phase shifts. Hence, it is sufficient to consider SU(3) when studying the unitary
transformations on a three-dimensional Hilbert space.

The Gell-Mann operators10 provide a common basis of su(3):

ê1 ≡
1
2
(
|1,−1〉〈1, 0|+ |1, 0〉〈1,−1|

)
, ê2 ≡

1
2i
(
|1,−1〉〈1, 0| − |1, 0〉〈1,−1|

)
,

ê3 ≡
1
2
(
|1,−1〉〈1,−1| − |1, 0〉〈1, 0|

)
,

ê4 ≡
1
2
(
|1, 1〉〈1,−1|+ |1,−1〉〈1, 1|

)
, ê5 ≡

1
2i
(
|1,−1〉〈1, 1| − |1, 1〉〈1,−1|

)
,

ê6 ≡
1
2
(
|1, 0〉〈1, 1|+ |1, 1〉〈1, 0|

)
, ê7 ≡

1
2i
(
|1, 0〉〈1, 1| − |1, 1〉〈1, 0|

)
,

ê8 ≡
1

2
√

3

(
|1,−1〉〈1,−1|+ |1, 0〉〈1, 0| − 2|1, 1〉〈1, 1|

)
.

(3.45)

10Usually, the Gell-Mann operators are defined as twice the êj .
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To obtain a basis of u(3), they can be augmented by

ê0 ≡
1√
6

(
|1,−1〉〈1,−1|+ |1, 0〉〈1, 0|+ |1, 1〉〈1, 1|

)
, (3.46)

which is proportional to the identity. The operators
√

2êj are orthonormal in the sense that
Tr[ê†j êk] = δjk/2.

The algebra u(3) is a vector space over R. Admitting the multiplication by complex numbers
yields the complexification of u(3), which is the algebra gl(3,C) of all complex-valued linear
operators on H. For gl(3,C), we can use the simple basis elements b̂ml ≡ |1,m〉〈1, l| with
m, l ∈ {1, 0,−1} instead of the Gell-Mann operators.

3.4.2 N-Boson Transformations
The Hilbert space HN for N ∈ N indistinguishable spin-1 bosons is obtained by restricting H⊗N
to the totally symmetric states [168]. A convenient basis of HN consists of the Fock states
|N1, N0, N−1〉, where Nm indicates the occupation of |1,m〉 and

∑
mNm = N . The operators

Êj ≡
∑N
k=1 ê

(k)
j constitute a basis of the N -particle collective generators R̂ in Eq. (3.44). To

express the Êj in terms of creation and annihilation operators, we have to replace each |1,m〉 in
êj by â†m and each 〈1,m| by âm. This yields

Ê0 =
â†−1â−1 + â†0â0 + â†1â1√

6
, Ê1 =

â†−1â0 + â†0â−1

2 , Ê2 =
â†−1â0 − â†0â−1

2i ,

Ê3 =
â†−1â−1 − â†0â0

2 , Ê4 =
â†1â−1 + â†−1â1

2 , Ê5 =
â†−1â1 − â†1â−1

2i ,

Ê6 = â†0â1 + â†1â0
2 , Ê7 = â†0â1 − â†1â0

2i , Ê8 =
â†−1â−1 + â†0â0 − 2â†1â1

2
√

3
.

(3.47)

The collective Êj obey the same commutation relations as the single-particle êj . Therefore, the
vector space over R spanned by the Êj represents the algebra u(3) or, if Ê0 is excluded from the
basis, su(3). Accordingly, the collective (special) unitary transformations in Eq. (3.44) represent
U(3) or SU(3). These representations are faithful and are called Schwinger representations [168,
190]. We have derived them as representations on HN with an arbitrary N ∈ N. However, they
can be just as well regarded as representations on the Fock space HF ≡

⊕∞
N=0HN . In this latter

setting it is useful to note that all representing operators commute with N̂ .
The operators b̂ml give rise to

B̂ml ≡
N∑
k=1

b̂
(k)
ml = â†mâl. (3.48)

Let us introduce the set P of complex polynomials in the B̂ml. P represents the universal
enveloping algebra of gl(3,C) [188, 189]. Regarded as operators on HF, the elements of P , again,
commute with N̂ . A large part of the operators we will encounter throughout this thesis belongs
to P.
The algebra su(3) contains su(2) as a subalgebra. One can choose different bases of su(2)

in su(3). Let us introduce the symmetric (g) and antisymmetric (h) creation and annihilation
operators

ĝ(†) ≡ 1√
2

(â(†)
1 + â

(†)
−1), ĥ(†) ≡ 1√

2
(â(†)

1 − â
(†)
−1). (3.49)
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The operators â(†)
0 , ĝ(†), and ĥ(†) obey the standard commutation relations for three independent

bosonic modes. We employ the following four bases {R̂x, R̂y, R̂z} of su(2) within the Schwinger
representation of su(3):

Ŝx ≡
â†0ĝ + ĝ†â0

2 = Ê6 + Ê1√
2

, Âx ≡
â†0ĥ+ ĥ†â0

2 = Ê6 − Ê1√
2

,

Ŝy ≡
â†0ĝ − ĝ†â0

2i = Ê7 − Ê2√
2

, Ây ≡
â†0ĥ− ĥ†â0

2i = Ê7 + Ê2√
2

,

Ŝz ≡
â†0â0 − ĝ†ĝ

2 =
√

3Ê8 − 2Ê4 − 3Ê3
4 , Âz ≡

â†0â0 − ĥ†ĥ
2 =

√
3Ê8 + 2Ê4 − 3Ê3

4 ,

Ĵx ≡
â†1â−1 + â†−1â1

2 = Ê4, L̂x ≡
1√
2

(â†0â1 + â†0â−1 + â†1â0 + â†−1â0) = 2Ŝx,

Ĵy ≡
â†1â−1 − â†−1â1

2i = −Ê5, L̂y ≡
1
i
√

2
(â†0â1 − â†0â−1 − â†1â0 + â†−1â0) = 2Ây,

Ĵz ≡
â†1â1 − â†−1â−1

2 = −
√

3Ê8 + Ê3
2 , L̂z ≡ â†−1â−1 − â†1â1 = −2Ĵz.

(3.50)
All R̂ ≡ (R̂x, R̂y, R̂z) introduced in Eq. (3.50) satisfy the defining commutation relation for
dimensionless angular momentum operators,

[R̂α, R̂β] = i
∑
γ

εαβγR̂γ , (3.51)

where εαβγ is the Levi-Cevita symbol. Ŝ, Â, and Ĵ are related to each other through collective
unitary transformations: there is, e. g., a collective Û such that Û †ŜαÛ = Âα for all α ∈ {x, y, z}.
Regarding Ŝ as an operator on HN , we can write Ŝα ≡

∑N
k=1 ŝ

(k)
α and, by that, define a single-

particle operator ŝ. The non-trivial action of ŝ is restricted to the subspace ofH that is spanned by
|1, 0〉 and |g〉 ≡ 1√

2(|1, 1〉+ |1,−1〉). On this subspace, ŝ defines a pseudospin-1/2 representation
of su(2), where the prefix “pseudo” indicates that the physical spin of the considered bosons is
not 1/2. Therefore, we call Ŝ and, by the same arguments, Â and Ĵ collective pseudospin-1/2
operators. By contrast, L̂ is a collective spin-1 operator since it arises from a spin-1 representation
of su(2) on H.

3.4.3 Baker-Campbel-Hausdorff Formula
The Baker-Campbell-Hausdorff (BCH) formula11 is a central tool for explicitly applying collective
transformations to operators and states:12

eÂ B̂ e−Â =
∞∑
j=0

1
j! [Â, B̂]j with [Â, B̂]0 ≡ B̂, [Â, B̂]j ≡ [Â, [Â, B̂]j−1] (3.52)

Let us, e. g., introduce Ŝθ ≡ cos(θ)Ŝx + sin(θ)Ŝy. Equation (3.52) yields the useful relations

e−iχŜθ â†0 eiχŜθ = cos
(
χ

2

)
â†0 + e+i(θ−π/2) sin

(
χ

2

)
ĝ†,

e−iχŜθ ĝ† eiχŜθ = cos
(
χ

2

)
ĝ† + e−i(θ+π/2) sin

(
χ

2

)
â†0.

(3.53)

11See Proposition 3.35 in Ref. [189].
12More precisely, Eq. (3.52) represents a lemma which is typically employed in the proof of the BCH formula.
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Let T (n, χ) denote the rotation matrix that induces a rotation by the angle χ around the axis
pointing along the unit vector n. For example,

T
(
(0, 0, 1), χ

)
=

cosχ − sinχ 0
sinχ cosχ 0

0 0 1

. (3.54)

A vector operator V̂ ≡ (V̂x, V̂y, V̂z) with respect to the angular momentum operator R̂ is defined
by [168]

eiχn·R̂ V̂α e−iχn·R̂ =
∑
β

Tαβ(n, χ)V̂β, (3.55)

where n · R̂ ≡
∑
α nαR̂α. The BCH formula implies that the left-hand side of Eq. (3.55) is

completely determined by the commutation relation of V̂ with R̂. Considering infinitesimal
transformations proves that Eq. (3.55) is equivalent to

[V̂α, R̂β] = i
∑
γ

εαβγ V̂γ . (3.56)

Hence, R̂ itself is a vector operator and transforms according to Eq. (3.55). We can use this to
conveniently evaluate transformations of the collective (pseudo-)spin operators introduced in the
previous section.

3.5 Interaction with Electromagnetic Radiation
Transitions between internal atomic states can be driven by electromagnetic waves [177]. We
consider a classical monochromatic electromagnetic field that is almost resonant with a couple
of atomic transitions and relatively far detuned from the others. This permits us to neglect
the off-resonant transitions and to describe the atoms as few-level systems. The transitions we
consider correspond to wavelengths of at least several centimeters, which significantly exceeds the
typical size of a BEC. Therefore, we describe the electromagnetic wave in the region of the BEC
as a homogeneous oscillating field. This is known as the long-wavelength or dipole approximation.
Typically, the electromagnetic pulses are short in comparison with the characteristic time scale
of atomic collisions [25]. We, hence, neglect the collisions and consider an ensemble of identical
independent atoms—or, actually, a single atom—interacting with the electromagnetic field.

It is often sufficient to consider only the electric component of the electromagnetic field because
the coupling to the magnetic component is suppressed by the fine structure constant α ≈ 1/137.
The interaction of the atom with the electric field E can be described by −d̂ · E, where d̂ is
the atomic dipole moment [177]. However, we are concerned with transitions between atomic
states with orbital angular momentum l = 0. In this case, the dipole moment vanishes and the
transitions are driven by the oscillating magnetic field

B = B0
2 (u e−iωt +u∗ eiωt), (3.57)

where B0 > 0, and the unit vector u ∈ C3 determines the t = 0 phase and the polarization of B.
The interaction Hamiltonian becomes [191]

Ĥint = gsµBΣ̂ ·B, (3.58)

where gs ≈ 2 is the electron spin g-factor, µB is the Bohr magneton, the nuclear magneton has
been neglected, and Σ̂ denotes the electron spin operator. The ground state of 87Rb atoms
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Figure 3.3: Hyperfine structure of the electronic ground state 52S1/2 of 87Rb in a weak magnetic
field. The states are labeled by the hyperfine quantum numbers f and m, and p and q denote the
linear and quadratic Zeeman effect for f = 1, respectively. The arrows indicate typical microwave
(mw) and radio-frequency (rf) transitions and the corresponding frequencies [25, 191, 192]. The
spacing in energy E is not to scale.

corresponds to l = 0, an electron spin of s = 1/2, and a nuclear spin of i = 3/2 [29]. For l = 0 the
hyperfine spin F̂ becomes the operator sum of Σ̂ and the nuclear spin Î, such that f ∈ {1, 2} and
f = 1 in the hyperfine ground state [169, 170]. In the following we elaborate on the transitions13

indicated in Fig. 3.3. Our discussion can be easily transferred to other atomic states.

3.5.1 Microwave Coupling

In this section we model the atom as a two-level system with the ground state |g〉 ≡ |f = 1,m = 0〉
and the excited state |e〉 ≡ |f = 2,m = 0〉. The energy difference ~ω0 between |g〉 and |e〉 is in
the microwave range, see Fig. 3.3. Adding the free evolution of the internal atomic states to the
interaction Hamiltonian (3.58), we obtain

Ĥ = ~ω0|e〉〈e|+ gsµBB · Σ̂ (3.59)

= ~ω0|e〉〈e|+ gsµBB ·
[
〈g|Σ̂|g〉|g〉〈g|+ 〈e|Σ̂|e〉|e〉〈e|+ 〈g|Σ̂|e〉|g〉〈e|+ 〈e|Σ̂|g〉|e〉〈g|

]
.

To identify the matrix elements of Σ̂, we expand the states |g〉 and |e〉 in the eigenstates |ms;mi〉
of Σ̂z and Îz. The Clebsch-Gordan coefficients14 [168, 175] for s = 1/2 and i = 3/2 yield

|g〉 = − 1√
2
|1/2;−1/2〉+ 1√

2
|−1/2; 1/2〉, |e〉 = 1√

2
|1/2;−1/2〉+ 1√

2
|−1/2; 1/2〉. (3.60)

13Note that lifting the degeneracy of F̂z-eigenstates fixes the z-direction.
14We use the same conventions as in Section 3.2. Note that the Condon-Shortley convention refers to definite

directions of the x- and y-axis.
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The components of Σ̂ expressed in terms of the eigenstates |ms〉 of Σ̂z are

Σ̂x = 1
2
(
|1/2〉〈−1/2|+ |−1/2〉〈1/2|

)
,

Σ̂y = 1
2i
(
|1/2〉〈−1/2| − |−1/2〉〈1/2|

)
,

Σ̂z = 1
2
(
|1/2〉〈1/2| − |−1/2〉〈−1/2|

)
.

(3.61)

Plugging in Eqs. (3.60) and (3.61) simplifies the Hamiltonian (3.59) to

Ĥ = ~ω0|e〉〈e| −
1
2gsµBBz

[
|g〉〈e|+ |e〉〈g|

]
. (3.62)

Note that only the z-component of the magnetic field contributes to the interaction.
Typically ~ω0 � gsµBB0, where B0 is defined in Eq. (3.57). We can therefore expect that

the dynamics governed by the Hamiltonian (3.59) consist of a fast contribution due to the free
evolution of the internal atomic states and a slow contribution due to the interaction with the
magnetic field. The free evolution leaves |g〉 invariant and transforms |e〉 into e−iω0t |e〉. This
suggests to move into the rotating frame [177] with basis states |g〉 and e−iω0t |e〉 to extract the
slow evolution associated with the magnetic field. It turns out to be more convenient to choose
|g′〉 ≡ |g〉 and |e′〉 ≡ e−iωt |e〉 as the rotating basis, where ω is the frequency of the magnetic field,
see Eq. (3.57). Recall that restricting the atom to two internal states relies on a small detuning
∆ ≡ ω − ω0. Therefore, |e′〉 and e−iω0t |e〉 are equally suited to capture the fast evolution. The
change into the rotating basis is provided by the unitary operator Û = e−iωt|e〉〈e|, which satisfies
|g′〉 = Û |g〉 and |e′〉 = Û |e〉. As in Section 3.3.1, we define the Hamiltonian (3.62) in the rotating
frame, with the primes of the new basis states omitted, by

Ĥrot ≡ Û †ĤÛ + i~(∂tÛ †)Û . (3.63)

Then

Ĥrot = −~∆|e〉〈e| − 1
2gsµBBz

[
e−iωt |g〉〈e|+ eiωt |e〉〈g|

]
= −~∆|e〉〈e| − 1

4gsµBB0
(
uz e−iωt +u∗z eiωt

)[
e−iωt |g〉〈e|+ eiωt |e〉〈g|

]
,

(3.64)

where we have used Eq. (3.57) to make the time dependence of the magnetic field explicit.
Expanding the product in Eq. (3.64) shows that the terms in Ĥrot are either time-independent15

or proportional to e±2iωt. In the rotating-wave approximation (RWA), the latter, rapidly
oscillating, terms are replaced by their zero average value. This is justified by the common
interest in the relatively slow interaction dynamics. Furthermore, when neglecting all but two
internal atomic states, we have, in fact, already made an approximation very similar to the
RWA. Therefore, keeping the rapidly oscillating terms in the Hamiltonian (3.64) would be even
inconsistent [177]. Hence, we describe the magnetic microwave coupling of |g〉 = |1, 0〉 and
|e〉 = e−iωt |2, 0〉 by the time-independent Hamiltonian

ĤMW = −~∆|e〉〈e|+ ~ΩMW
2

(
e−iφ |g〉〈e|+ eiφ |e〉〈g|

)
(3.65)

with uz ≡ |uz| eiφ and the Rabi frequency ΩMW ≡ − 1
2~gsµBB0|uz|.

15We refer here to the explicit time dependence of Ĥrot, ignoring the implicit time dependence of the rotating
basis state |e〉.

42
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Let us analyze the dynamics of a general pure atomic state cg(t)|1, 0〉+ ce(t) e−iωt |2, 0〉. The
state coefficients in the rotating frame, cg(t) and ce(t), obey the equations of motion

∂tcg = −i e−iφ ΩMW
2 ce, (3.66)

∂tce = i∆ce − i eiφ ΩMW
2 cg. (3.67)

To solve Eqs. (3.66) and (3.67), we differentiate Eq. (3.67) with respect to t and insert Eq. (3.66),
obtaining

∂2
t ce = i∆∂tce −

Ω2
MW
4 ce. (3.68)

We observe that Eq. (3.68) is equivalent to(
∂2
t − i∆∂t + Ω2

MW
4

)
ce =

(
∂t − i

∆
2 + i

Ω̃MW
2

)(
∂t − i

∆
2 − i

Ω̃MW
2

)
ce = 0 (3.69)

with Ω̃MW ≡
√

Ω2
MW + ∆2. Equation (3.69) is satisfied by any solution of(
∂t − i

∆
2 + i

Ω̃MW
2

)
ce = 0 or

(
∂t − i

∆
2 − i

Ω̃MW
2

)
ce = 0. (3.70)

Therefore, we can set
ce(t) = ei∆t/2

(
α eiΩ̃MWt/2 +β e−iΩ̃MWt/2

)
(3.71)

with α, β ∈ C and obtain cg(t) by integrating Eq. (3.66). Expressing the coefficients α and β
through the initial conditions cg(0) and ce(0) leads on to the Rabi oscillation

cg(t) = ei∆t/2
[
cg(0) cos Ω̃MWt

2 − i

Ω̃MW

(
∆cg(0) + e−iφ ΩMWce(0)

)
sin Ω̃MWt

2

]
,

ce(t) = ei∆t/2
[
ce(0) cos Ω̃MWt

2 + i

Ω̃MW

(
∆ce(0)− e+iφ ΩMWcg(0)

)
sin Ω̃MWt

2

]
.

(3.72)

In the particular case of a 2π pulse, i. e., a pulse with duration T = 2π/Ω̃MW,

cg(T ) = − eiπ∆/Ω̃MW cg(0), ce(T ) = − eiπ∆/Ω̃MW ce(0). (3.73)

Note that
∆

Ω̃MW
= ∆√

Ω2
MW + ∆2

(3.74)

can, in principle, attain any value between ±1. Values close to ±1 require a sufficiently large |∆|
or a sufficiently small Ω̃MW. Recall that we have assumed both a small detuning—to restrict
the atom to two internal states, and a large Ω̃MW—to neglect the atomic collisions during
the electromagnetic pulse. If ∆/Ω̃MW ≈ 1 is accessible without violating these assumptions,
a 2π microwave pulse can be used to arbitrarily set the phase of cg. This is pointless if the
atom is, indeed, in the two-level superposition cg(t)|1, 0〉+ ce(t) e−iωt |2, 0〉 because, according
to Eq. (3.73), the interaction merely changes the global phase of the state. However, if the
superposition comprises further internal atomic states, the 2π microwave pulse allows to tune
the relative phase between cg and ce on the one and all other coefficients on the other hand.
Particularly, a superposition |ψ〉 of the internal states |1,m〉 gets transformed into eiθ|1,0〉〈1,0| |ψ〉
with θ = π(1 + ∆/Ω̃MW). The corresponding collective operator is eiθN̂0 , cf. Section 3.4.
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3.5.2 Radio-Frequency Coupling
We consider now the three internal atomic states |1,m〉 with m ∈ {1, 0,−1}. Their free evolution
obeys

Ĥ0 = (−p+ q)|1, 1〉〈1, 1|+ (p+ q)|1,−1〉〈1,−1|, (3.75)
where p and q are the linear and quadratic effective Zeeman shift, respectively. We assume
that |p| � |q| and ~ω ≈ p, such that the electromagnetic field almost resonantly couples |1, 0〉
to |1,±1〉, see Fig. 3.3. This implies that ω is in the radio-frequency range. The Hamiltonian
including the interaction with the magnetic field is

Ĥ = Ĥ0 + gsµBΣ̂ ·B

=
(
−p+ q − 1

4gsµBBz

)
|1, 1〉〈1, 1|+

(
p+ q + 1

4gsµBBz

)
|1,−1〉〈1,−1|

− 1
4
√

2
gsµB

(
Bx
[
|1, 0〉〈1, 1|+ |1, 0〉〈1,−1|+ |1, 1〉〈1, 0|+ |1,−1〉〈1, 0|

]
+ iBy

[
|1, 0〉〈1, 1| − |1, 0〉〈1,−1| − |1, 1〉〈1, 0|+ |1,−1〉〈1, 0|

])
,

(3.76)

where we have again used the Clebsch-Gordan coefficients to evaluate the matrix elements of Σ̂.
Next, we move to the rotating frame with basis states Û |1,m〉 and Û = exp(−iωt[|1,−1〉〈1,−1|−
|1, 1〉〈1, 1|]). We apply the RWA, neglecting terms proportional to e±iωt or e±2iωt, and obtain
the time-independent Hamiltonian

ĤRF = (q + ~∆)|1, 1〉〈1, 1|+ (q − ~∆)|1,−1〉〈1,−1|

+ ~ΩRF

2
√

2

[
eiφ |1, 0〉〈1, 1|+ e−iφ |1, 0〉〈1,−1|+ e−iφ |1, 1〉〈1, 0|+ eiφ |1,−1〉〈1, 0|

] (3.77)

with ∆ ≡ ω − p/~, uxy ≡ ux + iuy ≡ |uxy| eiφ, and ΩRF ≡ − 1
4~gsµBB0|uxy|.

The collective operator arising from ĤRF is

ĤRF = (q + ~∆)N̂1 + (q − ~∆)N̂−1 + ~ΩRF
[

cos(φ)Ŝx − sin(φ)Ây
]

(3.78)

with the collective pseudospin operators Ŝx and Ây defined in Eq. (3.50). Typically, q and ~∆
are negligible with respect to ~ΩRF, such that we can use

ĤRF ≈ ~ΩRF
[

cos(φ)Ŝx − sin(φ)Ây
]
. (3.79)

Note that

cos(φ)Ŝx − sin(φ)Ây = cos(φ)L̂x − sin(φ)L̂y = eiφL̂z L̂x e−iφL̂z = e−iφD̂ L̂x eiφD̂, (3.80)

where we have used the definition of L̂ in Eq. (3.50) and the transformation rule in Eq. (3.55). For
∆ = 0 the rotating frame of ĤRF coincides with the rotating frame in which we have expressed
the Hamiltonian (3.33) for the spin degrees of freedom of the BEC.
Let us remark that the direct transition between |1, 1〉 and |1,−1〉 is forbidden because

〈1, 1|Σ̂α|1,−1〉 = 0 for all α ∈ {x, y, z}. This complicates the experimental realization of the
pseudospin operators Ĵx/y, which we have introduced in Eq. (3.50) along with Ŝ and Â. Similarly
to Ref. [113], the states |1,±1〉 can be coupled via |2, 0〉. In general, this method requires
circularly polarized microwave radiation to avoid cross-couplings. The necessary experimental
techniques have been demonstrated in Ref. [191]. Alternatively, |1,±1〉 may be coupled by a
stimulated Raman transition [177].
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3.6 Atom Loss
We are interested in the preparation of highly entangled quantum states. Such states can be
very sensitive to particle loss. Therefore, it is essential to model the atom loss experienced by a
BEC. Typical sources of atom loss are elastic collisions with the background gas in the vacuum
chamber and inelastic collisions within the Bose gas [193]. We assume that the thermal fraction
of the BEC is negligible. Collisions involving k condensed atoms lead to a depletion of the total
atom number N according to

d
dtN = −Gk〈nk−1〉N ≡ −ΓkN, (3.81)

where n(r) ≡ N |ψ(r)|2 denotes the particle density of the BEC, 〈nk−1〉 ≡
∫

d3r |ψ(r)|2[n(r)]k−1,
and Γk is called the k-body loss rate. Γ1 = G1 depends on the vacuum quality and can, in
principle, be made arbitrarily small as technology advances. Conversely, the rate constants Gk 6=1
depend only on the condensed species. Both loss rates and rate constants can be determined
experimentally [194, 195]. Recall that we consider weakly interacting, dilute Bose gases. Therefore,
we have to account only for few-body collisions. For a BEC confined in an optical trap, inelastic
collisions involve at least three atoms. Two of them form a dimer and release a binding energy
that suffices to expel the dimer and the third atom from the trap. The additional atom is
indispensable for momentum conservation16.

A BEC that experiences atom loss is an open quantum system [196, 197]. Its density matrix ρ̂
can be obtained from the total density matrix ρ̂tot of the BEC and its environment by taking
the partial trace over the environmental degrees of freedom, ρ̂ = Trenv[ρ̂tot]. The evolution of
a reduced density matrix is given by a completely positive trace-preserving (CPTP) map. We
assume that the CPTP map has the Markov property, which means that d

dt ρ̂(t) does not depend
on ρ̂(t′) with t′ 6= t. This assumption is reasonable if the environment retains information on
ρ̂(t′ < t) only on a time-scale where ρ̂(t′) ≈ ρ̂(t). A Markovian evolution obeys a master equation
in Lindblad form [198, 199]:

d
dt ρ̂ = 1

i~
[Ĥ, ρ̂]− 1

2
∑
l

{
L̂†l L̂l, ρ̂

}
+
∑
l

L̂lρ̂L̂
†
l , (3.82)

where Ĥ is Hermitian, the L̂l are called Lindblad operators, all operators may depend on time,
and {·, ·} denotes the anticommutator. In the absence of Lindblad operators, Eq. (3.82) reduces
to the Schrödinger equation with the Hamilton operator Ĥ. In fact, we can identify Ĥ with the
Hamiltonian of the BEC under fairly general assumptions, regarding mainly the weak coupling
of the BEC to its environment. The Lindblad operators accounting for one-body loss with a
spin-independent loss rate Γ are L̂m =

√
Γâm [200].

