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"Nobody ever ûgures out what life is all about, and it doesn’t matter. Explore the world.

Nearly everything is really interesting if you go into it deeply enough."

Richard Feynman (1918-1988)





Abstract

Tunneling across superconducting junctions is associated with a variety of diòerent
processes that transfer single electrons, Cooper pairs, or even larger amounts of electrons
by multiple Andreev re�ections. Resonances inside the superconducting energy gap, like
e.g. induced by magnetic adatoms, add resonant Andreev re�ections to the variety of
tunneling processes. We have successfully established two spectroscopic methods to study
the nature of tunneling processes in superconductors. In the ûrst approach, we complement
the capabilities of a scanning tunneling microscope by introducing high-frequencies (HF)
up to 40GHz into the tunnel junction. he charge carriers involved in the tunneling process
can exchange energy with the radiated HF ûeld which leads to photon-assisted tunneling.
Based on the theory of Tien und Gordon it is predicted that the sideband spacing in the bias
voltage is a direct ûngerprint of the number of electrons transferred in a single tunneling
event.

Here we have used photon-assisted tunneling to study superconducting tunnel junctions
that exhibit Yu-Shiba-Rusinov states (YSR) induced by magnetic Mn adatoms on Pb(111). By
exploiting the tunability of the junction conductivity we could speciûcally obtain insights
into the contributions of single-electron tunneling and resonant Andreev processes to
the YSR states. While the simple Tien-Gordon description is suõcient to describe single-
electron tunneling and Cooper pair tunneling into the pure substrate, we show that the
description breaks down for resonant Andreev re�ections. We developed an improved
theoretical model based on rate equations and the acmodulation of the bias voltage. Our
model is in excellent agreement with our data.

In a second spectroscopic approach, we investigate Cooper pair tunneling in current-
biased Josephson junctions. We show that the critical current is strongly reduced by mag-
netic impurities, which re�ects a reduced superconducting order parameter in the vicinity
of the magnetic adatom.

Our results of photon-assisted tunneling and Josephson spectroscopy show that we
have established two powerful methods for the investigation of superconducting tunneling
processes at the atomic scale. hese methods could be particularly informative for the
investigation of unconventional and topological superconductors.
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Kurzfassung

Das Tunneln von Elektronen in supraleitenden Kontakten ist mit einer Vielzahl ver-
schiedener Prozesse verbunden, bei denen einzelne Elektronen, Cooper-Paare oder auch
eine größere Anzahl von Elektronen in Form von multiplen Andreev-Re�exionen übertra-
gen werden können. Resonanzen innerhalb der supraleitenden Energielücke, z.B. induziert
durch magnetische Adatome, fügen der Vielfalt der Tunnelprozesse darüber hinaus res-
onante Andreev-Re�exionen hinzu. Wir stellen in dieser Arbeit zwei spektroskopische
Methoden vor, die wir erfolgreich zur Untersuchung dieser Prozesse etabliert haben. Zum
einen ergänzen wir die vielfältigen Möglichkeiten der Rastertunnelmikroskopie, indem
wir Hochfrequenzen (HF) in den Tunnelkontakt einstrahlen. Dies ermöglicht den am
Tunnelvorgang beteiligten Ladungsträgern mit dem HF-Feld Energie auszutauschen, was
wiederum zu photonen-assistiertem Tunneln führt. Ausgehend von der Tien-Gordon heo-
rie ist zu erwarten, dass die Seitenbandabstände der Spannung einen direkten Rückschluss
auf die Anzahl der im einzelnen Tunnelereignis übertragenen Elektronen zulassen.
Wir nutzen das photonen-assistierte Tunneln, um supraleitende Tunnelkontakte zu

untersuchen, die durch magnetische Mn-Adatome auf Pb(111) induzierte Yu-Shiba-Rusinov-
Zustände (YSR) aufweisen. Aufgrund der über mehrere Größenordnungen variabel ein-
stellbaren Leitfähigkeit des Kontaktes können wir Einblicke in die Beiträge des Ein-Elektron-
Tunnelns undder resonantenAndreev-Prozesse durch dieYSRZustände gewinnen. Während
die fundamentale Tien-Gordon-Beschreibung zur Erklärung des Einzelelekronen- und
Cooper-Paar-Tunnels in das reine Substrat ausreicht, zeigen wir, dass diese Beschreibung
für resonante Andreev-Re�exionen fehlschlägt. Auf Basis von Ratengleichungen in Kombi-
nation mit ac-Spannungsmodulationen ist es uns gelungen eine neue theoretische Beschrei-
bung zu ûnden, die hervorragend mit unseren Daten übereinstimmt.
Als eine weitere neue spektroskopischeMethode habenwir zurUntersuchung des Cooper-

Paar-Tunnelns stromgetriebene Josephson-Kontakte etabliert. Wir zeigen, dass der kritische
Strom durch den Ein�uss magnetischer Verunreinigungen stark reduziert wird, was auf
einen Verringerung des supraleitenden Ordnungsparameters in der Nähe des magnetischen
Adatoms zurückgeführt werden kann.

Unsere Ergebnisse des photonen-assistierten Tunnelns und der Josephson-Spektroskopie
zeigen, dass wir zwei vielseitigeMethoden zur Untersuchung supraleitender Tunnelprozesse
auf atomarer Ebene etabliert haben. Diese Methoden könnten besonders aufschlussreich
für die Untersuchung neuartiger und topologischer Supraleiter sein.
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1
Motivation

One of themajor contemporary research ûelds deals with quantum computing. It is based
on the idea of creating devices that process information by making use of the superposition
and entanglement of quantum states [1, 2]. Such computers are assumed to be superior to
classical computers in terms of computational power for certain applications [3–5]. Among
these applications that quantum computers could potentially solve in polynomial time is
the factorization of large numbers [6, 7], which is highly relevant for our current encryption
algorithms [8], together with optimization algorithms such as the improvement of search
algorithms [9–11], as well as quantum simulations [12], which could be of great importance in
the future for the simulation of the behavior of atoms and particles. In quantum computers,
the information is stored in quantum bits (qubits). In the simplest case, this can be a two-
level quantum mechanical system, like the spin of an electron, which can take the values up
and down. hese can be interpreted as "0" and "1", similar to classical computer technology.
However, since these are quantum states, the qubit represents a superposition ∣↑⟩ + ∣↓⟩ of
both eigenvalues. Operations are done by connecting several qubits in so-called quantum
gates and calculations by combining several of these gates. he result of a calculation is
obtained from a "simple" measurement of the system. It is only this measurement that makes
the system collapse into one of its eigenstates. Under laboratory conditions, a realization
of quantum computers with currently up to 50 to 72 qubits has already succeeded [13, 14].
Despite rapid progress, scientists still face many unsolved problems such as error correction
and the development of quantum computers is only in its infancy [15], as can be seen from
the still large number of potentially promising implementation for qubits, which includes
an entire zoo of technologies, like Josephson circuits [16, 17], trapped ions [18], quantum
dots [19], Bose-Einstein condensates [20], and Majorana zero modes [21] to name only a
few.
An inherent problem of all approaches realized so far is quantum decoherence, i.e. the

loss of the deûned phase between the states [22]. It turns out that this decoherence is one of
the biggest challenges for the construction and upscaling of usable quantum computers.
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Chapter 1 MOTIVATION

Diòerent approaches exist to address or avoid this problem. On the one hand, it is possible
to reduce the decoherence with so�ware-based quantum error corrections [23]. On the
other hand, the approaches on the hardware side try to decouple the systems from any
external in�uences of their environment in the best possible way [24]. A further approach
concentrates on generating error-resistant qubits, which are protected by their topology
and therefore promise longer coherence times [25, 26]. he concepts for such topological
quantum computers are based on the use of exotic quasi-particles in topological materials,
most prominent Majorana zero modes in topological superconductors [27].

he recent systems in which Majorana fermions have been detected [28], as well as many
of the (potential) systems for quantum computing, are based on superconductivity [29].
Here, the superconducting gap is of great importance, as it contributes to the decoupling
and thus to the protection of the states within the energy gap. Several diòerent states can
arise in this energy gap. For example, Yu-Shiba-Rusinov (YSR) states [30–34], which are
of great interest because they are the building blocks for Majorana zero modes [35] and as
quantum spin states themselves potential candidates for qubits. YSR states are formed in
the interaction between a magnetic impurity and a superconductor, as the impurity binds
a spin-polarized electron within the gap of the superconductor. Studying them opens up
a large ûeld of interesting physics at the boundary between the two incompatible eòects
of magnetism and superconductivity. In addition to the YSR states, several other subgap
states such as Andreev bound states, but also the already mentioned Josephson peaks and
Majorana zeromodes occur in superconductors. Investigations on all of these provide a local
probe for the various interactions that aòect superconductivity, making their exploration
relevant for quantum computing applications.
A lot of information about subgap states can be gained in tunnel experiments. he

diòerential conductance reveals information as the bound-state energy [34, 36], gives
access to the inelastic relaxation rates underlying the quasiparticle poisoning [37, 38], and
the BCS order parameter by Josephson spectroscopy [39]. Accessing them by scanning
probe methods additionally enables spatial resolution, like mapping the electron- and
hole components of the bound state wave functions [40, 41] or mapping variations in the
superconducting order parameter [39]. We would like to extend the possibilities of studying
subgap states by introducing two further spectroscopic methods. First, we combine tunnel
experiments with high-frequency (HF) radiation for investigations based on photon-assisted
tunneling. Second, we advance Josephson spectroscopy by using current-biased Josephson
junctions. For the realization of these experiments, we have developed a newmachine, based
on scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). he
former gives us access to spatially resolved information on conductive surfaces down to
the atomic level and the latter uses this atomic resolution to perform spatially-resolved
conductance measurements. he spatial resolution is of great importance as it allows us to
address individual spins on surfaces.

he combination with HF radiation enables us to gain a better understanding of the
underlying tunneling processes using photon-assisted tunneling. he ûrst observations of
this eòect have beenmade in superconducting junctions [42, 43], as well as in semiconductor
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junctions [44]. Although we are also explicitly interested in superconductors, it is important
to note that the precise materials used in the tunnel contacts are irrelevant. Photon-assisted
tunneling is an eòect that is directly and exclusively sensitive to the tunneling processes
involved. hus, in contrast to normal tunnel spectroscopy, it makes the eòective charge
transported in the tunnel event directly measurable. his is done by evaluating the sideband
splitting that occurs in the resulting characteristic patterns when the HF amplitude is varied
in addition to the bias voltage. Since single-electron tunneling in superconductors always
requires the necessary energy to excite quasiparticle into the superconducting drain and
source, the transport at low energies is dominated by multi-electron processes. hese
include Cooper pair tunneling near zero-bias [45–47], and multi-electron processes in the
form of (multiple) Andreev re�ections at higher subgap energies [48–51]. Photon-assisted
tunneling now oòers us the possibility to distinguish between these processes, even if they
occur at the same energies. he implementation, characterization, and application of this
technique form the core of this thesis. A quantitative understanding of these processes is
provided by the model of Tien and Gordon, which applies the HF radiation to the junction
as a further ac voltage [52]. We extend this model to subgap states and apply it to pristine
superconductor-superconductor junctions, as well as to manganese-induced YSR states on
Pb(111).

In order to realize current-biased Josephson spectroscopy, we have converted our voltage
source to an eòective current source. his is done by connecting a resistor of signiûcantly
higher resistance of 1MΩ in series with the junction resistance. Additionally, this mea-
surement requires a very sensitive and low capacitive voltage ampliûer, which measures
the voltage drop of the junction in a four-point conûguration. his allows us, compared to
voltage-biased Josephson spectroscopy, to directly quantify the retrapping and switching
currents characterizing the Josephson junction. Since these currents are proportional to the
critical Josephson current, we can use the STM to detect changes in this current and thus
draw conclusions about the intrinsic order of the superconducting ground state. his was
not possible with single-electron experiments, as they are only able to measure the excited
quasi-particle states. Likewise, we can use Josephson spectroscopy to study the local eòects
of magnetic impurities on superconductors, which we have successfully demonstrated by
initial measurements on the magnetic Mn atoms on Pb(111)

Looking forward, both of our established spectroscopy techniques have other promising
future applications. Shapiro steps, occurring in Josephson junction under the in�uence
of high-frequency radiation, can be used for the detection of Majorana fermions. For
these, the characteristic voltage in the ac Josephson eòect should double. Furthermore,
photon-assisted tunneling can be used to distinguish Majorana fermions from very low
energy YSR states by diòerent sideband splittings upon high-frequency variation. In another
application, the irradiated radio frequencies could be used for ESR-STM. his would enable
direct measurements of coherence times, explicitly the transverse relaxation time (T2).
Besides, it also allows the direct excitation and control of single spins with a much higher
energy resolution compared to normal STM.
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Chapter 1 MOTIVATION

his work is organized as follows: Chapter 2 provides a general overview of the theo-
retical concepts underlying this work. his is followed in Chapter 3 by an introduction
into the fundamentals of scanning tunneling microscope (STM) and scanning tunneling
spectroscopy (STS) as our experimental measurement methods. Chapter 4 is the purely
technical description of the machine we put into operation. It also describes all modiûca-
tions made for the introduction of high-frequency (HF) radiation in the STM junction and
characterizes theHF circuit. Chapter 5 represents the transition to our results by introducing
lead (Pb) as a substrate and tip material and discussing the tunneling processes through the
YSR states caused by Mn adatoms on Pb. Next, we will present our results obtained using
phonon-assisted tunneling. We brie�y introduce the model of Tien and Gordon used to
describe photon-assisted tunneling and then extend this model for subgap states in Chapter
6. In Chapter 7 we investigate the eòects of HF radiation on coherence peaks, the Josephson
eòect, and Andreev re�ections in pristine superconductor junctions. We demonstrate the
validity of the simple Tien-Gordon model for these subgap states. A�erward, we investigate
the in�uence of the HF radiation on resonant Andreev re�ections in Chapter 8. Here, we use
our extended theoretical model to describe the current through the YSR states on Pb(111).
In Chapter 9 follows a change of topic to current-biased Josephson spectroscopy, which we
ûrst introduce and then use to measure the change in the superconducting order parameter
induced by the Mn adatoms. he work ends in Chapter 10 with a summary of our results
and an outlook on further applications of the spectroscopic methods we introduced.
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2
Theoretical Background

his chapter provides an overview of the basic theoretical concepts used in this thesis. We
start with the tunneling eòect, which is the underlying principle of the scanning tunneling
microscope. In this context the formalism of the transfer Hamiltonian is introduced, on
which our theoretical descriptions of photon-assisted tunneling in Chapter 6 are based. To
describe the dynamics within a physical system and its interactions with its environment,
an introduction to Green’s functions and the associated self energies follows. Besides the
transfer Hamiltonian formalism, this is the second time we make use of perturbation theory.
Since we are mainly interested in superconducting materials, a brief overview of their theory
follows. his includes the microscopic BCS theory in the description of the mean-ûeld
approximation, as well as a short section on the equivalent description of superconductivity
using Green’s functions. A�erward, the Josephson eòect and the Andreev re�ections are
introduced as possibilities to transport superconducting currents through a tunneling
junction. Finally, the theoretical part closes with a description of YSR states, which are
results of the interaction of magnetic impurities with superconductors – our central point
of research.

