
GraphKKE: graph Kernel Koopman
embedding for human microbiome analysis
Kateryna Melnyk1*  , Stefan Klus1,2, Grégoire Montavon3 and Tim O. F. Conrad1,4

Introduction
Approximately every second cell in our body is a microbial cell. We are colonized by a
diverse community of bacteria, archaea, and viruses, jointly referred to as the micro-
biome. About 1.5 kg of microbes live almost everywhere on and in the human body as
symbionts, e.g., on the skin, in the mouth, or in the gut. They have a strong influence
on both their hosts and environments. For example, more and more diseases have been
found to be strongly correlated with the disturbances in the microbiome constitution,
e.g., obesity (Hjorth et al. 2018; Menni et al. 2017; Kincaid et al. 2019), diabetes (Qin
et al. 2012), or some cancer types (Sánchez-Alcoholado et al. 2020; Gopalakrishnan
et al. 2018). Furthermore, recent studies have revealed that gut microbiome also has
a huge impact on brain functions and is related to disorders such as Alzheimer’s dis-
ease (Xu and Wang 2016). Most studies aiming at understanding the differences in the

Abstract 

More and more diseases have been found to be strongly correlated with disturbances
in the microbiome constitution, e.g., obesity, diabetes, or some cancer types. Thanks to
modern high-throughput omics technologies, it becomes possible to directly analyze
human microbiome and its influence on the health status. Microbial communities are
monitored over long periods of time and the associations between their members
are explored. These relationships can be described by a time-evolving graph. In order
to understand responses of the microbial community members to a distinct range of
perturbations such as antibiotics exposure or diseases and general dynamical proper-
ties, the time-evolving graph of the human microbial communities has to be analyzed.
This becomes especially challenging due to dozens of complex interactions among
microbes and metastable dynamics. The key to solving this problem is the representa-
tion of the time-evolving graphs as fixed-length feature vectors preserving the original
dynamics. We propose a method for learning the embedding of the time-evolving
graph that is based on the spectral analysis of transfer operators and graph kernels. We
demonstrate that our method can capture temporary changes in the time-evolving
graph on both synthetic data and real-world data. Our experiments demonstrate the
efficacy of the method. Furthermore, we show that our method can be applied to
human microbiome data to study dynamic processes.

Keywords:  Time-evolving graphs, Graph embedding, Graph analysis, Machine
learning, Biological networks, Microbiology

Open Access

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat​iveco​mmons​.org/licen​ses/by/4.0/.

RESEARCH

Melnyk et al. Appl Netw Sci (2020) 5:96
https://doi.org/10.1007/s41109-020-00339-2 Applied Network Science

*Correspondence:
katerynam@zedat.fu‑berlin.
de
1 Department
of Mathematics
and Computer Science, Freie
Universität Berlin, Arnimallee
6, 14195 Berlin, Germany
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-1908-3136
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-020-00339-2&domain=pdf

Page 2 of 22Melnyk et al. Appl Netw Sci (2020) 5:96

microbiome profiles of healthy and ill individuals, however, are focused on statistical
constitution analysis, omitting the large variety of complex microbe–microbe and host–
microbe interactions, which can be modeled as time-evolving graphs.

It has also been found that although the constitution of the microbiome is constantly
changing throughout our lives (in response to environmental factors), a healthy human
microbiome can be considered as a metastable state lying in a minimum of some eco-
logical stability landscape (Shaw et al. 2019). Broadly speaking, metastability can be
observed when for short timescales, the system appears to be equilibrated, but at larger
time scales, undergoes some transitions from one metastable state to other metastable
states (Bovier 2006). This phenomenon occurs in dynamical systems of various struc-
tures, including systems with vector-valued states, but also systems represented as time-
evolving graphs. In this context, metastability means that the graph structure is stable
for a relatively long time (up to small perturbations) before the system undergoes a criti-
cal transition—e.g., when it reaches a tipping point—and shifts to a different metastable
state.

As an illustration of a time-evolving graph that lies in an energy landscape with two
metastable states, consider the time-evolving microbiome interaction graph shown in
Fig. 1, where vertices represent the concentrations of bacteria species and edges pairwise
associations between them. In this example, a disease can be thought of as a perturba-
tion that displaces the microbiome composition from its equilibrium (healthy) state. The
consequence of this displacement is the reduction of the concentration in the red verti-
ces and the removal of edges that connect red vertices. Given an evolution of the graphs
(in this example, the evolution of the microbe interactions), we aim at analyzing dynam-
ics occurring in the graph over time, namely, extracting the number of metastable states
and their locations, substructures of a graph, which characterize the state space (e.g., the
difference in the microbe interactions between the states healthy and ill). Moreover, the
detection of the metastable states in the time-evolving graph can serve additional pur-
poses such as graph clustering.

Related work

 Two potential ways to detect metastable states in a time-evolving graph (e.g., the states
healthy and ill in our example) are the following:

Fig. 1  An example of a time-evolving graph of microbe interactions with two metastable states: healthy and
ill. Red color of vertices means that the concentrations of microbes decreased after a person became ill at
time t + τ + 1 . This reduction results in the change of the topology of the time-evolving graph characterized
by removing the edges between vertices in red and some vertices in yellow

Page 3 of 22Melnyk et al. Appl Netw Sci (2020) 5:96 	

1	 A typical solution would be to analyze the time-evolving graph directly in the space
of graphs without taking into account potential temporal correlations. Practically,
this can take the form of a simple kernel-based graph clustering algorithm. Classic
graph kernels decompose graphs into substructures (e.g., walks (Kang et al. 2012),
subgraphs (Shervashidze et al. 2009), paths (Borgwardt and Kriegel 2005), and sub-
trees (Shervashidze et al. 2011)) and count the number of common substructures
between graphs in order to obtain the feature vectors. Afterwards, these feature vec-
tors can be used by various machine learning approaches to cluster snapshots of the
time-evolving graphs. The problem with such methods is that they are incapable of
capturing the time-information, which is crucial for time-evolving graphs with meta-
stability.

2	 Another possible way is graph representation learning, which aims at finding a map-
ping that embeds the system into some low-dimensional space. That is, we represent
a single snapshot of the time-evolving graph at each time point by a single vector
retaining the original properties of the dynamics. After finding the optimal embed-
ding space, the low-dimensional representation can be used as a feature input for
diverse machine learning approaches for analyzing time-series data.

The recently proposed methods for graph representation learning focus mostly on
static graphs. These methods can be broadly divided into two categories. The first cat-
egory comprises methods for embedding graph substructures (e.g., vertices or sub-
graphs), see Perozzi et al. (2014); Grover and Leskovec (2016); Wang et al. (2016); Ou
et al. (2016). For instance, DeepWalk (Perozzi et al. 2014) and node2vec (Grover and
Leskovec 2016) are approaches that use random walks to produce embeddings. The only
difference between them is that node2vec utilizes two hyperparameters, where one of
them controls the likelihood of a random walk to return to the previously visited ver-
tex and another parameter controls the likelihood to explore undiscovered parts of a
graph. DeepWalk first traverses the graph with random walks in order to extract local
structures and then it uses the Skip-Gram algorithm to learn embeddings. The second
category pertains to representation learning of the entire graph, which is used for the
classification/clustering of the set of graphs. The graph2vec approach (Narayanan et al.
2017) learns the embedding of the set of graphs using the idea of the Skip-Gram from
doc2vec (Le and Mikolov 2014). It comprises two main components: (1) The genera-
tion of rooted subgraphs around every vertex using the Weisfeiler–Lehman relabeling
process from Shervashidze et al. (2011; 2) Learning the embedding of the given graphs
following the Skip-Gram with negative sampling procedure. Although this approach is
capable of projecting the entire set of graphs into low-dimensional space, it does not
capture the time-evolution of the graph.