Equation (3.82) can be addressed by different numerical methods [201]. One of the most
prominent techniques for computing the dynamics of ρ̂ is the Monte-Carlo wave-function (MCWF)
or quantum jump method introduced in Ref. [200]. The central strength of the MCWF method is
that it subsequently propagates individual wave functions instead of directly processing an entire
density matrix. Therefore, the computational cost scales just linearly with the dimensionality of
the Hilbert space. Furthermore, the method is particularly suited for parallelization.
Recall that any density matrix is an ensemble of pure states, ρ̂ =

∑
k pk|ψk〉〈ψk|. Since

Eq. (3.82) is linear in ρ̂, it is sufficient to discuss the evolution of an arbitrary pure state
ρ̂(0) = |ψ(0)〉〈ψ(0)|. We discretize the time into steps of length ∆t. Each step begins with
16In a magnetic trap, atoms can be also lost by two-body spin relaxation.
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computing the quantum jump probabilities jl(t) ≡ 〈ψ(t)|L̂†l (t + ∆t/2)L̂l(t + ∆t/2)|ψ(t)〉∆t
and j(t) ≡

∑
l jl(t). Note that ∆t should be chosen such that j(t) � 1. We introduce the

unnormalized state |φ(t+ ∆t)〉 and set, with probability 1− j(t),

|φ(t+ ∆t)〉 = exp
[
−
(
iĤ(t+ ∆t/2)

~
+
∑
l L̂
†
l (t+ ∆t/2)L̂l(t+ ∆t/2)

2

)
∆t
]
|ψ(t)〉

≡ e−iĤeff(t+∆t/2)∆t/~ |ψ(t)〉.
(3.83)

With probability jl(t) we, instead, apply the respective quantum jump,

|φ(t+ ∆t)〉 = L̂l(t+ ∆t/2)|ψ(t)〉. (3.84)

We obtain |ψ(t+ ∆t)〉 by normalizing |φ(t+ ∆t)〉. The stochastic evolution of |ψ(0)〉 is repeated
r times, yielding r independent |ψk(t)〉 and, finally,

ρ̂(t) = 1
r

∑
k

|ψk(t)〉〈ψk(t)|. (3.85)

Let us confirm that, for r → ∞ and ∆t → 0, ρ̂(t) in Eq. (3.85) solves the Lindblad equa-
tion (3.82). It is sufficient to consider the step from a pure initial state ρ̂(0) to ρ̂(∆t). For r →∞,
the MCWF method yields

ρ̂(∆t) = 1− j(0)
Tr[ρ̂(0) eiĤ

†
eff(∆t/2)∆t/~ e−iĤeff(∆t/2)∆t/~]

e−iĤeff(∆t/2)∆t/~ ρ̂(0) eiĤ
†
eff(∆t/2)∆t/~

+
∑
l

jl

Tr[ρ̂(0)L̂†l (∆t/2)L̂l(∆t/2)]
L̂l(∆t/2)ρ̂(0)L̂†l (∆t/2)

= ρ̂(0) + 1
i~

[Ĥ(∆t), ρ̂(0)] ∆t− 1
2
∑
l

{
L̂†l (∆t/2)L̂l(∆t/2), ρ̂(0)

}
∆t

+
∑
l

L̂l(∆t/2)ρ̂(0)L̂†l (∆t/2) ∆t+O(∆t2).

(3.86)

Taking the limit ∆t→ 0 of (ρ̂(∆t)− ρ̂(0))/∆t reproduces the Lindblad equation (3.82).
Let us conclude by focusing on the spin-independent one-body loss from a spin-1 BEC, for which

L̂m =
√

Γâm with m ∈ {1, 0,−1}. The stochastically evolving wave function |ψ(t)〉 remains,
at any time, an eigenstate of the particle number operator N̂ , N̂ |ψ(t)〉 = N(t)|ψ(t)〉. The
jump probabilities are jm(t) = Γ〈ψ(t)|N̂m|ψ(t)〉∆t and j(t) =

∑
m jm(t) = ΓN(t)∆t. Explicitly

normalizing the states |φ(t+ ∆t)〉 in Eqs. (3.83) and (3.84) yields

|ψ(t+ ∆t)〉 = exp
[
−iĤ(t+ ∆t/2)∆t/~

]
|ψ(t)〉 (3.87)

in the absence of a quantum jump and

|ψ(t+ ∆t)〉 = âm√
〈ψ(t)|N̂m|ψ(t)〉

|ψ(t)〉 (3.88)

otherwise. The operator Ĥ(t) in Eq. (3.87) refers to the Hamiltonian (3.33) for the spin degrees
of freedom of the BEC with potentially time-dependent parameters.
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3.7 Mean-Field Limit
The mean-field limit [202–207] is the limit of an infinite particle number N . It provides a classical
model for a BEC of N →∞ particles. This model captures central properties of a BEC with
N � 1. Furthermore, phase transitions can be defined via singularities in the mean-field limit.
As before, we consider only the spin degrees of freedom. More precisely, we focus on the

Hamiltonian density

ĥ ≡ Ĥ

N
− q

2

= q

N

(
N

2 − N̂0

)
+ c

N2

[
â†20 â1â−1 + â†1â

†
−1â

2
0 + N̂0

(
N̂1 + N̂−1 + 1

2

)
+ D̂2

2

]
,

(3.89)

where Ĥ is the Hamiltonian (3.33) and we have subtracted q/2 for computational convenience.
We introduce a separable basis of the N -particle Hilbert space HN , see Section 3.7.1, and
subsequently study the N → ∞ limit of expectation values in the basis states. This yields a
mean-field Hamiltonian (Section 3.7.2), from which we can compute the density of states (DOS,
Section 3.7.3), the equations of motion (EOMs, Section 3.7.4), and the dynamics (Section 3.7.5) in
the mean-field limit. Wherever possible, we discuss the general case of bosons with (pseudo-)spin
j ∈ N0/2 before specializing to the Hamiltonian density (3.89).

We closely follow our supplemental material for Ref. [208].

3.7.1 Coherent States
Any pure state of a single (pseudo-)spin-j boson is of the form

|α〉 ≡
j∑

m=−j
αm|j,m〉, (3.90)

where α ∈ C2j+1 comprises the αm and
∑
m |αm|2 = 1. Our mean-field limit relies on the

N -boson coherent states [188, 207]

|α, N〉 ≡ |α〉⊗N = 1√
N !

(∑
m

αmâ
†
m

)N
|0〉. (3.91)

We will often use the parameterization αm ≡
√
nm eiφm with nm ≥ 0, φm ∈ Rmod 2π, and∑

m |αm|2 =
∑
mnm = 1.

Let us review some properties of the coherent states |α, N〉. They are, by definition, pure
symmetric product states and therefore exactly the pure separable states of an N -boson system.
Direct computation reveals that

âm|α, N〉 =
√
Nαm|α, N − 1〉. (3.92)

Crucially, the coherent states form a basis of the N -particle Hilbert space HN , since

CN

∫
Dα |α, N〉〈α, N | = 1N with

Dα ≡ 1
(2π)2j+1

∏
m

dnmdφm δ
(∑

m

nm − 1
)
, CN = (N + 2j)!

N ! .
(3.93)

47



3 Spin-1 Bose-Einstein Condensates

1N denotes the identity operator on HN . To confirm the resolution of the identity, we recall
the Fock states |Nj , Nj−1, . . . , N−j〉, which are labeled by the eigenvalues Nm of N̂m. The Fock
states with

∑
mNm = N form an orthonormal basis of HN . Therefore, Eq. (3.93) holds if and

only if

CN

∫
Dα 〈Nj , Nj−1, . . . , N −

j∑
m=−j+1

Nm|α, N〉〈α, N |N ′j , N ′j−1, . . . , N −
j∑

m=−j+1
N ′m〉 =

∏
m

δNm,N ′m .

(3.94)
The integral can be evaluated with the help of Eq. (3.92) and generalized spherical coordinates.
The coherent basis is overcomplete, as can be concluded from its cardinality. The definition (3.91)
of |α, N〉 immediately entails that coherent states with the same N are connected by collective
unitary transformations, cf. Section 3.4.

3.7.2 Limit of Expectation Values
We want to study

lim
N→∞

〈α, N |Â|α, N〉 (3.95)

for operators Â that act on the Fock space HF and satisfy [Â, N̂ ] = 0. In general, this limit does
not exist. We focus on operators from the set A:

Definition 1. Â : HF → HF is an element of A if the restrictions of Â to HN with N ∈ N0,
ÂN : HN → HF, satisfy:

1. Â0 = 0.

2. The ÂN with N ≥ 1 are given by a polynomial in â†mâl/N with coefficients ck(N).

3. ∀k ∃dk ∈ R, ek ∈ C : |ck(N)| ≤ dk ∀N and limN→∞ ck(N) = ek.

Let us review some properties of A:

Lemma 2.

1. A is a C-algebra with the usual addition and multiplication of operators.

2. Â ∈ A ⇒ [Â, N̂ ] = 0 and ÂN : HN → HN .

3. Â, B̂ ∈ A ⇒ N̂ [Â, B̂] ∈ A.

4. Â ∈ A ⇒ ∃c ∈ R : ‖ÂN‖ ≤ c ∀N , where ‖·‖ denotes the spectral norm.

Proof.

1. The algebra axioms can be easily verified.

2. [â†mâl, N̂ ] = 0.

3. To confirm the third property in Definition 1, one may iteratively apply

[D̂Ê, F̂ ] = [D̂, F̂ ]Ê + D̂[Ê, F̂ ] and [D̂, ÊF̂ ] = [D̂, Ê]F̂ + Ê[D̂, F̂ ], (3.96)

which holds for any operators D̂, Ê, and F̂ . This yields a finite number of terms, each
of which contains a single elementary commutator, [âm/

√
N, â†l /

√
N ] = δml/N . The

coefficients of these terms have the desired property.
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3.7 Mean-Field Limit

4. ‖·‖ is sub-additive and sub-multiplicative, and the norm of â(†)
m restricted to HN equals

√
N .

Hence, c can be chosen to be the (finite) sum of the dk introduced in the third property in
Definition 1.

The mean-field limit of expectation values can be expressed in terms of the mean-field symbol:

Definition 2. Let us first substitute the âm and â†m in the restriction ÂN , N ≥ 1, of Â ∈ A by√
Nαm and

√
Nα∗m, respectively, and then take the limit N → ∞. This yields the mean-field

symbol Amf(α).

To evaluate limN→∞〈α, N |Â|α, N〉 for Â ∈ A, we first consider the normal ordering :Â : of Â.
Applying Eq. (3.92) and using that limN→∞

N−k
N = 1 for k ∈ N0, we obtain

lim
N→∞

〈α, N | :Â : |α, N〉 = Amf(α). (3.97)

Note that, since the αm commute, it does not matter whether we derive the mean-field symbol
from :Â : or Â. The scaling of [âm/

√
N, â†m/

√
N ] = 1/N with N entails that limN→∞〈α, N |Â− :

Â : |α, N〉 = 0. This leads to the following

Lemma 3. For Â, B̂ ∈ A,

1. limN→∞〈α, N |Â|α, N〉 = Amf(α),

2. limN→∞〈α, N |ÂB̂|α, N〉 = Amf(α)Bmf(α).

We will also encounter operators that are constructed from elements of A but do not belong
to A. We can evaluate the mean-field limit of such operators with the help of the following

Theorem 1 (Tannery [209]). Consider the sequence ak(n) ∈ C with k ∈ N0, n ∈ N and assume
that for any k there are bk, ck such that limn→∞ ak(n) = bk, |ak(n)| ≤ ck ∀n, and

∑
k ck < ∞.

Then limn→∞
∑
k ak(n) =

∑
k bk.

Let us summarize some useful mean-field limits:

Lemma 4. We consider arbitrary Â, B̂, Ĉ ∈ A, z ∈ C, and f ∈ C(A), where C(A) denotes the
(not explicitly N -dependent) complex analytic functions on A. Then

1. limN→∞〈α, N | ezÂ |α, N〉 = ezAmf(α),

2. limN→∞〈α, N |f(Â)|α, N〉 = f(Amf(α)),

3. limN→∞〈α, N | ezNÂ B̂ e−zNÂ |α, N〉 =
∑
k
zk

k!K
(k)
mf (α)

with K̂(0) ≡ B̂, K̂(k) ≡ N [Â, K̂(k−1)],

4. limN→∞〈α, N | ezNÂ B̂Ĉ e−zNÂ |α, N〉
=
(
limN→∞〈α, N | ezNÂ B̂ e−zNÂ |α, N〉

) (
limN→∞〈α, N | ezNÂ Ĉ e−zNÂ |α, N〉

)
.

Proof.

1. We know from Lemma 3 that limN→∞〈α, N |Âk|α, N〉 = Akmf(α) ∀k ∈ N0. Tannery’s
theorem ensures that we can pull the N → ∞ limit into the exponential series. Its
assumptions are fulfilled since, by Property 4 in Lemma 2, there is some c ∈ R such that
|〈α, N |Âk|α, N〉| ≤ ck ∀N , and

∑
k
|zc|k
k! = e|zc| is finite.
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3 Spin-1 Bose-Einstein Condensates

2. The preceding proof can be immediately generalized to arbitrary f ∈ C(A).

3. This result relies on the BCH formula (3.52) and Tannery’s theorem. The key step is
to demonstrate that we can find a suitable N -independent bound on ‖K̂(k)‖. First, we
construct upper bounds cA and cB on ‖Â‖N and ‖B̂‖N as suggested in the proof of
Property 4 in Lemma 2. Iteratively applying the relation (3.96), we find that ‖K̂(k)‖ ≤
2rBcB(2rAcA)k, where rA and rB are the polynomial degrees of Â and B̂, respectively.

4. Using Eq. (3.96) and Lemma 3 we observe that

K
(n)
mf [B̂Ĉ] =

n∑
l=0

(
n

l

)
K

(l)
mf [B̂]K(n−l)

mf [Ĉ], (3.98)

where the argument of K(k)
mf specifies the operator K̂(0), and K̂(k) ensues inductively as

defined in the preceding result. Then the desired result follows from the preceding one.

When constructing an entire mean-field model, we require that the Hamiltonian density is
a Hermitian element of A. This is indeed the case for our Hamiltonian density (3.89). By
Definition 2 the mean-field symbol hmf of ĥ, which we usually call the mean-field Hamiltonian, is

hmf
|c|

= ξ(1− 2n0)

+ sg(c)n0

[
1− n0 +

√
(1− n0)2 − (n1 − n−1)2 cos(2φ)

]
+ sg(c)

2 (n1 − n−1)2,

(3.99)

where we have introduced ξ ≡ q
2|c| , φ ≡ φ0 − (φ1 + φ−1)/2, and sg(c) ≡ c/|c|. The conservation

of Î ≡ (−1)N̂0 by the Hamiltonian density (3.89) gives rise to the symmetry hmf(φ± π) = hmf(φ)
of the mean-field Hamiltonian. Furthermore, we observe that hmf(−φ) = hmf(φ). Since we will
mainly consider n1 = n−1, we immediately add that this simplifies hmf to

hmf
|c|

= ξ(1− 2n0) + sg(c) 2n0(1− n0) cos2(φ). (3.100)

Note that, for n1 = n−1, positive and negative values of ξ turn out to be related by hmf(−ξ, 1−
n0) = hmf(ξ, n0).

3.7.3 Density of States
We denote the energy per particle by ε and define the DOS νN (ε) in the N -particle Hilbert space
HN by way of its Fourier transform:

F [νN ](ζ) ≡
∫

dε eiζε νN (ε) ≡ TrN eiζĥ, ζ ∈ R, (3.101)

where the trace is taken over HN and ĥ ∈ A is a Hermitian Hamiltonian density. To obtain the
DOS in the mean-field limit, we argue that

lim
N→∞

1
N2j TrN eiζĥ = lim

N→∞

CN
N2j

∫
Dα 〈α, N | eiζĥ |α, N〉 (3.102a)

=
∫
Dα eiζhmf(α) (3.102b)

=
∫

dε eiζε
∫
Dα δ(hmf(α)− ε) (3.102c)
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3.7 Mean-Field Limit

and conclude that
lim
N→∞

νN (ε)
N2j =

∫
Dα δ(hmf(α)− ε). (3.103)

In the following we comment on some details of this derivation.
First of all, note that νN (ε) is well defined by Eq. (3.101). For any N , the inverse Fourier

transform of TrN eiζĥ is a unique tempered distribution, νN ∈ S ′(R).
Next, we discuss each step of Eq. (3.102). Equality (3.102a) follows from the resolution of the

identity (3.93) in terms of coherent states:

TrN Â = TrN
[
CN

∫
Dα |α, N〉〈α, N | · Â

]
= CN

∫
Dα 〈α, N |Â|α, N〉 (3.104)

for any operator Â.
Equality (3.102b) comprises several steps. First, we note that limN→∞CN/N

2j = 1. Second,
we apply Result 1 of Lemma 4 to the integrand:

lim
N→∞

〈α, N | eiζĥ |α, N〉 = eiζhmf(α) (3.105)

The third and last step employs Lebesgue’s dominated convergence theorem:

Theorem 2 (Lebesgue [210]). Let fn : U ⊂ Rd → C, n ∈ N be Lebesgue integrable functions
which, for n → ∞, converge pointwise to a function f and are dominated by some Lebesgue
integrable function g, i. e., |fn(x)| ≤ g(x) ∀n ∈ N, x ∈ U . Then f is integrable and

lim
n→∞

∫
U

dx fn(x) =
∫
U

dx f(x). (3.106)

This theorem allows us to interchange the N → ∞ limit with the integration. To check the
assumptions of the theorem it is helpful to note that the domain of integration is compact,
〈α, N | eiζĥ |α, N〉 is a continuous function of α, and that |〈α, N | eiζĥ |α, N〉| ≤ ‖eiζĥN ‖ ≤ 1 ∀N .
The last step of Eq. (3.102), Equality (3.102c), is essentially a change of variables. Some

caution is needed at values of α where the gradient of hmf(α) vanishes. For measurable sets of
α with hmf(α) = c the equality can be proven directly. Measure-zero sets with ∇hmf(α) = 0,
e. g., isolated stationary points of hmf , can be excluded from the integration.

Finally, to arrive at Eq. (3.103) we demonstrate that, for any sequence of tempered distributions
fN ∈ S ′(R),

lim
N→∞

fN = f ⇔ lim
N→∞

F [fN ] = F [f ]. (3.107)

Since the fN are distributions, we can demand convergence only in the following weak sense:

lim
N→∞

fN = f ⇔ lim
N→∞

∫
dx fN (x)t(x) =

∫
dx f(x)t(x) (3.108)

for all test functions t ∈ S(R). Similarly, the Fourier transform of any g ∈ S ′(R) is defined by∫
dxF [g](x)t(x) ≡

∫
dx g(x)F [t](x) ∀t ∈ S(R). (3.109)

Since the Fourier transformation is an automorphism on S(R), we can replace the arbitrary test
function t(x) in Eq. (3.108) by its Fourier transform F [t](x). This connects Eq. (3.108) with
Eq. (3.109) and yields Eq. (3.107).
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3 Spin-1 Bose-Einstein Condensates

3.7.4 Equations of Motion

We consider the Heisenberg representation [168] ÂH(t) ≡ eiĤt/~ Â e−iĤt/~ of a Hermitian, not
explicitly time-dependent operator Â ∈ A. As before, we assume that the Hamiltonian Ĥ
corresponds to a Hermitian Hamiltonian density ĥ ∈ A, Ĥ = N̂ ĥ. The Heisenberg EOM for
〈α, N |ÂH(t)|α, N〉 reads

d
dt〈α, N |ÂH(t)|α, N〉 = i

~
〈α, N |[Ĥ, ÂH(t)]|α, N〉. (3.110)

This section contains three results. We demonstrate that

lim
N→∞

〈α, N |ÂH(t)|α, N〉 = Amf(αt), (3.111)

where α0 ≡ α and αt comprises αm(t) ≡
√
nm(t) eiφm(t) with nm(t) ≥ 0, φm(t) ∈ Rmod 2π, and∑

m nm(t) = 1. Furthermore, we prove that the dynamics of Amf(αt) is governed by

d
dtAmf(αt) = i

~
Kmf(αt) with K̂ ≡ [Ĥ, Â]. (3.112)

We conclude with the mean-field EOMs for the Hamiltonian density (3.89).
To derive Eq. (3.111), we recall that Â is a polynomial in â†mâl/N with coefficients ck(N),

see Definition 1. Let us introduce λ̂(ml) ≡ â†mâl/N and λml(t) ≡ limN→∞〈α, N |λ̂(ml)
H (t)|α, N〉.

According to Result 4 of Lemma 4, limN→∞〈α, N |ÂH(t)|α, N〉 is a polynomial in λml(t) with
coefficients limN→∞ ck(N). We argue now that λml(t) can be parameterized, without loss of
generality, by

√
nm(t)nl(t) e−i(φm(t)−φl(t)). At t = 0 this parametrization is obviously correct.

For m = l, λmm(t) = nm(t) is a valid parameterization since λmm(t) ≥ 0 and
∑
m λmm(t) =

limN→∞
1
N 〈α, N |N̂H(t)|α, N〉 = 1. Employing, again, Result 4 of Lemma 4, we find

λml(t)λlm(t) = lim
N→∞

〈α, N |λ̂(ml)
H (t)λ̂(lm)

H (t)|α, N〉

= lim
N→∞

〈α, N |λ̂(mm)
H (t)λ̂(ll)

H (t) + λ̂
(mm)
H (t)/N |α, N〉 = nm(t)nl(t).

(3.113)

Together with λml(t) = λ∗lm(t) this entails |λml(t)| = |λlm(t)| =
√
nm(t)nl(t). The phases

of all λml(t) with m 6= l can be deduced from the phases of λ0l(t) by using the relations
λml(t) = λ∗lm(t) and λml(t)λlk(t)λkm(t) = nm(t)nl(t)nk(t) ∈ R. The parameterization λml(t) =√
nm(t)nl(t) e−i(φm(t)−φl(t)) reflects these relations without constraining the λml(t) any further.
To obtain the mean-field EOM (3.112), we take the N →∞ limit of Eq. (3.110). In any time

interval [t1, t2], we can interchange the limit with the time derivative thanks to the following

Theorem 3. [211] Let fn : [a, b] → R, n ∈ N be continuously differentiable functions which,
for n → ∞, converge pointwise to f . Let the sequence of derivatives f ′n : [a, b] → R converge
uniformly. Then f is differentiable and

f ′(x) = lim
n→∞

f ′n(x) ∀x ∈ [a, b]. (3.114)

The right-hand side (RHS) of Eq. (3.110) is continuous in t. Let us prove that it uniformly
converges for N →∞. According to Result 3 of Lemma 4 the pointwise limit of

fN (t) ≡ 〈α, N |[Ĥ, ÂH(t)]|α, N〉 =
∑
k

(it/~)k

k! 〈α, N |K̂(k+1)|α, N〉 (3.115)
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3.7 Mean-Field Limit

with K̂0 ≡ Â and K̂k ≡ [Ĥ, K̂(k−1)] is

lim
N→∞

fN (t) ≡ f(t) =
∑
k

(it/~)k

k! K
(k+1)
mf (α). (3.116)

It is sufficient to show that for t ∈ [t1, t2] the RHS of

|fN (t)− f(t)| ≤
∑
k

|t/~|k

k!

∣∣∣〈α, N |K̂(k+1)|α, N〉 −K(k+1)
mf (α)

∣∣∣ (3.117)

uniformly converges to zero as N →∞. Similarly to the proof of Result 3 in Lemma 4, we can
find some c, c̃ ∈ R such that

|〈α, N |K̂(k+1)|α, N〉| ≤ c̃ck ∀N ⇒
∣∣∣〈α, N |K̂(k+1)|α, N〉 −K(k+1)

mf (α)
∣∣∣ ≤ 2c̃ck ∀N. (3.118)

This allows us to apply Tannery’s theorem, which reveals that the RHS of Eq. (3.117) converges
to zero pointwise. The RHS of Eq. (3.117) is a strictly increasing function of |t|. Let us assume,
without loss of generality, that |t2| ≥ |t1|. Then, for any N , the RHS of Eq. (3.117) is absolutely
bounded by its value at t2 and the pointwise convergence to zero in t2 implies uniform convergence.

We derive the mean-field EOMs for the Hamiltonian density (3.89) by applying Eq. (3.112) to
the operators N̂0/N , (â†20 â1â−1+â†1â

†
−1â

2
0)/N2, D̂/N , (â†1â−1+â†−1â1)/N , and i(â†1â−1−â†−1â1)/N ,

obtaining [29]

d
dτ n0 =− sg(c) 2n0

√
(1− n0)2 − d2 sin(2φ) = ∂

∂φ

hmf
|c|

, (3.119a)

d
dτ φ = 2ξ − sg(c)(1− 2n0)− sg(c)(1− n0)(1− 2n0)− d2√

(1− n0)2 − d2 cos(2φ) = − ∂

∂n0

hmf
|c|

, (3.119b)

d
dτ d = 0 = ∂

∂∆φ
hmf
|c|

, (3.119c)

d
dτ∆φ =− sg(c)

(
1− n0√

(1− n0)2 − d2 cos(2φ)
)
d = − ∂

∂d

hmf
|c|

, (3.119d)

where we have introduced d ≡ n1 − n−1, ∆φ ≡ (φ1 − φ−1)/2, and the dimensionless time
τ ≡ |c|t/~. Note that the EOMs are Hamilton’s equations for the Hamiltonian function hmf/|c|
of the generalized coordinates n0, d and conjugate momenta φ,∆φ. This is, indeed, a general
result [204, 205]. The mean-field conservation of d reflects the quantum conservation of D̂. For
d = 0 the EOMs become

d
dτ n0 =− sg(c) 4n0(1− n0) cos(φ) sin(φ) = ∂

∂φ

hmf
|c|

, (3.120a)

d
dτ φ = 2ξ − sg(c) 2(1− 2n0) cos2(φ) =− ∂

∂n0

hmf
|c|

, (3.120b)

d
dτ d = 0 = ∂

∂∆φ
hmf
|c|

, (3.120c)

d
dτ∆φ = 0 = − ∂

∂d

hmf
|c|

. (3.120d)
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3.7.5 Dynamics
The EOM for n0, Eq. (3.119a), can be solved analytically [29, 149]. The dynamics conserves the
relative energy η,

hmf
|c|

= ξ(1− 2n0) + sg(c)n0

[
1− n0 +

√
(1− n0)2 − d2 cos(2φ)

]
+ sg(c)

2 d2 = η (3.121)

and d
dτ η = 0. Equation (3.121) serves us to bring the square of Eq. (3.119a) into the form( d

dτ n0

)2
= − sg(c) 16ξ(n0 − z1)(n0 − z2)(n0 − z3). (3.122)

We deliberately set z1 ≤ z2 ≤ z3.
According to Refs. [29, 149],

n0(τ) =

z2 + (z3 − z2) cn2
(
2
√
|ξ|(z3 − z1)τ + u, z3−z2z3−z1

)
for ξc > 0,

z2 − (z2 − z1) cn2
(
2
√
|ξ|(z3 − z1)τ + v, z2−z1z3−z1

)
for ξc < 0,

(3.123)

where cn(w; k2) is the Jacobi elliptic cosine and u, v account for the initial conditions. One can
easily verify that Eq. (3.123) solves Eq. (3.122).