2 . 1 The Tunneling Eàect

he tunneling eòect is a prime example of a quantum mechanical eòect and one of the
most impressive examples of the diòerences between classical and quantum mechanics.
It describes the possibility that particles can pass through a potential barrier. Unlike in
classical physics, this becomes possible, even if the particle does not have the necessary
energy to overcome the barrier. We refer to this as tunneling through the barrier – an analogy
to a tunnel within a mountain, which also allows a passage without climbing the summit. In
total ûve Nobel Prizes in Physics were awarded for research related to tunneling: Either for
tunneling in semi- or superconductors or the invention of scanning tunneling microscopy.
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Figure 2.1 | The tunnel eàect. (a) The wave function Ψ(z) of an electron, described as an
exemplary sinusoidal wave function coming from left, tunnels through a barrier of height V0. It
may pass through the barrier with a änite probability even though it is classically forbidden. (b)
Energy diagram of a tunnel contact consisting of twometal electrodes separated by vacuum.
The blue areas represent the älled electron states, with their chemical potentials µ shifted by the
applied voltage V . The overlap of the wave functions Ψ allows tunneling of electrons, resulting
in a current æow across the vacuum. In orange the square barrier of the WKB approximation is
shown, with a height of E = µR + (eV + ΦL + ΦR)/2, where Φ denotes the work functions.

he latter (described in Section 3.1), as well as the Josephson eòect (described in Section
2.4), are fundamental to this thesis.

On the microscopic level, the state of an elementary particle or a system is described by
its wave function Ψ(r, t) in real space or Ψ̃(k, t) in Fourier space respectively. he wave
functions absolute square ∣Ψ ∣2 describes the probability density to measure the particle at
the location r or with a momentum p = ħk, where k is the wave vector. Fig. 2 . 1(a) illustrates
that the wave function of a particle with energy E < V0 is not re�ected completely, but
penetrates into the barrier, provided the barrier has a ûnite widthw and a ûnite heightV0. In
the barrier, the amplitude of the wave function decreases exponentially Ψ(z) ∝ exp(−κz),
with the decay constant κ =

√
2me(V0 − E)/ħ2. Accordingly, the particle is found on the

other side of the barrier with a ûnite, but a much smaller probability. Note that the energy
of the particle does not change during this process. In classical physics, this process is
forbidden and the particle must have an energy E > V0 to reach the other side of the barrier.
For us, the tunnel barrier usually is a simple vacuum gap between two electrical contacts.

he wave function Ψ of these metal electrodes will decay at the interface within a few
nanometers. hus, if the two electrodes are brought into close enough proximity, the wave
functions overlap, as shown in Fig. 2 . 1(b), and the tunneling of electrons becomes possible.
A tunnel contact is formed. By applying a voltage eV = µL − µR to the tunnel contact, the
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The Tunneling Eàect 2 . 1

electrode’s chemical potentials µL,R are shi�ed with respect to each other. As electrons
tunnel from occupied states of one electrode into unoccupied states of the second electrode
a net current I is measured. his current provides a measure for the quantum mechanical
tunneling eòect and forms the basis of scanning tunneling microscopy. Besides the applied
voltage, the distance z between the two electrodes and their work function ΦL and ΦR also
determine the shape of the tunnel barrier.

2 . 1 . 1 The Transfer Hamiltonian Formalism

For a complete description of the tunnel contact, a single Hamiltonian including both
electrodes as well as all interactions between them would be needed. Attempting to ûnd
such a Hamiltonian is much too complicated for practical purposes. In addition, there is no
analytical solution, even though it would naturally include the value of the tunnel current. In
fact, the most common approach addressing the tunnel problem for many-particle systems
is the transfer Hamiltonian formalism [53–55]. he fundamental assumption of this theory is
that tunneling between electrodes can be described by time-dependent perturbation theory.
he transfer Hamiltonian for two electrodes separated by the barrier reads

H̃ = H̃0 + H̃′ = H̃L + H̃R + H̃T with H̃0 = H̃L + H̃R and H̃′ = H̃T . (2.1)

Each electrode forms an almost independent subsystem H̃α, α ∈ {L, R}. he interaction
between these two subsystems is described as a weak residual perturbation H̃′ = H̃T. It
couples the ground state to an excited state, whereby a single electron is transferred between
the two electrodes. he grand canonical Hamiltonian for the uncoupled le� and right
electrode is

H̃α = ∑
kσ

єkc
†
α,kσ cα,kσ = µαNα +∑

kσ
ξk,αc

†
α,kσ cα,kσ = µαNα +Hα , (2.2)

where c†
α,kσ and cα,kσ are the creation and annihilation operators for an electron with

momentum k and spin σ . Nα = c†α,kσ cα,kσ is the corresponding number operator. Here,
the normal state dispersion relation ξk,α = єk − µα sets a single particle eigenenergy єk in
relation to the chemical potential µα of the respective electrode. he second quantization
representation of the time independent tunneling Hamiltonian is

H̃T = HT = ∑
kk′σ

[Tkk′c
†
R,k′σ cL,kσ + h.c.] , (2.3)

where Tkk′ is the tunneling matrix element describing the probability amplitude of trans-
ferring an electron across the barrier. Bardeen showed, that the tunneling matrix element
results from the overlap of the wave functions, integrated over any surface S that lies com-
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pletely within the barrier [53]

Tkk′ = −
ħ2

2me
∫ dS ⋅ (ψ∗

L(k)∇ψR(k′) − ψR(k′)∇ψ∗
L(k)) . (2.4)

All distance dependence of the tunneling process caused by the separation z between
the electrodes is described by this matrix element. he integral can be solved within the
semi-classical approximation of Wentzel, Kramers and Brillouin (WKB) [56–58]. his
approximation simpliûes the tunnel barrier to a rectangular energy barrier with an average
height Φ̄ + eV/2 (see Fig. 2 . 1). Φ̄ = (ΦL +ΦR)/2 corresponds to the average work function
and we assume without loss of generality that the right electrode is grounded µR = 0.
With this simpliûcation, the expression of the matrix element can be transformed into the
following form for the tunnel probability [59, 60]

∣Tkk′ ∣2 ∝ e−2κz , with κ =
√

2me

ħ2 (Φ̄ + eV
2
− ξk′) . (2.5)

he tunneling probability decays exponentially as a function of z. Moreover it shows that
tunneling will be strongest for states near the chemical potential.

he tunnel current I = −e ⟨ṄL⟩ corresponds to the change in the number of electrons
in one of the two electrodes. he Heisenberg equation of motion ṄL = i/ħ [H̃,NL] =
i/ħ [H̃T,NL], gives the time derivative of the number operator, as NL commutes with H̃0.
herefore the current reads [61]

I(V) = e
ħ ∫ ∞

−∞
dω
2π ∑kk′ ,σ

∣Tkk′ ∣2 AL(kσ ,ω)AR(kσ ,ω+ eV) [nF(ħω) − nF(ħω + eV)] . (2.6)

his expression contains the spectral density function A(kσ ,ω), being the probability
density of a state existing at momentum k and energy ħω. It describes the tunneling
electrons energy dissipation due to their coupling to the environment. In the idealized case
of non-interacting free electrons the energy of a state is a proper function of its momentum
only. herefore, the spectral function A0(kσ ,ω) = 2π δ(ω − ξkσ/ħ) becomes a Dirac delta
function and the current simpliûes to

I(V) = 4πe
ħ
∑
kk′

∣Tkk′ ∣2 [nF(ξk) − nF(ξk′ + eV)] δ(ξk − ξk′ + eV) . (2.7)

As we are dealing with electrons, both expressions for the current include the fermionic
distribution function, commonly referred to as the Fermi-Dirac distribution function

nF(E) = [eβE + 1]−1 , (2.8)
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Theoretical Concepts for Describing Weakly Interacting Systems 2.2

which provides the average thermal occupation number of the single-particle states ∣Ψ⟩ at
the inverse temperature β = (kBT)−1.

2 .2 Theoretical Concepts for Describing Weakly Interacting
Systems - Green’s Functions, Self Energy and
Perturbation Theory

Green’s single-particle functions are an important tool for analyzing the temporal evolution
of systems a�er a particle has been added or removed. Our tunnel experiments as well as
those on magnetic impurities embedded in a metal host are prominent examples for the use
of this method. Green’s functions indicate the reaction that a physical system generates to a
Dirac delta function type input. Figuratively speaking, one can imagine a drum and the
sound produced by striking it with a drumstick. As a result of striking, waves propagate and
a sound is generated. But when the drum is struck with another mallet such as a hammer or
brush, it produces very diòerent sounds. he idea of Green’s functions is to use the reaction
to the drumstick to represent the impact of the othermallets. So the drumstick is represented
by the Green’s function and the general sound the drum produces can be obtained as an
integral combination of all possible stick situations. Mathematically speaking, Green’s
functions can be used to solve inhomogeneous linear diòerential equations by ûnding the
solution for a single sharp impulse on the system. From this, the complete solution of the
problem for more complicated impulse responses is generated.

2 .2 . 1 Short Introduction to Green’s Functions at the Example of Single
Electrons

he causal time-ordered single-particle Green’s function of an electron is [62]

G(kσ , τ, τ′) = −i ⟨T [ckσ(τ)c†kσ(τ′)]⟩ , (2.9)

with the time-ordering operator T and ⟨O⟩ = Z−1G Tr [exp(−βH̃)O] being the grand canon-
ical ensemble average of the operator O. he denominator ZG = Tr [exp(−βH̃)] is the
grand canonical partition function.

In addition to the causal Green’s function, two other Green’s functions are of importance,
since many physical quantities can be more easily extracted from them. hese are the
retarded and advanced Green’s functions. hose are deûned for times τ > τ′ which are far in
the past prior to the considered moment in time τ′, or for times τ < τ′ which are far in the
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future, as follows [62]

Gr(kσ , τ, τ′) = −iθ(τ − τ′) ⟨[ckσ(τ)c†kσ(τ′)]⟩ (2.10)
Ga(kσ , τ, τ′) = iθ(τ′ − τ) ⟨[ckσ(τ)c†kσ(τ′)]⟩ . (2.11)

Here θ(x) denotes the Heaviside function¹, thusGr is only nonzero for τ > τ′, so that we can
calculate the reaction of the system a�er it has been perturbed. By determining one of the
two functions, the other can be calculated directly, since these are adjoint (Gr)† = Ga. hese
Green’s functions carry information about the system’s excitations, since their time evolution
is determined by the Hamiltonian of the system. Additionally, two further functions are
introduced, as they play an important role in transport, namely the greater and lesser Green’s
functions [62]

G<(kσ , τ, τ′) = i ⟨[c†kσ(τ′)ckσ(τ)]⟩ and G>(kσ , τ, τ′) = −i ⟨[ckσ(τ)c†kσ(τ′)]⟩ . (2.12)

Here G< can be understood as the conditional probability amplitude for an electron gen-
erated at time τ′ to be found at time τ with a momentum diòerence of k. he previous
Green’s functions can be expressed as a combination of the greater and lesser Gr(kσ , τ, τ′) =
θ(τ, τ′)(G>(kσ , τ, τ′)−G<(kσ , τ, τ′)). In general all these functions are related byGr−Ga =
G> −G<.

So far we have only considered the Green’s functions in the time domain. Very o�en
it is useful to represent them in the energy domain. For instance, when the system is in
equilibrium or when the Hamiltonian is time-independent. In such cases, Green’s functions
depend only on the time diòerence of τ − τ′, and we can perform a Fourier transformation.
hus the retarded and advanced Green’s functions in momentum-frequency representation
become [62]

Gr,a(kσ ,ω) = lim
η→0+ ∫

∞

−∞

dξ
2π

A(kσ , ξ/ħ)
ω − ξ/ħ ± iη

, (2.13)

where i0+ is an inûnitesimal positive imaginary part for η converges to zero from above.
he single-particle spectral density function A(kσ , ξ/ħ) is essentially the imaginary part of
Gr or related to G< by the Fermi function (nF) [61]

A(kσ ,ω) = − 1
π

ImGr(kσ ,ω) or G<(kσ ,ω) = 2πinF(ω)A(kσ ,ω) . (2.14)

¹he Heaviside step function is deûned as

θ(x) = ⎧⎪⎪⎨⎪⎪⎩
1, x ≥ 0
0, x < 0

.

It is discontinuous at x = 0 and its derivative is the Dirac delta distribution δ(x).
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We already know that in a non-interacting system this simpliûes to A0(kσ ,ω) = 2π δ(ω −
ξkσ/ħ) so the retarded and advanced bare Green’s functions read

Gr,a
0 (kσ ,ω) = 1

ω − ξkσ/ħ ± i0+
, (2.15)

with their interacting counterpart Gr,a being o�en referenced to as dressed.
As already mentioned, many physical properties can be extracted from Green’s functions.

Two are of great relevance for us: First, for the non-interacting Hamiltonian, the poles of
the Green’s functions correspond exactly to its eigenenergies є̃kσ , as ξkσ is related to the
single-particle eigenenergy єkσ . Secondly, from the imaginary part of the retarded Green’s
functions we obtain the local density of states ρ(E) of our system. he local density of states
is essentially gained by adding all states ∣k⟩ of the spectral function A(kσ ,ω) which have
the same energy E = ħω:

ρ(E) = 1
V ∑kσ

A(kσ , E/ħ) = − 1
πV ∑kσ

ImGr(kσ , E/ħ) = − 1
πV ∑kσ

ImG(kσ , E/ħ + i0+) ,

(2.16)
with V being the normalization volume.