Recently, some work has also been done on learning the embedding vectors of ver-
tices in the time-evolving graph. Dyngraph2vec (Goyal et al. 2020) is a deep-learning
based approach which learns both the topological patterns in a graph and the temporal
transitions using multiple nonlinear layers and recurrent layers. Moreover, it uses the
lookback hyperparameter in the recurrent layers to control the length of temporal pat-
terns. The idea of DynamicTriad (Zhou et al. 2018) is to use a group of three vertices, a
so-called triad, to model the dynamic changes of graph structures. This approach only

Page 4 of 22Melnyk et al. Appl Netw Sci (2020) 5:96

considers patterns within two time steps, which means that it cannot capture patterns
that exist for a longer period of time. The main disadvantage of the substructure repre-
sentation learning approaches, both for static and for time-evolving graphs, is that they
are not able to project the entire set of snapshots of the time-evolving graph into low-
dimensional space.

Contribution

 To this end, we present an approach named graphKKE (the overall structure is shown
in Fig. 2), which is, to our knowledge, the first approach for representation learning of an
entire time-evolving graph. Inspired by the proposed kernel transfer operator approach
for molecular conformation analysis (Klus et al. 2019b, 2018), we use the same approach
for learning the embeddings of time-evolving graphs. The method is based on the spec-
tral analysis of transfer operators, such as the Perron–Frobenius or Koopman operator
in a reproducing kernel Hilbert space.

Overall, we highlight the following contributions:

•	 We propose graphKKE, a novel unsupervised representation learning technique to
analyze a time-evolving graph, i.e., class labels of the graphs are not required for
learning their embedding. Moreover, we demonstrate the applicability of the graph
kernels to time-evolving graphs. Our method is not only capable of preserving the

Time-dependent embedding via the kernel-based transfer operator
approach

Low-dimensional
features

ill

healthy
Dynamic inference

Analysis of metastability Extraction of important
substructures

...k(,)

a

b

Fig. 2  An illustration of the proposed method and challenges which we aim to overcome. a Learning
transfer operators using graph kernels, where k(·, ·) is a graph kernel and Kk is the Koopman operator.
b In the learned embedding space it is possible to detect metastable states and to determine distinct
substructures

Page 5 of 22Melnyk et al. Appl Netw Sci (2020) 5:96 	

information about the underlying dynamical graph patterns but also of taking into
account the topological structure of the graph.

•	 We present a new simulation method for constructing artificial benchmark datasets
of time-evolving graphs with metastability and with graph structures of different
complexity. We demonstrate that graphKKE significantly outperforms other meth-
ods for graph representation learning on several benchmark problems.

•	 We illustrate that graphKKE can extract the important associations among microbes
and capture the temporal changes occurring in the time-evolving microbiome inter-
action graph.

 The remainder of this paper is organized as follows: In “Problem statement” section,
the problem of learning the embeddings of time-evolving graphs with metastable behav-
ior is defined. In “GraphKKE: Graph Kernel Koopman Embedding” section, we intro-
duce transfer operators, graph kernels, and the method for the approximation of transfer
operators using graph kernels. A model for the simulation of time-evolving benchmark
graphs with metastability and the experiments with these benchmark datasets are pre-
sented in “Generating benchmark data with metastability and Experiments and Results”
sections. Eventually, “Application to microbiome data” section illustrates that it is possi-
ble to obtain a meaningful low-dimensional representation for microbiome data.

Problem statement
In order to state the problem formally, let us first introduce the necessary notations and
definitions.

A graph G is a pair (V, E) with a non-empty set of vertices V(G) and a set of edges
E(G) = {(vi, vj) | vi, vj ∈ V } . The set V(G) often represents the objects in the data and
E(G) relations between objects. We define the adjacency matrix of the graph G as the
n× n matrix A with Aij = 1 if the edge (vi, vj) ∈ E(G) , and 0 otherwise. Furthermore,
we say that Ḡ = (V̄ , Ē) is a subgraph of a graph G = (V ,E) if and only if V̄ ⊆ V and
Ē ⊆ E ∧ ((vi, vj) ∈ Ē ⇒ vi, vj ∈ V̄).

Given a time-evolving graph G as a sequence of T graphs G = (G0, . . . ,GT−1) at the
consecutive time points {0, . . . ,T − 1} for some T ∈ N . We call Gt a time-snapshot of G
at time t. We focus in particular on metastability properties of the time-evolving graph,
that is, the property of being stable for a long time, and occasionally undergoing critical
transitions from one state to another state, with a significant change in the edges and/or
nodes. More formally, we say that the time-evolving graph G exhibits metastable behav-
ior if G can be partitioned into s subsets G = G0 ∪ · · · ∪Gs−1 for some s ≪ T such that
for each time point t ∈ {0, . . . ,T − 1}

and

We call G0, . . . ,Gs−1 metastable states of the time-evolving graph G and each
Gt , t = 0, . . . ,T − 1 , belongs to exactly one of the states Gi . In most cases, each state Gi
is characterized by a certain pattern of graph attributes (i.e., edges, vertex labels).

P(Gt+1 ∈ Gi | Gt ∈ Gj) ≪ 1, if i �= j

P(Gt+1 ∈ Gi | Gt ∈ Gj) ≈ 1, if i = j.

Page 6 of 22Melnyk et al. Appl Netw Sci (2020) 5:96

We define our problem as follows: Given a time-evolving graph G = (G0, . . . ,GT−1) with
assumed metastable behavior, we aim to represent each time-snapshot Gt as a vector in a
low-dimensional space Rm , where m is a number of embedding dimensions, retaining the
metastable behavior of G.

Commonly, the number of embedding dimensions m is a hyperparameter that has to be
tuned in order to obtain a good performance, in our approach we will show that the num-
ber of embedding dimensions m can be chosen to be the number of states s, which elimi-
nates the need to optimize this hyperparameter.

GraphKKE: graph Kernel Koopman embedding
In what follows, we first introduce transfer operators, kernel functions, and graph kernels.
Afterwards, we present our approach—graphKKE—that is capable of learning embeddings
of time-evolving graphs preserving temporal changes in a low-dimensional space.

Transfer operators

In order to capture the temporal changes in the time-evolving graph, transfer operator the-
ory will be used in our method. Therefore, we will briefly discuss transfer operators and
their applicability in the analysis of dynamical systems (for details, see Klus et al. (2016)).
Information about the evolution of the system is contained in the spectral properties (such
as eigenvalues and eigenfunctions) of linear operators. The most commonly used examples
of such operators are the Koopman operator and the Perron–Frobenius operator.

Let {Xt}t≥0 be a stochastic process defined on a high-dimensional state space X ⊂ R
d .