The evolution of n0 is periodic with period

T =


1√

|ξ|(z3−z1)
K
(
z3−z2
z3−z1

)
for ξc > 0,

1√
|ξ|(z3−z1)

K
(
z2−z1
z3−z1

)
for ξc < 0,

(3.124)

where K(k2) =
∫ π/2

0 dγ
√

1− k2 sin2γ
−1 is the complete elliptic integral of the first kind.
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4 Ground-State Quantum Phase Transitions

Quantum-state engineering can clearly benefit from classifying the accessible states of matter. A
phase diagram categorizes the states of a given system into phases [212]. Assume that we can
prepare a certain type of states—e. g., thermal equilibrium states or Hamiltonian eigenstates, and
that we can manipulate the preparation by specifying the values of some control parameters—e. g.,
Hamiltonian coefficients or temperature. Each control parameter defines an axis of the phase
diagram. To divide the states corresponding to different points of the phase diagram into phases,
one has to specify the defining signatures of phase transitions1. With engineering in mind, it
is natural to group the states by common properties. This is formalized by order parameters—
quantities that qualitatively distinguish different subsets of states. A typical order parameter
is zero in one phase and non-zero in an adjacent phase. Particularly often, phase transitions
are defined by singularities of thermodynamic potentials. Another important signature relies
on the observation that a point of the phase diagram may correspond to an entire state space
instead of a single state. Changes in the dimensionality of the state space can be identified with
phase transitions [213]. Note that, strictly speaking, phase diagrams are defined only for infinite
systems. However, sufficiently large systems are usually well described by this limit.
Ground-state quantum phase transitions [40]—usually called just quantum phase transitions

(QPTs)—classify the ground state of a quantum system depending on a set of control parameters.
In phase diagrams for thermal equilibrium states, ground-state QPTs are phase transitions at
zero temperature. There are various reasons for the interest in ground states. The thermal state
at temperature T of a system with Fermi temperature TF � T is well approximated by the T = 0
state. This applies, particularly, to metals at room temperature. Moreover, ground states play
a central role in the field of quantum-state engineering. In general, the states at our disposal
are thermal with T > 0. It is conceptually clear that cooling ultimately transforms a thermal
state into the ground state. In contrast to thermal states, ground states are pure. Thus, they
exhibit quantum but no classical fluctuations, which is an obvious advantage when aiming at
high experimental control. Dealing with ground states is also facilitated by their stationarity.
Finally, ground states cannot decay—e. g., by spontaneous emission—into eigenstates of lower
energy.

Let us concretize the above signatures of phase transitions for the case of ground-state QPTs:
we focus on order parameters, singularities of ground-state energy, and changes of ground-state
degeneracy. If the low-lying energy spectrum is discrete, an increase in ground-state degeneracy
is associated with a closing gap between the lowest and the next higher eigenenergy. Often,
a Hamiltonian symmetry is spontaneously broken in one phase and respected by the ground
states in the other. This leads to a higher ground-state degeneracy throughout the phase with
symmetry breaking. The symmetry operator can be used to define an order parameter. However,
symmetry breaking is not necessary for QPTs, and the degeneracy may differ only at the QPT
itself.
Quantum phases give an overview of the available ground-state properties. However, they

can also be directly employed for quantum-state engineering. Imagine that it is experimentally
feasible to prepare a ground state in phase A, and that a ground state in phase B exhibits

1Different standard signatures often yield the same phases.
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some desired properties such as strong entanglement. The adiabatic theorem [34] says that an
infinitely slow change of control parameters transforms the ground state in phase A into the
ground state in phase B. Accordingly, the final state of a sufficiently slow sweep is expected to
have a high fidelity with the desired state. Adiabatic passages are widely used in different areas of
physics. Recently, numerous methods summarized under the term “shortcuts to adiabaticity” have
been developed to cope with the typically short coherence times of quantum experiments [214].
However, QPTs conflict with adiabaticity. The Landau-Zener formula reveals that a closing gap
prohibits adiabatic transitions within finite time [177, 215–218]. Luckily, finite systems feature
a residual gap that may suffice for an adiabatic passage of feasible duration. For example, the
beautiful experiment presented in Ref. [219] adiabatically takes ultracold atoms in an optical
lattice from the superfluid to the Mott insulator phase.
Spinor Bose-Einstein condensates (BECs) exhibit QPTs [29, 30] useful for quantum-state

engineering. Reference [32] proposed to generate strongly entangled states by adiabatically
crossing QPTs in spin-1 BECs with zero magnetization. A feasibility analysis revealed that
hundreds of atoms could be genuinely entangled under realistic conditions. We call the target
state in Ref. [32] the central broken-axisymmetry (CBA) state. Reference [150] reported the
adiabatic crossing of a QPT in a ferromagnetic BEC of 87Rb atoms with hyperfine spin 1. Shortly
after, a highly entangled Twin-Fock (TF) state was produced by adiabatically driving the 87Rb
BEC through two QPTs [35]. As detailed in Section 2.2.3, entanglement useful for quantum-
enhanced interferometry can be quantified by the quantum Fisher information (QFI). The QFI
of TF states exhibits Heisenberg scaling [9]. A large ground-state QFI has been, furthermore,
predicted for spin-1 BECs with antiferromagnetic interactions [220] or a large magnetization [221].
However, a complete analysis of the ground-state QFI for the experimentally relevant case of a
ferromagnetic spin-1 BEC with zero magnetization has been missing.
In the following, we review the quantum phases of a ferromagnetic spin-1 BEC with zero

magnetization (Section 4.1) and determine the ground-state FI for optimal collective unitary
phase imprinting (Section 4.2). We find that the CBA state exhibits an essentially equally large
QFI as the ground state of the TF phase. In Section 4.3, we prove that the metrological gain of
the CBA and the TF state can be accessed by counting the atoms in different spin modes, which
is a standard experimental technique. We provide some mathematical details on the CBA state in
Section 4.4. Seeking to understand the large QFI of the CBA state, we observe (Section 4.5) that
the three-mode CBA state hosts two-mode macroscopic superposition states (MSSs) resembling
NOON states. Hence, in Section 4.6 we propose two applications of the adiabatically prepared
CBA state. First, it can serve as the probe state for quantum-enhanced interferometry. Second,
it can be used for the heralded stochastic generation of MSSs. Remarkably, both proposals rely
only on existent technology and, as demonstrated in Section 4.7, are feasible under realistic
conditions. Finally, we compare the adiabatic generation of states with a large QFI to the widely
used method of quenching (Section 4.8). We conclude in Section 4.9.

The results presented in this chapter are published in Refs. [222, 223].

4.1 Phases
We consider the spin Hamiltonian from Eq. (3.33) with a ferromagnetic interaction c < 0,

Ĥ

|c|
= 2ξ(N̂1 + N̂−1)− 1

N

[
â†20 â1â−1 + â†1â

†
−1â

2
0 + N̂0

(
N̂1 + N̂−1 + 1

2

)
+ D̂2

2

]
, (4.1)
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4.1 Phases

where ξ ≡ q
2|c| and q is the effective quadratic Zeeman shift. Following Ref. [32], we assume that

the N -particle BEC is initially prepared in the separable, coherent state

|(α1 = 0, α0 = 1, α−1 = 0), N〉 = 1√
N !
â†N0 |0〉 = |N1 = 0, N0 = N,N−1 = 0〉. (4.2)

This state is a zero-magnetization eigenstate of the magnetization operator D̂ ≡ N̂1 − N̂−1,
D̂â†N0 |0〉 = Dâ†N0 |0〉 with D = 0. Recall that the spin dynamics preserves the magnetization,
[Ĥ, D̂] = 0. Therefore, we focus on the D = 0 subspace of the N -particle Hilbert space
HN . This subspace is spanned by the Fock states |N1 = k,N0 = N − 2k,N−1 = k〉 with
k ∈ {0, 1, . . . , bN/2c}.
Quantum de-Finetti theorems ensure that the ground-state |ψ(N)

0 〉 of a bosonic system with
a large particle number N is well approximated by the coherent state |α0, N〉 that minimizes
the energy density 〈α, N |Ĥ/N |α, N〉 [224]. More precisely, for an arbitrary operator Â ∈ A, see
Definition 1, ∣∣∣〈α0, N |Â|α0, N〉 − 〈ψ(N)

0 |Â|ψ(N)
0 〉

∣∣∣ ∈ O(1/N). (4.3)

Note that we are interested in the ground state within an eigenspace of the symmetry operator
D̂ with a certain eigenvalue D. It is commonly assumed that, to account for this constraint, it is
sufficient to restrict the coherent states to those with 〈α, N |D̂|α, N〉 = D [148]. The mean-field
energy density of Ĥ − qN/22 obtained from coherent states satisfying 〈α, N |D̂|α, N〉 = 0 is, see
Eq. (3.100),

hmf
|c|

= ξ(1− 2n0)− 2n0(1− n0) cos2(φ). (4.4)

Minimizing hmf as a function of 0 ≤ n0 ≤ 1 and φ ∈ [0, 2π) yields φ ∈ {0, π},

n0 =


0 for ξ ≤ −1
1
2(ξ + 1) for − 1 < ξ < 1
1 for ξ ≥ 1

, (4.5)

and the dimensionless ground-state energy density in the mean-field limit

η0 ≡ min
n0,φ

hmf
|c|

=


ξ for ξ ≤ −1
−1

2(ξ2 + 1) for − 1 < ξ < 1
−ξ for ξ ≥ 1

. (4.6)

From the above arguments we can expect that

η0 = lim
N→∞

1
|c|
〈ψ(N)

0 |Ĥ/N |ψ(N)
0 〉 − ξ, n0 = lim

N→∞
〈ψ(N)

0 |N̂0/N |ψ(N)
0 〉. (4.7)

The second ξ-derivative of η0 is discontinuous in ξ = ±1, see Fig. 4.1a. This indicates that there
are two ground-state QPTs at ξ = ±1. The relative occupation n0 of the spin state |f = 1,m = 0〉
is a suitable order parameter for these QPTs, see Fig. 4.1b.
Let us have a closer look at the ξ-dependent ground state |ψ(N)

0 〉 with N � 1. For ξ ≥ 1, we
have n0 ≈ 1 and hence |ψ(N)

0 〉 ≈ |0, N, 0〉. This coincides with the observation that for |ξ| � 1
the Hamiltonian becomes

Ĥ

|c|
≈ 2ξ(N̂1 + N̂−1), (4.8)

2Recall that we shift Ĥ by qN/2 for computational convenience.
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Figure 4.1: Ground-state quantum phases in the magnetization-free subspace of a ferromagnetic
spin-1 BEC. The control parameter is the dimensionless effective quadratic Zeeman shift ξ. There
are three phases: the TF phase for ξ < −1, the BA phase for −1 < ξ < 1, and the P phase for
ξ > 1. (a) Dimensionless ground-state energy density η0 and its derivatives with respect to ξ. The
second derivative of η0 is discontinuous at the two QPTs. (b) The ground-state expectation value
of the relative atom number n0 in the spin state |f = 1,m = 0〉 is a suitable order parameter for
the QPTs. (c) Dimensionless energy gap ∆E/|c| between the ground state and the first excited
state. For N →∞ the gap vanishes at the QPTs but remains finite everywhere else.

which is diagonal in the Fock states |k,N − 2k, k〉. For ξ > 0, the minimal eigenvalue obviously
corresponds to k = 0. The state |0, N, 0〉 is called polar (P), and the quantum phase at ξ ≥ 1 is
known as the P phase, accordingly. For ξ ≤ −1, n0 ≈ 0 entails |ψ(N)

0 〉 ≈ |N/2, 0, N/2〉 for even N
and |ψ(N)

0 〉 ≈ |bN/2c, 1, bN/2c〉 for odd N . Again, these are indeed the respective ground states
of the Hamiltonian (4.8) for ξ < 0. The quantum phase at ξ ≤ −1 is named after the TF state
|N/2, 0, N/2〉.

Between the TF and P phases, |ψ(N)
0 〉 strongly depends on the precise value of −1 < ξ < 1. In

Eq. (3.50) we have introduced the collective spin-1 operator L̂. For ξ = 0, the Hamiltonian (4.1)
becomes [176]

Ĥ

|c|
= − 1

N
L̂2. (4.9)

Since L̂z = −D̂ and the maximal eigenvalue of L̂2 is l(l + 1) with l = N , we can conclude that
|ψ(N)

0 〉 = |l = N,ml = 0〉. This state plays a central role in the present chapter.
The quantum phase at −1 < ξ < 1 is called the broken-axisymmetry (BA) phase. This name

is derived from the observation that limN→∞〈α0, N |L̂x/y/N |α0, N〉 6= 0, where α0 corresponds
to the values of n0 and φ that minimize the mean-field energy density in Eq. (4.4). A ground
state with 〈L̂x/y〉 6= 0 would break the L̂z- or, equivalently, D̂-symmetry of the Hamiltonian (4.1).
However, this is an example where the mean-field limit has to be treated with caution. Of
course, the ground state within an eigenspace of D̂ does not break the D̂-symmetry. The
contradicting mean-field result is probably due to the fact that we study an eigenspace of D̂ in
terms of coherent states which, in general, are no eigenstates of D̂. Nevertheless, we stick to the
common name of the quantum phase, and call the ground state |ψ(N)

0 〉 at ξ = 0 the CBA state
|CBA〉 ≡ |l = N,ml = 0〉.

The three ground-state quantum phases in the D = 0 subspace of a ferromagnetic spin-1 BEC
have been confirmed numerically [32] and already explored experimentally [31, 35, 150]. It has
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been particularly shown that, at ξ = ±1, the energy gap ∆E between the ground state and the
first excited state amounts to ∆E/|c| ≈ 7.4N−1/3 [32]. Thus, for N →∞ the energy gap at the
QPTs vanishes. Remarkably, at all other values of ξ the gap remains finite, cf. Fig. 4.1c. This
implies that the ground states at ξ 6= ±1 do not break any symmetry of the Hamiltonian—neither
at finite N , nor in the N →∞ limit.

4.2 Quantum Fisher Information
Second-generation quantum technologies rely on entanglement. Particularly, entangled probes
can provide quantum-enhanced interferometry, see Section 2.2.3. The CBA and TF states are
maximally entangled [32, 225]. The interferometric usefulness of entanglement can be quantified
by the QFI. Therefore, we investigate the QFI of the ground state |ψ(N)

0 〉 at arbitrary ξ.
The QFI depends on the transformation that imprints the interferometric phase θ on the

probe state ρ̂ = |ψ(N)
0 〉〈ψ(N)

0 |. We assume a collective unitary transformation: ρ̂(θ) = e−iθR̂ ρ̂ eiθR̂,
where the phase-imprinting operator R̂ is a collective generator, see Section 3.4. Since |ψ(N)

0 〉 is a
spin state of spin-1 bosons, R̂ must be a linear combination of the collective Gell-Mann operators
Êj introduced in Eq. (3.47), R̂ =

∑
j ujÊj with uj ∈ R and u ≡ (u1, . . . , u8). As discussed in

Section 2.1.6, the corresponding QFI equals

FQ = 4 uTΓu, (4.10)

where Γ is the covariance matrix with the elements

Γkl = 1
2〈ψ

(N)
0 |ÊkÊl + ÊlÊk|ψ

(N)
0 〉 − 〈ψ(N)

0 |Êk|ψ
(N)
0 〉〈ψ(N)

0 |Êl|ψ
(N)
0 〉. (4.11)

Since the QFI is proportional to ‖u‖22, we fix ‖u‖2 = 1. Then the maximal QFI is determined by
the largest eigenvalue γ of Γ, FQ = 4γ. The corresponding eigenvector u(γ) defines the optimal
phase-imprinting operator.

Our goal is, thus, to diagonalize Γ. Let us expand |ψ(N)
0 〉 in the Fock basis of the magnetization-

free subspace,
|ψ(N)

0 〉 =
∑
k

ck|k,N − 2k, k〉,
∑
k

|ck|2 = 1. (4.12)

The restriction to D = 0 entails that Γ is block diagonal:

Γ = Γ(4) ⊕ Γ(2) ⊕∆2Ê4 ⊕∆2Ê5, (4.13)

where Γ(4) and Γ(2) denote the covariance matrices of {Ê1, Ê2, Ê6, Ê7} and {Ê3, Ê8}, respectively,
and ∆2Êj is the variance of Êj .

Γ(4) has the doubly degenerate eigenvalues

λ± = A± |B| (4.14)

with

A ≡ 1
4

N +
bN/2c∑
k=0
|ck|2k(2N − 4k − 1)

,
B ≡ 1

2

bN/2−1c∑
k=0

c∗kck+1(k + 1)
√

(N − 2k)(N − 2k − 1).

(4.15)
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4 Ground-State Quantum Phase Transitions

For |B| 6= 0, the corresponding eigenvectors are

u(1)
+ = 1√

2|B|

(
Im(B), Re(B), 0 , |B|

)
,

u(2)
+ = 1√

2|B|

(
Re(B), − Im(B), |B|, 0

)
,

u(1)
− = 1√

2|B|

(
− Im(B), −Re(B), 0 , |B|

)
,

u(2)
− = 1√

2|B|

(
−Re(B), Im(B), |B|, 0

)
.

(4.16)

Note that if all ck ∈ R, Im(B) vanishes and Γ(4) further decomposes into the covariance matrices
Γ′ of {Ê1, Ê6} and Γ′′ of {Ê2, Ê7}, Γ(4) = Γ′ ⊕ Γ′′. The doubly degenerate eigenvalues

λ̃± = A±B (4.17)

then correspond to the eigenvectors

ũ(1)
+ = 1√

2
(0, 1, 0, 1), ũ(2)

+ = 1√
2

(1, 0, 1, 0),

ũ(1)
− = 1√

2
(0,−1, 0, 1), ũ(2)

− = 1√
2

(−1, 0, 1, 0).
(4.18)

If |B| = 0, Γ(4) becomes proportional to the 4-dimensional identity matrix.
The eigenvalues and eigenvectors of Γ(2) are

λ0 = 0, λ1 = 3

bN/2c∑
k=0
|ck|2k2 −

bN/2c∑
k=0
|ck|2k

2
,

u0 =
(
1,
√

3
)
, u1 =

(√
3,−1

)
.

(4.19)

Finally,

∆2Ê4 = ∆2Ê5 = 1
2

bN/2c∑
k=0
|ck|2k(k + 1). (4.20)

In the P and TF phases, the eigenvalues and eigenvectors of Γ can be easily evaluated
analytically. The P state |0, N, 0〉 corresponds to c0 = 1 and ck 6=0 = 0. Therefore, λ± = N/4
and all other eigenvalues vanish. The optimal QFI thus amounts to F (P)

Q = N and can be
attained by any R̂(P)

opt = u1Ê1 + u2Ê2 + u6Ê6 + u7Ê7 with uj ∈ R and u2
1 + u2

2 + u2
6 + u2

7 = 1.
The TF state |N/2, 0, N/2〉 with N even yields λ0 = λ1 = 0, λ± = N/8, and ∆2Ê4 = ∆2Ê5 =
N(N + 2)/8. For odd N and |bN/2c, 1, bN/2c〉, we get λ0 = λ1 = 0, λ± = (3N − 1)/8, and
∆2Ê4 = ∆2Ê5 = (N − 1)(N + 1)/8. Thus, for N � 1, the maximal QFI of the generalized TF
state |bN/2c, N − 2bN/2c, bN/2c〉 is

F
(TF)
Q =

⌊
N

2

⌋(⌊
N

2

⌋
+ 1

)
. (4.21)

Any normalized linear combination of {Ê4, Ê5} provides an optimal phase-imprinting operator,

R̂
(TF)
opt = u4Ê4 + u5Ê5, u2

4 + u2
5 = 1

= cos(ϕ)Ĵx + sin(ϕ)Ĵy ≡ Ĵϕ.
(4.22)
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Figure 4.2: Ground-state QFI FQ as a function of the control parameter ξ. The depicted QFI is
obtained for any phase-imprinting operator R̂ = cos(ϕ)R̂x + sin(ϕ)R̂y with R̂x/y given in the
legend. The solid horizontal line marks 1/2 of the HL. Dashed vertical lines indicate the QPTs.

The collective pseudospin-1/2 operator Ĵ ≡ (Ĵx, Ĵy, Ĵz) has been introduced in Eq. (3.50).
To investigate the QFI in the BA phase and confirm our analytical results for the P and

TF phases, we determine the ξ-dependent ground state |ψ(N)
0 〉 for N = 500 atoms by exact

diagonalization of Hamiltonian (4.1) in the D = 0 subspace. Then we numerically evaluate
λ̃±, λ1, and ∆2Ê4 = ∆2Ê5 for the obtained |ψ(500)

0 〉. We consider λ̃± instead of λ± because all
matrix elements 〈k,N − 2k, k|Ĥ|l, N − 2l, l〉 of the Hamiltonian Ĥ are real and, hence, also the
ground-state coefficients can be chosen as ck ∈ R. We observe that only λ̃+ and ∆2Ê4 = ∆2Ê5
exceed N . The corresponding QFI is depicted in Fig. 4.2. Note that, for both kinds of phase
imprinting, the QFI constitutes an order parameter of the two QPTs. Remarkably, λ̃+ becomes
maximal at ξ = 0, i. e., for the CBA state, where it provides a QFI of

F
(CBA)
Q = N(N + 1)

2 . (4.23)

The corresponding space of optimal phase-imprinting operators can be read off from Eq. (4.18):

R̂
(CBA)
opt = u16√

2
(Ê1 + Ê6) + u27√

2
(Ê2 + Ê7), u2

16 + u2
27 = 1

= cos(ϕ)Ŝx + sin(ϕ)Ây

= 1
2
(
cos(ϕ)L̂x + sin(ϕ)L̂y

)
≡ 1

2 L̂ϕ

(4.24)

For the definition of the collective pseudospin-1/2 operators Ŝ and Â confer, again, Eq. (3.50).
As we have seen in Section 3.5, R̂(CBA)

opt can be realized by a radiofrequency pulse that couples
the m = 0 spin state of each boson with its m = ±1 spin states.
Quantum-enhanced interferometry requires, see Section 2.2.3, that the QFI exceeds the

standard quantum limit (SQL): FQ > (r+− r−)2N . Here, r± denote the maximum and minimum
eigenvalue of the single-particle phase-imprinting operator r̂. For R̂TF

opt and R̂CBA
opt , r+ − r− = 1.

More generally, note that R̂ =
∑
j ujÊj corresponds to r̂ =

∑
j uj êj with the êj introduced in
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Eq. (3.45). For ‖u‖2 = 1, we then have

|r+ − r−| ≤ 2‖r̂‖ ≤ 2
8∑
j=1
|uj |‖êj‖ =

7∑
j=1
|uj |+

2√
3
|u8| ≤

5√
3
< 3. (4.25)

Hence, for sufficiently largeN , F (CBA)
Q and F (TF)

Q clearly exceed the SQL. Recall from Section 2.1.8
that the QFI is tightly bound from above by the Heisenberg limit (HL), FQ ≤ (r+ − r−)2N2.
Importantly, F (CBA)

Q and F
(TF)
Q exhibit Heisenberg scaling, i. e., are essentially proportional

to N2.

4.3 Optimal Measurement
We characterize an ideal interferometer, see Section 2.2.2, by the probe state ρ̂, the phase-
imprinting operator R̂, and a positive operator-valued measurement (POVM) that is applied to
ρ̂(θ). For a given POVM, the interferometric precision is limited by the Cramér-Rao bound (2.46),
which is a simple function of the classical Fisher information (CFI). The best precision is obtained
for a POVM that maximizes the CFI. The CFI for the optimal POVM equals the QFI. In this
section we show that both F (CBA)

Q and F (TF)
Q can be attained by measuring the magnetization

D̂. Typically, experiments with spin-1 BECs give access to the occupation of the spin states, N̂m

with m ∈ {1, 0,−1}, and thus to D̂ ≡ N̂1 − N̂−1.
We consider the probe states

|ψ〉 ∈
{
|CBA〉 ≡ |l = N,ml = 0〉, |TF〉 ≡ |bN/2c, N − 2bN/2c, bN/2c〉

}
(4.26)

along with the respective R̂opt defining |ψ(θ)〉 = e−iθR̂opt |ψ〉. First, we set

R̂
(CBA)
opt = Ŝx, R̂

(TF)
opt = Ĵx (4.27)

and show that measuring (N̂1, N̂−1) is optimal for any interferometric phase θ. Note that our
probe states are pure. Furthermore, the projections P̂N1,N−1 ≡ |N1, N −N1−N−1, N−1〉〈N1, N −
N1 −N−1, N−1| onto the eigenstates of (N̂+, N̂−) are 1-dimensional. Finally,

|∂θψ(θ)〉 ≡ ∂θ|ψ(θ)〉 = −iθR̂opt|ψ(θ)〉, 〈ψ(θ)|∂θψ(θ)〉 = −iθ〈ψ|R̂opt|ψ〉 = 0, (4.28)

and thus

|∂θψ⊥(θ)〉 ≡
(
1− |ψ(θ)〉〈ψ(θ)|

)
|∂θψ(θ)〉 = |∂θψ(θ)〉 = −iθR̂opt|ψ(θ)〉. (4.29)

Therefore, according to Eq. (2.14), measuring (N̂1, N̂−1) is optimal for all θ if and only if

θRe
(
〈ψ(θ)|P̂N1, N−1R̂opt|ψ(θ)〉

)
= 0 ∀N1, N−1, θ. (4.30)

We observe that for any n ∈ N0

〈N1, N −N1 −N−1|Ŝ2n+1
x |CBA〉 = 0 for N1 −N−1 even,

〈N1, N −N1 −N−1| Ŝ2n
x |CBA〉 = 0 for N1 −N−1 odd,

〈N1, N −N1 −N−1|Ĵ2n+1
x |TF〉 = 0 for N1 − bN/2c even (or N−1 − bN/2c even),

〈N1, N −N1 −N−1| Ĵ2n
x |TF〉 = 0 for N1 − bN/2c odd (or N−1 − bN/2c odd).

(4.31)
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This entails

〈ψ|R̂2n
optP̂N1,N−1R̂

2m+1
opt |ψ〉 = 0, 〈ψ|R̂2m+1

opt P̂N1,N−1R̂
2n
opt|ψ〉 = 0 ∀n,m ∈ N0. (4.32)

We can use Eq. (4.32) to write

〈ψ(θ)|P̂N1,N−1R̂opt|ψ(θ)〉 = i
∞∑
j,l=0

(−1)j+l

(2j)!(2l)!θ
2(j+l)+1

×
( 1

2j + 1〈ψ|R̂
2j+1
opt P̂N1,N−1R̂

2l+1
opt |ψ〉 −

1
2l + 1〈ψ|R̂

2j
optP̂N1,N−1R̂

2l+2
opt |ψ〉

)
. (4.33)

Since the Fock-basis coefficients of |ψ〉 (with an appropriate global phase) and the matrix elements
of R̂opt are real, Eq. (4.33) implies 〈ψ(θ)|P̂N1,N−1R̂opt|ψ(θ)〉 ∈ iR and, hence, Condition (4.30).