2 .2 .2 Green’s Function in Weakly Interacting Systems – Feynman
Diagrams and Self Energy

In a real conductor, the electrons do not move completely free but are exposed to dis-
turbances. hese include the Coulomb interaction with the ion lattice (electron-phonon
interactions) and the interaction with each other (electron-electron interactions). In order
to understand the in�uence of these eòects on tunnel spectra, we have to study the behavior
of small perturbations on the spectral function. his allows us to explain why small energy
shi�s and ûnite lifetimes (and thus ûnite line widths) occur for measured excitations.

he calculation of physically interesting quantities, such as retarded Green’s functions
and associated spectral functions, is non-trivial in most interacting systems. Usually, this is
only possible approximately, e.g. in terms of the many-body perturbation theory. It turns
out that direct calculations of the retarded Green’s functions are not practicable at ûnite
temperatures. herefore it is useful to introduce imaginary-time Green’s functions, also
referred to as Matsubara or thermal Green’s functions [62]

G(kσ , τ, τ′) = − ⟨T [ckσ(τ)c†kσ(τ′)]⟩ . (2.17)

With these it becomes possible to apply perturbation theory by a series expansion if the
Green’s function formalism. he imaginary-time Green’s functions have a rather simple
mathematical relation to the retarded and advanced Green’s functions. he latter can be
obtained by the simple replacement of the form ω± i0+ → iωn. So Eq. (2.15) can be extended
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(a)

+ + +

(b)

+

Figure 2.2 | First order Feynman diagrams. (a) All diàerent 1st order diagrams. Solid lines
represent G0(kσ , ωn) and wavy lines the two-particle interaction. The ärst two are classiäed as
connected diagrams and the last two as so-called unconnected diagrams, with the latter having
no weight in the overall expansion. (b) The self-energy diagrams belonging to the connected
diagrams: Hartree term on the left (classical mean-äeld) and Fock term on the right (exchange).
In the style of [62].

into
G0(kσ , iωn) = Gr/a

0 (kσ ,ω ± i0+ → iωn) =
1

iωn − ξkσ/ħ
, (2.18)

with ωn being the Matsubara frequencies.
A very elegant and descriptive way to calculate the expansion of the Green’s functions

is in the notation of Feynman diagrams. R. P. Feynman used Feynman propagators in
his formulation of quantum mechanics based on path integrals [63, 64]. he propagator’s
normalization is chosen so that they are identical to the Green’s functions. Feynman found a
graphical representation for his propagators, called Feynman diagrams. With these diagrams,
he developed a technique to rigorously represent lengthy mathematical calculations in a
pictorial and geometric form, using only lines and vertices.
Wick’s theorem² can be used to calculate the imaginary-time Green’s function between

interacting electrons via an expansion of pairwise exchange diagrams and thus makes the
drawing of Feynman diagrams meaningful. he 0th order term corresponds to the bare
imaginary-time Green’s function G0 of Eq. (2.18). In Feynman’s formalism, it is represented
by a straight propagating line

G0(kσ , iωn) ≡ . (2.19)

he 1st order terms are shown in Fig. 2 .2(a). Here the connected diagrams theorem leads
to the ûrst simpliûcation. his states that the complete Green’s function is given by the
sum over all connected diagrams with two external bare Green’s functions as ends [62].
All unconnected diagrams cancel against the vacuum diagrams from the development of
ZG(kσ ,ωn) in the denominator of Eq. (2.17). Without the two external ends the diagrams
are referred to as self-energy diagrams, as depicted in Fig. 2 .2(b). Each connected dia-
gram represents an algebraic value obtained by G0(kσ , iωn)B(kσ , iωn)G0(kσ , iωn), where
B(kσ , iωn) is determined by the structure of the respective self-energy diagram. Hence the

²Wick’s theorem allows to write the time-ordered many-particle Green’s function as a sum of all possible
pairwise products of the time-ordered single-particle Green’s functions [61].
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(a)

= + Σ∗

Σ∗

(b)

= + + + + +

+ + + + + + + . . .

Figure 2.3 | Graphical representation of Green’s function in terms of the self-energy. (a)
The solid double-line represents G(kσ , iωn) and the hashed circle the self-energy Σ∗(kσ , iωn).
(b) Representation of the self-energy as inänite sum over all self-energy diagrams, here speciäed
up to 2nd order. In the style of [62].

dressed Green’s function can be written as [62]

G(kσ , iωn) = G0(kσ , iωn) + G0(kσ , iωn)Σ∗(kσ , iωn)G0(kσ , iωn) , (2.20)

where Σ∗(kσ , iωn) is introduced as particle self-energy, which results from the sum over all
B(kσ , iωn) from all connected, topographically diòerent diagrams of all orders in the per-
turbation. Graphically, Eq. (2.20) is illustrated in Fig. 2 .3, where the self-energy Σ∗(kσ , iωn)
is written as inûnite sum over all self-energy diagrams. Some of these diagrams can be split
into two valid lower-order diagrams by cutting a single-particle line. Diagrams for which
this is not possible are called irreducible diagrams, see Fig. 2 .4(a). By adding up all these
irreducible diagrams one gets the proper, or irreducible, self-energy Σ(kσ , iωn). It can be
seen that this results in a further simpliûcation (Fig. 2 .4(b)) [62]

Σ∗(kσ , iωn) = Σ(kσ , iωn) + Σ(kσ , iωn)G0(kσ , iωn)Σ(kσ , iωn) + . . . . (2.21)

Accordingly, the Green’s function may be written as (Fig. 2 .4(c))

G(kσ , iωn) = G0(kσ , iωn) + G0(kσ , iωn)Σ(kσ , iωn)G(kσ , iωn) , (2.22)

which is known as Dyson’s equation [65, 66]. In eòect, this equation corresponds to a
geometric series and thus an exact expression for the dressed Green’s function can be given,

13



Chapter 2 THEORETICAL BACKGROUND

Σ
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= + + + + + + + + . . .

Σ∗

(b)

= Σ + Σ Σ + Σ Σ Σ + . . .

(c)

= + Σ + Σ Σ + . . . = + Σ

Figure 2.4 | Proper self-energy and Dyson’s equation. (a) Proper self-energy Σ(kσ , ωn) rep-
resented by the shaded circle as composition of irreducible diagrams. (b) Expansion of the
self-energy in terms of the proper self-energy. (c) Dyson’s equation. In the style of [62].

in terms of the proper self-energy [62]

G(kσ , iωn) =
1

iωn − ξkσ/ħ − Σ(kσ ,ωn)
. (2.23)

Energy Shift and the Lifetime of Excitations

We now return to the retarded and advanced Green’s functions, which can be obtained from
their imaginary-time counterpart by a transformation iωn → ω + i0+, similar to Eq. (2.18)

Gr,a(kσ ,ω) = 1
ω − ξkσ/ħ − Σr,a(kσ ,ω) = 1

ω − ξkσ/ħ − Λ(kσ ,ω) ∓ iΓ(kσ ,ω)/2 . (2.24)

Here it was considered that the proper self-energy is in general a complex quantity and
accordingly the retarded and advanced proper self-energies is separated into its real and
imaginary part Σr,a(kσ ,ω) = Σ(kσ , iωn → ω+ i0+) = Λ(kσ ,ω)± iΓ(kσ ,ω)/2 [61]. he real
part of the self-energy Λ is causing a shi� of the eigenenergies, whereby the new poles ω0
result as the solutions of the equation ω − ξ − Λ(kσ ,ω) = 0. he spectral density function
(see Eq. (2.14)) is given by

A(kσ ,ω) = − 1
2π

Γ(kσ ,ω)
(ω − ξkσ/ħ − Λ(kσ ,ω))2 + (Γ(kσ ,ω))2/4 . (2.25)

While the spectral function for the non-interacting case is a Dirac delta function, this
expression represents a Lorentz curve. Hence, including interactions between the electrons
the excitations exhibit a ûnite line width with the full width at half maximum (FWHM) of
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Γ(kσ ,ω0). he ûnite line width can be interpreted as the lifetime τ = ħ/Γ(kσ ,ω0) of the
many-body quasiparticle state, which is antiproportional to the line width because of the
Heisenberg uncertainty principle.

2 .2 .3 Fermi’s Golden Rule and its Generalization

If a system is in an initial eigenstate ∣L⟩ the transition rate ΓL→R to the ûnal eigenstate ∣R⟩ of
the non-interacting Hamiltonian H̃0 is given by [61]

ΓL→R =
2π
ħ

∣TR,L∣2 δ(ER − EL) with TR,L = ⟨R∣H′∣L⟩ = ⟨R∣HT∣L⟩ . (2.26)

Fermi called this result, which holds up to lowest (second) order in the perturbation H̃′,
the golden rule. he rule gives the transition probability per time unit between the states,
with ∣TR,L∣2 = ∣⟨R∣H′∣L⟩∣2 being the tunneling probability. It can be generalized in case of
multiple scattering events at the perturbation in terms of the so-called T-matrix [61]

T = H′ +H′G0H′ +H′G0H′G0H′ + ⋅ ⋅ ⋅ = H′ +H′G0T , (2.27)

with G0 being the bare Green’s function. his results in the generalized form of Fermi’s
golden rule

ΓL→R =
2π
ħ

∣⟨R∣T∣L⟩∣2 δ(ER − EL) . (2.28)

2 .3 Fundamental Introduction in Superconductivity

he discovery of superconductivity goes back to H. K. Onnes in 1911. He was the ûrst to
succeed in cooling helium below its boiling point of 4.2 K. Using the Hampson-Linde cycle,
which is based on the Joule-homson eòect, he reached temperatures around 1.5 K. his
allowed access to a large number of novel experiments that were previously inaccessible on
Earth. Among other things, Onnes observed a sudden disappearance of the resistance, when
lowering the temperature frommercury beneath 4.2 K [67]. For this discovery, today known
as superconductivity, he was awarded the Nobel Prize in Physics in 1913. he temperature
Tc at which a material becomes superconducting is called the critical temperature. A large
number of metals and alloys are superconductors, with critical temperatures in the range of
less than 1 K to 18 K.

In the 1930s to 1950s, great progress was made in the ûeld of superconductivity. In 1933
Meissner and Ochsenfeld discovered that superconductors are perfect diamagnets with
a susceptibility of χ = −1, meaning they expel magnetic ûelds up to a critical magnetic
ûeld Hc. his unique magnetic property is fundamental for the characterization of the
superconducting state. It also distinguishes between superconductors and ideal conductors,
where the latter capture magnetic �uxes inside the material during cooling instead of
expelling them. he ûrst phenomenological theory of superconductivity was developed
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in 1935 by F. and H. London. he London theory was able to explain the Meissner eòect
as a consequence of minimizing the electromagnetic free energy of the superconducting
current. It took until 1950, when E. Maxwell and C. A. Reynolds independently discovered
the isotopic eòect [68, 69] and found the proportionality of Tc and Hc to the isotopic mass
M−α of the lattice atoms, where the exponent α being typically close to 0.5:

TcM
−α = const. and HcM

−α = const. (2.29)

heir experiments were the ûrst indication that electron-phonon coupling causes supercon-
ductivity. In the same year V. L. Ginzburg and L. D. Landau extended the London theory
by studying the macroscopic properties of superconductors with a general thermodynamic
approach [70]. his was a pure phenomenological theory on which Abrikosov based his
important analysis of magnetic ûeld dependence in Type I and Type II superconductors. J.
Bardeen, L. N. Cooper and J. R. Schrieòer succeeded in developing the BCS theory [71],
one of the most important achievements in the ûeld of classical superconductors, for which
they were awarded the Nobel Prize in Physics in 1972. In their microscopic many-body
theory, they explain superconductivity in metals in terms of electron pairs (k ↑,−k ↓) – the
Cooper pairs [72]. hese are grouped around the Fermi energy in an energy range of ħωD³
due to electron-phone interaction. he theory was supplemented by the works of Goŕkov,
Abrikosov, and Eliashberg.

he more recent discoveries point towards high-temperature superconductors. In 1986 J.
Bednorz and K. Müller demonstrated superconductivity in a copper oxide compound at
temperatures up to 32K [73]. Although these high-temperature superconductors are still
based on electron pairing, their critical temperatures are beyond what can be explained by
electron-phonon coupling within BCS theory [74]. he discovery of this new class of mate-
rials, classiûed as cuprates, led to a true race that produced more and more superconducting
materials with higher and higher transition temperatures. Today the record temperature for
superconductivity in a cuprate is around 140K. Towards these temperatures, the exceeding
of the boiling point of liquid nitrogen at 77 K was a milestone, making superconductors
more attractive for industrial applications.

2 .3 . 1 Microscopic Theory of Superconductivity: BCS theory

he essential physical idea, introduced by Cooper in 1956, showed that any attraction,
however weak, between pairs of electrons will lead to the creation of a new ground state
[72]. In this new state, the Fermi sea of electrons is unstable towards the formation of such
bound pairs of electrons, the so-called Cooper pairs.

One possibility for such an attraction is the electron-phonon interaction. heCooper pair
formation is illustrated in Fig. 2 .5(a-c). A ûrst electron polarizes the lattice of the positive
ion cores in the crystal lattice, leading to lattice vibrations, which are called phonons.

³he Debye frequency ωD is the theoretical maximum frequency of the lattice-atom vibrations, called
phonons. It limits the electron-phonon interaction.