The pointwise evolution of Xt can be formally described by the transition density function
pτ (y | x) , which gives the probability to find the process at a point y after some lag time τ ,
given that it started in x at time 0. More formally, the transition density function is

With the aid of the transition density function, the Koopman operator expresses the
evolution of a function of the state, also called observable, whereas the Perron–Frobe-
nius operator evolves probability densities. Let ft ∈ L∞(X) be an observable of the sys-
tem. Then the Koopman operator Kτ : L∞(X) → L∞(X) is defined by

The evolution of probability densities can be described in a similar way. Assume the ini-
tial density of the system is given by gt ∈ L1(X) . Then the Perron–Frobenius operator
Pτ : L1(X) → L1(X) is defined by

A density π is called invariant density or equilibrium density if it is invariant under the
action of Pτ , that is, Pτ π = π . Let ut(x) = π(x)−1gt(x) be a probability density with
respect to the equilibrium density π . Then, the Perron–Frobenius operator with respect
to the equilibrium density is defined as

pτ (y | x) = P(Xt+τ = y | Xt = x).

(1)Kτ ft(x) =

∫
pτ (y | x)ft(y)dy.

Pτ gt(x) =

∫
pτ (x | y)gt(y)dy.

Page 7 of 22Melnyk et al. Appl Netw Sci (2020) 5:96 	

Both the Koopman operator Kτ and the Perron–Frobenius operator Pτ are linear, infi-
nite-dimensional operators, which are adjoint to each other and, therefore, it should not
matter which one we choose to study the behavior of the system. Moreover, although
they are typically defined on the function spaces L1 and L∞ , we assume that the opera-
tors are well-defined on L2 (for details, see Klus et al. (2016)).

The information about the long-term behavior of the dynamical system is encoded in
the spectral properties of these operators such as eigenvalues and eigenfunctions (Klus
et al. 2019b). More precisely, eigenfunctions with eigenvalues close to 1 of both Koop-
man and Perron–Frobenius operators contain information about the locations of meta-
stable states in the state space X.

Since transfer operators are infinite-dimensional, the goal is to obtain a finite-dimen-
sional approximation of these operators. Below, we will show how to obtain a finite-
dimensional approximation of transfer operators utilizing the evaluation of graph
kernels on training data.

Graph kernels

In this section, we describe kernel functions and a neighborhood aggregation graph ker-
nel, the 1-dimensional Weisfeiler–Lehman kernel, since all our experiments make use of
this graph kernel. However, one can potentially use other graph kernels, which can be
tailored to specific applications.

Kernel function

Kernel-based methods are machine learning algorithms that learn by comparing any
pair of data points using similarity measures called kernel functions. We will say that
k : X× X → R is a kernel on X if there is a Hilbert space H and a feature map ϕ : X → H
such that

for x, x′ ∈ X and where �·, ·� is the inner product on H . A feature map ϕ exists if and only
if k is a positive-semidefinite function. However, the kernel is normally not defined by
an explicit representation of ϕ , but instead, each kernel implicitly defines a potentially
infinite-dimensional mapping ϕ.

For a given set of data points x0, . . . , xm ∈ X , the matrix K with Kij = k(xi, xj) for
i, j = 0, . . . ,m , is called Gram matrix. The Gram matrix is positive semidefinite for all
possible {x0, . . . , xm}.

Now let G be a sequence of graphs, then a kernel k : G×G → H is called a graph
kernel.

Gaussian kernel

The most popular kernel function used in numerous kernel-based methods is the Gauss-
ian kernel, which for two graphs G and Ĝ can be defined as

Tτut(x) =
1

π(x)

∫
pτ (x | y)π(y)ut(y)dy.

(2)k(x, x′) = �ϕ(x),ϕ(x′)�

Page 8 of 22Melnyk et al. Appl Netw Sci (2020) 5:96

where A and Â are the respective adjacency matrices, σ > 0 is the bandwidth parameter,
and � · � the Frobenius norm. The Hilbert space H spanned by the Gaussian kernel is an
infinite-dimensional space. Furthermore, it can be shown that continuous functions on
a bounded domain can be approximated arbitrarily well by (weighted sums of) Gaussian
kernels. For polynomial kernels, for instance, this is not the case.

Weisfeiler–Lehman kernel

In this work, we will use a neighborhood aggregation kernel—the Weisfeiler–Lehman
(WL) kernel (Shervashidze et al. 2011)—for graphs with discrete vertex labels. How-
ever, one could choose any other class of graph kernels such as graphlet kernels from
Shervashidze et al. (2009) or random walk kernels from Kang et al. (2012).

We will briefly give an overview of the Weisfeiler–Lehman kernel. Let G and Ĝ be
graphs and l(0) be a set of unique original vertex labels of G and Ĝ . The key idea of this
kernel is to augment each vertex label by the sorted set of neighboring vertex labels, and
then to compress the augmented label into some new label using a hash function f. That
is, at each iteration h = 1, . . . , the 1-dimensional Weisfeiler–Lehman kernel computes a
new set of vertex labels l(h) such that

∀v ∈ V (G) ∪ V (Ĝ) and where the symbol “+” denotes the concatenation of strings,
N (v) the set of neighbors of a vertex v, and sorted (N (v)) means that vertex labels need
to be sorted before concatenation. The hash function f is chosen in such a way that
f (l(h)(v)) = f (l(h)(v′)) if and only if l(h)(v) = l(h)(v′) , v, v′ ∈ V (G) ∪ V (Ĝ) . The next step
is to compute a feature vector for each graph G and Ĝ at each iteration h:

where l(h) = {l
(h)
0 , l

(h)
1 , . . . , l

(h)

|l(h)|
} denotes the set of compressed vertex labels at iteration

h and C(h)(G, l
(h)
i) is the number of occurrences of a label l(h)i in the graph G at iteration

h.
Finally, the Weisfeiler–Lehman kernel for two graphs G and Ĝ is defined as:

We chose the WL kernel because it outperformed other kernels in terms of runtime in
our experiments. According to Shervashidze et al. (2011), the WL subtree kernel on a
pair of graphs can be computed in time O(hm), where h is the number of iterations and
m the number of edges, whereas the random walk kernel (Gärtner et al. 2003) on a pair
of graphs has the runtime complexity O(n6) , where n is the number of nodes. Moreover,
it is also competitive in terms of accuracy with state-of-the-art kernels. But, as men-
tioned above, one could use other graph kernels as well. The optimal choice depends
strongly on the dataset.

k(G, Ĝ) = exp
(
−

�A− Â�2

2σ 2

)
,

l(h)v = f
(
l(h−1)
v + (l(h−1)

u0
+ ...+ l(h−1)

uk
)

)
, {u0, ...,uk} ∈ sorted (N (v)),

ϕ(h)(G) = (C(h)(G, l
(h)
0), ...,C(h)(G, l

(h)

|l(h)|
)),

k(G, Ĝ) = �ϕ(0)(G),ϕ(0)(Ĝ)� + ...+ �ϕ(h)(G),ϕ(h)(Ĝ)�.

Page 9 of 22Melnyk et al. Appl Netw Sci (2020) 5:96 	

In the next subsection, we will introduce an approach for learning the embedding of
a time-evolving graph using transfer operators and graph kernels.

Method overview: graphKKE

Now, we introduce a graph kernel-based approximation method for time-evolving
graphs inspired by the method proposed in Klus et al. (2018).