Next, we show that it is sufficient to measure D̂. The projection onto an eigenspace of D̂ with
eigenvalue D is P̂D =

∑
N1−N−1=D P̂N1,N−1 . Therefore, Condition (4.30) holds also when P̂N1,N−1

is substituted by P̂D. However, this does not imply that measuring D̂ is optimal, because the P̂D
are, in general, not 1-dimensional. To solve this problem, we identify restricted Hilbert spaces
H̃N ⊂ HN such that R̂nopt|ψ〉 ∈ H̃N for all n ∈ N0 and, at the same time, P̂DH̃N is 1-dimensional.
Let us start with the TF state. Since [Ĵx, N̂0] = 0 and N̂0|TF〉 = N − 2bN/2c,

H̃(TF)
N ≡

2bN/2c∑
N1=0

P̂N1,2bN/2c−N1

HN (4.34)

contains all Ĵnx |TF〉. Furthermore, P̂DH̃(TF)
N = P̂bN/2c+D/2,bN/2c−D/2HN is clearly 1-dimensional.

For the CBA state, we have [Ŝx, L̂2] = 1
2 [L̂x, L̂2] = 0 and L̂2|CBA〉 = N(N +1)|CBA〉. Therefore,

for any n ∈ N0,

Ŝnx |CBA〉 ∈

 N∑
ml=−N

|l = N,ml〉〈l = N,ml|

HN ≡ H̃(CBA)
N . (4.35)

Since D̂ = −L̂z, also P̂DH̃(CBA)
N = |l = N,ml = −D〉〈l = N,ml = −D|HN is 1-dimensional.

Finally, we generalize our results to arbitrary R̂(TF)
opt = Ĵϕ and R̂(CBA)

opt = 1
2 L̂ϕ, cf. Eqs. (4.22)

and (4.24). The transformation rule (3.55) for vector operators yields

Ĵϕ = e−iϕĴz Ĵx eiϕĴz = e−2iϕD̂ Ĵx e2iϕD̂,

L̂ϕ = e−iϕL̂z L̂x eiϕL̂z = e−iϕD̂ L̂x eiϕD̂ = 2 e−iϕD̂ Ŝx eiϕD̂ .
(4.36)

Since D̂|ψ〉 = 0,

e−iθĴϕ |TF〉 = e−2iϕD̂ e−iθĴx |TF〉,

e−
i
2 θL̂ϕ |CBA〉 = e−iϕD̂ e−iθŜx |CBA〉.

(4.37)

The CFI is defined via 〈ψ(θ)|P̂D|ψ(θ)〉, see Eq. (2.4), and e2iϕD̂ P̂D e−2iϕD̂ = eiϕD̂ P̂D e−iϕD̂ = P̂D.
Therefore, the CFI does not depend on ϕ.
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4.4 Central Broken-Axisymmetry State

The QFI of the TF state subject to phase imprinting by Ĵϕ is well known [9]. Conversely, the
large QFI F (CBA)

Q in Eq. (4.23) provided by the CBA state and the phase-imprinting operator
L̂ϕ/2 is, to the best of our knowledge, a novel result. In Section 4.2, the value of F (CBA)

Q has
been obtained numerically. Let us now confirm it by an analytical derivation.

We want to compute

F
(CBA)
Q = 4∆2(L̂ϕ/2) = 〈CBA|L̂2

ϕ|CBA〉 − 〈CBA|L̂ϕ|CBA〉2, (4.38)

cf. Eq. (2.27). First we note that, because of Eq. (4.36) and D̂|CBA〉 = 0, the expectation values
do not depend on ϕ. Recall that |CBA〉 ≡ |l = N,ml = 0〉 and (L̂x ± iL̂y)|l,ml〉 ∝ |l,ml ± 1〉.
Therefore,

〈CBA|L̂ϕ|CBA〉 = 0. (4.39)

Furthermore,

〈l = N,ml = 0|L̂2
x|l = N,ml = 0〉 = 1

2〈l = N,ml = 0|L̂2
x + L̂2

y|l = N,ml = 0〉

= 1
2〈l = N,ml = 0|L̂2|l = N,ml = 0〉

= 1
2N(N + 1).

(4.40)

This yields, in accordance with Eq. (4.23),

F
(CBA)
Q = N(N + 1)

2 . (4.41)

Let us expand the CBA state in the Fock basis, which we often use for explicit calculations.
The CBA state can be expressed as [176]

|CBA〉 = 1√
(2N)!

L̂N+ |l = N,ml = −N〉 = 1√
(2N)!

L̂N+ |N1 = N,N0 = 0, N−1 = 0〉, (4.42)

where L̂+ ≡ L̂x + iL̂y =
√

2(â†0â1 + â†−1â0) acts as L̂+|l,ml〉 =
√

(N −m)(N +m+ 1)|l,ml + 1〉.
We can rewrite Eq. (4.42) as3

|CBA〉 = 1√
(2N)!

∂Ns esL̂+ |N, 0, 0〉
∣∣∣
s=0

. (4.43)

Note that [â†0â1, â
†
−1â0] = −â†−1â1 and [â†0â1, â

†
−1â1] = [â†−1â0, â

†
−1â1] = 0. Therefore, we can use

the Baker-Campbell-Hausdorff (BCH) formula in the form

eÂ+B̂ = eÂ eB̂ e−[Â,B̂]/2 (4.44)

to obtain
esL̂+ = e

√
2sâ†0â1 e

√
2sâ†−1â0 es

2â†−1â1 = es
2â†−1â1 e

√
2sâ†0â1 e

√
2sâ†−1â0 . (4.45)

3This elegant approach has been pointed out to us by T. J. Volkoff from Konkuk University. Our original
derivation was combinatorial and can be found in Ref. [222].
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0.0 0.1 0.2 0.3 0.4 0.5
k / N, N = 500

k|C
BA

Figure 4.3: Coefficients of the CBA state in the Fock basis |k〉 ≡ |k,N − 2k, k〉 of the D = 0
subspace.

Plugging Eq. (4.45) into Eq. (4.43) yields

|CBA〉 = 1√
(2N)!

∂Ns es
2â†−1â1 e

√
2sâ†0â1 |N, 0, 0〉

∣∣∣
s=0

= 1√
(2N)!

∂Ns

∞∑
j,k=0

√
2jsj+2k

j!k! â†j0 â
†k
−1â

j+k
1 |N, 0, 0〉

∣∣∣
s=0

=
√

2N (N !)3

(2N)!

bN/2c∑
k=0

1
2kk!2(N − 2k)! â

†(N−2k)
0 (â†1â

†
−1)k|0〉

=
√

2N (N !)3

(2N)!

bN/2c∑
k=0

1
2kk!

√
(N − 2k)!

|k,N − 2k, k〉.

(4.46)

In Eq. (3.49), we have introduced the symmetric (g) and antisymmetric (h) creation and
annihilation operators

ĝ(†) ≡ 1√
2

(â(†)
1 + â

(†)
−1), ĥ(†) ≡ 1√

2
(â(†)

1 − â
(†)
−1). (4.47)

They give rise to another useful Fock basis, which consists of the states |Ng, N0, Nh〉 characterized
by the eigenvalues of N̂g ≡ ĝ†ĝ and N̂h ≡ ĥ†ĥ. To expand a state from the D = 0 subspace in
this basis, note that

â†1â
†
−1 = 1

2(ĝ†2 − ĥ†2). (4.48)

Figure 4.3 displays the expansion coefficients obtained in Eq. (4.46). A large QFI can be
usually attributed to fine structures in an appropriate representation of the state. The expansion
of |CBA〉 in the Fock states |k,N − 2k, k〉 does not exhibit such features. This is because we
do not visualize the entire Hilbert space HN but expand in a basis of the D = 0 subspace only.
Meanwhile, the confinement of the CBA state to the D = 0 subspace can be considered crucial
for its large QFI and, thus, interferometric sensitivity. Indeed, an infinitesimal interferometric

65



4 Ground-State Quantum Phase Transitions

0
1
0

2
0

3
0

4
0

5
0

6
0

0

0
.
0
2
5

0
.
0
5

0
.
0
7
5

0
.
1

0
.
1
2
5

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0 0.1 

0.5 
0.4 
0.3 
0.2 
0.1 
0 

0 0.2 0.4 0.6 0.8 1 

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 10 20 30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Sx Sy 

Sz 

P(
N

g|N
h)

 

Ng/(N-Nh) 
0 0.5 1 

0
1
0

2
0

3
0

4
0

5
0

6
0

0

0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

0
.
8

0
.
91

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

Ng / N 

N
h 
/ N

 

P(Nh ) 
1 0.5 0 
FQ/(N-Nh) 

N
h 
/ N

 

Nh=0	

Nh=20	

Nh=40	
90% 

50% 

20% 

(a) (b) (c) (d) 

P(
N

g|N
h)

 
P(

N
g|N

h)
 

70% 

2 

Figure 4.4: Two-mode MSSs within the three-mode rotated CBA state |ψ〉 ≡ e−i
π
2 Ŝy |CBA〉.

(a) Probability P (Nh) to find Nh atoms in the antisymmetric mode of |ψ〉. The dashed lines
indicate cumulative probabilities. A measurement of N̂h with outcome Nh prepares the state
|φNh〉 ⊗ |Nh〉. (b) Conditional probabilities P (Ng|Nh) = |〈Ng, N −Ng −Nh|φNh〉|2. Note that
Ng + Nh ≤ N . The two branches for Nh . N/2 correspond to MSSs. (c) Exemplary |φNh〉:
P (Ng|Nh) and the Husimi distributions of |φNh〉 resemble NOON states. (d) QFI of |φNh〉 subject
to phase-imprinting by Ŝz. For small Nh, the QFI reaches the HL. The red line indicates the
SQL. In all panels N = 100.

phase δθ changes the CBA state by δ|CBA〉 ≡ −iδθL̂ϕ/2|CBA〉, which can be well distinguished
from the original state because the projection of δ|CBA〉 on the D = 0 subspace vanishes.

Another way to understand the large QFI of the CBA state is provided by its relation to MSSs,
which we discuss in the following section.

4.5 Macroscopic Superposition States

In this section we consider the rotated CBA state |ψ〉 ≡ e−i
π
2 Ŝy |CBA〉. Figure 4.4b displays, for

N = 100 atoms, the conditional probability P (Ng|Nh) to find Ng atoms in the symmetric mode
after having measured Nh atoms in the antisymmetric mode,

P (Ng|Nh) = P (Ng, Nh)
P (Nh) , P (Ng, Nh) ≡ |〈Ng, N −Ng −Nh, Nh|ψ〉|2, P (Nh) ≡

∑
Ng

P (Ng, Nh).

(4.49)
In accordance with Eq. (4.48), odd values of Nh have zero probability, so that P (Ng|Nh odd)
is not defined. At small fixed values of Nh, there is a large probability to find all or, on the
contrary, none of the remaining N −Nh atoms in the symmetric mode, cf. Fig. 4.4c. This hints
at superpositions of macroscopically distinct states.

A measurement of N̂h with outcome Nh prepares a pure state |φNh〉 in the symmetric and the
m = 0 mode:

|φNh〉 ⊗ |Nh〉 ≡
1√

P (Nh)

N−Nh∑
Ng=0

〈Ng, N −Ng −Nh, Nh|ψ〉 |Ng, N −Ng −Nh, Nh〉, (4.50)

where |Nh〉 ≡ ĥ†Nh |0〉/
√
Nh!, and the probability P (Nh) of finding Nh atoms in the antisymmetric

66



4.5 Macroscopic Superposition States

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0

0
.0
0
5

0
.0
1

0
.0
1
5

0
.0
2

0
.0
2
5

0
.0
3

0
.0
3
5

0
.0
4

(a) 

0 

0.1

0.2 

0.3 

0.4 

0.5 

0.6 

N
h
/ N

 

0.04 0.02 0 0.2 0.4 0.6 0.8 1 

Ng / N 
0 

0 

0.1

0.2 

0.3 

0.4 

0.5 

0.6 

1 0.5 0 

FQ /(N-Nh)

N
h
/ N

 

P(Nh )

(b) (c) 

50% 

70% 

90% 

2

Figure 4.5: The same as Figs. 4.4a, b, and d, but for N = 1000 atoms.

mode normalizes |φNh〉. Figure 4.4a shows that the most probable measurement outcome is
Nh = 0. The state |φ0〉 closely resembles a NOON state,

|φ0〉 ≈
1√
2

(
|Ng = N,N0 = 0〉+ |Ng = 0, N0 = N〉

)
. (4.51)

This is confirmed by P (Ng|Nh) ≡ |〈Ng, N − Ng − Nh|φNh〉|2 for Nh = 0 and the Husimi
distribution [177] of |φ0〉, see Fig. 4.4c. Furthermore, just as the QFI of a NOON state, the QFI
of |φ0〉 subject to phase-imprinting by Ŝz reaches the HL, see Fig. 4.4d. For N = 500, the fidelity
of |φ0〉 with the NOON state in Eq. (4.51) exceeds 99 %.

The resemblance between |φNh〉 and NOON states decreases with increasing Nh. However, for
Nh . N/2, P (Ng|Nh) continues to exhibit a double-peaked shape, see Fig. 4.4b–c. Furthermore,
the QFI depicted in Fig. 4.4d stays far above the SQL. Figure 4.5 shows that for an increased
number of N = 1000 atoms these features become even more pronounced. The overall probability
to prepare |φNh〉 with Nh ≤ N/2 by measuring N̂h is about 90 %, as indicated in Figs. 4.4a
and 4.5a.

The large QFI of the |φNh〉 explains the large QFI of the CBA state. Recall that

F
(CBA)
Q = 4∆2Ŝx = 4〈CBA|Ŝ2

x|CBA〉, (4.52)

where we have used that 〈CBA|Ŝx|CBA〉 = 0, cf. Eq. (4.39). Furthermore,

〈CBA|Ŝ2
x|CBA〉 = 〈CBA| ei

π
2 Ŝy Ŝ2

z e−i
π
2 Ŝy |CBA〉

= 〈ψ|Ŝ2
z |ψ〉

=
∑
Nh,N ′h

√
P (Nh)P (N ′h)〈φNh |Ŝ

2
z |φN ′h〉〈Nh|N ′h〉

=
∑
Nh

P (Nh)〈φNh |Ŝ
2
z |φNh〉.

(4.53)

The QFI of |φNh〉 with respect to Ŝz is

F
(Nh)
Q ≡ 4

(
〈φNh |Ŝ

2
z |φNh〉 − 〈φNh |Ŝz|φNh〉

2
)
. (4.54)
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4 Ground-State Quantum Phase Transitions

However, since 〈Ng, N −Ng −Nh| ei
π
2 Ŝy |φNh〉 vanishes for odd Ng, and Ŝx changes Ng by ±1,

〈φNh |Ŝz|φNh〉 = 〈φNh | e
−iπ2 Ŝy Ŝx ei

π
2 Ŝy |φNh〉 = 0. (4.55)

Hence, F (Nh)
Q = 4〈φNh |Ŝ2

z |φNh〉 and

F
(CBA)
Q =

∑
Nh

P (Nh)F (Nh)
Q . (4.56)

In Eq. (2.51), we have introduced the effective size of a quantum state,

N (ρ̂) ≡ 1
N

max
r̂:‖r̂‖=1/2

FQ[ρ̂, r̂], (4.57)

where FQ[ρ̂, r̂] denotes the QFI of ρ̂ with respect to the phase-imprinting operator R̂ =
∑N
l=1 r̂

(l).
We call a state ρ̂ a MSS if 1� N (ρ̂)�| N . The effective size of |φNh〉 is lower bounded by its
QFI with respect to Ŝz,

N
(
|φNh〉〈φNh |

)
≥ 1
N −Nh

F
(Nh)
Q . (4.58)

As we have discussed, measuring N̂h prepares the BEC in a state |φNh〉 ⊗ |Nh〉. With a large
probability, the measurement outcome is Nh . N/2, whereupon

1
N −Nh

� 1
(N −Nh)2F

(Nh)
Q �| 1, (4.59)

cf. Figs. 4.4d and 4.5c, and |φNh〉 is a MSS. Thus, Nh . N/2 heralds the preparation of a MSS
|φNh〉.
According to our definition, also |CBA〉 and |TF〉 are MSSs. However, for small values of

Nh the effective size of |φNh〉 exceeds the one of |CBA〉 and |TF〉. An even more important
advantage of the |φNh〉 is their resemblance to NOON states, which constitute a paradigmatic
example of MSSs.

In general, the ground state of a gapped quantum phase cannot have a double-peaked probability
distribution with respect to a collective observable [226]. Yet, in this section we have demonstrated
that a non-degenerate ground state can be used for the heralded stochastic preparation of such
MSSs. One might remark that, without restriction to the D = 0 subspace, the CBA state belongs
to a (2N + 1)-dimensional ground-state space of the Hamiltonian (4.1) at ξ = 0 [176]. However,
in practice this degeneracy is typically lifted (in the stationary frame) by an effective linear
Zeeman shift.

4.6 Proposal
The CBA state can be obtained from the P state by adiabatically changing the effective quadratic
Zeeman shift from ξ0 > 1 across the QPT at ξ = 1 to ξ = 0, cf. Figs. 4.6a and 4.1. First,
electromagnetic pulses transfer the BEC to the P state |N1 = 0, N0 = N,N−1 = 0〉 [25, 35].
At ξ0, this is (at finite N approximately) the spin ground state of the BEC. According to the
adiabatic theorem [34], a system initialized in the ground state of an infinitely slowly varying
Hamiltonian Ĥ(t) and evolving with Ĥ(t) remains in the instantaneous ground state of Ĥ(t).
Therefore, we expect that a slow sweep of ξ from ξ0 to ξ = 0 prepares the CBA state. In the
simplest case, the ramp ξ(τ) is linear,

ξ(τ) = ξ0 −Qτ, (4.60)
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Figure 4.6: Proposed applications of the CBA state. (a) Quasiadiabatic preparation of the CBA
state. The BEC is initialized in the ground state |k = 0〉 ≡ |N1 = 0, N0 = N,N−1 = 0〉 of the
P phase at ξ0 > 1. A slow passage from ξ0 to ξ = 0 prepares the ground state at ξ = 0, which
is the CBA state. (b) Quantum-enhanced interferometry. A radio-frequency pulse imprints a
phase θ on |CBA〉. Measuring N̂0,±1 reveals θ with quantum-enhanced precision. (c) Heralded
stochastic generation of MSSs. The CBA state is subjected to a microwave pulse imposing the
phase shift ei

π
2 N̂0 , a π/2 radio-frequency pulse e−i

π
2 Ŝx , and a π/2 two-photon coupling e−i

π
2 Ĵy .

Then measuring N̂1 yields ei
π
2 N̂0 |φNh=N1〉 with ĝ† and ĥ† replaced by â†∓1, respectively. With up

to 90 % probability the measurement outcome is N1 . N/2 and the state prepared in the m = 0
and m = −1 modes thus resembles a NOON state.

where τ ≡ |c|t/~ and Q are the dimensionless time and ramping speed, respectively. An ideally
adiabatic transition corresponds to Q→ 0. This limit cannot be attained at finite times. We call
a slow transition at nonvanishing speed quasiadiabatic.

The quasiadiabatic preparation of the CBA state has been proposed in Ref. [32]. Particularly,
numerical results confirmed that a large entanglement depth could be attained at a realistic
Q > 0. Reference [35] has proven the experimental feasibility of this approach: the TF ground
state at ξ < −1 was successfully prepared by driving the P ground state of a spin-1 BEC across
both QPTs at ξ = ±1.
Based on our findings in the preceding Sections, we propose two applications of the quasia-

diabatically generated CBA state. First, it can serve as a probe state for quantum-enhanced
interferometry, as illustrated in Fig. 4.6b. A phase θ imprinted by the operator R̂(CBA)

opt , see
Eq. (4.24), can be revealed with quantum-enhanced precision by measuring the particle numbers
N̂0 and N̂±1 or the magnetization D̂. Recall that, according to Eq. (3.79), R̂(CBA)

opt can be realized
by a radio-frequency pulse. Furthermore, note that the quantum-enhanced microwave clock
presented in Ref. [25] corresponds to a phase imprinting by R̂(CBA)

opt , yet onto a different probe
state.

Alternatively, the CBA state can be used for the heralded stochastic generation of MSSs similar
to NOON states. The experimental protocol is detailed in Fig. 4.6c. Starting from the CBA
state, a microwave pulse imposes a π/2 phase shift ei

π
2 N̂0 on the m = 0 mode, as explained in

Section 3.5.1. Next, a π/2 radio-frequency pulse with φ = 0, cf. Section 3.5.2, applies e−i
π
2 Ŝx .

This yields

e−i
π
2 Ŝx ei

π
2 N̂0 |CBA〉 = ei

π
2 N̂0 e−i

π
2 Ŝy |CBA〉 = ei

π
2 N̂0 |ψ〉, (4.61)
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where |ψ〉 denotes the same state as in the previous section. To prepare a two-mode MSS from
|ψ〉, we would like to measure N̂h. However, usually only the atom numbers N0 and N±1 are
directly accessible. Note that

e−i
π
2 Ĵy ĝ† ei

π
2 Ĵy = â†−1, e−i

π
2 Ĵy ĥ† ei

π
2 Ĵy = â†1. (4.62)

Therefore, e−i
π
2 Ĵy |ψ〉 is the same as |ψ〉 with ĝ† and ĥ† replaced by â†∓1, respectively. Hence,

measuring N̂1 with outcome N1 in the state

e−i
π
2 Ĵy e−i

π
2 Ŝx ei

π
2 N̂0 |CBA〉 = ei

π
2 N̂0 e−i

π
2 Ĵy |ψ〉 (4.63)

yields ei
π
2 N̂0 e−i

π
2 Ĵy |φNh=N1〉, which is ei

π
2 N̂0 |φNh=N1〉 with ĝ† and ĥ† replaced by â†∓1. In Sec-

tion 3.5.2 we have briefly discussed how Ĵy can be implemented by a two-photon coupling. If
desired, the phase ei

π
2 N̂0 can be compensated for by another microwave pulse. As we have seen

in the previous section, the observed value of N1 signals whether the corresponding |φNh=N1〉 is a
MSS. The overall probability that the state prepared in the m = 0 and m = −1 modes resembles
a NOON state is about 90 %.
T. J. Volkoff from Konkuk University has suggested an alternative to the quasiadiabatic

preparation of the CBA state. Starting from the P state, a π/2 radio-frequency pulse yields the
separable, coherent state

|(α1 = 1/2, α0 = 1/
√

2, α−1 = 1/2), N〉 = 1√
2NN !

(â†0 + ĝ†)N |0〉. (4.64)

Let P̂D with D = 0 denote the projection onto the magnetization-free subspace. Then

P̂0 |(1/2, 1/
√

2, 1/2), N〉 =
√

(2N)!
4N (N !)2 |CBA〉. (4.65)

Hence, a measurement of D̂ with outcome D = 0 prepares the CBA state4. The probability of
the desired measurement outcome is

P0 ≡ 〈(1/2, 1/
√

2, 1/2), N | P̂0 |(1/2, 1/
√

2, 1/2), N〉 = (2N)!
4N (N !)2 . (4.66)

Unfortunately, P0 vanishes in the limit N →∞. It falls below, e. g., 5 % at N ≈ 125 atoms.

4.7 Experimental Feasibility
Reference [35] reports on the quasiadiabatic preparation of the TF state. The CBA state is,
in terms of ξ, halfway between the P and the TF state. It is thus natural to assume that
attaining the CBA state is less demanding. All further experimental techniques required for our
proposal in Fig. 4.6 have also been demonstrated [25, 191]. Therefore, theoretically analyzing
the experimental feasibility of our proposal might seem redundant. However, the quasiadiabatic
passage in Ref. [35] populated, besides the desired ground state of the final Hamiltonian, a
significant number of excited states. The experiment was facilitated by the properties of these
excited states. Such an advantageous relation between the ground and the low-lying excited states
might not apply to the CBA state or the Fisher information (FI). Furthermore, the experimental

4Note that D̂ must not be measured via N̂±1, which would yield a Fock state instead of the CBA state.
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Figure 4.7: Quasiadiabatically evolved P state |ψqa(ξ)〉. (a) Fidelity with the instantaneous
ground state |ψ0(ξ)〉. (b) QFI FQ with respect to the phase-imprinting operator indicated in the
legend. The solid horizontal line marks 1/2 of the HL. Both panels are obtained for N = 500
atoms and a linear ramp ξ(τ) with speed Q = 0.05. Dashed vertical lines indicate the QPTs.

imperfections of the operations following on the preparation of the CBA state might prevent
quantum-enhanced interferometry or the generation of MSSs.

In the following, we therefore investigate the FI of the CBA and the TF state and the generation
of MSSs from the CBA state under realistic experimental conditions. First, we focus on the
quasiadiabatic state preparation, discussing the deviation from ideal adiabaticity in Section 4.7.1
and adding atom loss in Section 4.7.2. Imprecise atom counting is considered in Section 4.7.3.
For all of these aspects, we pay attention to the question of scalability. According to the analysis
below, our proposal is suited for present experiments.

4.7.1 Quasiadiabaticity

As we have mentioned in Section 4.6, the adiabatic theorem assumes an infinitely slow sweep
of ξ. Increasing the transition speed reduces the probability to follow the instantaneous ground
state. The smaller the energy gap ∆E between the ground and the first excited state, the lower
is the speed providing a fixed ground-state probability [177, 218]. Recall from Fig. 4.1c that
the minimal ∆E is observed at the QPTs, where it closes with increasing atom number N as
∆E/|c| ≈ 7.4N−1/3 [32]. The quasiadiabatic passage starting from the P phase and targeting
the CBA or TF state crosses one or both QPTs, respectively. Furthermore, we are particularly
interested in large N . However, the coherence time in experiments with BECs is typically limited
to few seconds [35]. This raises two questions: whether there is a quasiadiabatic passage that is
fast enough to not exceed the coherence time of the BEC but slow enough to admit a large QFI
and the generation of NOON-like MSSs, and whether our proposal is scalable.
We numerically evolve the P state with the Hamiltonian (4.1), where ξ is considered as an

injective function of the dimensionless time τ , and ξ(0) ≡ ξ0. This defines the state |ψqa(ξ)〉 with
|ψqa(ξ0)〉 = |0, N, 0〉. First, we consider the linear ramp ξ(τ) from Eq. (4.60) with ξ0 = 1.5.