16



Fundamental Introduction in Superconductivity 2 .3

(a) (c)(b) (d)

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

- st electron

ion lattice

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ + + +

+ + + +
-

nd electron
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ + +

+ + +
-

st electron

e−

e−

e−

e−

k, ↑

k′ , ↑
−k, ↓

−k′ , ↓

−q Ti
m

e

Figure 2.5 | Schematic illustration of the formation of a copper pair by electron-phonon
coupling. (a) Unperturbed ion lattice consisting of positively charged atomic cores (green) and
an exemplary electron (blue) passing through the lattice. (b) The negatively charged electron
interactswith the positive nuclei by an attractive electrostatic force. The attraction between them
leads to the excitation of lattice vibrations in the crystal, so-called phonons. The displacement of
atomic cores is shown relative to their resting positions (grey). (c) A second electron is attracted
by the phonons and moves along the positive space charge zone formed by the cores. The time
scale onwhich the phonons take place is so long compared to the speed of the electrons that the
electrons do not inæuence each other and thus the second electron only interacts with the ion
lattice. (d) Feynman diagram of the electron-phonon coupling: The electron with momentum
k and spin up emits a phonon of wave-vector −q. This phonon is absorbed later by a second
electron with −k and spin down.

hese phonons create an eòective attractive interaction that results in a second electron
with opposite momentum being dragged along the trajectory of the ûrst electron at a later
time. Superconductivity occurs when this attraction is strong enough to compensate for
the repulsive Coulomb interaction between the electrons. he interaction can further be
illustrated in the Feynman diagram in Fig. 2 .5(d). he Coulomb interaction can be regarded
as an instantaneous process, in comparison to the slow electron-phonon interaction. he
former process is mediated by photons, which have a signiûcantly shorter lifetime than
phonons. For this reason, the ûrst electron can travel a long distance in the metal before a
second electron scatters oò the excited lattice. his is why the second electron experiences
only a very weak Coulomb repulsion from the very distant ûrst electron, while the phonon
has hardly decayed at all. Momentum conservation implies that for an electron scattered
from k to k′, the generated phonon must have the moment q = k − k′ associated with an
frequency ωq. he Debye frequency ωD as maximum phonon energy acts as the upper limit
for the maximal transferable energy. hese diagrams illustrate how important the time
scales associated with the processes are. he importance of electron-phonon interaction
for explaining superconductivity was ûrst proposed by Fröhlich [75] in 1950. he ûrst clear
indication of a phonon-forwarded interaction was the already mentioned isotope eòect (see
Eq. (2.29)) discovered in the same year [68, 69]. Since the isotope mass only in�uences the
lattice oscillations, but not the electronic conductivity, this observation is a clear indication
that electron-phonon interaction, plays an essential role in superconductivity.

In BCS theory, the total Hamiltonian of a metal is considered to be the sum of the ground
state energies of electrons and phonons, the Coulomb repulsion and the electron-phonon
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interaction [76]

H̃ =∑
k
єkNk +∑

k
ωknk (GS energy)

+ ∑
kk′q

VCoulomb(k, k′)c†k+qc†k′−qckck′ (e− – e− interaction) (2.30)

+∑
kk′

Mk,k′bk′−kc
†
k′ck +∑

kk′
M∗

k,k′b
†
k′−kc

†
kck′ , (e− – ph interaction)

with k and k′ being the individual electron momentum, єk the electron energy, ωk the
phonon energy, c†k, ck and b

†
k, bk the fermionic electron and bosonic phonon creation

and annihilation operators, and Nk = c†kck and nk = b†kbk the corresponding electron and
phonon number operators.

he BCS theory assumes that the Debye frequency is much smaller than the Fermi
energy EF, which limits the interaction to a small energy interval EF ± ħωD. Due to the
indistinguishability of electrons and due to the Pauli exclusion principle, the wave functions
of the Cooper pair’s are antisymmetric for the permutation of electrons. his means that
also the spins within the electron pairs must be antisymmetric, leading to a spin singlet
with opposite spin. he singlet wave function is given by [77]

∣ψ0⟩ = ∑
k>kF

gkc
†
k↑c

†
−k↓∣F⟩ , (2.31)

where ∣F⟩ is the Fermi sea with all states ûlled up to kF and gk is the expansion coeõcient.
In Eq. (2.31) the creation and annihilation operators get an additional index indicating the
spin of the electron. his wave function describes the process of adding a Cooper pair to
the Fermi sea.

With the introduction of Cooper pairs, the complexity of the Hamiltonian from eq.(2.30)
can be simpliûed to the pairing Hamiltonian [77]

H =∑
kσ

ξkNkσ +∑
kk′

Vk,k′c
†
k↑c

†
−k↓c−k′↓ck′↑ , (2.32)

with the matrix element of the interaction potential Vk,k′ including the electron-phonon
interaction as described above.

Mean-Field Approach to Superconductivity

To determine the ground state of the pairing Hamiltonian a mean-ûeld approach may
be used. his BCS mean-ûeld approach is also based on a perturbative treatment of the
many-body problem, with the electron-phonon interaction regarded as small perturbation
[61, 62]. In contrast to normal metals, quantities such as ⟨c†k↑c†−k↓⟩ and ⟨c−k′↓ck′↑⟩ do not
vanish in superconductors. Hence, the BCS ground state is no longer an eigenstate of the
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number operator and it becomes useful to rewrite the pair creation operator [62]

c−k′↓ck′↑ = ⟨c−k′↓ck′↑⟩ + c−k′↓ck′↑ − ⟨c−k′↓ck′↑⟩ = ⟨c−k′↓ck′↑⟩ + dk . (2.33)

he introduced �uctuation operator dk represents the deviation of c−k′↓ck′↑ from its average
in the ground state. Following the same arguments, the annihilation operator can be deûned.
hese �uctuations are expected to be small because of the large number of particles involved
in the ground state. In terms of the �uctuation operators, the interaction Hamiltonian reads

H′ = ∑
kk′

Vk,k′ [⟨c†k↑c†−k↓⟩ dk + ⟨c−k′↓ck′↑⟩ d†k + ⟨c†k↑c†−k↓⟩ ⟨c−k′↓ck′↑⟩ + d†kdk] . (2.34)

Within the mean-ûeld approximation, we neglect the last term because it is bilinear in the
�uctuation. By introducing the gap parameter

∆k = −
1
N
∑
k′
Vk,k′ ⟨c−k′↓ck′↑⟩ , (2.35)

the mean-ûeld Hamiltonian may be written as

H =∑
k,σ

[ξkc†kσ ckσ + (∆c†k↑c†−k↓ + h.c.)] , (2.36)

or using the rather convenient matrix notation as [61]

H =∑
k

[(c†k↑ c−k↓)(
ξk ∆k

∆†k −ξk
)( ck↑
c†−k↓

) + ξk + ⟨c†k↑c†−k↓⟩∆k] = ∑
k
C†

kHkCk+const. . (2.37)

his is also known as the Bogoliubov-de Gennes Hamiltonian for non-magnetic supercon-
ductors. On the right hand side the spinors C†

k and Ck, as well as the energy matrix Hk are
introduced as

C†
k = (c†k↑ c−k↓) , Ck = ( ck↑

c†−k↓
) , Hk = ( ξk ∆k

∆∗k −ξk
) . (2.38)

To calculate the eigenvalue spectrum of the superconducting ground state it is necessary to
diagonalizeHk, which can be done by means of a canonical unitary transformation Uk –
the Bogoliubov–Valatin transformation [78, 79]

Bk = ( γk↑
γ†−k↓

) = U−1
k Ck , Uk = (uk −vk

v∗k u∗k
) , (2.39)

resulting in

U†
kHkUk = (Ek 0

0 Ẽk
) . (2.40)
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Figure 2.6 | Formation of the superconducting gap. (a) Energies of the elementary excita-
tions in the normal and superconducting states as a function of єk. (b) Quasiparticle density
of states ρs (orange) normalized to the metallic density of states ρn as a function of energy.
Additional eàects can lead to a broadening of the superconducting density of states (blue), e.g.
the depairing of the quasiparticles near the superconducting gap, which is described by the
Dynes parameter (see section 5.1). In the style of [77].

he solution for u, v with energies E and Ẽ may be found as [61]

∣uk∣2 =
1
2
[1 + ξk

Ek
] , ∣vk∣2 =

1
2
[1 − ξk

Ek
] , Ek =

√
ξ2k + ∣∆k∣2 = −Ẽk . (2.41)

he transformation between the old and new set of operators is given by Eq. (2.39) as

( γk↑
γ†−k↓

) = ( u∗k vk

−v∗k uk
)( ck↑
c†−k↓

) . (2.42)

Finally, the Hamiltonian in terms of these new operators is

H =∑
k
Ek (γ†k↓γk↓ + γ†k↑γk↑) +∑

k
(ξk − Ek + ∆k ⟨c†k↑c†−k↓⟩) . (2.43)

he second term on the right hand side is constant and describes the ground state energy.
In contrast, the ûrst term describes excitations above this ground state as the creation of a
Bogoliubov quasiparticle from the ground state condensate – also referred to as Bogoliubons.
It is evident, that no fermion excitation is possible with an energy less than ∣∆∣, shown in
Fig. 2 .6(a). herefore this mean ûeld parameter results in a energy gap around µ – called
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superconducting energy gap. he BCS wave function for the ground state has the form

∣ΨBCS⟩ = ∏
k
(∣uk∣ + ∣vk∣ eiφc†k↑c†−k↓)∣0⟩ , (2.44)

where ∣0⟩ is the vacuum state with no particles present. he wave function is normalized
if ∣uk∣2 + ∣vk∣2 = 1. In the BCS ground state the occupations of ∣k, ↑⟩ and ∣−k, ↓⟩ are fully
correlated - either both are occupied or both are empty. herefore the superconducting
ground state consists of pairs of electrons with opposite momentum and spin, with ∣vk∣2
being the probability that a pair (k ↑, k ↓) is occupied and ∣uk∣2 being the probability that
it is empty. All Cooper pairs with the same momentum are in phase and thus form a
macroscopic quantum state similar to a Bose-Einstein condensate. Consequently, Cooper
pairs do not experience electrical resistance because the wave function cannot scatter at
microscopic defects. Another important property derived directly from the Hamiltonian is
the particle-hole symmetry of superconductors. he degrees of freedom of the condensate
allow an electron to be transformed into a hole by the creation of a Cooper pair and vice
versa. his property becomes of interest when impurities are added to the superconductor
that lead to a symmetry breaking as described in Section 2.6.

2 .3 .2 Green’s Functions of the Superconducting State

We can also describe superconductors with the help of Green’s functions, ûrst introduced
by Goŕkov. his allows us to describe magnetic impurities in superconductors (see Section
2.6) in the context of the Dyson equation, as described in Section 2.2 .2. Here we follow
the generalized Green’s function formalism in Nambu space [80], which is very convenient
for describing the single-particle excitation spectrum of a superconducting system, since
its calculations become quite analogous to those for normal metals [31]. Using the spinors
introduced in the mean-ûeld approximation in Eq. (2.38), the Nambu Green’s function is
deûned as a 2 × 2 matrix [61]

G(k, τ) = − ⟨T [Ck(τ)C†k(0)]⟩ = (G(k ↑, τ) F †(k, τ)
F(k, τ) G†(k ↓, τ)) . (2.45)

Here the anomalous Green’s function is deûned as F↓↑(k, τ) = − ⟨T [ck↑(τ)c†k↓(0)]⟩. As
already mentioned, such terms vanish in normal metals, whereas in superconductors they
describe the pairing average, so ∆k = −1/N∑k′ Vk,k′F↓↑(k′, 0). he Green’s function is
found to be [61]

G(k, iωn) =
1

(iωn)2 − (Ek/ħ)2 (iωn + ξk/ħ ∆k/ħ
−∆∗k/ħ iωn − ξk/ħ

) . (2.46)

he poles of G(k ↑, iωn) are iωn = Ek, which is consistent with the previous derivation in
Section 2.3 . 1. A rewriting of the Green’s function using u2

k and v2
k shows the connection to
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the Bogoliubov transformation [81]

G(k, iωn) =
u2

k
iωn − Ek/ħ

+ v2
k

iωn + Ek/ħ
, (2.47)

so the spectral density function that is probed by STM is [62]

A(k,ω) = u2
k δ(ω − Ek/ħ) + v2

k δ(ω + Ek/ħ) . (2.48)

his function consists of two delta function peaks at ±Ek corresponding to the energies for
adding or removing one electron. he bare retarded Green’s function of a BCS supercon-
ductor in Nambu space is [82]

Gr
0(k,ω) = [ω − ξkτz/ħ − ∆τx/ħ]−1 , (2.49)

where
τx = (0 1

1 0
) , τy = (0 −i

i 0
) and τz = (1 0

0 −1) , (2.50)

denote the Pauli matrices in Nambu space. Computing the bare Green’s function and
evaluate it at its origin yields.

Gr(ω) = 1
V ∑

k

Gr(k,ω) = ρ0 ∫ dξk
ħω + ξkτz + ∆τx
(ħω)2 − ξ2k − ∆2 = −πρ0(ħω + ∆τx)√

∆2 − (ħω)2
. (2.51)

In summary, the perturbation series of the Greens function is the same as that of the normal
state by using Nambu space, resulting in identical Feynman diagrams compared to those of
the normal state.

2 .3 .3 BCS Quasiparticle Density of States

For the interpretation and simulation of a superconducting spectrum we need an exact
formulation of the superconducting density of states. In the two previous sections we
showed that Cooper pairs can be described as quasiparticles with fermionic creation and
annihilation operators γ†k and γk, which are directly related to c†k and ck of a normal metal.
Quasiparticle excitations from the BCS ground state are single electrons that are no longer
part of the condensate of pairs. We learned in Eq. (2.16) that the density of states of these
quasiparticles can be derived from the Matsubara Green’s functions or respectively from
the spectral function. From equation Eq. (2.51) the density of states can be read directly as
(see Fig. 2 .6(b))

ρs(E) = −
1

πV ∑k
Gr(k, E/ħ) = ρ0 Im

⎛
⎝

E√
∆2

k − E2

⎞
⎠
= ρ0

E√
E2 − ∆2

k

θ(E − ∆k) . (2.52)
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Here ρn(0) = ρ0 = mekF/2π2ħ2 is the normal conducting density of state at the chemical
potential. Note, that ∆k is k-dependent. Classical superconductors are all s-wave supercon-
ductors and therefore ∆k → ∆, raising all excitations with momenta k to energies above ∆.
his is no longer true for unconventional superconductors in particular, since the dx2−y2

symmetry of the k vectors is re�ected in the symmetry of the gap parameter.