Since we cannot compute eigendecompositions of infinite-dimensional operators
numerically, typically suitable finite-dimensional subspaces are considered. It was
shown that the initial eigenvalue problem on L2 can be approximated by an eigen-
value problem defined on the reproducing kernel Hilbert space H utilizing only kernel
evaluations.

Assume we have measurement data, given by a time-evolving graph
G = (G0, ...,GT−1) , where each Gt is a single snapshot of G at time point t and Ĝ is a
set of graphs mapped forward for a time lag τ , that is, Ĝt = Gt+τ.

It was shown in Klus et al. (2019b) that in order to find eigenfunctions of transfer
operators, we need to solve auxiliary matrix eigenvalue problems, given by

and

where [KGG]ij = k(Gi,Gj) , [KĜG
]ij = k(Ĝi,Gj) denote Gram matrices, k(·, ·) is a graph

kernel, and K
GĜ

= K⊤

ĜG
 . The equations (3) and (4) approximate the Koopman operator

and Perron–Frobenius operator, respectively.
This eigenvalue problem is closely related to kernel canonical correlation analysis

(kernel CCA), see Klus et al. (2019a). Kernel CCA computes eigenfunctions of the
forward-backward dynamics to identify so-called coherent sets. Coherent sets are a
generalization of metastable sets and are regions of the state space that are not dis-
torted over a certain time interval.

Additionally, in order to evaluate the eigenfunctions of these operators at a given
graph, we set

if φ̃ is the solution of the eigenvalue problem (3).
Otherwise, if φ̃ is the solution of the eigenvalue problem (4), we set

where � = [k(·,G0), . . . , k(·,GT−1)] is called a feature matrix.
We assume that KGG is non-singular or otherwise we replace the inverse by its reg-

ularized version (KGG + ηI)−1 , where η ≥ 0 is a ridge parameter. This regularization is
known as Tikhonov regularization.

Furthermore, if k(·, ·) is a graph kernel, then we apply the following normalization:

(3)K−1
GG

K
ĜG

φ̃ = �φ̃

(4)K−1
GG

K
GĜ

φ̃ = �φ̃,

φ = �φ̃,

φ = �K−1
GG

φ̃,

Page 10 of 22Melnyk et al. Appl Netw Sci (2020) 5:96

for all i, j = 0, . . . ,T − 1 . The same normalization is applied to graphs in both G and Ĝ.
The number of states s in the time-evolving graph G is determined by the number of

dominant eigenvalues close to 1. That is, if we have s dominant eigenvalues close to 1,
then the time-evolving graph can be divided into s subsets G = G0 ∪ · · · ∪Gs−1 . Moreo-
ver, all information about long-term behavior of the time-evolving graph G is contained
within the eigenfunctions associated with s dominant eigenvalues close to 1. All things
considered, the dominant eigenvalues can be used to determine the number of states s in
the data and the dimension of a new low-dimensional space. The eigenfunctions associ-
ated with the dominant eigenvalues close to 1 are considered as a low-dimensional rep-
resentation of the time-evolving graph G.

Generating benchmark data with metastability
Most of the benchmark data sets such as those from chemo- and bio-informatics
domains, see Kersting et al. (2016), can be represented by static graphs. Thus, these
datasets are not appropriate for our purposes, since they do not have time information
and metastable behavior. Hence, in this section we present a model for generating time-
evolving graphs with a comprehensible structure to estimate the performance of the
proposed method.

In order to obtain a time-evolving graph G with metastability, we use a stochastic dif-
ferential equation to generate a trajectory based on which a set of time-snapshots of the
graph G is then constructed.

Let us consider a particle in a 2-dimensional s-well potential given by the stochastic
differential equation (SDE):

with the potential

See Klus et al. (2019a) for more details. Here, s denotes the number of wells, since we
assume that the number of wells defines the number of states in the time-evolving graph
G , the parameter β is the inverse temperature and Wt is a standard Wiener process. The
particle stays in one of the wells for a relatively long time and then jumps to one of the
neighboring wells. We consider one realization (trajectory) S ∈ R

2 of the stochastic pro-
cess X = {Xt}

L−1
t=0 , where L is the length of the trajectory. An example of such a trajectory

S is shown in Fig. 3, where the number of wells is s = 5 and β = 0.05 . Before generating
a time-evolving graph G , we cluster all points of S using k-means in order to obtain the
ground truth labels for time-snapshots of G . Every synthetic benchmark data is based on
this trajectory and constructed as follows.

The construction of the time-evolving graph G = {G0, ...,GT−1} can be described by
a three-step process. In the first step, the trajectory S = {(x

(i)
1 x

(i)
2)}L−1

i=0 using SDE (5) is
generated. We consider the case where the number of time points T in G is equal to

knorm(Gi,Gj) =
k(Gi,Gj)√

k(Gi,Gi) k(Gj ,Gj)
,

(5)dXt = −∇F(Xt)dt +
√
2β−1dWt ,

F(x) = cos(s arctan(x1, x2))+ 10
(√

x21 + x22 − 1
)2

.

Page 11 of 22Melnyk et al. Appl Netw Sci (2020) 5:96 	

the length L of S, we will then denote them both by T. In the second step, we choose
the number of vertices n and assign positions (aj , bj) , j = 0, . . . , n− 1 to each vertex
v ∈ V (Gt) in a Cartesian coordinate system. The number of vertices n and their posi-
tions will be the same for each Gt ∈ G , t = 0, . . . ,T − 1 . We use the uniform distribu-
tion to generate random points (aj , bj) such that (aj , bj) ∼ U[−2,2]×[−2,2] . Finally, in the
third step of the construction process, we generate temporary patterns in the structure
of the time-evolving graph such that it exhibits metastable behavior in the following way.
At each time point t ∈ {0, . . . ,T − 1} , we draw a circle around the point (x(t)1 , x

(t)
2) ∈ S

with radius r. We choose the radius r as the average of the radii of each cluster in S
and r is the same for each t. Each time-snapshot Gt is first set to be a complete graph.
We define temporal patterns, which characterize each state of G , by removing all edges
between vertices that are inside the current circle. In order to add noise to the data we
also remove edges outside the circle with the out-state probability. An example of the
benchmark data is shown in Fig. 4.

Experiments and results
We illustrate the efficacy of graphKKE proposed in Sect. 3.3 on the benchmark data-
set and a real-world dataset with an artificial signal. We will show that our method is
capable of learning the embedding of the time-evolving graph maintaining all dynamic
properties in such way that it is possible to detect the metastable states in the low-
dimensional space. Besides the experiments with benchmark and real-world datasets,
we compare our method with several state-of-the-art approaches for graph clustering.

Experiments with synthetic data

Experimental setup

 In order to test the performance of the method proposed in Sect. 3 and compare the
result to other baselines models, we generate the synthetic data described in Sect. 4 with
different configurations of interest such as the number of vertices n, the number of time
steps T, and the number of states s. The datasets are summarized in Table 1. For each
dataset we set the out-state probability to 0.1. We apply graphKKE with the Weisfeiler–
Lehman graph kernel with number of iterations h = 1 and regularization parameter
η = 0.1 . In order to have ground truth labels/states of G , we apply k-means clustering to

Fig. 3  An example of a trajectory of a particle in the 5-well potential. Points indicate the positions of the
particle at time t and blue lines show the movement of the particle from time point t to t + 1

Page 12 of 22Melnyk et al. Appl Netw Sci (2020) 5:96

the SDE trajectory S . For the Weisfeiler–Lehman kernel, the initial set of vertex labels l0
is defined to be {0, 1, 2, . . . , n}.