Figure 4.7a depicts the fidelity |〈ψ0(ξ)|ψqa(ξ)〉|2 of |ψqa〉 with the instantaneous ground state
|ψ0〉, assuming N = 500 atoms and a ramping speed of Q = 0.05. For comparison, the linear
ramp in Ref. [35] corresponds to Q = 0.057± 0.002. Typical atom numbers range between 102

and 105 [9]. The ground-state fidelity nosedives at the first QPT. In accordance with Ref. [35]
crossing the second QPT has little further impact. However, Fig. 4.7b demonstrates that the
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Figure 4.8: QFI F (qa)
Q of the quasiadiabatically prepared state |ψqa(ξ)〉 as a function of atom

number N and ramping speed Q. CBA: |ψqa(ξ = 0)〉, phase imprinting by Ŝx, and F
(qa)
Q is

normalized to F (CBA)
Q . TF: |ψqa(ξ = −1.5)〉, phase imprinting by Ĵx, and F (qa)

Q is normalized
to F (TF)

Q . Panels (c)–(d) show slices through (a)–(b). The fluctuations visible in panels (c)–(d)
originate from the oscillations in Fig. 4.7.

QFI of |ψqa(ξ)〉 almost coincides with the QFI of |ψ0(ξ)〉 depicted in Fig. 4.2. This resembles
the observation in Ref. [32] that a large entanglement depth can be attained even at a small
ground-state fidelity. The oscillations in Fig. 4.7 correspond to oscillations in the experimental
data of Ref. [35].
We expect that increasing N or Q reduces the fidelity of |ψqa(ξ)〉 with |ψ0(ξ)〉. Figure 4.8

analyzes how the QFI F (qa)
Q of |ψqa(ξ)〉 at ξ = 0 and ξ = −1.5 for phase imprinting by Ŝx and Ĵx,

respectively, depends on N and Q. We normalize F (qa)
Q at ξ = 0 and ξ = −1.5 to F (CBA)

Q and
F

(TF)
Q , respectively. A large relative QFI is found for Q . 0.2, see Fig. 4.8a–c. In this region,

the dependence of the relative QFI on N is particularly weak, as can be seen in Fig. 4.8a, b,
and d. Similarly, Ref. [32] showed that the ramping time required to maintain another lower
bound on the entanglement depth than the QFI grows just moderately with N . According to
Fig. 4.8, quasiadiabatic passages terminated in the BA phase at ξ = 0 or in the TF phase at
ξ = −1.5 yield almost the same QFI. Note that Q determines the duration of the ramp in terms
of the dimensionless time τ ≡ |c|t/~. The physical ramping time T is, at a fixed Q, inversely
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proportional to |c| and thus, approximately, to the density of the BEC.
We have already mentioned that attaining a given ground-state fidelity at a smaller gap ∆E

requires a slower sweep of ξ. Therefore, a quasiadiabatic ramp of a fixed duration can be improved
by changing the ramping speed as a function of the instantaneous ∆E. We consider the adaptive
ramp

ξ(τ) = ξ0 − ν
∆E
|c|

τ, (4.67)

where the dimensionless parameter ν determines the overall ramping time T . Figure 4.9 compares,
for a quasiadiabatic passage from ξ0 = 1.5 to ξ = 0 within T = ~ξ0

|c|Q , the adaptive ramp with
the linear ramp in Eq. (4.60). The adaptive ramp clearly outperforms the linear ramp, both in
terms of ground-state fidelity and relative QFI.
Figure 4.10 analyzes the generation of MSSs from the state |ψqa(ξ = 0)〉 that is obtained by

an adaptive quasiadiabatic passage of length T = ~ξ0
|c|Q starting at ξ0 = 1.5. For an interaction

strength of, e. g., |c|/~ = 2π × 3 Hz, Q = 0.15 in Fig. 4.10a–d and Q = 0.075 in Fig. 4.10e–h
correspond to the experimentally feasible [35] times T ≈ 0.5 s and T ≈ 1.1 s, respectively. The
most noticeable difference between Fig. 4.4 and Fig. 4.10 is the broadening of the double-
peaked conditional probability distributions P (Ng|Nh) in Fig. 4.10b–c. This slightly reduces the
probability to generate a two-mode MSS when measuring N̂h.
We conclude that the deviation of a realistic quasiadiabatic passage from ideal adiabaticity

only weakly impairs the generation of a large QFI and NOON-like MSSs. Figure 4.8 suggests
that this holds also for larger atom numbers than covered by the numerical results in the present
section.
Before proceeding, we would like to highlight that the quasiadiabatic state preparation is

insensitive to fluctuations of the effective linear Zeeman shift, and thus to the first-order effect of
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prepared by an adaptive quasiadiabatic passage of length T = ~ξ0
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magnetic noise. The effective linear Zeeman shift contributes −pD̂ to the Hamiltonian (3.27) in
the stationary frame. The quasiadiabatic evolution commutes with D̂. Therefore, an eigenstate
of D̂ with eigenvalue D evolves within the D-eigenspace, and p affects only the irrelevant global
phase of the evolved state. This holds, particularly, for the quasiadiabatic evolution under
consideration, since D̂|ψqa(ξ0)〉 = 0. Note also that because of D̂|ψqa(ξ)〉 = 0 the phase φ, cf.
Eq. (3.79), of the radio-frequency pulse in Fig. 4.6b is arbitrary.

4.7.2 Atom Loss

In Section 4.5, we have shown that the large QFI of the CBA state directly follows from the large
QFI of the two-mode MSSs |φNh.N/2〉. The large QFI of these |φNh〉 can, in turn, be explained
by their resemblance to NOON states. Let us introduce

|{K1,K2}〉 ≡
1√
2

(
|Ng = K1, N0 = K2〉+ |Ng = K2, N0 = K1〉

)
. (4.68)

Then |{N, 0}〉 is an ideal NOON state. The QFI of |{N, 0}〉 with respect to Ŝz saturates the HL
FQ = N2, cf. Eq. (2.27). However, loosing a single arbitrary atom transforms |{N, 0}〉 into the
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separable state

ρ̂ = 1
N

(
â0|{N, 0}〉〈{N, 0}|â†0 + ĝ|{N, 0}〉〈{N, 0}|ĝ†

)
= 1

2
(
|0, N − 1〉〈0, N − 1|+ |N − 1, 0〉〈N − 1, 0|

)
.

(4.69)

Equation (2.26) yields a QFI of zero for ρ̂ subject to phase imprinting by Ŝz. Hence, the QFI
of the |φNh〉 and, thus, also of |CBA〉 might be highly susceptible to atom loss. This raises the
question whether the quasiadiabatic preparation of the CBA state can be both slow enough to
stay sufficiently close to adiabaticity, see Section 4.7.1, and fast enough to admit a large QFI in
the presence of atom loss.

To address this question, we simulate the quasiadiabatic preparation of the CBA state in the
presence of atom loss by means of the Monte-Carlo wave-function (MCWF) method introduced
in Section 3.6. We consider an optically trapped BEC of N = 100 87Rb atoms in their ground
state with hyperfine spin f = 1 subject to a linear sweep of ξ, see Eq. (4.60), from ξ0 = 1.5
to ξ = 0. Atom loss from a BEC in an optical trap is dominated by one-body and three-body
processes [193–195], cf. Section 3.6. We assume an ambitious but realistic one-body loss rate
of Γ1 = 0.005 Hz. The three-body loss rate Γ3 ≡ Gk〈n3〉 ≡ 1

NG3
∫

d3r n3(r) depends on the rate
constant G3 and the particle density n(r) of the BEC. For Bose-condensed 87Rb atoms in the
hyperfine state |f = 1,m = −1〉, G3 ≈ 5.8× 10−30 cm6/s [194]. We assume that Γ1 and G3 do
not depend on m, define Γ ≡ Γ1 + Γ3, and treat it as an effective one-body loss rate. Keeping
Γ constant throughout the MCWF evolution, we ignore the dependence of Γ3 on the particle
density, which is decreased by atom loss. This is an appropriate approximation as long as only a
small part of N is lost. Overestimating the loss, it never embellishes our results.
Rewriting the Lindblad equation (3.82) in terms of the dimensionless time τ ≡ |c|t/~ and

Hamiltonian Ĥ/|c|, we observe that the loss rate enters via the dimensionless parameter γ ≡ ~Γ/|c|.
Within the Thomas-Fermi approximation, Eq. (3.43) yields

1
N

∫
d3r n3(r) = 7

6

( 3M
4π~2(a2 − a0)

)2
c2, (4.70)

where M is the mass and aF are the scattering lengths of the atoms. Hence, Γ3 ∝ c2 and γ
can be minimized by choosing |c| such that Γ1 = Γ3. For 87Rb atoms in their hyperfine ground
state [29], this leads to an optimal interaction strength of c/~ ≈ −2π×1 Hz, which can be readily
chosen in current experiments [25, 35]. Therefore, we set Γ = 0.01 Hz.

In the presence of atom loss, we evaluate the CFI instead of the QFI, cf. Section 2.1. Recall that
the CFI of a state ρ̂ subject to phase imprinting by R̂ depends on the measurement performed on
ρ̂(θ) = e−iθR̂ ρ̂ eiθR̂. Optimizing over all possible measurements yields the QFI. We assume that
R̂ = Ŝx and the measurement counts the atom numbers (Ñ = N1 +N0 +N−1, N1, N−1), which
is optimal for the ideal CBA state, as we have seen in Section 4.3. Considering the CFI has
two advantages. First, our results immediately apply to a well-defined experimental situation.
Second, in contrast to the QFI, the CFI can be computed without diagonalizing the density
matrix ρ̂mc that comes out of the MCWF method. Since all MCWFs are eigenstates of N̂ , we
can write

ρ̂mc = 1
r

N∑
Ñ=0

rÑ∑
k=1
|ψÑ,k〉〈ψÑ,k| ≡

1
r

N∑
Ñ=0

rÑ ρ̂Ñ , (4.71)

where |ψÑ,k〉 are the individual MCWFs, N̂ |ψÑ,k〉 = Ñ |ψÑ,k〉, rÑ is the number of MCWFs
with Ñ atoms, and r =

∑
Ñ rÑ is the overall iteration number of the MCWF algorithm. Let us
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Figure 4.11: Quasiadiabatic preparation of the CBA state in the presence of atom loss. The state
ρ̂mc obtained by a linear sweep from ξ0 = 1.5 to ξ = 0 with speed Q is computed by the MCWF
method with loss rate Γ = 0.01 Hz and |c|/~ = 2π × 1 Hz. (a) CFI of ρ̂mc, for phase imprinting
by Ŝx, measurement of (N̂ , N̂1, N̂−1), and optimal imprinted phase θopt, as a function of Q. The
panels (b)–(d) refer to the optimal point in (a). (b) Probability P (Nh) ≡

∑
Ñ,Ng
〈Ng, Ñ −Ng −

Nh, Nh|ρ̂mc|Ng, N −Ng−Nh, Nh〉. The dashed lines indicate cumulative probabilities. Measuring
N̂h with outcome Nh prepares ρ̂(Nh)

mc from ρ̂mc. (c) Conditional probabilities P (Ng|Nh) ≡∑
Ñ 〈Ng, Ñ−Ng−Nh| e−i

π
2 Ŝy ρ̂

(Nh)
mc ei

π
2 Ŝy |Ng, Ñ−Ng−Nh〉. (d) CFI of ρ̂(Nh)

mc for phase imprinting
by Ŝx, measurement of (N̂ , N̂1, N̂−1), and imprinted phase θopt. The red line indicates the SQL.
In all panels N = 100.

introduce the projections

P̂Ñ,N1,N−1
≡ |N1, Ñ −N1 −N−1, N−1〉〈N1, Ñ −N1 −N−1, N−1| (4.72)

and P̂N1,N−1 ≡
∑
Ñ P̂Ñ,N1,N−1

. Then, according to Eq. (2.24), the CFI is

F (θ) = −
N∑
Ñ=0

∑
N1+N−1≤Ñ

Tr2
[
ρ̂mc(θ)[Ŝx, P̂Ñ,N1,N−1

]
]

Tr
[
ρ̂mc(θ)P̂Ñ,N1,N−1

]
= −1

r

N∑
Ñ=0

rÑ
∑

N1+N−1≤Ñ

Tr2
[
ρ̂Ñ (θ)[Ŝx, P̂N1,N−1 ]

]
Tr
[
ρ̂Ñ (θ)P̂N1,N−1

]
= −1

r

N∑
Ñ=0

∑
N1+N−1≤Ñ

(∑rÑ
k=1〈ψÑ,k(θ)|[Ŝx, P̂N1,N−1 ]|ψÑ,k(θ)〉

)2

∑rÑ
k=1〈ψÑ,k(θ)|P̂N1,N−1 |ψÑ,k(θ)〉

(4.73)

with ρ̂mc(θ) ≡ e−iθŜx ρ̂mc eiθŜx , ρ̂Ñ (θ) ≡ e−iθŜx ρ̂Ñ eiθŜx , and |ψÑ,k(θ)〉 ≡ e−iθŜx |ψÑ,k〉. The CFI
depends on θ. We choose θopt such that it maximizes the CFI of the entire quasiadiabatically
prepared state ρ̂mc. Guided by experimental feasibility, we refrain from optimizing the CFI for
individual two-mode states generated by measurements of N̂h.
Figure 4.11 is obtained with the following parameters of the MCWF algorithm. The sweep

from ξ0 = 1.5 to ξ = 0 is divided into 5000 time steps, and each density matrix is constructed
from r = 500 stochastic evolutions of the P state. The number of time steps is sufficiently large
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to ensure a small quantum jump probability j(t) ≤ 0.1 throughout the evolution. Furthermore,
the MCWF evolution with Γ = 0 has been checked against the solution of the time-dependent
Schrödinger equation obtained by scipy.integrate.odeint for Python. The iteration number r
is justified by a sufficiently small statistical error of the CFI. The error bar in Fig. 4.11a is
computed from 20 values of the CFI, obtained from r = 500 MCWFs each.

Figure 4.11a displays F (θopt) as a function of the ramping speed Q. Let us repeat that a small
Q brings us closer to adiabaticity, while a large Q reduces the number of lost atoms. As a result of
this competition, the CFI presents a maximum at Qopt = 0.155, where F = (0.55± 0.02)F (CBA)

Q .
For the assumed interaction strength of |c|/~ = 2π × 1 Hz, Qopt corresponds to a ramping time
of T ≈ 1.54 s. On average, the quasiadiabatic passage with speed Qopt leads to the loss of about
1.5 atoms.

Figures 4.11b–d address the generation of NOON-like MSSs from ρ̂mc for Qopt. The CFI of
the two-mode states obtained by measuring N̂h, see Fig. 4.11d, is smaller than without atom loss
but remains, for a large range of measurement outcomes Nh, far above the SQL. This clearly
indicates that the two branches in Fig. 4.11c are still in a coherent superposition. Thus, MSSs
are heralded by measurement outcomes Nh . 0.4N , which occur with an overall probability of
about 70 %.

To have a glance at the scalability in the presence of atom loss, we have repeated the analysis
in Fig. 4.11a for N = 200 instead of N = 100 atoms. We have found an optimal CFI of
F ≈ 0.42F (CBA)

Q at Qopt = 0.165. This corresponds to an increase of the CFI with N that is
much faster than linear.

It might be possible to identify bosons that admit a smaller loss parameter γ than 87Rb atoms
in their ground state with hyperfine spin 1. This would increase the CFI, reduce Qopt, and
improve the scalability, cf. Fig. 4.8. Furthermore, according to Fig. 4.9, the results of the present
section could be enhanced by a nonlinear sweep of ξ.
Altogether, the FI of the CBA state turns out to be much less sensitive to atom loss than

could have been expected from the argument at the beginning of the section. This calls for
an explanation. The first third of the quasiadiabatic evolution takes place within the P phase.
Since the P state is coherent, atom loss does not affect it beyond reducing the total atom
number. We thus may introduce an effective loss rate Γ′ = 2

3Γ that accounts only for the
evolution within the BA phase. At the end of the quasiadiabatic passage, atom loss from the
antisymmetric mode merely shifts the two-mode states generated by measuring N̂h to lower
heralding particle numbers Nh. Averaging over the quasiadiabatic evolution within the BA phase
gives limN→∞

1
N

∫
dξ 〈ψ(N)

0 (ξ)|N̂h|ψ
(N)
0 (ξ)〉 = 1/8 for the occupation of the antisymmetric mode.

Therefore, we set Γ′′ = 7
8Γ′ and estimate the probability that no “relevant” of the N = 100 atoms

has been lost within the ramping time T ≈ 1.54 s to be e−Γ′′NT ≈ 0.4. This coincides very well
with the relative CFI of the state heralded by Nh = 0 in Fig. 4.11d.

To understand why the CFI in Fig. 4.11d gets even slightly larger for 0 < Nh . 0.2N , let
us have a closer look at the ideal two-mode states |φNh〉. While |φNh=0〉 is indeed an almost
perfect NOON state, the MSSs |φ0<Nh.N/2〉 resemble rather states of the form |{K1,K2}〉, see
Eq. (4.68), with 0 < K2 � K1 and K1 +K2 = N −Nh. Before atom loss, such states have an
almost maximal QFI with respect to Ŝz:

FQ = 4
(
〈{K1,K2}|Ŝ2

z |{K1,K2}〉−〈{K1,K2}|Ŝz|{K1,K2}〉2
)

= (K1−K2)2 ≈ (N−Nh)2. (4.74)

After the loss of a single arbitrary atom, the state |{K1,K2}〉 becomes

ρ̂ = 1
K

(
â0|{K1,K2}〉〈{K1,K2}|â†0 + ĝ|{K1,K2}〉〈{K1,K2}|ĝ†

)
. (4.75)
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Equation (2.26) yields

FQ = 4K1K2(K1 −K2)2

(N −Nh)2 ≈ 4K2(N −Nh) (4.76)

for the QFI of ρ̂, which thus exceeds the SQL for any K2 > 0.
Note that the CBA state contains more “relevant” atoms than on average present during the

quasiadiabatic passage. Indeed, exposing the ideal CBA state to atom loss for the duration of the
optimal ramp leaves us with a CFI of F ≈ 0.32F (CBA)

Q , which is significantly less than obtained by
quasiadiabatic state preparation. However, typical experimental time scales are much shorter [25,
49]. After as long as 0.1 s, the CFI of the CBA state still amounts to F ≈ 0.93F (CBA)

Q .

4.7.3 Atom-Counting Uncertainty
In Section 4.3 we have demonstrated that measuring (N̂1, N̂−1) or D̂ ≡ N̂1 − N̂−1 gives access
to the ultimate sensitivity of the states |CBA〉 and |TF〉. Thus, an obvious way to realize the
optimal measurement is to count the number of atoms in the modes m = ±1. Besides this,
counting the atoms in the antisymmetric mode (mapped to the m = 1 mode, see Fig. 4.6) is
central to the proposed generation of MSSs. However, counting Bose-condensed atoms with
single-particle resolution is very challenging [227]. Therefore, we study the CFI of |CBA〉 and
|TF〉 and the generation of MSSs from |CBA〉 in the case of finite atom-counting precision. Note
that, in this section, we disregard quasiadiabaticity and atom loss.

First, we consider the CFI of

|ψ(θ)〉 ∈
{

e−iθŜx |CBA〉, e−iθĴx |TF〉
}

(4.77)

with respect to the observable D̂. For an ideal measurement, the CFI (2.4) is completely
determined by the probability distribution

Pθ(D) = 〈ψ(θ)|P̂D|ψ(θ)〉, (4.78)

where P̂D, as usual, denotes the projection onto the Fock states |N1, N −N1 −N−1, N−1〉 with
N1−N−1 = D. We assume that the magnetization D is experimentally determined by measuring
N̂±1. To incorporate the uncertainty of atom counting, we introduce the probability P (n±1|N±1)
of mistaking an atom number N±1 for n±1. We model P (n±1|N±1) as a Gaussian distribution
with mean N±1 and variance σ2:

P (n±1|N±1) = gσ(n±1 −N±1), gσ(x) = A e−
x2
2σ2 . (4.79)

The constant A is fixed by the normalization condition5

∞∑
x=−∞

gσ(x) = 1. (4.80)

Thus, the probability to observe a magnetization of d when measuring D̂ in the state |ψ(θ)〉
becomes

Pθ(d) =
N∑

D=−N
P (d|D)Pθ(D), P (d|D) = g√2σ(d−D). (4.81)

5For our numerical results, we approximate A by A(N±1) satisfying
∑N+5dσe

n±1=−5dσe P (n±1|N±1) = 1.

78



4.7 Experimental Feasibility
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Figure 4.12: CFI of |CBA〉 and |TF〉 for Gaussian atom-counting uncertainty with variance σ2.
Solid lines correspond to N = 500, dashed lines to N = 100. (a) Typical behavior of the CFI
F (θ), which exhibits a peak reaching far above the SQL. (b) Peak value of F/N as a function of
σ/
√
N . Gray vertical lines indicate single-particle resolution.

To compute the CFI with atom-counting uncertainty, we replace Pθ(D) in Eq. (2.4) by Pθ(d).
The typical behavior of the CFI evaluated by imprecise atom-counting is depicted, both for

the CBA and TF state, in Fig. 4.12a. Recall that an ideal measurement would yield a CFI of
F

(CBA/TF)
Q ≈ N2/2 at any θ. We observe that the atom-counting uncertainty strongly damps

the CFI. However, F (θ) exhibits a peak that remains far above the SQL. Figure 4.12b analyses
how the peak value Fmax ≡ maxθ F (θ) depends on the width σ of the Gaussian measurement
uncertainty. Beyond single-particle resolution, i. e., for σ & 0.5, an increasing σ reduces Fmax
according to

Fmax
N
≈ N

σ2F0 (4.82)

with F0 ≈ 0.042 for the CBA state and F0 ≈ 0.168 for the TF state. As we see from Fig. 4.12b,
this result seems to be independent of N . The TF state is thus less sensitive to atom-counting
uncertainty than the CBA state. However, the CBA state requires only a two times smaller value
of σ/

√
N to surpass the SQL. Ref. [113] has experimentally demonstrated a peak interferometric

sensitivity above the SQL for the TF state of Bose-condensed 87Rb atoms. Note that, by
Eq. (4.82), a CFI that scales with N better than linearly requires that σ/

√
N decreases with N .

When investigating, in Section 4.5, the generation of MSSs from |ψ〉 ≡ e−i
π
2 Ŝy |CBA〉, we payed

particular attention to the probability distributions

P (Nh) ≡
∑
Ng

P (Ng, Nh), P (Ng|Nh) ≡ 1
P (Nh)P (Ng, Nh) (4.83)

derived from
P (Ng, Nh) ≡ |〈Ng, N0, Nh|ψ〉|2, (4.84)

see Fig. 4.4a–c. Now we assume that the measurement of N̂h, which prepares the two-mode
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Figure 4.13: Generating MSSs from |ψ〉 ≡ e−i
π
2 Ŝy |CBA〉 by measuring N̂h with atom-counting

uncertainty σ. (a) Probability P (nh) to read off nh and generate ρ̂nh . (b)–(c) Conditional
probabilities P (Ng|nh) =

∑N
Ñ=0〈Ng, Ñ −Ng|ρ̂nh |Ng, Ñ −Ng〉. (d) Relative QFI FQ/(N − N̄h)2

of ρ̂nh with N̄h ≡
∑
Nh
P (Nh|nh)Nh for various σ. For σ →∞, the relative QFI tends to 8/9.

MSSs, is subject to atom-counting errors described by6

P (nh|Nh) = gσ(nh −Nh). (4.85)

The probability distributions of interest thus become

P (Ng, nh) =
∑
Nh

P (nh|Nh)P (Ng, Nh),

P (nh) =
∑
Ng

P (Ng, nh) =
∑
Nh

P (nh|Nh)P (Nh),

P (Ng|nh) = 1
P (nh)P (Ng, nh) =

∑
Nh

P (Nh|nh)P (Ng|Nh).

(4.86)

In the last line, we have used Bayes’ theorem

P (Nh|nh) = P (nh|Nh)P (Nh)
P (nh) , (4.87)

where P (Nh|nh) is the probability that a measurement with readout nh prepares Nh atoms
in the antisymmetric mode. The probability distributions P (nh) and P (Ng|nh) are depicted
in Fig. 4.13a–c. P (Nh) and P (Ng|Nh) get visibly blurred by the convolution with P (nh|Nh)
and P (Nh|nh), respectively. The right peak of P (Ng|Nh) gets particularly broadened since its
position strongly depends on Nh. The asymmetry of P (Ng|nh) is the most noticeable effect of
the measurement uncertainty on the probability distributions.

An imperfect measurement of N̂h in |ψ〉 with readout nh prepares the two-mode state

ρ̂nh ≡
∑
Nh

P (Nh|nh)|φNh〉〈φNh | (4.88)

with |φNh〉 defined in Eq. (4.50). We are interested in the QFI of ρ̂nh for phase imprinting by
Ŝz. Recall that |φNh〉 consists of N −Nh atoms. Therefore, 〈φNh |φN ′h〉 = 〈φNh |Ŝz|φN ′h〉 = 0 for

6In the context of MSSs, we use the normalization condition
∑N

nh=0 P (nh|Nh) = 1. This corresponds to the
situation when the experimentalist knows N and discards all nh < 0 and nh > N .
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4.8 Quenching

Nh 6= N ′h, and the QFI (2.26) of ρ̂nh can be expressed in terms of the QFI of the |φNh〉 as

F
(nh)
Q =

∑
Nh

P (Nh|nh)F (Nh)
Q = 4

∑
Nh

P (Nh|nh)〈φNh |Ŝ
2
z |φNh〉. (4.89)

Thus, also the QFI is simply smeared over close values of Nh. Figure 4.13d displays the relative
QFI F (nh)

Q /(N − N̄h)2 with N̄h ≡
∑
Nh
P (Nh|nh)Nh as a function of nh. The largest values of

the relative QFI get, of course, decreased by atom-counting uncertainty. However, this effect is
rather small, as becomes particularly obvious from the worst case limit. For N � 1, σ → ∞
leads to

P (nh|Nh)
P (nh) = 1 ⇒ F

(nh)
Q =

∑
Nh

P (Nh)F (Nh)
Q = F

(CBA)
Q , (4.90)

cf. Eq. (4.56). Since N̄h becomes
∑
Nh
P (Nh)Nh ≈ N/4, we end up with the nh-independent

F
(nh)
Q

(N − N̄h)2 ≈
8
9 for N � 1, σ →∞. (4.91)

A measurement with σ → ∞ means that the antisymmetric mode is simply disregarded, i. e.,
traced out. The large limiting value of F (nh)

Q /(N − N̄h)2 is a consequence of the high cumulative
probability to generate |φNh〉 with a large QFI.

In summary, the CFI of the states |CBA〉 and |TF〉 exceeds the SQL for ambitious but feasible
atom-counting uncertainty. The preparation of two-mode MSSs suffers only weakly from an
imprecise generating measurement of N̂h.