2 .4 Josephson Eàect

So far we have only considered single quasiparticle tunneling across a tunneling barrier.
However, the overlap of the BCS wave functions of two superconductors allows also the
tunneling of Cooper pairs, resulting in a superconducting tunnel current, also referred to
as supercurrent Isc. B. Josephson made two important predictions for such supercurrents
[83]. First, that the current will continue to �ow, even without applied voltage. As long as
there is a phase diòerence φ = φL − φR between the two superconducting leads this current
will be proportional to the critical current Ic in the form of [83]

Isc(t) = Ic sinφ(t) . (2.53)

his ûrst Josephson relation describes the dc Josephson eòect. he second relation states,
that in the presence of a nonzero bias voltage V , the phase diòerence evolve in time [83]

V = Φ0

2π
φ̇(t) ⇒ φ(t) = φ0 +

2πV
Φ0

t , (2.54)

with Φ0 = h/2e being the �ux quantum. A direct consequence is that a constant dc voltage
Vdc applied to the junction leads to an alternating current, the so called ac Josephson eòect.
heir corresponding frequency ω = 2πVdc/Φ0 is typically in the microwave regime (ω/Vdc =
2π/Φ0 ≈ 3GHz/µV). Conventional tunnel experiments are not sensitive to changes in this
frequency range and will average them out over time. he relevant quantity to consider for
analyzing the ac Josephson eòect is therefore the time-averaged voltage ⟨V(t)⟩.
Being a zero voltage state, no energy dissipation is associated with the dc Josephson eòect.

his means that the supercurrent is an equilibrium quantity, unlike for normal conducting
junctions, in which a current is always associated with energy dissipation. Nevertheless,
ûnite energy EJ is stored in the junction, which can be regarded as the electrical work done
by a current source in changing the phase. his stored (free) energy corresponds to the
integrated power from time t = 0 when starting to increase the current to time t = t0, when
reaching the ûnal value I [84]

EJ(φ) = ∫ t0

0
IscV dt = ∫ t0

0
(Ic sin φ̃) (Φ0

2π
dφ̃
dt

)dt . (2.55)
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Figure 2.7 | Resistively and capacitively shunted junction (RCSJ) model. (a) Equivalent
circuit. The RCSJ model divides the Josephson current into a parallel circuit of supercurrent Isc,
quasiparticle current IN, and displacement current ID. Additionally a thermal current noise source
IF is included. (b) The tilted washboard potential, in which the phase moves as a particle with
massm and friction ζ , is shown for diàerent normalized currents. At zero current the potential is
æat and the particle is trapped (blue curve). When the critical current is exceeded, the potential
has no more minima and the particle enters a running state, where changing its phase over time
(green curve). Figure (b) in the style of [84].

During this time the phase diòerence is changed from φ(0) = 0 to φ(t0) = φ. hus the
integral can be solved by a change of variables

EJ(φ) =
Φ0Ic

2π ∫ φ

0
sin φ̃ dφ̃ = EJ0(1 − cosφ) , (2.56)

where the Josephson energy EJ0 = Φ0Ic/2π is a characteristic parameter of the Josephson
junction. he energy EJ is also referred to as the Josephson coupling energy as it results from
the overlap (or coupling) of the wave functions of the two superconducting electrodes. his
energy has to be applied once to accelerate the Cooper pairs before they can �ow across the
junction without resistance.
From the current-phase relation in Eq. (2.53) it can be concluded that also a current-

biased junction where a constant external dc current is added to the Josephson junctions
leads to a constant phase diòerence. herefore the junction remains in the zero voltage state.
he stability of the zero voltage state results from the potential energy Epot of the system
consisting of Josephson junction and current source. Analogous to the calculation of the
Josephson coupling energy in (2.56) the potential energy of the system is given by [84]

Epot(φ) = EJ0(1 − cosφ − Ĩφ) , (2.57)

with the normalized current Ĩ = I/Ic. his potential is called tilted washboard potential
because of its shape (compare Fig. 2 .7(b)).
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Dynamics of Josephson Junctions – Resistively and Capacitively Shunted Junction
(RCSJ) model

We will now have a closer look at the dynamics of the phase diòerence. For a realistic
description it is crucial that we consider yet again the in�uences of the junction environment
resulting in additional current contributions:

i. At ûnite temperatures, the thermal break-up of Cooper pairs results in normal con-
ducting quasiparticles. hese follow Ohm’s law and lead to a normal conductance
GN = 1/RN within the Josephson junction whenever a voltage is applied.

ii. A tunnel contact made of two metals facing each other forms a capacitor with a
capacity of C. herefore time changing voltages (V̇ ≠ 0) produce a displacement
current ID = CV̇ .

iii. Additionally, �uctuations can lead to currents represented by a current noise source
IF.

he resistively and capacitively shunted junction (RCSJ) model takes all these three compo-
nents together with the supercurrent into account, resulting in the equivalent circuit shown
in Fig. 2 .7(a). he total current is determined using Kirchhoò ’s law as

I(t) + IF = Ic sinφ(t) + ħ

2eRN
φ̇(t) + C ħ

2e
φ̈(t) . (2.58)

Rewriting this equation leads to the still nonlinear but traceable diòerential equation

( ħ

2e
)

2

Cφ̈ + ( ħ

2e
)

2 1
RN

φ̇ + d
dφ

[EJ0 [1 − cosφ − Ĩφ + ĨFφ]] = 0 . (2.59)

In this equation we recover the classical equation of motion mẍ + ζẋ + ∇Epot = 0 for a
particle with mass m, moving under the in�uence of Stokes friction ζ in a one-dimensional
potential Epot. he mass, the friction, and the potential can be identiûed as

m = ( ħ

2e
)

2

C , ζ = ( ħ

2e
)

2 1
RN

, Epot = EJ0 [1 − cosφ − Ĩφ + ĨFφ] . (2.60)

We recognize the tilted washboard potential again, supplemented by a term for the �uctu-
ation current. his can now be interpreted as shown in Fig. 2 .7(b). If zero current �ows
through the junction the potential is �at (blue curve) and the phase is trapped in a potential
minimum, meaning it is constant. By increasing the current, the potential will tilt4. If the
critical current is exceeded, the local extrema disappear and the junction enters a running
phase state (green curve). Hence this current where the transition from the trapped in
the running state happens is o�en referred to as switching current IS. A trapped phase is

4From the mathematically correct point of view this is a shear transformation.
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Figure 2.8 | Current-voltage characteristics of Josephson junctions. (a) Overdamped junc-
tion. (b) Underdamped junction. The direction of the current variation is indicated by arrows. In
the style of [84].

associated with the dc Josephson eòect and a running phase with the ac Josephson eòect.
In the transition area (orange curve) where the potential still exhibits minima, the phase
remains constant, but the probability increases that the phase can tunnel through the poten-
tial or overcome it by thermal excitation. Depending on the damping ζ , this inertia can be
suõcient to change the junction into the running state. herefore IS is a statistical quantity,
which explains why a distinction from the critical current is useful.

When the current is subsequently reduced again, the phase is retrapped in one of the
reappearing minima. he exact retrapping current IR at which this happens depends on the
momentum associated with the phase in the RCSJ model, i.e. the mass and friction of the
phase. With the help of the Stewart-McCumber parameter βc = 2eIcR2

NC/ħ, the two cases
of an overdamped and underdamped junction can be distinguished. For βc ≪ 1 the junction
capacitance and (or) the resistance is small and thus in the analogy the mass m ∝ C is
small and (or) the damping ζ ∝ 1/RN is large. In this case the phase will quickly leave the
running state and will be trapped in a minimum at IR ≈ Ic (see Fig. 2 .8(a)). We call this
an overdamped junction [84]. In the opposite case of βc ≫ 1 (shown in Fig. 2 .8(b)) the
junction is underdamped, if the capacitance and (or) resistance is large and thus the mass is
large and (or) the friction is small. hereby the retrapping will occur much later IR ≪ Ic, the
latest when the slope of the washboard changes sign by reversing the polarity. he diòerence
between IS and IR introduces a hysteresis in measurements. he time-averaged voltage of
the ac Josephson eòect takes the form ⟨V(t)⟩ = IcRN

√
(I/Ic)2 − 1. herefore it is possible

to determine the critical current from the time-averaged voltage-current measurement. he
product of critical current and normal state resistance itself is a constant. For a junction
with identical superconductors on either side of the barrier, this constant is given by the
Ambegaokar-Baratoò relation [85]

IcRN = π

2e
∆(T) tanh(∆(T)

2kBT
) . (2.61)
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Figure 2.9 | Voltage-biased Josephson spectrum. (a) I(V ) characteristic of the Josephson
eàect in a Pb-Pb tunnel junction. The maximum Josephson current is not reached at V = 0 but
shortly above it. (b) Corresponding diàerential conductance of (a). The negative diàerential
conductance is a sign of an underdamped junction βc > 1. The arrows mark the positions of
Andreev resonances for k = 2 (orange) and k = 3 (green) (see section 2.5). Current and dI/dV
were recorded in a scanning tunnelingmicroscope junction above a Pb(111) surface (seemethods
in Chapter 3). Setpoint: VBias = 5mV, I = 60 nA, VLock-in = 20 µeV.

As the critical current is directly related to the superconducting order parameter ∆, this
spectroscopy is a measure to probe the superconducting ground state on the local scale [39].

Voltage-Biased Josephson junctions

In the previous section, the description of Josephson junctions was based on current-biased
junctions, where the voltage V(I) is a function of the current. he spectroscopic features
change if the junctions are operated with a voltage source instead of a current source,
hence the current I(V) becomes a function of the voltage. For a McCumber parameter
βc < 1, the V(I) dependence has the voltage jump to V = 0 at I = Ic (Fig. 2 .8(a)). he
I(V) dependence has the corresponding current plateau I = Ic at voltages a bit higher than
zero. In contrast, for a McCumber parameter βc > 1, this shi� of the maximal current
to V ≠ 0 is still present as can be seen in the shown voltage-biased Josephson spectra in
Fig. 2 .9(a). In the V(I) dependence the underdamped junction exhibits a hysteresis as
shown in (Fig. 2 .8(b)). A corresponding range with a negative diòerential conductance
is observed in the I(V) dependence due to the diòerence between retrapping and critical
current. his negative diòerential conductance (NDC) accompanying the Josephson peak is
a very characteristic feature present in the dI/dV measurements of voltage-biased junctions
(Fig. 2 .9(b)). In these junctions also the maximum current is no longer a direct measure of
the critical current.
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By considering the electromagnetic environment in a model-like form as shown in
Fig. 2 .7(a) the complicated behavior of the supercurrent in a voltage-biased junction can
be described in the framework of the P(E) theory [86]

I(V) = 2e (EJ0

2ħ
)

2
2πħ [P(2V) − P(−2V)] , (2.62)

where
P(E) = 1

2πħ ∫ dτeiEτ/ħ+J(τ) . (2.63)

his function represents the probability that a tunneling electron will generate an excitation
by interacting with its environment. It contains the equilibrium phase correlation function,
in which the junction capacitance was neglected for simplicity [87]

J(τ) = 2 ∫ dω
ω

R

RQ

{coth βħω
2

[cosωτ − 1] − i sinωτ} . (2.64)

2 .5 Andreev Reæection

An interface eòectively represents a potential at which particles can be re�ected. he
situation at an interface containing a superconductor is even more special. We now take a
closer look at an electron coming from the normally conducting side towards a normal-
superconductor interface.

Seen from the energetic perspective, an electron can enter the quasiparticle states of the
superconducting material as long as its energy is above the gap ∣E∣ > ∆. he situation diòers
for energies smaller than the gap ∣E∣ < ∆. Because of the lack of available quasiparticle states,
the superconductor is like an insulator for such electrons and one would think that only the
re�ection of the electron remains (Fig. 2 . 10(a)). he solution of the Bogoliubov-de Gennes
Hamiltonian in Eq. (2.37) has another surprising solution, known as Andreev re�ections.
With a certain probability, a hole is re�ected with opposite spin and opposite momentum
relative to the incoming electron (Fig. 2 . 10(b)). As a counterpart for the re�ected hole,
an electron is added to the superconducting condensate and forms a Cooper pair with
the incident electron. he reverse process with the annihilation of a Cooper pair works
equivalent. Since the number of electrons in the superconductor is not an exactly deûned
quantity, the superconductor can absorb or emit electrons and holes without changing its
state, but it can only do so in pairs [88].

Andreev Bound States

When we return to the superconductor-superconductor junction, we get a situation where
this process of Andreev re�ection can be repeated by itself. It is re�ected back and forth
between the two superconductors by continuously annihilating Cooper pairs on one side
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Figure 2.10 | Andreev reæections and Andreev-bound states. (a) Reæection of an electron
at an normal-insulator interface. (b) At a NS interface the electron can be reæected as a hole in
the process of Andreev reæections creating a Cooper pair in the superconductor. (c) and (d):
Andreev-bound states with an applied bias voltage V for one reæection or correspondingly two
reæections.

and generating them on the other (theoretically treated in [89]). In fact, this describes a
supercurrent over the junction and thus contributes to the Josephson eòect.

If a ûnite voltage V is applied to the junction, the energy of the tunneling electron or
the re�ected hole is increased by eV with each tunneling. herefore a multiple Andreev
re�ection of electrons and holes can increase its energy arbitrarily for ûnite bias voltages.
With an odd number of re�ections, an electron-like quasi-particle from the occupied states
of one of the two superconductors can therefore be transferred as a hole into unoccupied
states of the same superconductor (shown in Fig. 2 . 10(c) for a single re�ection, using that
the unoccupied states of the hole density of states are the occupied states of the electron
density of states). For an even number of re�ections, the electron-like quasi-particle is
transferred to the empty states of the opposite superconductor (shown in Fig. 2 . 10(d) for
two re�ections). It can be seen that new transport channels are opened at multiples of eV ,
which leads to so-called Andreev bound states at

2∆ = k e ∣V ∣ ⇒ e ∣V ∣ = 2∆
k

with k = 2, 3, 4, . . . , (2.65)

as can be seen in Fig. 2 .9(b) for k = 2 (orange arrow) and k = 3 (green arrow) as resonance
in the tunneling spectrum. For k = 1 the quasiparticles are transferred directly from one
superconductor to the other. As higher orders of multiple Andreev re�ections result in
repeated passing of the tunnel barrier, their probability decreases ∝ ∣T ∣2k in its strength
accordingly.
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2 .6 Magnetic Impurities on Superconductors – Local Pair
Breaking Potential

Single magnetic adatoms in s-wave superconductors scatter conduction electrons, which
will aòect the order parameter. his problem in the theory of superconductivity was ûrst
investigated in the late 1960s by L. Yu, H. Shiba, and A. I. Rusinov (YSR) [30–33]. he
magnetic impurities inserted can bind in-gap, spin-polarized electrons, in the so-called
localized Yu-Shiba-Rusinov (YSR) states. Early pioneering experimental STM studies
investigating these states on single Manganese (Mn) and Gadolinium (Gd) adatoms on a
Niobium (Nb) single crystal surface at 4 K were conducted by A. Yazdani in the group of
D. M. Eigler [34, 90] followed by investigations on high-Tc superconductors [90–92]. he
use of superconducting tips enabled experiments with increased energy resolution [36, 93],
which provided the foundation of recent developments on YSR states [35]. Especially, since
YSR states have been proposed as building blocks for topological superconductors, they
have become a very active ûeld of research.