Results and analysis

 We visualize the result only for the 5DynG-100 dataset. The eigenvalues of the Koop-
man operator approximated with graphKKE are shown in Fig. 5. A spectral gap after
the fifth eigenvalue indicates that the time-evolving graph G contains s = 5 metasta-
ble states and G = G0 ∪ · · · ∪G4 . Since all information about the long-term behav-
ior of the time-evolving graph is contained within the eigenfunctions of the Koopman

Fig. 4  An illustration of our benchmark data at times a t = 0 , b t = 256 . In both a and b, the left images
shows a time-snapshot G0 and G256 and the right images are points of the particle in the 5-well potential,
which are clustered into 5 sets with k-means. Edges in red color are removed from the graph. Vertices in the
circles are considered as patterns characterizing corresponding states

Fig. 5  The eigenvalues of the Koopman operator approximated by graphKKE for 5DynG-100 dataset. The
large spectral gap after the fifth eigenvalue reveals the presence of the 5 metastable states in the dataset

Page 13 of 22Melnyk et al. Appl Netw Sci (2020) 5:96 	

operator associated with s dominant eigenvalues close to 1 (in our case s = 5 ), the
embedding dimension m is defined by the number of these eigenfunctions. Thus, for
5DynG-100 dataset each time-snapshot of G is embedded into a new vector space
R
m with s = m = 5 . An illustration of the embedded time-series data ϕ(G) , where

ϕ(G) =
∑4

i=0 ciϕi(G) , is shown in Fig. 6. Here, we chose the coefficients ci in such a way
that the 5 metastable states can be easily distinguished. Now we are able to analyze the
data further using its low-dimensional representation and, for example, to detect the
location of metastable states or to predict the state at the next time point.

Applying k-means to the eigenfunctions associated with the five dominant eigenvalues
results in the five clusters. Since each state of the time-evolving graph is characterized
by some common pattern in the topological structure, we average adjacency matrices of
each state. Thus, if we have a time-evolving graph with s states G = G0 ∪ · · · ∪Gs−1 and
{A0, . . . ,As−1} is a set of corresponding subsets of adjacency matrices, then

where Aj
i ∈ Ai, i = 0, . . . , s − 1 . Each average adjacency matrix Aavg

i is associated with
the average graph Gavg

i .
Figure 7 illustrates the graphs of each state, where vertices are colored according to

their degrees of the average graph Gavg
i , i = 0, . . . , s − 1.

Our approach is capable of capturing common temporal patterns in the topological
structure of the time-evolving graph with metastability. Consequently, it can learn a
meaningful embedding of the time-evolving graph and preserve states in a low-dimen-
sional space.

Experiments based on realistic data

In this experiment, we apply graphKKE to analyze a microbiome dataset, called Moving-
Pic coming from Caporaso et al. (2011), where one male and one female were sampled
daily at three body sites (gut, skin, and mouth) for 15 months and for 6 months, respec-
tively. As a feature matrix, the OTU table D ∈ N

T×p is used, where T is the number of
time points and p is the number of OTUs. The operational taxonomic units (OTUs) are
defined as groups of closely related microbes or bacteria species.

A
avg
i =

1

|Ai|

|Ai|−1∑

j=0

A
j
i,

Fig. 6  An illustration of the embedded time-series data, where ϕ(G) =
∑4

i=0 ciϕi(G) and ϕi(G) are
dominant eigenfunctions of the Koopman operator approximated by graphKKE. There are 5 distinct level sets
corresponding to the 5 metastable states

Page 14 of 22Melnyk et al. Appl Netw Sci (2020) 5:96

We use the microbiome profile only from the skin and since the data does not have
any perturbations such as antibiotics exposure or diseases, we add an artificial noisy
signal to the data in the following way. A practical justification for adding noise to
the signal is that the human microbiome might react not only to major perturbations
such as diseases or antibiotics exposure but also to some short-term daily fluctua-
tions such as changing of lifestyle or stress. Moreover, the noise will be added to test
the robustness of graphKKE. Let di = [d0i , d

2
i , . . . , d

T−1
i] be the T-dimensional col-

umn vector of OTU counts of the ith species. OTUs with less than 30% of total reads

Fig. 7  The result of detecting the metastable states using graphKKE for the 5Dyn-100 dataset. Each plot
shows the average graph for each state, where color of the vertices reflects the average number of the edges.
Vertices in brown have more edges than vertices in yellow and each state has a different cluster of vertices
with fewer edges. Thus, the state-dependent graph exhibits a unique topology making it distinguishable
from each other

Page 15 of 22Melnyk et al. Appl Netw Sci (2020) 5:96 	

are removed from the matrix D. We randomly choose 100 OTUs that are used to add
the noisy signal. The vector of length T is constructed using a sine wave function:

and then for each i, i = 0, . . . , 100 , we compute new OTU counts di,

where w ∼ Normal(0, 1) and ǫ is the level of Gaussian noise. We set ǫ to one of
{0, 0.05, 0.3}.

The next step is the construction of a time-evolving graph. Let dt = [dt1, d
t
2, ..., d

t
p]

be the p-dimensional row vector of OTU counts at time point t, t = 0, ...,T − 1 . The
raw OTU counts are typically normalized by the total cumulative count ct =

∑p
i=1 d

t
i

in order to account for the different sequencing depth (Lo and Marculescu 2019).
Thus, the normalization of dt by the total cumulative count results in the relative
abundance vector:

for each time point t, t = 0, . . . ,T − 1 . The time-snapshots of the time-evolving graph
G = (G0, ...,GT−1) are then constructed as follows. First of all, we compute the Pearson
correlation coefficient of each pair of OTUs (di, dj) , with i, j = 1, ..., p in order to define
an initial co-occurrence graph. We choose a threshold of 0.5 such that edges with the
Pearson coefficient greater than 0.5 or less than −0.5 are considered to be strongly cor-
related and remain in G0 . Edges with the Pearson correlation coefficient in the range
[−0.5; 0.5] are removed from the initial graph. Furthermore, to construct time-snapshots
for each t = 0, . . . ,T − 1 , we use the OTU counts. If the OTU count for the current ver-
tex is zero, we remove edges connecting this vertex and its neighboring vertices. The
statistics of the pre-processed data can be seen in Table 1.