4.8 Quenching
Preparing the P ground state and then instantaneously quenching ξ into the BA phase exposes
the P state to entangling spin-changing collisions [151–153]. Since this is a popular method for the
generation of entanglement in spinor BECs [9, 30], we compare the QFI of the (quasiadiabatically
prepared) CBA and TF state to the QFI attainable by quenching.

Recall that the P state is |N1 = 0, N0 = N,N−1 = 0〉. After the quench, spin-changing collisions
start to populate the spin modes m = ±1. Because of technical limitations—particularly, phase
noise [159]—the evolution is typically terminated before N0 � 1 gets notably depleted [25,
228, 229]. Thus N0 ≈ N � 1, and â(†)

0 can be approximately replaced by
√
N . Then the spin

Hamiltonian (4.1) in the subspace with magnetization D = 0 becomes

Ĥ

|c|
≈ 2ξ(N̂1 + N̂−1)−

[
â1â−1 + â†1â

†
−1 + N̂1 + N̂−1 + 1

2

]
= 1
|c|

(Ĥg + Ĥh)− 2ξ + 1
2 (4.92)

with

Ĥg
|c|
≡ (2ξ − 1)

(
N̂g + 1

2

)
− 1

2(ĝ†2 + ĝ2),

Ĥh
|c|
≡ (2ξ − 1)

(
N̂h + 1

2

)
+ 1

2(ĥ†2 + ĥ2),
(4.93)

where we have used Eqs. (4.47) and (4.48). Let us introduce the generators of su(1, 1) [230]

Ĝ
(a)
0 = 1

4(2â†â+ 1), Ĝ
(a)
+ = 1

2 â
†2, Ĝ

(a)
− = 1

2 â
2 (4.94)
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4 Ground-State Quantum Phase Transitions

constructed from some bosonic creation and annihilation operator â(†). Then

Ĥg/h
|c|

= 2(2ξ − 1)Ĝ(g/h)
0 ∓

(
Ĝ

(g/h)
+ + Ĝ

(g/h)
−

)
. (4.95)

Within the low-depletion approximation, the initial P state is described by the vacuum state
|ψ(0)〉 = |Ng = 0〉 ⊗ |Nh = 0〉. Since [Ĥg, Ĥh] = 0, evolving |ψ(0)〉 for a time τ = |c|t/~ after the
quench of ξ produces a state |ψ(τ)〉 = |ψg(τ)〉 ⊗ |ψh(τ)〉 with |ψg/h〉 ≡ e−iτĤg/h/|c| |Ng/h = 0〉. To
derive the Fock basis coefficients of |ψg/h(τ)〉, we make use of the BCH relation [230]

e(2irĜ0+zĜ+−z∗Ĝ−)τ = ep+Ĝ+ ep0Ĝ0 ep−Ĝ− for τ, r ∈ R, z ∈ C, (4.96)

where

p+ = zτ0
C

sinh(τ/τ0), p0 = −2 lnC, p− = −z
∗τ0
C

sinh(τ/τ0),

C = cosh(τ/τ0)− irτ0 sinh(τ/τ0), τ0 = 1√
|z|2 − r2 .

(4.97)

The coefficients p0,± for |z|2 = r2 can be obtained by taking the corresponding limit. Equa-
tion (4.96) yields

|ψg/h〉 ≡ e−iτĤg/h/|c| |Ng/h = 0〉 = 1√
C

∞∑
k=0

εkg/h

√√√√(2k
k

)(
p+
2

)k
|Ng/h = 2k〉 (4.98)

with z = i, r = 1− 2ξ, εg = 1, and εh = −1.
Knowing |ψ(τ)〉, we want to compute its QFI for optimal collective unitary phase imprinting.

In the low-depletion limit, a phase-imprinting operator R̂ has to act on the m = 0 mode in order
to provide a large QFI. Therefore, we consider

R̂ =
∑
k

ukR̂k, R̂k ∈ {Ŝx, Ŝy, Ŝz, Âx, Ây, Âz}, uk ∈ R,
∑
k

u2
k = 1, (4.99)

cf. Eqs. (3.47) and (3.50). According to Section 2.1.6, the optimal QFI is four times the largest
eigenvalue of the covariance matrix Γ with elements

Γkl = 1
2〈ψ(τ)|R̂kR̂l + R̂lR̂k|ψ(τ)〉 − 〈ψ(τ)|R̂k|ψ(τ)〉〈ψ(τ)|R̂l|ψ(τ)〉. (4.100)

The low depletion approximation of the R̂k is

Ŝx ≈
√
N

2 (ĝ + ĝ†), Ŝy ≈
√
N

2i (ĝ − ĝ†), Ŝz ≈
1
2(N − N̂g),

Âx ≈
√
N

2 (ĥ+ ĥ†), Ây ≈
√
N

2i (ĥ− ĥ†), Âz ≈
1
2(N − N̂h).

(4.101)

Hence,

1
2〈ψ(τ)|ŜkÂl + ÂlŜk|ψ(τ)〉 − 〈ψ(τ)|Ŝk|ψ(τ)〉〈ψ(τ)|Âl|ψ(τ)〉

≈ 〈ψg(τ)|Ŝk|ψg(τ)〉〈ψh(τ)|Âl|ψh(τ)〉 − 〈ψg(τ)|Ŝk|ψg(τ)〉〈ψh(τ)|Âl|ψh(τ)〉 = 0
(4.102)
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Figure 4.14: QFI of the P state evolving at ξr = 1/2 for time τ . The QFI is optimized over phase
imprinting by Ŝ (numeric) or Ŝ and Â (analytic). Experiments usually explore the low-depletion
(small τ) regime, which is well described by the analytic approximation. The low-depletion QFI
scales linearly with N . Beyond the low-depletion regime, the QFI reaches roughly 40 % of the
HL.

and Γ decomposes into two diagonal blocks, Γ = Γ(g) ⊕ Γ(h), for Ŝ with |ψg〉 and Â with |ψh〉,
respectively.

Let us first focus on Γ(g). It further decomposes into the variance of Ŝz,

λ(g)
z = 1

4∆2N̂g = 1
4
(
〈ψg(τ)|N̂2

g |ψg(τ)〉 − 〈N̂g〉2
)
, 〈N̂g〉 ≡ 〈ψg(τ)|N̂g|ψg(τ)〉, (4.103)

and the covariance matrix of Ŝx and Ŝy with eigenvalues

λ
(g)
± = N

4
(
1 + 2〈N̂g〉 ±

√
2∆N̂g

)
. (4.104)

Since low depletion implies ∆N̂g � N , the maximal QFI for phase imprinting by Ŝ amounts to

FQ = 4λ(g)
+ = N

(
1 + 2〈N̂g〉+

√
2∆N̂g

)
. (4.105)

The corresponding optimal phase-imprinting operator is R̂(g) ≡ u(g)
x Ŝx + u

(g)
y Ŝy + u

(g)
z Ŝz with

u(g) ≡ 1√
2


√√√√1 +

√
2(1− 2ξ)2 〈N̂g〉

∆N̂g
, −

√√√√1−
√

2(1− 2ξ)2 〈N̂g〉
∆N̂g

, 0

. (4.106)

To evaluate 〈N̂g〉 and ∆2N̂g, we employ the generating function

f(x) ≡
∞∑
k=0

(
2k
k

)( |p+|
2

)2k
ekx = 1√

1− |p+|2 ex
∀x ∈ R, |p+|2 ex < 1, (4.107)

in terms of which

〈N̂g〉 = 2
|C|

∂xf(x)|x=0, ∆2N̂g = 4
|C|

∂2
xf(x)|x=0 − 〈N̂g〉2. (4.108)
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4 Ground-State Quantum Phase Transitions

Squeezed states of spinor BECs are generated by quenching ξ to a positive value in the BA phase,
0 < ξ < 1. This range of ξ is equivalent to τ0 ∈ R, which is called the non-oscillatory regime.
Equation (4.108) then yields

〈N̂g〉 = τ2
0 sinh2(τ/τ0), ∆2N̂g = 2 〈N̂g〉

(
〈N̂g〉+ 1

)
, (4.109)

and the maximal QFI becomes

FQ = N

[
1 + 2

(
〈N̂g〉+

√
〈N̂g〉(〈N̂g〉+ 1)

)]
. (4.110)

FQ depends via τ0 on the value of ξ targeted by the quench. The largest QFI is obtained when,
after the quench, Ĝ(g)

0 does not contribute to Ĥg, which defines the resonance condition ξr = 1/2
with τ0 = 1. At resonance, |ψg(τ)〉 becomes a squeezed vacuum state [177] with the squeezing
amplitude ζ = τ e−iπ/2.

The results for Γ(g) can be easily transferred to Γ(h). We observe that the replacement

ĝ† ↔ iĥ†, ĝ ↔ −iĥ (4.111)

leaves |ψ(0)〉 and Ĥ invariant, while transforming Ŝx, Ŝy, and Ŝz into Ây, −Âx, and Âz,
respectively. Hence, the eigenvalues of Γ(g) and Γ(h) coincide, and the QFI in Eq. (4.110)
gives the maximum over all phase-imprinting operators from Eq. (4.99). Besides R̂(g), also
R̂(h) ≡ u(h)

x Âx + u
(h)
y Ây + u

(h)
z Âz with u(h) ≡ (−u(g)

y , u
(g)
x , 0) provides optimal phase imprinting.

The QFI in Eq. (4.110) scales only linearly with N , see also Fig. 4.14. By contrast, the QFI of
the ideal CBA and TF state exhibits Heisenberg scaling. Even for a quasiadiabatic preparation
in the presence of atom loss, we have found that the QFI of the CBA state scales much better
than linearly. The interaction strengths, evolution times, and atom numbers in Refs. [25, 159,
228, 229] correspond to a QFI with 5 . FQ/N . 700 and 0.02 % . FQ/N

2 . 3 %. According
to Section 4.7.2, we expect that N = 200 atoms can be, despite atom loss, quasiadiabatically
transferred into a state with FQ/N ≈ 40 and FQ/N

2 > 20 %. In general, we assume that a
quasiadiabatic passage is favorable, as compared to quenching, when aiming at a large QFI with
respect to the HL.
The evolution time after quenching may be limited by the effect of phase noise [159] on

a squeezing parameter. By contrast, we are interested in the QFI instead of a squeezing
parameter and have not included phase noise in our simulations of quasiadiabatic state preparation.
Therefore, limiting our comparison to the low-depletion approximation may seem inappropriate.
To investigate a quench to ξr beyond the low-depletion limit, we numerically evolve the P state
and optimize its QFI over phase-imprinting operators R̂ = uxŜx +uyŜy +uzŜz

7. Figure 4.14 shows
that the QFI attains a (local) maximum with FQ ≈ 0.4N2 but does not reach F (CBA/TF)

Q ≈ N2/2.

4.9 Conclusion
A ferromagnetic spin-1 BEC can be quasiadiabatically driven across a QPT from a P state
into the CBA state. We propose two applications of the CBA state. First, it can serve as
the probe state for quantum-enhanced interferometry. Second, it can be used for the heralded
stochastic generation of MSSs similar to NOON states. Both applications tolerate a reasonably
swift quasiadiabatic passage in the presence of atom loss and uncertainties of atom counting.

7Our choice of R̂ is motivated by the low-depletion analysis. Other phase-imprinting operators from the Schwinger
representation of su(3) might, in principle, yield a larger QFI. Combining our general discussion in Section 4.2
with findings from Ref. [220] reveals that the QFI for phase imprinting by R̂ = uxĴx + uyĴy + uzĴz is smaller.
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4.9 Conclusion

In parallel to our theoretical study, the quantum-enhanced interferometric sensitivity of the
CBA state has been experimentally demonstrated in a spin-1 BEC of over 10 000 87Rb atoms [49].
The coupling to the environment that is most sensitively probed by the CBA state corresponds
to a radio-frequency pulse. By transferring the entangled atoms to different internal states, the
optimal coupling can be modified. In this way, the CBA state can be used, e. g., to operate
a microwave atomic clock beyond the SQL [25]. However, because of the comparatively low
frequency of microwave radiation, such clocks are not able to compete with optical atomic clocks8.
Alternatively, one can think of applications that are intrinsically related to radio-frequency
radiation, such as, e. g., radio telescopes.
An experimental realization of our second proposal, regarding the generation of MSSs, is

pending. Admittedly, we have not discussed how to characterize the produced MSSs, which is
essential to prove experimental success. However, methods for characterization can probably
be adapted from related experiments [49, 113]. Greenberger-Horne-Zeilinger (GHZ) states and
NOON states represent closely related paradigmatic examples of entangled MSSs. So far, such
states have been prepared with no more than 30 massive particles [36–39]. By contrast, our
proposal promises NOON-like MSSs of 102-105 atoms.

8Microwave Rb clocks are widely used as a secondary frequency standard. However, their main advantages, which
include low cost and compactness, would considerably suffer from targeting quantum enhancement. An optical
clock based on 87Rb has been recently presented in Ref. [231].
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5 Excited-State Quantum Phase Transitions
In Chapter 4, we have demonstrated how ground-state quantum phase transitions (ground-state
QPTs) in spinor Bose-Einstein condensates (BECs) can be used for quantum-state engineering.
Though our proposal concerned exclusively the ground state, its experimental feasibility signifi-
cantly depended on favorable properties of low-lying excited states. This is just one of many
examples for the relevance of excited eigenstates beyond their thermal mixtures. Currently, there
is much interest in quantum many-body systems out of equilibrium [232, 233]. The corresponding
dynamics depends on the properties of excited states. Regarding quantum-state engineering, all
Hamiltonian eigenstates share the advantage of being pure and stationary. Depending on their
further properties, it may be favorable to target certain excited states. Experimentally obtained
excited states include, e. g., single-photon states [234, 235], atomic clock states [23], motional
Fock states [236], excited bands of ultracold atoms in optical lattices [237], and highest excited
states in spinor BECs [161]. Ongoing progress towards the generation of arbitrary quantum
states increases, particularly, the accessibility of excited states [238]. Moreover, predictions of
intriguing excited-state properties would certainly trigger dedicated experiments. Hence, it is
highly desirable to extend investigations of ground-state QPTs towards excited states.

As recently as 2006, excited-state quantum phase transitions (ESQPTs) have been introduced
in Refs. [41, 239, 240]. The general concept regarding phases of matter, outlined at the beginning
of Chapter 4, pertains also to Hamiltonian eigenstates. Just as for ground-state QPTs, one
has to identify appropriate signatures. Because the first investigations of ESQPTs concerned
nuclear and molecular physics [41, 241], much attention has been payed to spectral properties. A
common spectral signature of ground-state QPTs consists in a closing gap between the lowest
and the next higher eigenenergy. Transferring this to excited states is straightforward: closing
energy gaps occur also further up the spectrum. More generally, ESQPTs are associated with
singularities in the density of states (DOS) [42]. We treat this as the defining signature of ESQPTs.
Excited-state phase diagrams are usually at least two-dimensional: one control parameter is given
by a Hamiltonian coupling coefficient λ, and the other one by the energy density η. Typically,
continuous critical curves η∗(λ) of singular DOS divide the λ-η plane into excited-state phases.
At the lower bound of the spectrum, one recovers the ground-state phase diagram.

ESQPTs have been theoretically investigated in various quantum many-body systems with
small numbers of collective degrees of freedom. Examples include the Lipkin-Meshkov-Glick
(LMG) model [242, 243], the Dicke model [244–247], interacting boson models for nuclei [41, 248]
and molecules [47, 241], two-site Bose-Hubbard models [249], and driven systems [250]. A general
analysis of ESQPTs in systems with two collective degrees of freedom is performed in Refs. [248,
251, 252]. From the very beginning, ESQPTs have been related to properties of classical models
describing the infinite-size limit of the quantum system under consideration [41]. Reference [253]
elaborates on this relation and presents a classification of ESQPTs. Beyond spectral signatures,
much attention has been devoted to the effect of ESQPTs on thermodynamics [254–257] and
dynamics [258–261]. Experimentally, signatures of ESQPTs have been so far observed in molecular
spectra [47, 262, 263], in the dynamics of spinor BECs [43, 44, 46], and in microwave photonic
crystals [45]. Recently, a dynamical QPT in a spinor BEC has been traced back to an ESQPT in
the highest excited state [161]. For a review on ESQPTs, see Ref. [42].

The number of theory papers on ESQPTs tremendously exceeds the amount of experimental
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5 Excited-State Quantum Phase Transitions

contributions. Based on the mean-field model [29, 149], it is generally assumed that spinor
BECs exhibit ESQPTs. However, there have been so far neither theoretical nor experimental
studies dedicated to the investigation of these ESQPTs. The experiments cited above [43, 44, 46]
demonstrated the mean-field dynamics, and some of the observations were later attributed to
ESQPTs. We believe that ESQPTs in spinor BECs deserve more attention. Spinor BECs offer
excellent experimental control and can, thus, help to fill the lack of experiments on ESQPTs.

Order parameters are crucial for the concept of phases. Moreover, they constitute an important
link to quantum-state engineering. Therefore, it is surprising how rarely order parameters are
discussed in the literature on ESQPTs. Instead, much attention is payed to singularities marking
the transitions. Most probably, a universal method for constructing order parameters of ESQPTs
does not exist [42]. Just as ground-state QPTs, ESQPTs can go along with spontaneous symmetry
breaking. This aids the definition of both static [245] and dynamic [264–266] order parameters.
Reference [45] suggests the f-sum rule as a quasiorder parameter. However, in general, identifying
order parameters of ESQPTs remains a highly relevant open problem.
Chapter 4 was concerned with the ground-state QPTs in a magnetization-free ferromagnetic

spin-1 BEC. Below, we extend the ground-state phase diagram across the spectrum. We begin,
in Section 5.1, by postulating the excited-state phases. Section 5.2 provides some details on the
mean-field model fundamental to the entire chapter. In Section 5.3, we prove that the DOS
diverges at the ESQPTs. This confirms the excited-state phases. Further signatures of the
ESQPTs are outlined in Section 5.4. Particularly, we identify a winding number, see Sections 5.4
and 5.5, that classifies the mean-field phase-space trajectories according to the excited-state
phases. Based on this observation, we introduce an order parameter (Section 5.5) that can be
extracted by interferometry (Section 5.6). According to our analysis in Section 5.7, such an
interferometric measurement is feasible but requires an outstanding control over magnetic-field
fluctuations. Section 5.8 highlights that our findings apply to a large class of quantum models
with the same mean-field limit. A spinor BEC can be, thus, considered as a quantum simulator
of ESQPTs in different physical systems. We conclude in Section 5.9.

In this chapter we elaborate on our results presented in Ref. [208].

5.1 Phases
The spin degrees of freedom of a ferromagnetic spin-1 BEC can be modeled by the Hamiltonian
density

ĥ

|c|
= ξ

(
1− 2N̂0

N

)
− 1
N2

[
â†20 â1â−1 + â†1â

†
−1â

2
0 + N̂0

(
N̂1 + N̂−1 + 1

2

)
+ D̂2

2

]
, (5.1)

cf. Chapter 3. Recall that the magnetization D̂ ≡ N̂1 − N̂−1 is conserved, [ĥ, D̂] = 0. We
consider the eigenspace of D̂ with eigenvalue D = 0. Figure 5.1 depicts, for N = 100 bosons, the
spectrum of ĥ/|c| as a function of the dimensionless effective quadratic Zeeman shift ξ1. The
ground-state QPTs discussed in the previous chapter are located at ξ = ±1. They delimit three
ground-state quantum phases: the Twin-Fock (TF) phase for ξ < −1, the polar (P) phase for
ξ > 1, and the broken-axisymmetry (BA) phase for |ξ| < 1.
Figure 5.1 hints at the existence of a critical dimensionless energy density η∗(ξ) ≡ −|ξ|. At

|ξ| ≤ 1, the eigenvalues of ĥ/|c| cluster around η∗(ξ). For |ξ| > 1, η∗(ξ) follows the energy density
of the ground state, cf. Eq. (4.6). By contrast, η∗(0) touches the energy density of the highest
excited state. Thus, η∗(ξ) with |ξ| ≤ 1 cuts the spectrum into three regions, each of which

1Note that for finite N the apparent mirror symmetry with respect to ξ = 0 is not exact.
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Figure 5.1: Excited-state quantum phases in the magnetization-free subspace of a ferromagnetic
spin-1 BEC. We depict every third eigenvalue of the Hamiltonian density ĥ/|c| for N = 100
bosons as a function of the effective quadratic Zeeman shift ξ. Avoided crossings lead to a
clustering of eigenvalues around η∗(ξ) ≡ −|ξ| with |ξ| ≤ 1 (orange line). This points at ESQPTs
that divide the spectrum into three phases, by analogy with the ground-state quantum phases
called the TF′, P′, and BA′ phase.

contains one ground-state quantum phase. The clustering of the spectrum suggests that, in the
mean-field limit N → ∞, the DOS diverges at η∗(ξ) with |ξ| ≤ 1. We understand a singular
DOS as the defining property of ESQPTs. Hence, we introduce three excited-state quantum
phases: the TF′ phase for η > η∗(ξ) and ξ < 0, the P′ phase for η > η∗(ξ) and ξ > 0, and the
BA′ phase for η < η∗(ξ), implying |ξ| < 1. Below, we confirm the divergence of the DOS and
further analyze the excited-state quantum phases.

5.2 Mean-Field Model

Phase transitions constitute a property of infinite systems. Therefore, we study the model (5.1)
in the limit of N →∞ bosons. More precisely, we consider the mean-field limit that we have
discussed in Section 3.7. Recall the N -particle coherent states

|α, N〉 = 1√
N !

 1∑
m=−1

αmâ
†
m

N |0〉 (5.2)

with αm ≡
√
nm eiφm , nm ≥ 0, φm ∈ Rmod 2π, and

∑
mnm = 1. To obtain the mean-field symbol

Amf(α) of a suitable operator Â, one substitutes â(†)
m by

√
Nα

(∗)
m and takes the N →∞ limit,

see Definition 2. Then, according to Lemma 3,

lim
N→∞

〈α, N |Â|α, N〉 = Amf(α). (5.3)
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5 Excited-State Quantum Phase Transitions

We focus on coherent states with zero magnetization, 1
N 〈α, N |D̂|α, N〉 = n1 − n−1 ≡ d = 0. For

such states, the mean-field symbol of the Hamiltonian density 5.1 becomes

hmf
|c|

= ξ(1− 2n0)− 2n0(1− n0) cos2(φ) (5.4)

with φ ≡ φ0 − (φ1 + φ−1)/2, see Eq. (3.100). We call hmf the mean-field Hamiltonian. Note that
hmf respects the symmetries hmf(φ ± π) = hmf(φ), hmf(−φ) = hmf(φ), and hmf(−ξ, 1 − n0) =
hmf(ξ, n0). The evolution with ĥ leads to a dynamics of mean-field symbols that is, for d = 0
states, governed by the Hamiltonian equations

d
dτ n0 = ∂

∂φ

hmf
|c|

= 4n0(1− n0) cos(φ) sin(φ),

d
dτ φ =− ∂

∂n0

hmf
|c|

= 2ξ + 2(1− 2n0) cos2(φ)
(5.5)

with τ ≡ |c|t/~ and by d
dτ d = d

dτ∆φ = 0 with ∆φ ≡ (φ1− φ−1)/2, cf. Eq. (3.120). In the present
section we provide, for later use, some details on the mean-field model defined by Eqs. (5.4)
and (5.5).

5.2.1 Phase Space

The phase space of the mean-field model consists of all tuples (n0, φ) of the generalized coordinate
n0 ∈ [0, 1] and the conjugate momentum φ ∈ [0, 2π). A given tuple (n0, φ) corresponds to the
coherent state, see Eq. (5.2), with

α0 =
√
n0 eiφ0 , α1 =

√
1− n0

2 ei(φ0−φ+∆φ), α−1 =
√

1− n0
2 ei(φ0−φ−∆φ) . (5.6)

Here, φ0 is an irrelevant global phase and ∆φ ∈ Rmod 2π is fixed by the initial conditions.
For n0 ∈ {0, 1}, the coherent state does not depend, up to a global phase, on the value of φ.
Therefore, the phase space is isomorphic to a sphere with z-axis n0 and azimuthal angle φ, see
Fig. 5.2. The north pole is located at n0 = 1 and the south pole at n0 = 0. Up to the sign of φ,
the phase space coincides with the Bloch sphere for the modes â†0 and 1

2(ei∆φ â†1 + e−i∆φ â†−1), cf.
Eq. (2.38).

5.2.2 Stationary Points

The stationary points of hmf are defined by

∂

∂n0

hmf
|c|

= − d
dτ φ = 0, ∂

∂φ

hmf
|c|

= d
dτ n0 = 0. (5.7)

Equations (5.4) and (5.5) yield the following stationary points:

n0 0 1 1
2(ξ + 1) any

cos2(φ) |ξ| |ξ| 1 0
for −1 ≤ ξ ≤ 0 0 ≤ ξ ≤ 1 −1 ≤ ξ ≤ 1 ξ = 0
η −|ξ| −|ξ| −1

2(ξ2 + 1) 0
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5.2 Mean-Field Model

Here, η denotes the value of hmf/|c|. Note that the first two stationary points have an energy
density of η∗(ξ). The third column corresponds to the ground state at −1 ≤ ξ ≤ 1, cf. Eqs. (4.5)
and (4.6). In the following, we refrain from discussing the forth, special, case ξ = 0.

The dynamics in the vicinity of a stationary point is determined by the corresponding Hessian
matrix H of hmf/|c|:

H ≡
(
∂2
n0 ∂n0∂φ

∂φ∂n0 ∂2
φ

)
hmf
|c|

=
(

4 cos2(φ) 2(1− 2n0) sin(2φ)
2(1− 2n0) sin(2φ) 4n0(1− n0) cos(2φ)

)
(5.8)

The Hessian matrices at n0 ∈ {0, 1} are

H = 4 cos(φ)
(

cos(φ) ± sin(φ)
± sin(φ) 0

)
(5.9)

with the positive sign applying to n0 = 0. At the corresponding stationary points, cos2(φ) = |ξ|
and the eigenvalues of H become

λ± = 2
√
|ξ|
(√
|ξ| ±

√
4− 3|ξ|

)
. (5.10)

For 0 < |ξ| < 1, λ− < 0 and λ+ > 0 imply that the first two stationary points are saddle points
of hmf

2. The Hessian matrix at the ground-state stationary points is diagonal with eigenvalues
λn0 = 4 and λφ = 1− ξ2. Hence, for |ξ| < 1 both eigenvalues are positive, marking a minimum
of hmf

3.
In summary, there are three stationary points of hmf at any |ξ| ∈ (0, 1): two ground-state

minima at n0 = 1
2(ξ + 1) and φ ∈ {0, π} with an energy density of η = η0 = −1

2(ξ2 + 1) and a
saddle point at the north (ξ > 0) or south (ξ < 0) pole of the phase space with η = η∗ = −|ξ|, cf.
Fig. 5.2. Note that admitting an arbitrary magnetization d, see Eqs. (3.99) and (3.119), does
not change the set of stationary points for ξ 6= 0. This further justifies our focus on d = 0 states.