2 .6 . 1 Yu-Shiba-Rusinov States

First of all, an impurity atom has a diòerent electronic conûguration than the substrate and
therefore interacts with the conduction electrons via a Coulomb potential V . In metals,
the Coulomb interaction of an impurity at r0 is screened by the conduction electrons on
length scales of the atomic lattice spacing, so the potential can be assumed to be local
V(r) = V0 δ(r − r0). In Nambu space it has the same matrix structure as the chemical
potential (compare Eq. (2.49)), thus also like ξk[81], so that

V(r) = V0τz δ(r − r0) . (2.66)

Furthermore, if the impurity atom has a magnetic moment, there is an exchange interac-
tion Vmag between the local spin and the conduction electrons on top of the electrostatic
interactions. his magnetic interaction will break the time-reversal symmetry in the su-
perconductor and thus locally disturb the Cooper pair condensate, creating a bound state
– what we refer to as the YSR state. he local magnetic moment of an atom results from
single occupied states. In a classical spin model, the spin S of the atom is bound to the
electrons of the superconductor by an exchange coupling J(r). Hence, the exchange in-
teraction becomes Vmag = J(r)S ⋅ s, with the electron spin operator s in four-component
vector notations [94]. his interaction leads to electrons with opposite spin compared to
the atom’s spin being attracted – a parallel spin is repelled. Consequently, this interaction
competes with the pairing energy ∆ of the superconductor. Depending on the strength
of the coupling compared to the pairing energy, two regimes can be distinguished. he
free-spin state (Fig. 2 . 1 1(a)) if the coupling is small compared to the pairing energy and
the Cooper pairs are hardly disturbed. And the screened-spin state (Fig. 2 . 1 1(c)), in which
a Cooper pair is broken due to the coupling and the spin of the impurity is shielded by a
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Figure 2.11 | Formationof Yu-Shiba-Rusinov states. Depending on the relationship between
exchange coupling J and pairing energy ∆, the impurity is found in (a) free-spin (corresponding
to the left side of the ägure) or (c) screened-spin state (right side). (b) Dependence of the YSR
energy є0 on the exchange coupling. (d) Excitation processes induced by tunneling electrons
(Black arrows). In the case of a free spin, the electron induces a transition from the coherent
many-body ground state with spin S = 1/2 to the excited state with S∗ = 0. In the screened spin
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(e) ∣uє∣2 and ∣vє∣2 can be probed as in-gap states in the BCS local density of states. In the style of
[35].
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quasiparticle. By adjusting the coupling strength the system can undergo a quantum phase
transition [95], as shown in Fig. 2 . 1 1(b).

Both described interactions can be included into the Hamiltonian by means of the Dyson
equation [Gr

R]
−1 = [Gr

R0]
−1 + JS ⋅ s − V0τz. he Bogoliubov-deGennes Hamiltonian of the

magnetic moment embedded in the superconductor is given by [81, 96]

H = ξkτz + [V0τz − JS ⋅ σ] δ(r − r0) + ∆τx , (2.67)

where σ = (σx, σy, σz) are the Pauli matrices that act in the spin space. By choosing the
impurity spin S to point along the z direction, this 4 × 4 Hamiltonian can be split into two
independent 2 × 2 blocksH± for spin up (+) and spin down (−) [35, 82]

H± = ξkτz [V0τz ∓ JS] δ(r − r0) + ∆τx . (2.68)

Solving for the bound-state spectrum results in ûnding of a subgap solution ofH± at energy
є0 corresponding to the poles of the Green’s function Gr [81]

є0 = ±∆
1 − α2 + β2

√
(1 − α2 + β2)2 + 4α2

, (2.69)

with introducing the dimensionless parameters α = πρ0JS > 0 and β + πρ0V0. he wave
function ⟨r∣ψYSR⟩ = (uє(r) vє(r))

T , which corresponds to these eigenvalues, describes
a quasiparticle, that can be excited by the tunnel current (Fig. 2 . 1 1(d)). he excitation is
given by the Bogoliubov operator γ = u∗

є
c↑ − vєc†↓ . he individual wave functions uє and vє

of the electron-like and hole-like YSR excitations are described as [35]

uє(r), vє(r) ∝
sin(kFr + δ±)

kFr
exp [− r

ξGL
∣sin(δ+ − δ−)∣] . (2.70)

he YSR wave functions are typically phase shi�ed by δ±. hey have an oscillating char-
acter, determined by the Fermi wave vector kF and their total decay length is given by the
superconducting Ginzburg-Landau coherence length ξGL and kF. he energy of the bound
states is related to the diòerence of the scattering phase shi�, namely [35]

є0 = ∆ cos(δ+ − δ−) . (2.71)

Particularly, with a STM we have the possibility to probe ∣uє∣2 and ∣vє∣2 as amplitudes of
the in-gap peaks that form symmetrically around the Fermi energy in the quasiparticle
spectrum (Fig. 2 . 1 1(e)).
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2 .6 .2 Self Energies due to Relaxation Processes and Tunneling
Processes.

According to Section 2.2 .2 the line width of excitations in a tunneling experiment is
determined by the coupling of the electrons to their environment. For the YSR state, we
want to discuss two couplings. One is the coupling to the phonons of the hosting substrate
and the other is the coupling to the other tunneling electrode which is described by the
tunneling coupling.5

Self Energy due to Relaxation Processes

Phonons as well as photons are able to induce relaxation processes of the YSR state, intro-
ducing a self energy Σph in the substrate. he substrates Green function is approximated
by the electron Green’s function of Eq. (2.24), with є0 as eigenenergy and in the basis of
the YSR excitations ⟨r∣ψYSR⟩ = (u(r) v(r))T . he self energy itself is approximated by its
value at ω = є0 and only the imaginary part ΓPh = 2 Im⟨ψYSR∣Σph(є0)∣ψYSR⟩ is considered.
Within these approximations the YSR state Green’s functions read

Gr,a
R (ω) = ∣ψYSR⟩⟨ψYSR∣

ω − є0/ħ ∓ iΓPh(є0)/2
. (2.72)

We can introduce the rates withwhich the YSR state is emptied or occupied as Γ1 = iΣ>
ph(є0) =

(1 − nF)ΓPh and Γ2 = −iΣ<
ph(є0) = nFΓPh.

Self Energy due to Tunneling Processes

he coupling to the opposite tunneling electrode gives rise to a Green’s function of the same
character as just explained above

Gr,a
R (ω) = ∣ψYSR⟩⟨ψYSR∣

ω − є0/ħ ∓ iΓ(є0)/2
, (2.73)

where the imaginary part of the self energy Γ(ω) = Γe(ω) + Γh(ω) + Γ1 + Γ2 also contains
broadenings due to the tunneling process. hese tunneling rates have the following form
according to Fermi’s golden rule in Eq. (2.26)

Γe(ω) = 2π
ħ

T2∣u∣2ρ(ω−) and Γh(ω) = 2π
ħ

T2∣v∣2ρ(ω+) , (2.74)

with ρ(ω) being the electrode’s density of states of the tip and ω± = ω ± eV .

5his section is based on Ruby et al. [97]. Consult the supplement for details.
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3
Methods

A scanning tunneling microscope is based on the tunneling eòect as it is described in
Section 2.1. here is a ûnite probability for an electron to tunnel through a classically
impassable barrier when the wave functions of two electrodes overlap. By using a moving
wire with a sharp apex as a tip, an STM takes advantage of this eòect to examine a substrate.
his chapter deals with the relatedmeasuringmethods, i.e. the investigation of the substrates
topographic structure by scanning tunneling microscopy and the spatial resolution of its
spectroscopic features by scanning tunneling spectroscopy. In particular, the spectroscopy
on superconductors and the gain in spectroscopic resolution associated with the use of
superconducting tips will be discussed.

3 . 1 Scanning Tunneling Microscopy

he STM was invented by G. Binnig and H. Rohrer in 1981 [98, 99], who were awarded the
Nobel Prize for their work only ûve years later. Its invention opened up completely new
perspectives in the ûeld of surface physics and revolutionized it. he great strength of the
STM is that it works in real space and allows us to study defects and adsorbates together
with their dynamics all on the atomic level. his distinguishes it from the majority of other
surface techniques that work in reciprocal space and are based on scattering processes. As
reciprocal techniques they average over large sample areas, making them only sensitive to
periodic structures.

he spatial resolution enables the STM to study phenomena on conducting surfaces at
the atomic level and thus to investigate questions such as the origin of superconductivity
or magnetism down to the atomic level [100–102]. It provides the opportunity to observe
the electronic and magnetic properties of single atoms and molecules on diòerent surfaces
[103–106] as well as their manipulation [107] and arrangement in larger ensembles [108, 109].
Inelastic tunneling spectroscopy (IETS) uses the signal from inelastic transport channels
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to measure intramolecular vibrations [110–114], electron-phonon coupling [115–117] or
chemical reactions on surfaces [118–121]. Moreover, STM has been combined with several
othermeasurement techniques over the last two decades, which have continuously expanded
its parameter space and application range. Magnetic ûelds are used e.g. in combination with
IETS of spin excitations to determine the spin state of single atoms and molecules [122].
Pump-probe methods can be used for time-resolved measurements [123]. he combination
with X-ray magnetic circular dichroism (XMCD) allowed getting chemical sensitivity on
individual adatoms [124]. Shot-noise measurements allow the measurement of �uctuations
in the current to investigate its dynamics [125–127]. Light sources such as lasers are used to
irradiate THz pulses into the junction, also for the purpose of time-resolved measurements
[128–130] and GHz radiation is used to combine STM with electron spin resonance (ESR)
[131–136].
As described above, the basic concept of an STM, as shown in Fig. 3 . 1(a), is simple in

itself. It is based on a tip moving over a surface at a vertical distance d of a few Å. At
these distances, a net current I is generated by applying a voltage V and making use of the
tunnel eòect. herefore both electrodes must be electrically conductive. It is the exponential
distance dependence of the current I ∝ exp(−κd), which leads to the high resolution of
the scanning tunneling microscope (STM) since even small changes in distance lead to
large changes in current. By scanning the surface while the vertical tip position z remains
constant, the current measured as a function of the tip’s horizontal positions x and y re�ects
the electronically convolved topography of the surface (Fig. 3 . 1(b)). his measurement
mode is called constant height mode and is one of two commonly used modes in STM to
image surfaces. In the case of tilted samples or strong corrugations in the topography, there
is the risk of accidentally crashing the tip into the surface. To avoid this, the STM can be
operated in a second measuring mode, the constant current mode (Fig. 3 . 1(c)). Here, the
z-position of the tip is readjusted above each point using a feedback loop until the current
matches a predeûned setpoint value. Hence the tip’s z position now carries the topographic
information of the surface. Due to the feedback loop, this mode is slower than the constant
height mode.

With the knowledge about the tunnel eòect, the realization of an STM is well feasible from
a physical point of view. However, there are a few things to consider from a technical point of
view. Typically, the applied voltages range from several tenths of microvolts for investigating
electronic excitations in superconductors to some volts for studying molecular orbitals. As
a result of the small tunneling probabilities, the measured currents are only in the range
of some picoamperes. To detect such small currents a very precise low noise ampliûer is
needed. Moreover, to take advantage of the sensitivity of the STM, the tipmust be positioned
very accurately. herefore the tip is controlled by three piezo elements, one for each direction
in space. By applying a voltage to the piezo elements, the piezoelectric eòect causes strain in
the sub-nanometer range, allowing for the required degree of precision control. Yet accurate
measurement electronics and tip control are useless if external in�uences introduce large
amounts of noise that superimpose the small signals. It is therefore important to protect
the system from mechanical vibrations and to ûlter out electrical interference.
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Figure 3.1 | Principle of a scanning tunnelingmicroscope. (a) Schematic view of an STM. In
the junction between a sharp tip and a surface, a current is measured when applying a voltage
V . The tip can be moved over the surface by a piezo tube. The tips position can be controlled
via a feedback loop, which regulates the height of the tip depending on the measured current.
(b) & (c) The two measurement modes of an STM: In (b) the tip is scanning at a constant height
above the sample and is measuring the resulting current due to changes in the topography and
electronic structure. In the othermode (c) the height of the tip is regulated via the feedback-loop
such that the current is always constant. Therefore the z signal is carrying the topographic
information of the sample. In the style of [137].
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3 . 1 . 1 Theory of Scanning Tunneling Microscopy

In Section 2.1 . 1 we have shown that the tunnel current depends on the spectral functions
of tip and sample (see Eq. (2.6)). We also discussed how the spectral function is related to
the local density of states (see Eq. (2.16)). herefore the band structure is considered, in
which all states ∣k⟩ with the same energy are summed up, whereby the exact momentum
information is lost (Tkk′ → Tξ). Bymeans of this approximationwe can rewrite the tunneling
current as

I(V) = 4πe
ħ ∫ ∞

−∞
dξ ∣Tξ∣2 ρL(ξ)ρR(ξ + eV) [nF(ξ) − nF(ξ + eV)] , (3.1)

where nF is the Fermi-Dirac distribution and ξ = є − µ gives the dispersion relation for
measuring the energies є with respect to the chemical potential µ. his expression can be
even further simpliûed by the assumption of low temperatures, as the Fermi distribution at
low temperatures approaches a Heaviside step function and thus the current becomes

I(V) = 4πe
ħ ∫ eV

0
dξ ∣Tξ∣2 ρL(ξ)ρR(ξ + eV) . (3.2)

For small voltages the matrix element ∣Tξ∣ → ∣T ∣ does not change signiûcantly over the
integration range. hus, we can approximate it as energy independent and put it in front of
the integral. In essence we have learned that we can conceptually interpret the tunneling
current as a convolution of tip and substrate density of states.