Moreover, we define Ĝt = Gt+τ . That is, for the chosen lag time τ = 1 ,
G = (G0, . . . ,GT−2) and Ĝ = (G1, . . . ,GT−1) . From the two time-evolving graphs G
and Ĝ , we compute the Gram matrices KGG and K

GĜ
 using the Weisfeiler–Lehman

kernel, where the number of iterations is set to h = 1 , and the regularization param-
eter to η = 0.9.

z = R · sin

(
2π t

ω

)

di = di +max(0, z + ǫ · w · z),

xt =
[dt1
ct
,
dt2
ct
, . . . ,

dtp

ct

]

Table 1  Statistics of each dataset used in this paper

Name #Vertices #Edges (avg.) ± std. #Time steps #States

5DynG-100 100 4851 ± 43.68 500 5

5DynG-200 200 19516 ± 119.54 1000 5

3DynG-300 300 44051 ± 219.05 500 3

MovingPic 919 10602 ± 7266.39 658 2

CholeraInf 96 106 ± 41.28 34 2

Page 16 of 22Melnyk et al. Appl Netw Sci (2020) 5:96

Results and analysis

 The eigenvalues detected by graphKKE for different percentages of Gaussian noise are
shown in Fig. 8. The gap after the second eigenvalue and the values of these eigenvalues
close to 1 imply the presence of two states in the time-evolving graph G . The spectral
gap after the forth eigenvalue indicates the presence of four states but we are not aware
of the biological interpretations of the second two states since the original study does
not mention any potential perturbations. The experiment also shows that graphKKE is
robust to the noise in the data. In order to find the location of the states, we cluster time-
snapshots into two states using k-means applied to the two normalized eigenfunctions
associated with two dominant eigenvalues with the number of clusters set to 2.

The following experiment will demonstrate whether the detected states in the bench-
mark and the real-world datasets correspond to the ground truth labels. Moreover, we
will show that graphKKE outperforms other methods for learning the embeddings of
time-evolving graphs.

Comparative analysis

Experimental setup

 The goal of this experiment is to compare graphKKE to several state-of-the-art rep-
resentation learning and graph clustering approaches using benchmark and real-world
datasets. The proposed approach with two different graph kernels—Gaussian and Weis-
feiler–Lehman kernels—is compared with graph2vec (Narayanan et al. 2017) and the
original WL kernel (Shervashidze et al. 2011). The main idea of graph2vec is explained
in Sect. 1 and the WL kernel is discussed in Sect. 3.2. Since the analysis is done for the
graph clustering task, we apply k-means to the resulting embedding vectors of every
approach. The embedding dimensions of {5, 64, 128, 1024} were chosen for graph2vec.
The hyperparameters of graphKKE were chosen empirically1 and can be seen in Table 2.
The choice of σ for the Gaussian kernel is critical for the performance of graphKKE. The
optimal choice of σ is beyond the scope of this paper (for details see Singer (2006)). For
the MovingPic dataset, the level of Gaussian noise is set to 0.05 in this experiment.

Fig. 8  The eigenvalues of the Koopman operator approximated by graphKKE for different percentages of
Gaussian noise added to the MovingPic dataset

1  The combinations of hyperparameters with the biggest spectral gap were used.

Page 17 of 22Melnyk et al. Appl Netw Sci (2020) 5:96 	

Evaluation metric

 In order to assess the results of the clustering of the embedding vectors for all approaches,
the Adjusted Rand Index (ARI) is used. Higher ARI corresponds to greater accuracy in cor-
rectly identifying the ground truth labels/states.

Results and analysis

 The graph clustering results for all datasets using graphKKE and other state-of-the-art
methods are presented in Table 3 (experimental datasets). For graph2vec the embedding
dimension of 5 was used as a dimension with the best ARI to compare its result with the
results of other approaches. We observe that both graph2vec and WL kernel perform
poorly on the benchmark and real-world datasets. One reason of the poor embedding is
that these two methods do not take into account the time information which is crucial in
time-evolving graphs with metastability.

Additionally, this experiment shows that the detected metastable states using the embed-
ding of graphKKE correspond exactly to the ground truth labels. In the benchmark data,
the ground truth labels are the labels of the k-means clustering of the trajectory S. In the
case of the MovingPic dataset, the ground truth labels correspond to the time period when
the sine wave function of the artificial signal is zero (label 0) or greater than zero (label 1).

Application to microbiome data
Having studied the performance of graphKKE on benchmark datasets and the
real-world dataset with the artificial signal, we now describe the application of our
graphKKE approach to the microbiome data. Such data is more challenging than the

Table 2  Hyperparameters for graphKKE used in the comparative analysis in Sect. 5.3,
where σ is the bandwidth, h the number of iterations, and η the regularization parameter

Dataset σ h η

5DynG-100 10 1 0.1

5DynG-200 100 1 0.5

3DynG-300 100 1 0.1

MovingPic 100 1 0.5

Table 3  Adjusted Rand Index (ARI) for the comparative analysis on the graph
clustering task in Sect. 5.3. Higher ARI corresponds to greater accuracy in correctly
identifying the ground truth states. It can been seen that the combination of graphKKE
with Weisfeiler–Lehman kernel outperforms other methods

Dataset graph2vec WL kernel graphKKE+WL kernel graphKKE+Gaussian
kernel

Experimental datasets

5DynG-100 0.49 0.36 0.99 0.96

5DynG-200 0.20 0.49 0.92 0.87

3DynG-300 0.22 0.40 0.96 0.94

MovingPic 0.42 0.56 1 0.99

Real-world dataset

CholeraInf 0.29 0.66 0.88 0.87

Page 18 of 22Melnyk et al. Appl Netw Sci (2020) 5:96

benchmark data because the real-world data generating process is more complex and
also contains noise.

Background

 The microbiome data, which we will analyze in this section comes from a study about
recovery from Vibrio cholerae infection (Hsiao et al. 2014). Fecal microbiota was col-
lected during acute diarrhea and recovery periods of cholera in a cohort of seven Bang-
ladeshi adults. In our experiments, we chose one patient, since there is variation in the
constituents of the gut microbiota among individuals (Durack and Lynch 2019) and thus,
it can bias the result of detecting the metastable states such as diarrhea and recovery
periods. The pre-processed OTU table were obtained from Zackular et al. (2015). The
aim is to determine if there are metastable states in this data and if possible, the number
of metastable states and their locations.

The time-evolving graph from the given OTU table is constructed in the same way as
for the MovingPic dataset using the relative abundance vector and Pearson correlation
coefficients. In the real-world microbiome dataset, perturbations do not always shift
OTU counts to zero. Therefore, the question how to properly construct time-evolving
graphs such that both metastable behavior and associations between microbes are taken
into consideration need to be considered in future work.

We apply graphKKE using the Weisfeiler–Lehman graph kernel. We set the number
of iteration to 5 and the regularization parameter to 0.1.

Results and analysis

 The resulting eigenvalues are shown in Fig. 9. Two dominant eigenvalues close to 1
implies that the time-evolving graph G contains two metastable states and further in
the paper we will show that these two metastable states correspond to the ground truth
infection/recovery periods of the dataset. Moreover, the eigenfunctions associated with
these two dominant eigenvalues contain all information about the long-term behavior of
the time-evolving graph G and using them as a low-dimensional representation we can
further analyze the cholera dataset with the aid of time-series methods which work with
vector-structured data. For example, one can cluster the data into two clusters, predict
the state at the next time point or we can find the probability of G returning to the diar-
rhea state if a person continues living in this area.

Fig. 9  The large spectral gap after the second eigenvalue of the Koopman operator approximated by
graphKKE indicates that the cholera infection dataset can be divided into two metastable states

Page 19 of 22Melnyk et al. Appl Netw Sci (2020) 5:96 	

We will focus on detecting metastable states utilizing the low-dimensional representa-
tion (dominant eigenfunctions). Applying a clustering method such as k-means to the
two dominant eigenfunctions, we can find the location of metastable states in G . Moreo-
ver, in order to estimate whether the resulting embedding maintains the dynamics of
the time-evolving graph, we will compare the metastable states, which we obtained by
clustering the two dominant eigenfunctions, with the initial time periods of diarrhea and
recovery. The ARI is shown in Table 3 (real-world dataset).