5.2.3 Energy Hypersurfaces
Consider the mean-field model at a fixed value of ξ. The phase-space points (n0, φ) satisfying

η = ξ(1− 2n0)− 2n0(1− n0) cos2(φ) (5.11)

constitute a level set of hmf , which we call the energy hypersurface with energy density η. The
largest value of η that corresponds to a non-empty level set is ηmax ≡ |ξ|, and the smallest one is
the ground-state energy density η0 in Eq. (4.6),

η0 =


ξ for ξ ≤ −1
−1

2(ξ2 + 1) for − 1 < ξ < 1
−ξ for ξ ≥ 1

. (5.12)

For ξ 6= 0, solving Eq. (5.11) for n0 yields

n0(φ) =



{
n+(φ) ∀φ for ξ < 0
n−(φ) ∀φ for ξ > 0

for η > η∗

n±(φ) ∀ cos2(φ) ≥
√
η2 − ξ2 − η for η < η∗

1
2

(
1− ξ

|ξ|

)
+ ξ

cos2(φ) ∀ cos2(φ) ≥ |ξ|
1
2

(
1 + ξ

|ξ|

)
∀φ

for η = η∗

(5.13)

2For |ξ| = 0 we get λ± = 0, and |ξ| = 1 yields λ− = 0, λ+ = 4.
3For |ξ| = 1, λφ = 0.
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Figure 5.2: Phase-space trajectories of the mean-field model for ξ = 0.5. North and south pole
of the phase space are at n0 = 1 and n0 = 0, respectively. Stationary points of hmf are marked in
red. The separatrix (black) separates trajectories in the P′ phase (η > η∗, green) from trajectories
in the BA′ phase (η < η∗, yellow). In the P′ phase, each energy hypersurface is the image of a
single trajectory. In the BA′ phase, it subsumes one trajectory at the front and one at the back
of the phase space.

with

n±(φ) ≡ 1
2 cos2(φ)

(
cos2(φ) + ξ ±

√
∆
)
, ∆ ≡ cos4(φ) + 2η cos2(φ) + ξ2. (5.14)

The value of n0(φ) at φ ∈ {π/2, 3π/2} is obtained by taking the limit cos2(φ)→ 0 in Eq. (5.14).
Let us discuss some implications of Eqs. (5.13) and (5.14). For η∗ < η < ηmax, each energy

hypersurface constitutes a closed loop around the n0-axis of the phase space (green curves in
Fig. 5.2). Towards ηmax, this loop shrinks to a pole of the phase space, which is opposite to
the saddle point (for |ξ| < 1) or ground state (for |ξ| ≥ 1) of hmf . For η < η∗, we first note
that Eq. (5.12) implies |ξ| < 1. Furthermore, f(ξ, η) in cos2(φ) ≥

√
η2 − ξ2 − η ≡ f(ξ, η), see

Eq. (5.13), satisfies f(ξ, η) > 0 and f(ξ, η) = 1 ⇔ η = η0. Within the admitted range of φ,
n+(φ) = n−(φ) is equivalent to cos2(φ) = f(ξ, η). Additionally, we observe that n0(φ) does
not attain the values {0, 1}. Hence, for η0 < η < η∗, each energy hypersurface consists of two
disconnected loops (yellow curves in Fig. 5.2), none of which encircles the n0-axis or includes
a pole of the phase space. At η0, we recover the ground-state stationary points. The energy
hypersurface with energy density η∗(ξ) ≡ −|ξ| at |ξ| < 1 includes the saddle point of hmf and is
therefore called a “separatrix” (black line in Fig. 5.2). It is a closed curve with an intersection at
the stationary point. For |ξ| ≥ 1, the energy hypersurfaces at η∗ is confined to the phase-space
pole corresponding to the respective ground state, cf. Eq. (4.5).

All energy hypersurfaces necessarily reflect the symmetries of the mean-field Hamiltonian, such
as hmf(φ± π) = hmf(φ), hmf(−φ) = hmf(φ), and hmf(−ξ, 1− n0) = hmf(ξ, n0).

5.2.4 Trajectories
Let (n0(τ), φ(τ)) with τ ∈ R be a solution of the equations of motion (EOMs) in Eq. (5.5). Then
(n0(τ+τ0), φ(τ+τ0)) with any τ0 ∈ R also solves the EOMs. We say that all (n0(τ+τ0), φ(τ+τ0))
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represent the same trajectory. Since all representatives have the same image, we can refer to it
as the image of the trajectory.

The mean-field Hamiltonian is time-independent so that the EOMs conserve the energy density
η. Therefore, the image of a trajectory is always part of an energy hypersurface. More precisely,
if we exclude all stationary points from an energy hypersurface, each connected component of the
remaining set becomes the image of a trajectory. Every stationary point defines its own trajectory.
Hence, energy hypersurfaces with η∗ < η ≤ ηmax directly correspond to trajectories (green curves
in Fig. 5.2), while for η0 ≤ η < η∗ each energy hypersurface is made up of two trajectories with
the same energy density (yellow curves). The separatrix consists of three trajectories.

The parameterization of (n0(τ), φ(τ)) by τ assigns the direction of increasing τ to the trajecto-
ries. For η 6= η∗, it can be readily determined by observing that for cos2(φ) = 1

d
dτ φ =

{
−2
√

1 + 2η + ξ2 ≤ 0 for n0(φ) = n+(φ)
2
√

1 + 2η + ξ2 ≥ 0 for n0(φ) = n−(φ)
. (5.15)

For the separatrix at cos2(φ) = 1, we find

d
dτ φ = 2 ξ

|ξ|
(1− |ξ|)

{
< 0 for ξ < 0
> 0 for ξ > 0

. (5.16)

Figure 5.2 depicts exemplary trajectories for ξ = 0.5.

5.2.5 Dynamics
In Section 3.7.5, we have reviewed some general results on the evolution n0(τ) determined by
the mean-field EOMs for a spin-1 BEC. Here, we focus on the model (5.1), i. e., a ferromagnetic
interaction, c < 0, and zero magnetization, d = 0.

Using the conservation of η, we find that for ξ 6= 0( d
dτ n0

)2
= 16ξ(n0 − z0)(n0 − z+)(n0 − z−) (5.17)

with z0 = 1
2(1 − η/ξ) and z± = 1

2(1 + ξ ±
√

1 + ξ2 + 2η). Recall that we have divided the
(ξ, η)-plane into the TF′ phase for η > η∗ and ξ < 0, the P′ phase for η > η∗ and ξ > 0, and the
BA′ phase for η < η∗. At η∗ and in the TF′ and P′ phases z− ≤ z0 ≤ z+, while in the BA′ phase
z0 ≤ z− ≤ z+ for ξ < 0 and z− ≤ z+ ≤ z0 for ξ > 0. Let us introduce

x1 ≡ 1
2(1 + |ξ| −

√
1 + ξ2 + 2η),

x2 ≡
{1

2(1 + |ξ|+
√

1 + ξ2 + 2η) for η < η∗
1
2(1− η/|ξ|) for η ≥ η∗

,

x3 ≡
{1

2(1− η/|ξ|) for η < η∗
1
2(1 + |ξ|+

√
1 + ξ2 + 2η) for η ≥ η∗

(5.18)

with x1 ≤ x2 ≤ x3. For ξ > 0, the xi coincide with the appropriately ordered zeroes z0 and z±.
However, in contrast to the zi the xi do not depend on the sign of ξ.

For ξ > 0, according to Eq. (3.123), n0 evolves as

n0(τ) = x2 − (x2 − x1) cn2
(

2
√
|ξ|(x3 − x1)τ + v,

x2 − x1
x3 − x1

)
≡ ñ0(τ), (5.19)
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where cn(w; k2) is the Jacobi elliptic cosine and v accounts for the initial conditions4. If
(n0(τ), φ(τ)) solves the EOMs (5.5) for some ξ > 0, the symmetries hmf(−ξ, 1− n0) = hmf(ξ, n0)
and hmf(−φ) = hmf(φ) imply that (1 − n0(−τ),−φ(τ)) solves the EOMs for −ξ < 0. Since
additionally cn(−w; k2) = cn(w; k2), n0(τ) for ξ < 0 can be expressed as

n0(τ) = 1− ñ0(τ). (5.20)

Hence, n0(τ) oscillates between x1 and x2. The period is, see Eq. (3.124),

T = 1√
|ξ|(x3 − x1)

K

(
x2 − x1
x3 − x1

)
=
{√

y−1K(x/y) for η < η∗√
x
−1
K(y/x) for η > η∗

, (5.21)

where K(k2) =
∫ π/2

0 dγ
√

1− k2 sin2γ
−1 is the complete elliptic integral of the first kind, x ≡

|ξ|
√

1 + ξ2 + 2η, and y ≡ 1
2(x − ξ2 − η). For 0 < |ξ| ≤ 1, the period diverges at η∗: when η

approaches η∗ from above, y/x converges from below to unity and K(y/x) goes to infinity.

5.3 Density of States
The central signature of an ESQPT is a singularity in the DOS. Here, the DOS has to be
evaluated in the limit of an infinitely large system. For a ferromagnetic spin-1 BEC with zero
magnetization, the finite-size spectrum in Fig. 5.1 suggests that, in the limit of N →∞ atoms,
the DOS diverges at η∗(ξ) ≡ −|ξ| with |ξ| ≤ 1. To verify this, we study the DOS of the mean-field
model discussed in the previous section.

Equation (3.103) provides a concise expression for the DOS of a spin-1 BEC in the mean-field
limit. However, this DOS takes into account states with an arbitrary magnetization. The
derivation of Eq. (3.103) is based on coherent states that are, in general, no eigenstates of the
magnetization D̂. It is therefore not obvious how to restrict the DOS to the zero-magnetization
subspace. In Section 5.3.1 we prove that this restriction can be realized by an intuitive modification
of the DOS in Eq. (3.103). We evaluate the restricted DOS in Section 5.3.2. We demonstrate
that the DOS, indeed, diverges at η∗(ξ) with 0 < |ξ| < 1.

5.3.1 Restriction to Magnetization-Free Subspace
In terms of the Fock basis states |N1, N0, N−1〉 with

∑
mNm = N of the N -particle Hilbert space

HN , the projection onto the eigenspace of D̂ ≡ N̂1 − N̂−1 with eigenvalue D = 0 reads

P̂N =
bN/2c∑
k=0
|k,N − 2k, k〉〈k,N − 2k, k|. (5.22)

We define the DOS restricted to the magnetization-free subspace of HN by

F [ν̃N ](ζ) ≡
∫

dη eiζη ν̃N (η) ≡ TrN P̂N eiζĥ/|c| with ζ ∈ R, (5.23)

where ĥ/|c| is the dimensionless Hamiltonian density in Eq. (5.1), η the corresponding energy
density, and F denotes the Fourier transformation. Below, we show that

lim
N→∞

1
N

TrN P̂N eiζĥ/|c| =
∫
Dαδ(n1 − n−1) eiζhmf(α)/|c| (5.24)

4Note that at (|ξ| = 1, η = −1) the denominator x3 − x1 vanishes, so that ñ0(τ) has to be computed by taking
the appropriate limit.
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with Dα ≡ 1
(2π)3

∏
mdnmdφm δ(

∑
mnm − 1). This yields, in the same way as in Section 3.7.3,

lim
N→∞

ν̃(η)
N

=
∫
Dαδ(n1 − n−1) δ

(
hmf(α)
|c|

− η
)

(5.25)

for the mean-field limit of the restricted DOS. Thus, the restriction to D = 0 can be essen-
tially implemented by multiplying the coherent-state measure by δ(d), as might have been
expected [245].

Our following proof of Eq. (5.24) relies on the framework introduced in Refs. [203–206]. Let us
therefore review some central ideas of this approach. For the details, please consult the original
works.

Let AN be the set of linear operators on HN . Here, H1 is the single-particle Hilbert space and
HN the symmetric subspace of H⊗N1 . We denote the projection from H⊗N1 onto HN by F̂N . AM
and AN with M < N can be related by

jNM : AM → AN , ÂM 7→ F̂N symN (ÂM ⊗ 1N−M )F̂N , (5.26)

where 1N−M is the identity on H⊗(N−M)
1 . The symmetrization operator symN averages over

all permutations of the single-particle Hilbert spaces constituting H⊗N1 . A uniformly bounded
sequence ÂN of ÂN ∈ AN with N ∈ N is called j-convergent if

lim
M→∞

lim sup
N→∞

‖ÂN − jNM (ÂM )‖ = 0. (5.27)

We denote the set of j-convergent sequences by J, and the N → ∞ limit of ÂN by A∞. The
j-convergent sequences with ‖Â∞‖ = 0 constitute the set of null sequences J0. Note that applying
a complex analytic function f ∈ C(Cr) to Â(s)

N
∈ J with s ∈ {1, . . . , r} yields the j-convergent

sequence limN→∞ f(Â(1)
N , . . . , Â

(r)
N ) = f(A(1)

∞ , . . . , A
(r)
∞ ).

The space of limiting operators A∞ is isomorphic to

A∞ ≡ J�J0. (5.28)

A∞ is a commutative C∗-algebra. The state or dual space A∗∞ of A∞ is a weak∗ compact convex
set. The set Ω of pure or extremal states in A∗∞ coincides with the set of multiplicative states.
By Gelfand’s representation, A∞ is isomorphic to the space of continuous functions on Ω.
The pure states in A∗∞ turn out to be bijectively related to coherent states. For any Φ ∈ Ω

and A∞ ∈ A∞, there is an α ∈ C3 with
∑
m |αm|2 = 1 such that

Φ(A∞) = lim
N→∞

〈α, N |ÂN |α, N〉 ∀ ÂN ∈ J : lim
N→∞

ÂN = A∞. (5.29)

Vice versa, for any normalized α ∈ C3 and ÂN ∈ J, there is a Φ ∈ Ω such that

lim
N→∞

〈α, N |ÂN |α, N〉 = Φ(A∞). (5.30)

We can, thus, conclude that any Ψ ∈ A∗∞ acts as

Ψ(Â∞) =
∫ ∏

m

dnmdφmµ(α)A∞(α), (5.31)

where A∞(α) ≡ limN→∞〈α, N |ÂN |α, N〉 and µ(α) defines a probability measure.
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We are now ready to show that

lim
N→∞

1
N

Tr P̂Nf(ÂN ) =
∫
Dαδ(n1 − n−1) f(A∞(α)) ∀f ∈ C(C), ÂN ∈ J. (5.32)

Restricting ĥ to HN defines a sequence of j-convergent operators with h∞(α) = hmf(α), cf.
Definition 1 and Lemma 3. Therefore, Eq. (5.32) immediately implies Eq. (5.24).

To prove Eq. (5.32), we introduce the sequence ρ̂N of states

ρ̂N ≡
1

bN/2c+ 1 P̂N . (5.33)

If ρ̂N is weakly convergent, then for any ÂN ∈ J

lim
N→∞

1
N

Tr P̂N ÂN = 1
2 lim
N→∞

Tr ρ̂N ÂN . (5.34)

The states
ρ̂N : AN → C, ÂN 7→ Tr ρ̂N ÂN (5.35)

can be thought of as being embedded in the weak∗ compact space A∗∞. Therefore, the sequence
ρ̂N must have at least one convergent subsequence. If all convergent subsequences converge to
the same limit, the entire sequence converges to this limit.

The limit of any convergent subsequence ρ̂M(N) of ρ̂N must be of the form

lim
N→∞

Tr ρ̂M(N)ÂM(N) =
∫ ∏

m

dnmdφmµ(α)A∞(α) ∀ÂN ∈ J, (5.36)

see Eq. (5.31). We observe that the ρ̂N are invariant under phase shifts:

e−iθN̂m ρ̂N eiθN̂m = ρ̂N ⇒ Tr ρ̂Nf(eiθN̂m ÂN e−iθN̂m) = Tr ρ̂Nf(ÂN ) ∀m, θ (5.37)

Note that 〈α, N | eiθN̂l ÂN e−iθN̂l |α, N〉 = 〈α′, N |ÂN |α′, N〉 with n′m = nm, φ′m6=l = φm, and
φ′l = φl − θ. Hence, µ(α) cannot depend on any of the φm. Furthermore, applying f ∈ C(C) to
ûN ≡ (N̂1 + N̂0 + N̂−1)/N , we find that

lim
N→∞

Tr ρ̂M(N)f(ûM(N)) = lim
N→∞

1
bM(N)/2c+ 1

bM(N)/2c∑
k=0

f(1) = f(1). (5.38)

Similarly, for functions of d̂N ≡ D̂/N ,

lim
N→∞

Tr ρ̂M(N)f(d̂M(N)) = f(0). (5.39)

Hence, µ(α) = µ̃(n0)δ(
∑
m nm − 1)δ(n1 − n−1). To determine µ̃(n0), we consider functions of

n̂N ≡ N̂0/N :

lim
N→∞

Tr ρ̂M(N)f(n̂M(N)) = lim
N→∞

1
bM(N)/2c+ 1

bM(N)/2c∑
k=0

f

(
M(N)− 2k
M(N)

)
=
∫

dn0 f(n0).

(5.40)

This, finally, yields µ(α) = 2
(2π)3 δ(

∑
m nm−1)δ(n1−n−1) independently of the specific convergent

subsequence of ρ̂N. We have thus proven

lim
N→∞

Tr ρ̂Nf(ÂN ) = 2
∫
Dαδ(n1 − n−1) f(A∞(α)) ∀f ∈ C(C), ÂN ∈ J, (5.41)

from which Eq. (5.32) follows via Eq. (5.34), and Eq. (5.24) as a special case of Eq. (5.32).
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Figure 5.3: DOS in the mean-field limit as a function of ξ and η − η0, where η0 = −1
2(ξ2 + 1)

is the ground-state energy density. The DOS diverges at η∗ ≡ −|ξ| (black), defining ESQPTs
between the TF′ phase, the P′ phase, and the BA′ phase. The inset shows the DOS along lines
of constant ξ = −0.2 (red, dashed) and η − η0 = 0.2 (orange, solid). The spectrum of a BEC of
N = 100 atoms (gray, every third eigenvalue) exhibits avoided crossings at the ESQPTs.

5.3.2 Divergence at Excited-State Quantum Phase Transitions
Since the mean-field Hamiltonian (5.4) depends only on n0 and φ ≡ φ0 − (φ1 + φ−1)/2, we can
rewrite the restricted DOS in Eq. (5.25) as

lim
N→∞

ν̃(η)
N

= 1
4π

∫ 1

0
dn0

∫ 2π

0
dφ δ

(
hmf(n0, φ)
|c|

− η
)
. (5.42)

First, we integrate over n0, using the familiar identity δ(g(x)) =
∑
i
δ(x−zi)
|g′(zi)| , where zi are the

zeroes of g(x). With the expressions for the energy hypersurfaces in Eq. (5.13), this yields for
ξ 6= 0:

lim
N→∞

ν̃(η)
N

= 1
4π×


∫

dφ
∣∣∣ 1
∂n0hmf/|c|

∣∣∣
n0=n+(φ)

for ξ < 0∫
dφ

∣∣∣ 1
∂n0hmf/|c|

∣∣∣
n0=n−(φ)

for ξ > 0
for η > η∗

∫
dφΘ(cos2(φ)−

√
η2 − ξ2 + η)

(∣∣∣ 1
∂n0hmf/|c|

∣∣∣
n0=n+(φ)

+
∣∣∣ 1
∂n0hmf/|c|

∣∣∣
n0=n−(φ)

)
for η < η∗∫

dφ
(
Θ(cos2(φ)− |ξ|)

∣∣∣ 1
∂n0hmf/|c|

∣∣∣
n0=ñ∗(φ)

+ 1
2

∣∣∣ 1
∂n0hmf/|c|

∣∣∣
n0=n∗

)
for η = η∗

(5.43)

Here, ∂n0
hmf
|c| = −2ξ − 2(1 − 2n0) cos2(φ), n±(φ) ≡ 1

2 cos2(φ)(cos2(φ) + ξ ±
√

∆), ∆ ≡ cos4(φ) +
2η cos2(φ) + ξ2, ñ∗(φ) ≡ 1

2(1− ξ/|ξ|) + ξ/cos2(φ), and n∗ ≡ 1
2(1 + ξ/|ξ|). The factor 1

2 in front of
the second term for η∗ in Eq. (5.43) accounts for the fact that n∗ always coincides with a limit
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5 Excited-State Quantum Phase Transitions

of the integration over n0. Substituting x for cos2(φ), we explicitly get:

lim
N→∞

ν̃(η)
N

=
1

4π
∫ 1

0 dx
√
x(1− x)(x2 + 2ηx+ ξ2)−1 for η > η∗

1
2π
∫ 1√

η2−ξ2−ηdx
√
x(1− x)(x2 + 2ηx+ ξ2)−1 for η < η∗

1
8π
∫ |ξ|

0 dx
[√

x(1− x)(|ξ| − x)
]−1

+ 3
8π
∫ 1
|ξ|dx

[√
x(1− x)(x− |ξ|)

]−1
for η = η∗

(5.44)

Figure 5.3 depicts the restricted DOS.
At stationary points of hmf , the integrand in Eq. (5.42) becomes singular. This can lead to a

divergence of the DOS. We have seen in Section 5.2.2 that, for any 0 < |ξ| < 1, hmf has a saddle
point at η∗, n∗, and cos2(φ) = |ξ|. Let us analyze how this saddle point affects the integrals
for the DOS at η∗ in Eq. (5.44). Taylor expanding the denominator of the first integral around
x = |ξ| yields, for small 0 < ε1 < ε2,∫ |ξ|−ε1
|ξ|−ε2

dx
[√

x(1− x)(|ξ| − x)
]−1
≈ 1√

|ξ|(1− |ξ|)

∫ ε2

ε1

dy
y

= 1√
|ξ|(1− |ξ|)

ln(y)
∣∣∣ε2
ε1

ε1→0−−−→∞.

(5.45)
The same happens at the lower bound of the second integral5. Hence, the restricted DOS diverges
at η∗ ≡ −|ξ| with 0 < |ξ| < 1, cf. Fig. 5.3.

Reference [253] classifies the singularities in the DOS that arise from non-degenerate stationary
points of the Hamiltonian. Here, non-degenerate means that the corresponding Hessian matrix
does not have zero eigenvalues. The singularities can be characterized by the dimensionality
of the phase space and the number of negative eigenvalues of the Hessian matrix. Particularly,
saddle points on a two-dimensional phase space lead to a DOS tending to +∞. Our findings
coincide with this general result. Additionally, Ref. [253] proves that such a divergence is always
logarithmic in |η − η∗|.

5.4 Further Signatures
We have identified ESQPTs at η∗ = −|ξ| with 0 < |ξ| < 1. The DOS diverges at the ESQPTs
but does not distinguish the excited-state phases from each other. In this section, we discuss
some properties that qualitatively change at the ESQPTs.
As we have seen in Section 5.2.3, each energy hypersurface with η > η∗ is a single closed

loop (or point), whereas for η < η∗ it consists of two disconnected loops (or points). Thus, the
topology of energy hypersurfaces abruptly changes from the TF′ and P′ phases to the BA′ phase.
Such a signature of ESQPTs has been also observed in the LMG model [243].

Every connected component of an energy hypersurface with η 6= η∗ corresponds to a trajectory
of the mean-field dynamics, cf. Section 5.2.4. The energy hypersurfaces always respect the
symmetries of the mean-field Hamiltonian. However, if an energy hypersurface consists of several
connected components, each of them may break these symmetries. Since, for η > η∗, there is
only one trajectory per energy hypersurface, these trajectories share the Hamiltonian symmetry
hmf(φ ± π) = hmf(φ). By contrast, all trajectories with η < η∗ break this symmetry. Recall
that the mean-field symmetry hmf(φ ± π) = hmf(φ) arises from the quantum conservation of
Î ≡ (−1)N̂0 . However, all eigenstates of the magnetization D̂ with the same eigenvalue D belong

5Note that the integrands in Eq. (5.44) for η∗ are also singular at x ∈ {0, 1}. However, the integrals do not
diverge in the neighborhood of these values.

98



5.5 Order Parameter

to a single eigenspace of Î. Therefore, the quantum symmetry cannot be broken within the
zero-magnetization subspace. We understand the mean-field symmetry breaking as an artifact
which is caused by the fact that we study the D = 0 subspace in terms of coherent states from
the Hilbert space comprising arbitrary D.
In the TF′ and P′ phases, the trajectories encircle the n0-axis (green curves in Fig. 5.2)—

clockwise in the TF′ phase and counterclockwise in the P′ phase. By contrast, the trajectories in
the BA′ phase do not enclose the n0-axis (yellow curves). This observation lays the foundation
for the order parameter that we introduce in the next section.

5.5 Order Parameter
An order parameter has to qualitatively distinguish between excited-state phases. Moreover, we
wish it to be experimentally well accessible. For the ground-state phases, see Chapter 4, both
requirements are satisfied by the relative occupation n0 of the m = 0 spin state. To generalize
this observable to excited states, we define [245]

n0(ξ, η) ≡ lim
N→∞

∑
j〈ηj , N |N̂0/N |ηj , N〉δ(ηj − η)∑

j δ(ηj − η) . (5.46)

The index j labels the N -particle eigenstates of the Hamiltonian density, ĥ
|c| |ηj , N〉 = ηj |ηj , N〉,

with D̂|ηj , N〉 = 0. We know from Section 5.3 that

lim
N→∞

1
N

∑
j

δ(ηj − η) ≡ lim
N→∞

ν̃(η)
N

= 1
4π

∫ 1

0
dn0

∫ 2π

0
dφ δ

(
hmf(n0, φ)
|c|

− η
)
. (5.47)

One can analogously show that

lim
N→∞

1
N

∑
j

〈ηj , N |N̂0/N |ηj , N〉δ(ηj − η) = F−1
[

lim
N→∞

1
N

TrN P̂N
N̂0
N

eiζĥ/|c|
]
(η)

= 1
4π

∫ 1

0
dn0

∫ 2π

0
dφ n0δ

(
hmf(n0, φ)
|c|

− η
)
.

(5.48)

Recall that, here, P̂N denotes the projection onto the N -particle eigenspace of D̂ with eigenvalue
D = 0. Equation (5.48) can be evaluated6 similarly to the DOS, see Eq. (5.43). Explicitly, we
find

n0(ξ, η) =
(

lim
N→∞

ν̃(η)
N

)−1
×


1

8π
∫ 1

0 dx x+ξ+
√

∆
x
√
x(1−x)∆

for η > η∗, ξ < 0
1

8π
∫ 1

0 dx x+ξ−
√

∆
x
√
x(1−x)∆

for η > η∗, ξ > 0
1

4π
∫ 1√

η2−ξ2−ηdx
x+ξ

x
√
x(1−x)∆

for η < η∗

(5.49)

with ∆ ≡ x2 + 2ηx+ ξ2.
Figure 5.4 shows that, just as the DOS, n0(ξ, η) becomes singular at the ESQPTs but detects

no qualitative difference between the excited-state phases. Hence, we need another approach to
the search for an order parameter. Already Ref. [41] emphasizes that ESQPTs are related to
mean-field dynamics. Following this direction, we succeed in constructing an order parameter
that is experimentally well accessible.