Nevertheless it is crucial for the interpretation of the topographies to have an understand-
ing of the tunneling matrix element, so that a comparison between diòerent measuring
points becomes possible. heWKB approximation from Eq. (2.5) provides a ûrst estimation
for the tunneling matrix element. It assumes that only electron states near the Γ point of
the surface Brillouin zone contribute to tunneling. If the latter condition is not met, the
equation should be supplemented by the parallel momentum k∥ of the surface electronic
state [138]

κ =
√

2me

ħ2 (Φ̄ + eV
2
− ξk′) + k2

∥ , (3.3)

where Φ̄ + eV/2 gives the average barrier height including the average work function Φ̄.
Additionally, the well-deûned geometry of the STM contact allows us to further specify

the tunneling matrix element. Tersoò and Hamann developed a complex, but essentially
more accurate model compared to the very fundamental WKB approach [139]. In their
work, they used the transfer Hamiltonian formalism and extended it by assuming explicit
wave functions for tip and substrate. he model is valid for tips with an s-wave character.
Furthermore, they characterized the tip only by the s-wave orbital of its last atom, which is a
justiûed assumption, because due to the exponential distance dependence it can be assumed
that almost all tunneling current �ows through this last atom. By this, they reduced the
geometry of the tip, as shown in the schematic drawing in Fig. 3 .2(a), to a sphere with
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Figure 3.2 | Model of Tersoà and Harmann. Schematic of the assumed tunneling geometry.
The end of the tip is approximated by a sphere with a radius of R. The shortest distance to the
sample is marked d and the center of the curvature is r0. The surface S indicates a possibility for
the diàerential to calculate the matrix element. In the style of [139].

radius R at location r0. his is to approximate the curvature of the tip apex at the closest
point to the substrate. he local spherical wave function has the form

ΨL(k, r) =
1√
VL
cLκRe

κR
e−κ∣r−r0 ∣

κ ∣r − r0∣
, (3.4)

where VL is the volume of the probe and κ =
√

2meΦ/ħ2 is the inverse decay length with
the work function Φ. For the wave function of the substrate they assumed a Bloch wave,
which decays exponentially into vacuum along the normal direction r⊥

ΨR(k, r) =
1√
VR
∑
G
aGe

−
√

κ2+∣k∥+G∣2 ∣r⊥∣ei(k∥+G)⋅r∥ , (3.5)

where VR is the sample volume, k∥ the surface Bloch wave vector and G the reciprocal
surface lattice vector with some normalization factors aG. In addition, the work function
for the probe and substrate are assumed to be identical for the sake of simplicity. Using the
two expressions for the wave functions, the tunnel matrix element is calculated on the basis
of Eq. (2.4) by integrating over the surface S as

Tkk′ =
ħ2

2me

4π
κ
√
VL

κReκRΨR(k′, r0) . (3.6)
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he current now takes the form

I(V) ∝ e2V

ħ
Φ2ρL(µ)ρR(µ, r0) , with ρR(ξ, r0) = ∑

k′
∣ΨR(k′, r0)∣2 δ(ξk′ ,R − ξ) . (3.7)

In conclusion this shows, that the tunneling current is directly proportional to the DoS
ρL(ξ) of the tip and the LDoS ρR(ξ, r0) of the substrate at the position r0 of the tip. he
exponential decay of the tunnel current is re�ected in the location dependency of ρR as
deûned in Eq. (3.5). By means of controlled tip formings, the DoS can be optimized.
Especially for metallic tips and small bias ranges around the chemical potential it is possible
to get a constant DoS. herefore Eq. (3.7) allows the straightforward interpretation of
the measured constant-current image as topography of the sample LDoS at the chemical
potential.

It is worth noting that while the assumption of an s-wave tip is a good approximation for
most metal tips, modifying the tip material so that it exhibits p- or d-orbital character may
have additional beneûts. For example, with the very common tungsten tips, the d-wave
orbitals contribute a large part of the tunnel current, which leads to better topographic
resolution [140]. Additionally, studies with functionalized tips have shown that chlorine
atoms [141] at the apex of the tip can signiûcantly increase the lateral resolution through
their p-wave orbital. To describe this in the context of Tersoò and Harmann, adapted matrix
elements are needed.
Evaluating the tunneling current given by Eq. (3.1) for two normal conducting metal

electrodes gives

IN = 4πe
ħ

∣T ∣2 ρn,L(0)ρn,R(0) ∫ ∞

−∞
dξ[nF(ξ) − nF(ξ + eV)] (3.8)

= 4πe
ħ

∣T ∣2 ρn,L(0)ρn,R(0)eV = GNV . (3.9)

Since the normal conducting density of states is usually energy independent, it is possible
to put it in front of the integral, like the tunneling probability, for which we just discussed,
that it can be considered energy independent for small bias voltages. he junction becomes
an ohmic contact with a clearly deûned normal state conductance, which is independent of
the voltage V . Assuming two identical electrodes, the normal state conductance is

GN = G04π2(ρ0 ∣T ∣)2 , (3.10)

with G0 = 2e2/h = (12.91 kΩ)−1 = 77.48 µS being the conductance quantum.

3 .2 Scanning Tunneling Spectroscopy

Apart from the ability of an STM to resolve the sample’s topographic information with
atomic resolution, scanning tunneling spectroscopy (STS) is another major application and
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a powerful tool to study locally the electronic properties of the surface. herefore the tip
is positioned over the location to be examined before disabling the feedback loop for the
constant height mode. Subsequently, the current or diòerential conductance is recorded
while the bias voltage is swept through the desired range of values. Its main working
principle is presented in the following part, together with a discussion of some details of its
practical implementation, such as the lock-in technique and the energetic resolution that
can be achieved within STS.

3 .2 . 1 Theory of Scanning Tunneling Spectroscopy

he dependence of the tunnel current on the LDoS of the tip and substrate has already been
discussed in the previous section and can be seen in Eq. (3.2). he integration considers all
states between the chemical potential and the energy eV to calculate the total current. To
resolve the contribution of the states to the current as a function of their respective energy,
we study the derivative of the current with respect to the bias voltage [138, 142]

dI
dV

∝ ∣T ∣2 ρL(ξ)ρR(ξ + eV)

+ ∫ eV

0
dξd ∣T ∣2

dV
ρL(ξ − eV)ρR(ξ) (3.11)

+ ∫ eV

0
dξ ∣T ∣2 ρR(ξ)

dρL(ξ′)
dξ′

.

Assuming small bias voltages (eV ≪ Φ) and also small longitudinal tunnel energies ξν−
ħ
2
k
2
∥

2me
in comparison to the barrier height, the matrix element becomes constant and the second
term on the right hand side in Eq. (3.11) is negligible. In general, the tunnel conductance
contains convoluted information of the band structures of tip and sample. In the special
case of constant LDoS of the tip the diòerential conductance becomes

dI
dV

∝ ∣T ∣2 ρL(0)ρR(ξ + eV) ∝ ρR(ξ + eV) , (3.12)

which may be the case for normal conducting metallic tips as already mentioned. For such
tips, the dI/dV signal is a direct measure of the LDoS of the substrate.

3 .2 .2 Spectroscopy with a Lock-In Ampliäer

To measure the diòerential conductance (dI/dV ) we use a lock-in ampliûer. his measure-
ment method is generally used to measure very small ac signals. Precise measurements of
these signals are possible even if the signal is obscured by noise, which can be orders of
magnitude larger than the signal of interest [143]. As a result, measurements with a lock-in
ampliûer beneût from an improved signal-to-noise ratio.
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Figure 3.3 | Functional principle of a lock-in ampliäer for measuring the diàerential con-
ductance. (a) Equivalent circuit diagram of a lock-in consisting of adder, phase sensitive detec-
tion unit (PSD) and additional signal path for the reference signal. (b) and (c): Here, the functional
principle is demonstrated at a superconductor-superconductor spectrum. A sinusoidal ac volt-
age Vac(t) is added as modulation to the dc bias voltage Vdc. This also makes the current oscillate
I(Vdc + Vac(t)). The lock-in ampliäer is sensitive to the ac-component of this current, which for
small modulations is proportional to the slope of the I(V ) curve and thus reæects the dI/dV signal
shown in (b). In the regions of the coherence peaks, the slope is highest, which leads to a strong
dI/dV signal, compared to the disappearance signal in the gap where the current slope is zero
(compare ratio between green and violet bars in the curves for I(V ) and dI/dV (V )). In the style of
[144].

In order to understand how an ac signal is generated in the junction, which can then
be detected with the lock-in technique, a block diagram of the measurement is shown
in Fig. 3 .3(a). In an adder a small sinusoidal ac modulation Vac(t) is added to the dc
bias voltage Vdc. A�er it has passed through the STM, the measured current is converted
by the low noise ampliûer into a voltage proportional to the current. In parallel to the
experimental signal path, the ac modulation is carried as a reference and a�er a phase
shi�er, it is multiplied with the experimental signal in the core of the lock-in, the phase
sensitive detection unit (PSD). Once it has passed a low-pass ûlter, the output signal is
proportional to the dI/dV signal. he acmodulation is given by

Vac(t) =
√

2VLock-In cos(ωmodt + Θmod) =
VLock-In√

2
[ei(ωmod t+Θmod) + e−i(ωmod t+Θmod)] , (3.13)

making use of the complex deûnition of the cosine. In lock-in ampliûers all input signals
are generally measured in units of VRMS (RMS: root mean square). For this reason, the
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lock-in modulation amplitude VLock-In = Vmod/
√

2 is to be understood as the eòective value
of the peak-to-peak amplitude Vmod.
For small modulation amplitude we can expand the modulated tunnel current in a Taylor

series around the dc bias voltage Vdc, resulting in

I(t) = I (Vdc + Vac(t)) =I(Vdc) +
dI
dV

∣
V=Vdc

Vac(t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1st harmonic

+ 1
2
d2I

dV 2 ∣
V=Vdc

(Vac(t))
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2nd harmonic

+ . . . . (3.14)

Besides the dc tunnel current, higher harmonic ac current components were generated
by modulating the voltage. he ûrst harmonic is proportional to the dI/dV signal at Vdc.
Fig. 3 .3(b) illustrates this generation of the ûrst harmonic. Alternatively it is also possible
to lock in the second harmonic, which measures the change in conductance.

he device response I(t) and the reference signal are used by the lock-in ampliûer to
determine the amplitude R and phase Θ of the response. his is achieved by a so-called
dual-phase demodulation circuit within the PSD unit [145]. As the phase relation between
response and reference is lost in the STM, we assume the reference also in its general form
to be

V ′
ref(t) =

√
2VLock-In cos(ωreft + Θref) . (3.15)

he dual-phase demodulation circuit splits the input signal and multiplies it separately with
the reference signal and a 90° phase-shi�ed copy of it. Mathematically this corresponds to
a mixing with the complex reference signal

Vref(t) =
√

2VLock-Ine
−i(ωref t+Θref) =

√
2VLock-In [cos(ωreft + Θref) − i sin(ωreft + Θref)] .

(3.16)
By focusing on the ûrst harmonic of the tunnel current in Eq. (3.14) one can see that the
response of the STM a�er mixing is a complex signal of the form

Z(t) = X(t) + iY(t) = dI
dV

Vac(t)Vref(t) (3.17)

= dI
dV

V 2
Lock-In[ei[(ωmod−ωref)t+(Θmod−Θref)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=const. for ωmod=ωref

+e−i[(ωmod+ωref)t+(Θmod+Θref)]] ,

with X being the in-phase component and Y the quadrature component. Here the working
principle of the lock-in ampliûer becomes apparent because only if the frequency of the
response matches that of the reference signal ωmod = ωref the ûrst exponential term is a
constant. Since only signals that are nearly time-independent can pass the low pass ûlter,
this is the only remaining signal

Z = R ⋅ eiΘ = dI
dV

V 2
Lock-Ine

i(Θmod−Θref) . (3.18)
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he elegance of this method is that all other terms except the ûrst harmonic are also
eliminated by the low pass ûlter, including any arbitrary noise S(ω), as long as its frequency
does not coincide accidentally with that of the modulation. Naturally, the signal-to-noise
ratio can be optimized by trying to use modulation frequencies that are as crooked as
possible and try to avoid frequencies of known noise sources such as multiples of the
electrical 50Hz noise. To measure the second harmonic the mixing is done twice so that
only terms proportional to [sin(ωmodt + Θmod)]2 remain a�er the ûlter.

In summary, the output signals of the Lock-in are

R = ∣Z∣ =
√
X2 + Y 2 = dI

dV
V 2

Lock-In ; X = Re(Z) = dI
dV

V 2
Lock-In cos(Θmod −Θref)

Θ = arg(Z) = atan2(Y , X) = Θmod −Θref ; Y = Im(Z) = dI
dV

V 2
Lock-In sin(Θmod −Θref) .

(3.19)

In our measurements we always record the in-phase component X and the quadrature
component Y , whereby we adjust the phase diòerence by means of the phase shi�er to
remove the capacitive signal by shi�ing it into Y .

3 .2 .3 Energy Resolution

Spectroscopic features have an intrinsic width Γint. his is o�en of physical interest because it
gives direct information about the lifetime of states (see Section 2.2 .2). he experimentally
determined width Γexp will always be larger than the intrinsic width, because diòerent factors
can lead to a broadening of the experimental features, namely:

i. hermal broadening ΓT

ii. Lock-In broadening ΓLock-In

iii. Broadening ΓHF due to high-frequency noise

iv. Broadening Γs due to lifetime eòects

Consequently, the knowledge about these broadenings is of great relevance to get an esti-
mation of the intrinsic width and the energy resolution we can achieve in spectroscopy. he
energy resolution is a measure of how far two spectral features must be separated in energy
in order to be able to distinguish them clearly in a spectrum. A common convention is that
they are distinguishable if they are separated by the full width at half maximum (FWHM),
see Fig. 3 .4(c). In case of Gaussian line shapes, the experimental broadening is the square
root of the sum of the individual widths of all contributions to the particular system

Γexp =
√

Γ2
int +∑

i

Γ2
i
. (3.20)
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Figure 3.4 | Energy resolution of a scanning tunneling microscope. (a) Density of states
weighted with the thermal distribution as function of energy. The higher the temperature,
the more the Fermi edge smears out. (b) Derivative of the Fermi-Dirac distribution functions,
showing the broadening with temperature. (c) Distinctness of two peaks in the spectrum. A
typical rule of thumb is that the peaks can be separated from each other if the distance is at least
one full FWHM.

his corresponds to the Gaussian error propagation. For Lorentzian line forms, the half
widths add up

Γexp = Γint +∑
i

Γi , (3.21)

since the Lorentzian distribution is a convolutional half group. Usually not all sources of
broadening are known, which is why we generally refer to the system unknown parts of
broadening as instrumental broadening Γsetup. For our experiments we could estimate an en-
ergy resolution of ∼400 µeV for normally conducting tips and ∼80 µeV for superconducting
Pb-Pb junctions.