After clustering eigenfunctions into two states, we can compare the topological struc-
tures of time-snapshots of these states. We compute the average adjacency matrices in
each state as discussed in Sect. 5.1. The result is shown in Fig. 10. We see that, depend-
ing on the state, different clusters of vertices have different degrees. This is due to the
fact that the cholera infection causes marked shifts in the microbiome composition. The
biological meaning of these clusters and how they are related to the healthy/ill state are
open questions and need to be analyzed in future work.

This result shows that the embedding of the time-evolving graph G simplifies the anal-
ysis of graph-structured time-series data and can be used to extract crucial properties of
the graph that make the time-series graph undergo transitions from one state to another.

Discussion and conclusion
The large variety of species and complex interactions in the microbiome makes it chal-
lenging for researchers to analyze the responses of the microbiome to different pertur-
bations such as diseases or antibiotic exposures and its influence on the human health.
However, most studies aiming at understanding these dynamics are primarily focused
on statistical constitution analysis omitting more complex interactions that can be
described as a time-evolving graph. One solution is to represent each time-snapshot of
the time-evolving graph as a fixed-length feature vector. Many existing approaches learn
the embedding either of the static graphs or of the substructures such as nodes, edges, or
subgraphs, whereas for some system it is of great importance to embed the entire time-
snapshots of the time-evolving graph into a low-dimensional space preserving the global
temporal mechanisms such as metastability.

In this paper, we introduced an unsupervised approach (i.e., class labels of single
time-snapshots are not required to learn the embedding) for learning a mapping that
embeds time-snapshots of a time-evolving graph exhibiting metastable behavior as
points in a low-dimensional vector space. Our experiments on synthetic benchmark
and real-world data show that our approach is capable of learning a low-dimensional
representation of the time-evolving graph that preserves the metastable behavior. This
embedding can then be clustered in order to split individual time-snapshots of the time-
evolving graph into states. Moreover, one can also analyze the dynamics occurring in the
time-evolving graph (e.g., the probability of jumping from one state to another or the
probability that the graph will return to one of the states) and apply different machine
learning techniques. Since we are dealing with graph-structured data, which usually rep-
resents the interactions between objects, we can extract structural information pertain-
ing to particular states. The latter is beneficial in the case of biological interactions such
as microbiome data, where it is crucial to understand the differences between states
(e.g., healthy/ill). To this end, experimental results have shown that our approach can

Page 20 of 22Melnyk et al. Appl Netw Sci (2020) 5:96

outperform several state-of-the-art methods for representation learning of graphs. For
instance, the comparative analysis has shown that applying only Weisfeiler–Lehman
kernel to the time-evolving graph is not sufficient to capture the underlying dynamical
graph patterns and consequently, to detect the metastable sets.

We have shown that graph kernels are not only a powerful tool for analyzing static
graphs but also for analyzing time-evolving graphs. The transfer operator approach
in combination with graph kernels yields a method capable not only of extracting
structural information in each time-snapshot of the time-evolving graph but also of
identifying the evolution patterns, which may exist in time-evolving graphs with met-
astability over long periods of time.

Abbreviations
ARI: Adjusted Rand Index; WL: Weisfeiler–Lehman; OTU: Operational taxonomic unit; SDE: Stochastic differential equation.

Fig. 10  The same interaction graph constructed with Pearson correlation coefficients for two different
states detected using graphKKE. Vertices are colored according to the average number of edges: a period
of cholera infection. b period of recovery. Brown color implies that particular species (vertices) have more
association interactions than species (vertices) in yellow

Page 21 of 22Melnyk et al. Appl Netw Sci (2020) 5:96 	

Acknowledgements
Not applicable.

Authors’ contributions
TC, SK, GM designed and supervised the research; KM performed the research and wrote the manuscript; SK, GM, TC
revised and corrected the manuscript content. All authors have read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was supported by the German Ministry for Edu-
cation and Research (BMBF) within the Berlin Big Data Center and the Berlin Center for Machine Learning (01IS14013A
and 01IS18037J) and the Forschungscampus MODAL (project grant 3FO18501) and funded by the Deutsche Forschun-
gsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – The Berlin Mathematics
Research Center MATH+ (EXC-2046/1, project ID: 390685689).

Availability of data and materials
The real-world datasets and the code to generate the synthetic data are available online at https​://githu​b.com/k-melny​
k/graph​KKE/data

Competing interests
The authors declare that they have no competing interests.

Code availability
The code of graphKKE and data preprocessing code are available at https​://githu​b.com/k-melny​k/graph​KKE.

Author details
1 Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany.
2 Department of Mathematics, University of Surrey, Guildford GU2 7XH, UK. 3 Electrical Engineering and Computer
Science, Technische Universität Berlin, Marchstraße 23, 10587 Berlin, Germany. 4 Zuse Institute Berlin, Takustraße 7,
14195 Berlin, Germany.

Received: 27 August 2020 Accepted: 19 November 2020

References
Borgwardt K, Kriegel H (2005) Shortest-path kernels on graphs. In: 5th IEEE international conference on data mining

(ICDM’05), p. 8. https​://doi.org/10.1109/ICDM.2005.132
Bovier A (2006) Metastability: a potential theoretic approach. In: Proceedings of the international congress of mathemati-

cians, pp. 499–518. https​://doi.org/10.4171/022-3/26
Caporaso J, Lauber C, Costello E, Berg-Lyons D, González A, Stombaugh J, Knights D, Gajer P, Ravel J, Fierer N, Gordon J,

Knight R (2011) Moving pictures of the human microbiome. Genome Biol. https​://doi.org/10.1186/gb-2011-12-5-r50
Durack J, Lynch SV (2019) The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med

216(1):20–40. https​://doi.org/10.1084/jem.20180​448
Gärtner T, Flach P, Wrobel S (2003) On graph kernels: hardness results and efficient alternatives. Lect Not Comput Sci.

https​://doi.org/10.1007/978-3-540-45167​-9_11
Gopalakrishnan V, Helmink B, Spencer C, Reuben A, Wargo J (2018) The influence of the gut microbiome on cancer,

immunity, and cancer immunotherapy. Cancer Cell 33(4):570–580. https​://doi.org/10.1016/j.ccell​.2018.03.015
Goyal P, Rokka Chhetri S, Canedo A (2020) dyngraph2vec: capturing network dynamics using dynamic graph representa-

tion learning. Knowl Based Syst. https​://doi.org/10.1016/j.knosy​s.2019.06.024
Grover A, Leskovec J (2016) Node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD

international conference on knowledge discovery and data mining, pp. 855–864. https​://doi.org/10.1145/29396​
72.29397​54

Hjorth M, Roager H, Larsen T, Poulsen S, Licht T, Bahl M, Zohar Y, Astrup A (2018) Pre-treatment microbial prevotella-to-
bacteroides ratio, determines body fat loss success during a 6-month randomized controlled diet intervention. Int J
Obesity 42(3):580–583. https​://doi.org/10.1038/ijo.2017.220

Hsiao A, Shamsir A, Subramanian S, Griffin N, Drewry L, Petri W, Haque R, Ahmed T, Gordon J (2014) Members of the
human gut microbiota involved in recovery from vibrio cholerae infection. Nature 515:423–426. https​://doi.
org/10.1038/natur​e1373​8