6Note that Eq. (5.48) is essentially a τ -integral over the mean-field dynamics n0(τ).
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Figure 5.4: Mean-field limit n0(ξ, η) of 〈N̂0/N〉 in the eigenstates of ĥ(ξ)/|c| with eigenvalue η.
At the ESQPTs (black lines), n0(ξ, η) exhibits singularities. Though n0(ξ, η) is an order parameter
of the ground-state quantum phases, it fails to qualitatively distinguish the excited-state phases.
Thus, n0(ξ, η) does not qualify for being an order parameter of the ESQPTs.

All trajectories with η0 < η < η∗ or η∗ < η < ηmax trace closed loops in phase space, see
Section 5.2.4. This means that the corresponding dynamics (n0(τ), φ(τ)) is periodic. We denote
the period by T̃ . The winding number

w ≡ 1
2π

∫ T̃
0

dτ φ′(τ) (5.50)

counts how often φ(τ) counterclockwise encircles the n0-axis during T̃ . Its value does not depend
on the precise functional form of φ(τ). We already know from Sections 5.2.3 and 5.4 that

w =


−1 for η∗ < η < ηmax, ξ < 0

0 for η0 < η < η∗

1 for η∗ < η < ηmax, ξ > 0
. (5.51)

Hence, w constitutes an order parameter that distinguishes the phases TF′ (w = −1), BA′
(w = 0), and P′ (w = 1) from each other. Note, however, that the winding number is not defined
for the point-like trajectories at the lower and upper bound of the energy spectrum.
In Section 5.2.5, we have derived an expression for the period T of n0(τ). T̃ is the least

common multiple of T and the period of φ(τ). The conservation of energy density implies that,
for n0 /∈ {0, 1},

cos2(φ) = ξ(1− 2n0)− η
2n0(1− n0) (5.52)

satisfies cos2(φ(τ + T )) = cos2(φ(τ)). Recall from Section 5.2.4 that n0 ∈ {0, 1} is attained only
at η ∈ {η∗, ηmax}. Hence, for η /∈ {η∗, ηmax}, φ(τ + T ) = φ(τ) + πz with z ∈ Z independent of τ .
An even z implies T̃ = T , whereas an odd z entails T̃ = 2T . In the BA′ phase, φ(τ) + πz with z
odd belongs to another trajectory than φ(τ), see Section 5.2.4. Therefore, z must be even and
T̃ = T . On the other hand, the trajectories in the TF′ and P′ phases respect the Hamiltonian
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symmetry hmf(φ± π) = hmf(φ). This entails that the period of φ(τ) is at least two times T and,
hence, T̃ = 2T . According to the EOMs (5.5), φ′(τ) is T -periodic. Therefore, we can rewrite the
winding number as

w =
{ 1
π

∫ T
0 φ′(τ) = φ(T )−φ(0)

π for TF′, P′
1

2π
∫ T

0 φ′(τ) = φ(T )−φ(0)
2π for BA′

. (5.53)

Here, φ(τ) is considered as a function to R rather than to Rmod 2π. Since, in the BA′ phase,
φ(T )− φ(0) = 0, we may simplify our expression for w to

w = φ(T )− φ(0)
π

. (5.54)

There is no measurable difference between φ(T̃ ) and φ(0). Therefore, Eq. (5.51) might lead to
the impression that w can be deduced only by monitoring the entire evolution of φ. However, the
values 0 and ±π attained by φ(T )− φ(0) in Eq. (5.54) are physically distinct. In the following
section, we present an interferometric protocol that gives access to the order parameter

p ≡ cos(φ(T )− φ(0)) = cos(πw) =
{
−1 for TF′, P′

1 for BA′
. (5.55)

Note that, though p does not tell apart all three excited-state phases, it still distinguishes the
adjacent ones.

5.6 Proposal
The order parameter p ≡ cos(φ(T )− φ(0)) introduced in the previous section can be measured
interferometrically. First, one has to decide on an instance of (ξ, η) at which p shall be determined.
This fixes an energy hypersurface of the mean-field model, from which one chooses a starting
point (n0(0), φ(0)). The experiment begins by preparing, at an effective quadratic Zeeman shift
of q = 2|c|ξ, a coherent state |ψ(0)〉 that is specified by d = 0, φ1 − φ−1 = 0, and the chosen
(n0(0), φ(0)). After a free evolution7 for one period T ≡ ~T /|c| of n0(t), the spin states withm = 0
and m = ±1 are coupled by the symmetric beamsplitter e−i

π
2 Ŝϑ with Ŝθ ≡ cos(θ)Ŝx + sin(θ)Ŝy

and ϑ ≡ π/2 − φ(0). The definition of Ŝx/y can be found in Eq. (3.50). Each iteration of the
experiment ends with a measurement of N̂0/N .

The order parameter p is encoded in the expectation value

〈N̂0/N〉 ≡
1
N
〈ψ(T )| ei

π
2 Ŝϑ N̂0 e−i

π
2 Ŝϑ |ψ(T )〉. (5.56)

The relation between 〈N̂0/N〉 and p reveals itself in the mean-field limit. Using Eq. (3.53) and
ĝ(†) ≡ 1√

2(â(†)
1 + â

(†)
−1), we obtain

ei
π
2 Ŝϑ N̂0 e−i

π
2 Ŝϑ = 1

2(â†0 − e−iφ(0) ĝ†)(â0 − eiφ(0) ĝ)

= 1
4(N − N̂0 + â†1â−1 + â†−1â1)

− 1
2
√

2

[
e−iφ(0)(â†1 + â†−1)â0 + eiφ(0) â†0(â1 + â−1)

]
.

(5.57)

7Here, “free evolution” means the evolution with the many-body Hamiltonian (5.1).
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Figure 5.5: Measuring the order parameter p of ESQPTs in a spin-1 87Rb BEC. Starting from
the P state, the coherent state |ψ(0)〉 with energy density η is prepared at ξ by a radio-
frequency (rf) pulse of amplitude χ, cos2(χ/2) = n0(0), and a microwave (mw) pulse of amplitude
−ϑ ≡ φ(0) − π/2. The state |ψ(0)〉 freely evolves for one period T of n0(t). A beamsplitter
composed from another mw and rf pulse encodes the phase φ(T ) − φ(0) into atom numbers.
Counting the atoms in different spin states reveals 〈N0/N〉 and, thus, p.

Since |ψ(0)〉 is a coherent state, we can evaluate limN→∞〈N̂0/N〉 according to Eq. (3.111):
substituting âm and â†m by

√
Nnm(T ) eiφm(T ) and

√
Nnm(T ) e−iφm(T ), respectively, yields

lim
N→∞

1
N
〈ψ(T )| ei

π
2 Ŝϑ N̂0 e−i

π
2 Ŝϑ |ψ(T )〉 = 1

2

(
1− 2

√
n0(T )(1− n0(T )) cos(φ(T )− φ(0))

)
= 1

2

(
1− 2

√
n0(0)(1− n0(0))

)
p

≡ 1
2(1− V p). (5.58)

The visibility V ≡ 2
√

1− n0(0)
√
n0(0) vanishes only for n0(0) ∈ {0, 1}. Recall that these values

of n0 correspond to point-like trajectories, for which p is not defined. Hence, for all (ξ, η)
with well-defined p, the proposed experimental protocol, indeed, extracts the value of the order
parameter.
Our proposal requires three experimental techniques: preparing a specific coherent state,

implementing the internal-state beamsplitter e−i
π
2 Ŝϑ , and measuring N̂0. Assume that the spin-1

BEC is initialized in the P state â†N0 |0〉/
√
N ! [25, 35]. The coherent state |ψ(0)〉 can be then

obtained by applying e−iχŜϑ with cos2(χ/2) = n0(0). Thus, both the state preparation and the
beamsplitter correspond to operators of the form

e−iζŜϑ = e−iϑN̂0 e−iζŜx eiϑN̂0 . (5.59)

For a BEC of 87Rb atoms in their hyperfine ground state, we have seen in Section 3.5 that eiθN̂0

and e−iζŜx can be implemented by a microwave or radio-frequency pulse, respectively. Note
that applying eiϑN̂0 to the P state affects only its global phase, and that eiϑN̂0 N̂0 e−iϑN̂0 = N̂0.
Therefore, the first of the three pulses for state preparation and the last one of the beamsplitter
can be omitted. The resulting experimental sequence is summarized in Fig. 5.5. To measure N̂0
one can, e. g., spatially separate the different spin states by a magnetic-field gradient and then
perform absorptive imaging [267].

5.7 Experimental Feasibility
Our proposal for measuring the order parameter p of the ESQPTs is based on the mean-field
properties of spinor BECs. Therefore, one might expect that it is comparatively easy to realize—
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the more so as the mean-field dynamics has been already explored experimentally [46, 149].
Nevertheless, the proposal raises several questions regarding its feasibility.
Below we show, in Section 5.7.1, how to ensure a high visibility of the interferometric signal.

Furthermore, we find that neither realistic coherence times (Section 5.7.2) nor realistic system
sizes (Section 5.7.3) significantly impair the proposed measurement. Our analysis in Section 5.7.4
identifies magnetic-field stability as the central experimental challenge in extracting p.

We pay particular attention to the case of 87Rb atoms [25, 49]. However, most of our discussion
applies to any ferromagnetic spin-1 BEC.

5.7.1 Visibility
In Section 5.6, we have introduced the visibility

V ≡ 2
√

1− n0(0)
√
n0(0) ∈ [0, 1]. (5.60)

A large value of V increases the confidence with which an order parameter of p = 1 can be
experimentally distinguished from p = −1. To maximize the visibility, n0(0) has to be chosen as
close to 1/2 as possible.
Not every phase-space trajectory passes through a point with n0 = 1/2. We want to identify

the optimal n0(0) for given ξ and η. Recall from Section 5.2.5 that, for ξ > 0, n0(t) oscillates
between x1 and x2 ≥ x1,

x1 ≡ 1
2(1 + |ξ| −

√
1 + ξ2 + 2η),

x2 ≡
{1

2(1 + |ξ|+
√

1 + ξ2 + 2η) for η < η∗
1
2(1− η/|ξ|) for η ≥ η∗

.
(5.61)

We observe that

x1 ≤
1
2 ⇔ η ≥ −1

2 ,

x2 ≥
1
2 ⇔

{
always for η < η∗

η ≤ 0 for η ≥ η∗
.

(5.62)

Hence, for ξ > 0, the optimal visibility is attained by setting n0(0) to

n
(+)
opt =


x1 for η < −1

2
1
2 for − 1

2 ≤ η ≤ 0
1
2(1− η/|ξ|) for 0 < η

(5.63)

As discussed in Section 5.2.5, we can express n0(t) for ξ < 0 in terms of n0(t) for |ξ| as
n0(ξ < 0; t) = 1− n0(|ξ|; t). For ξ < 0, the inequalities (5.62) therefore imply an optimal n0(0)
of

n
(−)
opt =


1− x1 for η < −1

2
1
2 for − 1

2 ≤ η ≤ 0
1− 1

2(1− η/|ξ|) for 0 < η

(5.64)

The expressions for n(+)
opt and n(−)

opt can be combined into an nopt valid for arbitrary ξ 6= 0:

nopt =


1
2(1 + ξ − ξ

|ξ|
√

1 + 2η + ξ2) for η < −1
2

1
2 for − 1

2 ≤ η ≤ 0
1
2(1− η/ξ) for 0 < η

(5.65)
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Figure 5.6: Measuring the order parameter p benefits from a large visibility Vopt and a short
period T . (a) Vopt is large throughout the vast majority of the phase diagram. (b) T for
|c|/~ = 2π × 4 Hz. A moderate value of 0.3 s (gray) is surpassed only in the immediate vicinity
of the ESQPTs. (a)–(b) Black lines mark the ESQPTs. The insets show Vopt and T along lines
of constant ξ = −0.2 (red, dashed) and η − η0 = 0.2 (orange, solid).

The phase φopt at which the trajectory specified by ξ and η passes nopt is determined by the
conservation of energy density,

cos2(φopt) = ξ(1− 2nopt)− η
2nopt(1− nopt)

. (5.66)

Figure 5.6a depicts the optimal visibility Vopt corresponding to nopt. It shows that Vopt is large
throughout the vast majority of the phase diagram. In the proposed experiment, the optimal
visibility is attained by choosing (n0(0), φ(0)) = (nopt, φopt) in the coherent state preparation.

5.7.2 Finite Time

The duration of the experiment proposed in Section 5.6 is essentially determined by the period T of
the mean-field evolution n0(t). Hence, measuring the order parameter p requires an experimental
coherence time of the BEC that is greater than T . The coherence time is usually limited to few
seconds [35, 149]. Based on the expression for T ≡ |c|T/~ in Eq. (5.21), Fig. 5.6b displays T
for a typical interaction strength of |c|/~ = 2π × 4 Hz [25, 35]. As discussed in Section 5.2.5, T
diverges at the ESQPTs. However, fortunately, acceptable values of T are exceeded only in the
immediate vicinity of the ESQPTs. In Fig. 5.6b, this is illustrated by the gray lines indicating
T = 0.3 s.

5.7.3 Finite Size

So far, we have always considered the mean-field limit, i. e., BECs of N → ∞ atoms. It is
crucial to examine whether the mean-field predictions provide a sufficiently accurate description
of realistic finite-size systems. In typical BEC experiments, N is of the order of 104 [25, 49].
Simulating, for N = 100, a measurement of the order parameter p by exact diagonalization of the
Hamiltonian density (5.1) yields Fig. 5.7. In the mean-field limit, p jumps at the ESQPTs from
p = −1 in the TF′ and P′ phases to p = 1 in the BA′ phase. As expected, proceeding to finite N
smooths these discontinuities. Note that, according to the inset in Fig. 5.7, small features in p
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Figure 5.7: Measuring p in a BEC of N = 100 atoms. The finite-size results closely resemble
the mean-field limit, where p = 1 in the BA′ phase and p = −1 in the TF′ and P′ phases. Black
lines mark the ESQPTs. The inset shows p along lines of constant ξ = −0.2 (red, dashed) and
η − η0 = 0.2 (orange, solid). The shaded regions indicate the standard deviation.

give nonetheless access to the exact position of the ESQPTs. But most importantly, the BA′
phase can be still clearly distinguished from the TF′ and P′ phases. For typical N ∼ 104, an
even much closer resemblance to the mean-field predictions can be expected.

5.7.4 Magnetic-Field Fluctuations
Magnetic-field fluctuations probably pose the only serious challenge to our proposal. Recall
that we are describing the BEC in a rotating reference frame, cf. Sections 3.3.1 and 3.5.2.
This rotating frame absorbs the constant linear Zeeman effect corresponding to the intended
magnetic field B0. For atoms with electronic spin s = 1/2 and orbital angular momentum l = 0,
fluctuations B(t) on top of B0 contribute, to first order,

ĤB(t) ≡ −(−1)f−i+1/2 gjµB
2i+ 1B(t)D̂ (5.67)

to the Hamiltonian of the BEC. Here, f is the hyperfine spin, i the nuclear spin, µB the Bohr
magneton, and gj ≈ 2 the Landé g-factor, cf. Eq. (3.18). ĤB commutes with the Hamiltonian
density in Eq. (5.1). Therefore, in the presence of magnetic-field fluctuations, the Hamiltonian
evolution in our proposal yields

|ψ̃(T )〉 ≡ e−iβD̂ |ψ(T )〉, β ≡ −(−1)f−i+1/2 gjµB
(2i+ 1)~

∫ T

0
dtB(t). (5.68)

The expectation value of the measurement outcome thus becomes

lim
N→∞

1
N
〈ψ̃(T )| ei

π
2 Ŝϑ N̂0 e−i

π
2 Ŝϑ |ψ̃(T )〉 = 1

4(1 + cos(β)) + 1
4n0(1− cos(β))− V

2 cos(β)p, (5.69)

where the bars indicate averages over β.
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Equation (5.69) imposes, basically, the requirement |β| � 2π. To benchmark the stability of
the magnetic field needed for 87Rb atoms in their hyperfine ground state, we set i = 3/2 and
assume a constant B(t) ≡ b and an evolution time of T = 0.3 s, cf. Section 5.7.2. Then

|β| � 2π ⇔ |b| � 5 µG. (5.70)

This is ambitious: we are not aware of any BEC experiment with a magnetic-field stability
beating the level of 20 µG [49]. However, Ref. [49] did not especially strike for low magnetic-field
noise. We expect that a further improvement is demanding but technically feasible. Furthermore,
this issue can be addressed not only by stabilizing the magnetic field. For example, one can
diminish T ≡ ~T /|c| by increasing the density of the BEC and, thus, |c|. Staying further away
from the ESQPTs also limits the relevant periods T to shorter times. Note that the sign of ĤB
in Eq. (5.67) depends on f . Therefore, in a 87Rb BEC with hyperfine spin f = 1, a variation of
B(t) that is much slower than T could be possibly compensated by an echo protocol employing
f = 2 states. To design a suitable protocol, one has to carefully account for the dynamics in
both f = 1 and f = 2 states.

5.8 Bosonic Two-Level Pairing Models
Most of our observations on ESQPTs in magnetization-free ferromagnetic spin-1 BECs ensue
from the mean-field model in Eq. (5.4). Thus, they also hold for any other quantum system with
the same mean-field limit.

Let us introduce a class of bosonic two-level pairing models with Hamiltonian densities

ĥsb
|c|

= ξ

N
(N − 2N̂s) + 1

N2

[
(−1)jN̂s(N − N̂s) + 1

2
∑
µ

(−1)µ(ŝ†2b̂µb̂−µ + b̂†µb̂
†
−µŝ

2)
]
. (5.71)

Here, ŝ(†) and b̂(†)µ are bosonic creation and annihilation operators, N̂s ≡ ŝ†ŝ,
∑
µ b̂
†
µb̂µ + N̂s = N ,

and j ∈ N0. The sum over µ ∈ {j, j − 1, . . . ,−j} may or may not include µ = 0. According to
Ref. [241], all models defined by Eq. (5.71) exhibit an SO(n) symmetry, where n = 2j if µ 6= 0
or n = 2j + 1 otherwise. This leads to the conservation of a generalized angular momentum
operator Ĉ. Remarkably, restricted to the respective eigenspace of Ĉ with eigenvalue C = 0, the
mean-field limits of all models in Eq. (5.71) coincide.

For j = 1 and µ 6= 0, the angular momentum operator becomes Ĉ = b̂†1b̂1− b̂
†
−1b̂−1. Identifying

ŝ(†) with â(†)
0 and b̂(†)±1 with â(†)

±1, we immediately observe that the mean-field limit of ĥsb with
C = 0 yields precisely the model studied throughout the present chapter. Hence, our results are
applicable to all ĥsb in the C = 0 subspace. Reference [241] is devoted to ESQPTs in bosonic
two-level pairing models with the opposite sign of interaction, i. e., a minus sign in front of the
square bracket in Eq. (5.71). Therefore, our investigation complements Ref. [241].
In summary, a spin-1 BEC simulates the large-N behavior of all bosonic two-level pairing

models from the class (5.71) with zero angular momentum. Such models appear in various
physical contexts: for example, if µ = 0 is included, j = 0 yields an LMG model, j = 1 a vibron
model for molecules, and j = 2 an interacting boson model for nuclei.

5.9 Conclusion
Extending the ground-state phase diagram for magnetization-free ferromagnetic spin-1 BECs
across the spectrum, we have identified three excited-state phases. They can be distinguished by
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the value of a winding number characterizing the mean-field dynamics. The winding number gives
rise to an order parameter of the ESQPTs that can be extracted by interferometry. Remarkably,
spinor BECs simulate the mean-field driven ESQPT physics of a large class of quantum systems.
Our work facilitates the experimental investigation of ESQPTs in spinor BECs. This has

a threefold value since experiments on ESQPTs are rare, spinor BECs offer particularly good
experimental control, and the ESQPTs in spinor BECs are prototypical for a large class of
quantum systems. In contrast to most other studies on ESQPTs, we introduce an experimentally
accessible order parameter. This is an important contribution to the characterization of excited-
state phases. A thorough characterization of phases can, in turn, reveal potential applications of
ESQPTs in quantum-state engineering.
The interferometric extraction of the order parameter is feasible. However, the proposed

experiment is highly susceptible to magnetic-field fluctuations. Though the required magnetic-
field stability seems to be within reach, it would be desirable to develop a more robust experimental
protocol or to find a more convenient order parameter. For example, it might be advantageous
to follow Ref. [44] and consider the time average of 〈ψ(t)|Ŝx|ψ(t)〉, where Ŝ is a collective
pseudospin-1/2 operator introduced in Eq. (3.50) and |ψ(0)〉 an initial coherent state as in
Section 5.6.

In Chapter 4, we have identified the quantum Fisher information (QFI) as an order parameter
of the ground-state QPTs. So far, we have not examined whether the QFI distinguishes also the
excited-state phases. Because of the great importance of the QFI for quantum-state engineering,
this is a particularly relevant question. We expect that it can be addressed by the method
employed at the beginning of Section 5.5.

Another topic that we have not yet explored concerns the quench dynamics related to ESQPTs
in spinor BECs. Let us remark that squeezed states of spinor BECs are commonly generated
by quenching [151–153], cf. also Section 4.8. These quenches are performed precisely along an
ESQPT.
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Experiment is the supreme judge of all and every physical theory.

L. Landau and Y. Rumer
in What is the theory of relativity

We have investigated ferromagnetic spin-1 Bose-Einstein condensates (BECs) with zero magneti-
zation, focusing on the ground- and excited-state quantum phases with respect to the effective
quadratic Zeeman shift as a control parameter.
Chapter 4 was devoted to the ground-state phase diagram. We have evaluated the quantum

Fisher information (QFI) for collective unitary phase imprinting and identified optimal phase-
imprinting and measurement operators. The QFI constitutes an order parameter of the ground-
state quantum phase transitions (QPTs). Its maximal value—amounting to about half the
Heisenberg limit (HL)—is attained by the central broken-axisymmetry (CBA) and the Twin-Fock
(TF) state. These highly entangled states can be accessed by adiabatically driving a BEC
from the non-entangled polar (P) state across one—for the CBA state—or two—for the TF
state—QPTs. We have focused on the less known and, in terms of adiabatic driving, closer
CBA state and have developed two proposals. First, the CBA state can serve as a probe for
quantum-enhanced interferometry. Second, measuring the atom number in one out of three spin
modes generates, with high probability and heralded by the measurement outcome, macroscopic
superposition states (MSSs).

In Chapter 5, we have extended the ground-state phase diagram across the spectrum. There are
three excited-state phases, each of which ensues from one of the three ground-state phases. The
excited-state quantum phase transitions (ESQPTs) are signaled by a diverging density of states
(DOS). A winding number that can be assigned to the mean-field phase-space trajectories is in
one-to-one correspondence to the excited-state phases and, thus, constitutes an order parameter
of the ESQPTs. We have proposed an interferometric scheme that measures a related order
parameter encoded in the evolution of coherent states. The mean-field model governing the
ESQPTs in a spin-1 BEC with zero magnetization describes also the infinite-size limit of many
other quantum models, which are relevant for, e. g., molecular and nuclear physics. Because of
the superior experimental control, spinor BECs can be considered as simulators for the ESQPTs
in other systems from the same universality class.

This thesis contains three proposals. We are highly interested in their experimental realization.
Quantum-enhanced interferometry based on the CBA state of over 10 000 87Rb atoms has been
already demonstrated in Ref. [49]. This proof-of-principle experiment establishes the adiabatic
state preparation across QPTs as a valuable tool for quantum-enhanced metrology. Furthermore,
it can be regarded as an important step towards the interferometry with more than two internal
modes. The proof-of-principle experiment in Ref. [49] does not measure any relevant physical
quantity. Combining it with the experiment in Ref. [25] would yield a quantum-enhanced
microwave atomic clock. However, its precision would not be competitive with state-of-the-art
clocks. It is thus an open and intriguing question whether the CBA state can provide the basis for
some quantum-enhanced technology such as, e. g., quantum-enhanced radio telescopes. Another
interesting task is to identify further applications of the adiabatic state preparation across QPTs.
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Generalizing our analysis of the ground-state QFI to spinor BECs with larger spins would further
contribute to the investigation of multi-mode quantum-enhanced interferometry.

Our second proposal concerns the generation of NOON-like MSSs. Greenberger-Horne-Zeilinger
(GHZ) and NOON states constitute a paradigmatic class of entangled MSSs. So far, experimental
realizations of such states have been limited to less than 30 massive particles [36–39]. By
contrast, our proposal aims at 102-105 atoms. The experimental protocol is ambitious, but all
required technologies have been already demonstrated. Moreover, our numerical analysis shows
that the generation of MSSs tolerates both a reasonably swift quasiadiabatic passage in the
presence of atom loss and uncertainties of atom counting. So far, we have not elaborated on the
characterization of the generated MSSs, which is a prerequisite for any experimental realization.
We expect that it is possible to adapt methods from related experiments [49, 113]. A detailed
investigation of entanglement decay in the MSSs could be used to probe the validity of quantum
physics for ensembles of many atoms.
Third, we have proposed an interferometric scheme that measures an order parameter of the

ESQPTs. This addresses both the lack of experimental results on ESQPTs and the scarcity
of order parameters distinguishing the excited-state phases. According to our analysis, the
interferometric measurement is feasible but requires an outstanding control over magnetic-field
noise. The necessary level of magnetic-field stability can be reduced by increasing the density
of the BEC or by restricting oneself to appropriate regions of the phase diagram. However, a
more robust experimental protocol remains desirable. Maybe, some other order parameter would
be easier to measure. In any case, identifying further order parameters would contribute to
the characterization of the excited-state phases. This, in turn, could lead on to applications
in quantum-state engineering. In this regard, the QFI is an especially relevant potential order
parameter that needs to be investigated. Another topic that this thesis has barely touched upon
is the quench dynamics related to ESQPTs. This is particularly interesting in the context of
quantum many-body systems out of equilibrium. However, the mean-field model of spin-1 BECs
is integrable [268], whereas out-of-equilibrium dynamics is mainly studied in non-integrable
systems. Therefore, the excited-state phase diagrams of spinor BECs with larger spins promise
qualitatively different insights. Beyond spinor BECs, we are curious whether our order parameter
will inspire similar constructions in different quantum systems.

In summary, this thesis investigates spinor BECs and contributes to the fields of quantum-state
engineering, quantum-enhanced interferometry, and excited-state quantum phases.
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