Kang U, Tong H, Sun J (2012) Fast random walk graph kernel. In: Proceedings of the 12th SIAM international conference
on data mining, SDM 2012, pp. 828–838. https​://doi.org/10.1137/1.97816​11972​825.71

Kersting K, Kriege NM, Morris C, Mutzel P, Neumann M (2016) Benchmark data sets for graph kernels. http://graph​kerne​
ls.cs.tu-dortm​und.de

Kincaid H, Nagpal R, Yadav H (2019) Microbiome-immune-metabolic axis in the epidemic of childhood obesity: evidence
and opportunities. Obesity Rev. https​://doi.org/10.1111/obr.12963​

Klus S, Koltai P, Schütte C (2016) On the numerical approximation of the perron-frobenius and koopman operator. J
Comput Dyn 3:51–79. https​://doi.org/10.3934/jcd.20160​03

Klus S, Bittracher A, Schuster I, Schütte C (2018) A kernel-based approach to molecular conformation analysis. J Chem
Phys 10(1063/1):5063533

Klus S, Husic B, Mollenhauer M, Noé F (2019) Kernel methods for detecting coherent structures in dynamical data. Chaos
Interdisc J Nonlinear Sci. https​://doi.org/10.1063/1.51002​67

https://github.com/k-melnyk/graphKKE/data
https://github.com/k-melnyk/graphKKE/data
https://github.com/k-melnyk/graphKKE
https://doi.org/10.1109/ICDM.2005.132
https://doi.org/10.4171/022-3/26
https://doi.org/10.1186/gb-2011-12-5-r50
https://doi.org/10.1084/jem.20180448
https://doi.org/10.1007/978-3-540-45167-9_11
https://doi.org/10.1016/j.ccell.2018.03.015
https://doi.org/10.1016/j.knosys.2019.06.024
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1038/ijo.2017.220
https://doi.org/10.1038/nature13738
https://doi.org/10.1038/nature13738
https://doi.org/10.1137/1.9781611972825.71
http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
https://doi.org/10.1111/obr.12963
https://doi.org/10.3934/jcd.2016003
https://doi.org/10.1063/1.5100267

Page 22 of 22Melnyk et al. Appl Netw Sci (2020) 5:96

Klus S, Schuster I, Muandet K (2019b) Eigendecompositions of transfer operators in reproducing kernel hilbert spaces. J
Nonlinear Sci 30:283–315. https​://doi.org/10.1007/s0033​2-019-09574​-z

Le Q, Mikolov T (2014) Distributed representations of sentences and documents. In: Proceedings of the 31st international
conference on international conference on machine learning, vol 32. https​://doi.org/10.5555/30448​05.30450​25

Lo C, Marculescu R (2019) Metann: accurate classification of host phenotypes from metagenomic data using neural
networks. BMC Bioinform. https​://doi.org/10.1186/s1285​9-019-2833-2

Menni C, Jackson M, Pallister T, Steves C, Spector T, Valdes A (2017) Gut microbiome diversity and high-fibre intake are
related to lower long-term weight gain. Int J Obesity 41(7):1099–1105. https​://doi.org/10.1038/ijo.2017.66

Narayanan A, Mahinthan C, Venkatesan R, Chen L, Liu Y, Jaiswal S (2017) graph2vec: learning distributed representations
of graphs. ArXiv arXiv​:abs/1707.05005​

Ou M, Cui P, Pei J, Zhang Z, Zhu W (2016) Asymmetric transitivity preserving graph embedding. In: KDD ’16: proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 1105–1114. https​
://doi.org/10.1145/29396​72.29397​51

Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations. In: KDD ’14: Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 701–710. https​://doi.
org/10.1145/26233​30.26237​32

Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li
J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang
Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto J,
Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich S, Nielsen R, Pedersen O, Kristiansen K, Wang J
(2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60. https​://doi.
org/10.1038/natur​e1145​0

Shaw L, Bassam H, Barnes C, Walker A, Klein N, Balloux F (2019) Modelling microbiome recovery after antibiotics using a
stability landscape framework. ISME J 13:1–12. https​://doi.org/10.1038/s4139​6-019-0392-1

Shervashidze N, Vishwanathan S, Petri T, Mehlhorn K, Borgwardt K (2009) Efficient graphlet kernels for large graph com-
parison. Proc Mach Learn Res 5:488–495

Shervashidze N, Schweitzer P, Jan van Leeuwen E, Mehlhorn K, Borgwardt K (2011) Weisfeiler–Lehman graph kernels. J
Mach Learn Res 12:2539–2561

Singer A (2006) From graph to manifold laplacian: the convergence rate. Appl Comput Harmonic Anal 21:128–134. https​
://doi.org/10.1016/j.acha.2006.03.004

Sánchez-Alcoholado L, Ramos-Molina B, Otero A, Laborda-Illanes A, Ordóñez R, Medina J, Gómez-Millán J, Queipo-
Ortuño M (2020) The role of the gut microbiome in colorectal cancer development and therapy response. Cancers.
https​://doi.org/10.3390/cance​rs120​61406​

Wang D, Cui P, Zhu W (2016) Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pp 1225–1234. https​://doi.org/10.1145/29396​72.29397​53

Xu R, Wang Q (2016) Towards understanding brain-gut-microbiome connections in alzheimer’s disease. BMC Syst Biol.
https​://doi.org/10.1186/s1291​8-016-0307-y

Zackular J, Baxter N, Chen G, Schloss P (2015) Manipulation of the gut microbiota reveals role in colon tumorigenesis.
mSphere. https​://doi.org/10.1128/mSphe​re.00001​-15

Zhou L, Yang Y, Ren X, Wu F, Zhuang Y (2018) Dynamic network embedding by modeling triadic closure process. In: AAAI

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00332-019-09574-z
https://doi.org/10.5555/3044805.3045025
https://doi.org/10.1186/s12859-019-2833-2
https://doi.org/10.1038/ijo.2017.66
http://arxiv.org/abs/abs/1707.05005
https://doi.org/10.1145/2939672.2939751
https://doi.org/10.1145/2939672.2939751
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1038/nature11450
https://doi.org/10.1038/nature11450
https://doi.org/10.1038/s41396-019-0392-1
https://doi.org/10.1016/j.acha.2006.03.004
https://doi.org/10.1016/j.acha.2006.03.004
https://doi.org/10.3390/cancers12061406
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1186/s12918-016-0307-y
https://doi.org/10.1128/mSphere.00001-15

	GraphKKE: graph Kernel Koopman embedding for human microbiome analysis
	Abstract
	Introduction
	Related work
	Contribution

	Problem statement
	GraphKKE: graph Kernel Koopman embedding
	Transfer operators
	Graph kernels
	Kernel function
	Gaussian kernel
	Weisfeiler–Lehman kernel

	Method overview: graphKKE

	Generating benchmark data with metastability
	Experiments and results
	Experiments with synthetic data
	Experimental setup
	Results and analysis

	Experiments based on realistic data
	Results and analysis

	Comparative analysis
	Experimental setup
	Evaluation metric
	Results and analysis

	Application to microbiome data
	Background
	Results and analysis

	Discussion and conclusion
	Acknowledgements
	References