Thermal Broadening

At a temperature of T = 0 a physical system is in its ground state. As electrons are fermions,
states are always ûlled up with one electron starting from the lowest energy level, because
the Pauli principle forbids the ûlling of a single particle state with more than one fermion.
For this reason, the descriptive picture of a Fermi sea is o�en used. Accordingly, at T = 0

45



Chapter 3 METHODS

all states are ûlled up to an upper limit, which is called Fermi energy EF and corresponds
to the chemical potential at absolute zero temperature (see Fig. 3 .4(a)). Hence, the Fermi
energy is the energy it takes to add another electron to the system.

Regarding ûnite temperatures T > 0, electrons can be excited thermally to energy levels
above EF. As fermions, electrons obey the Fermi-Dirac statistic nF (see Eq. (2.8)), which
indicates the electron distribution around the chemical potential. Fig. 3 .4(a) shows clearly
how the Fermi edge becomes more and more smeared with increasing temperatures. Spec-
troscopy uses the derivation of the Fermi-Dirac statistics, shown in Fig. 3 .4(b), to probe
the substrate. he broadening caused by the thermal distribution of the electrons can be
determined as the FWHM of its derivative

ΓT(T) = FWHM = [ln(3 + 2
√

2) − ln(3 − 2
√

2)] kBT ≈ 3.53kBT . (3.22)

At for us typical temperatures of 1.35 K this corresponds to a broadening of about 410 µeV.

Energy Resolution in SIS Junctions

he energy resolution resulting from the thermal broadening is not suõcient to investigate
e.g. YSR states in superconductors, at least not without drastically reducing the measuring
temperature. Fig. 3 .4(a) illustrates that the thermal broadening can be avoided by using
a superconducting tip as a probe. If the width of the superconducting gap is much larger
than the thermal broadening, ∆≫ ΓT(T), the smearing of the Fermi edge falls completely
into the gap, where no states exist. A superconductor with a suõcient gap is e.g. lead
with ∆ = 1.35meV so that the thermal broadening in a Pb/Pb junction no longer plays
a role. he diòerence between normal conducting tips and superconducting tips can be
seen in Fig. 3 .5. A spectrum with an etched tungsten tip in Fig. 3 .5(a) is compared to
a superconducting tip coated with lead in Fig. 3 .5(b). For metallic tips the spectrum
resembles the superconducting BCS density of states as illustrate in Fig. 2 .6(b), with a
clearly deûned gap of ∆ = 1.35meV. For the superconducting tip, the gap region is doubled
because also Cooper pairs in the tip must be broken to allow single-electron tunneling into
the coherence peaks. he comparison between the coherence peaks broadening shows a
signiûcant increase in energy resolution.
Without thermal broadening, two other types of broadenings determine the energy

resolution of such junctions. First, the quasiparticles at the edge of the gap have a ûnite
lifetime, see Section 5.1, which is given by the broadening Γs. Moreover, high-frequency
noise coupled into the measurement setup leads to a broadening ΓHF. he underlying
mechanism is similar to the photon-assisted tunneling we describe in this thesis, except
that the high-frequency background radiation occurs with very large bandwidth. From the
ût of the spectrum in Fig. 3 .5(b) we can extract these broadening. Typical values for our
setup are Γs = 20µeV and ΓHF = 60µeV.
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Figure 3.5 | dI/dV spectroscopy on pristine Pb – normal versus superconducting tip. (a)
With a normal conducting tungsten tip the displayed dI/dV spectrum represents the sample
DoS. The superconducting gap of leadwith ∆ = 1.35meVprominently determines the diàerential
conductance. (b)With a superconducting tip the shape changes signiäcantly. Now the spectrum
is to be understood as a convolution of tip and substrate DoS and thus the coherence peaks
appear at an energy of e∣V ∣ = 2∆. The increase in resolution is evident as the superconducting
tip allows to beat the thermal Fermi-Dirac limit. In orange a ät of the spectrum is shown, from
which the broadening due to lifetime eàects and external HF noise can be determined. Setpoint
and measurement parameters: VBias = 10mV, I = 400 pA, VLock-in = 25 µV and fLock-in = 873 Hz.

Broadening through Lock-In Modulation

he broadening of the lock-in modulation can be taken into account by using its instru-
mental broadening function χm,

χm(V) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2
π

√
V

2
mod−V 2

V
2
mod

for ∣V ∣ ≤ Vmod

0 for ∣V ∣ > Vmod ,
(3.23)

and convolve it with the diòerential conductance [146–148]. his corresponds mathemati-
cally to a convolution with a semicircle

dI
dV

(V) = 2
π
V 2

mod ∫ Vmod

−Vmod

dV ′ dI
dV

(V + V ′)
√
V 2

mod − V ′2 . (3.24)

his results in ΓLock-In = FWHM = 1.7Vmod = 2.4VLock-In as broadening.
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4
Installation and Experimental Realization

of an HF-STM

Our goal was to design a setup for addressing single spins and their dynamics on surfaces
with high-frequency radiation. Such a machine would allow for example the combination
of electron spin resonance (ESR) measurements with the spatial resolution of scanning
tunneling microscope (STM). A suõciently good vacuum and low temperatures are of
utmost necessity to study spins on the level of single atoms. his chapter describes the
overall concept of the machine, its speciûcations, and the design and implementation of the
installed HF circuit to shine GHz radiation into the STM junction.

4.1 Chamber, STM Head and Measurement Electronics

For stable measurements of surfaces with atomic resolution, STMs have to meet some
requirements. In particular for studying the interaction of single atoms with surfaces. To
achieve resolution on these length scales, a very sensitive and noise stable circuit is needed
to measure currents in the pA range and to move the tip with pm precision. Besides, a
sophisticated damping system is necessary to preventmechanical vibrations from interfering
with the atomic resolution. For the study of single atoms also an ultra-high vacuum (UHV)
is used, to protect the sample from contamination. Furthermore, the thermal energy in the
measuring system has to be reduced to such an extent that the thermal diòusion of the atoms
on the surface is frozen in order to keep the samples unchanged during the measurements.
he usual method is to cool the microscope down to the boiling temperature of liquid
helium, i.e. 4.2 K, enabling measurements on the same preparation over a long time (weeks
to months).
For addressing individual magnetic moments on superconductingmaterials, the machine

design must meet additional requirements beyond those of ‘simple’ low-temperature STMs,
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operating at 4 K. For measurements on superconductors, the temperature should be kept
far below their critical temperature in order to reduce thermal in�uences. One of our
preferred superconducting materials is lead with a comparatively high critical temperature
of Tc = 7.2K. Other classical BCS superconductors are not even in the superconducting
phase at He temperatures. For this purpose, we have installed an additional cooling stage
that reduces the thermal energy by another three quarters to 1.3 K. his reduction also
enables us to achieve the energy resolution needed for the investigation of subgap states in
superconductors by avoiding all thermal in�uences on the superconducting gap as far as
possible, thus making the use of superconducting tips advantageous (see Section 3.2 .3).

To address individual spins with high-frequency radiation also a magnetic ûeld is needed
to reverse and li� the degeneracy of spin states, aswell as cables that are capable of conducting
electromagnetic waves in the GHz range. Here small magnetic ûelds of a few 100mT are
perfectly adequate since a large number of our experimental proposals are based on Pb as tip
and substrate material. he superconductor Pb has a critical magnetic ûeld of about 80mT
at a temperature of 1.2 K. Spin splits in magnetic ûelds of this magnitude are in the GHz
range. For this reason, we want to install a GHz light source in the form of a signal generator
to excite these spin transitions. Using these frequency bands for detection would result
in a further increase in energy resolution. To give an order of magnitude, each gigahertz
corresponds to a photon energy of 4 µeV, which is several times smaller than the thermal
energy of about 100 µeV at 1.2 K.

Vacuum Chamber and Cold Gases

An overview of the entire setup is given in Fig. 4 . 1. he entire experiment is enclosed in
a UHV chamber, as shown in Fig. 4 . 1, and can be divided into three sections: A STM-
chamber, a preparation chamber, and a load-lock. he base pressure of the system is
< 1 × 10−10 mbar. Sample preparation takes place in the preparation chamber to prevent
contamination of the microscope. Ion pumps, titanium sublimation pumps, and cold traps
are used for pumping, and a helium �ow cryostat in the manipulator allows the samples to
be cooled down to < 60K during preparation. A mass spectrometer, leak valves, a sputter
gun, and two ovens for heating are available for the characterization and preparation of the
samples. One of the ovens is specially designed for Pb with its low melting point. herefore,
it works exclusively by thermal radiation and has a temperature diode for monitoring. he
other oven is based on ion beam heating and can reach temperatures up to 2000K. In this
temperature range, the temperature is controlled solely by the spectral composition of the
emitted radiation. Diòerent positions around the preparation chamber allow the mounting
of evaporators. For the evaporation of metal atoms, we use EFM3 ion beam evaporators
from Omicron. In order to be able to load samples into the vacuum as quickly as possible
and to maintain the UHV at the same time, we use the load-lock.

he basis of our setup is amicroscope fromCreaTec, which we customize according to our
requirements. It is a 1 K setup with an integrated vector magnet up to 1 T. he cryostat from
CryoVac is based on a multi-stage cooling process using liquid nitrogen and helium. In the
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Figure 4.1 | Experimental setup – UHV chamber. (a) Shown is the UHV chamber with all
instruments necessary for its operation. It can be divided into three parts: The STM chamber,
the preparation chamber, and the load-lock. The left part of the chamber is the preparation
chamber, where metal evaporators, the mass spectrometer, and gas leak valves are mounted. A
large manipulator on the far left enables the transfer through the chamber. (b) Cross-section
through the cryostat showing the cooling stages with the diàerent liquid gases. The 1 K-stage
together with the STM head (yellow) is attached to the bottom of the He-cryostat itself. ((b) used
with the permission of CreaTec)

ûrst stage, the nitrogen cools to 77 K followed by the helium stage cooling to a temperature
of 4.2 K. A subsequent cooling cycle further reduces the temperature of the microscope
down to 1.3 K. herefore a powerful rotary vane pump is used to pump a 4He reservoir for
reducing its vapor pressure. he consumed helium gas is used by a sophisticated system
of heat changers to pre-cool all incoming lines of the system. Besides, all supply lines are
intercepted at the respective cooling shields before they reach the STM so that no external
thermal loads heat the experiment. For this purpose, good thermal conductance must
be ensured at all interception points. For this, the area must be maximized to allow the
greatest possible heat �ow, but also applying high contact pressure helps for microscopically
increasing the area.

STM Head and Magnetic Field

he head of the STM is attached to the base plate of the 1 K cooling stage. For vibration
decoupling the STM is suspended on springs. hree radiation shields surround the head and
are interconnected to the three cooling reservoirs. he central component of the STM head
is a scanning unit which enables the tip to be positioned accurately anywhere on the sample,
shown in Fig. 4 .2. he scanning unit has two piezo-electric motors for coarse positioning –
a combined motor for the x and y positioning and a motor for the z positioning. he latter
is constructed in the very compact pan style [149, 150]. All piezo motors are based on the
stick-slip eòect. he microscopic movement of the tip is achieved by a piezo tube. his tube
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Figure 4.2 | Experimental setup – STMhead. Shown is the scanning unit of the STM together
with the magnetic äeld coils. The tip can be attached to the bottom end of the piezo tube by
means of a tip holder. The tube provides themicroscopic positioning via elongation and bending.
It is located inside a shaft that can be moved up and down for macroscopic tip approach via
piezo stacks that run on sapphire plates via stick-slip. Further piezo stacks allow macroscopic
positioning of the entire tip unit in x and y direction. The three magnetic coils are shown in red,
right and left a pair for the parallel magnetic äeld and one below the sample for the vertical äeld.
The sample is specially mounted in a recess to minimize the distance to the lower coil. Sketch is
not true to scale and perspective.

can be bent and elongated with sub-picometer precision due to the piezoelectric eòect. he
tip itself is mounted in a tip holder and clamped into a small cage at the bottom end of the
tube. With a pair of tweezers, this clamping can be released which allows tip transfers.
Besides, three magnetic coils are integrated into the STM head, for generating a parallel

and a perpendicular ûeld component with respect to the surface. A pair of coils in an almost
Helmholtz arrangement generates the horizontal magnetic ûeld (the distance between the
two coils is slightly increased to increase the experimental volume). A separate coil directly
underneath the sample is responsible for generating the vertical magnetic ûeld. Compared
to other STM construction types, this design is rather unusual. hese other designs tend
to separate head and coils by placing the magnets into the He-cryostat. Here, the cooling
power is considerably higher compared to that of the 1 K pot and thus heat loads can be
dissipated much better. he small cooling power has turned out to be a signiûcant problem
in our setup (see Section 4.1 . 1). On the other hand, the hoped-for advantages of our design
due to its spatial proximity between the coils and the microscope are a possible reduction of
the coil dimensions and therefore also a reduction in the required currents for generating
the magnetic ûeld. Consequently, the energy stored in the magnetic ûeld is much lower
and, in the event of an unintended quench, the risk of damage is reduced. Besides, this
design also allows using eddy current damping, as permanent magnets can be attached to
the head. he use of eddy-current damping is useful because it very eòectively dampens
the remaining mechanical vibrations reaching the STM, thus further reducing the noise
level of the system. Since head and coils as a whole are screwed and therefore building a
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stiò connection, there will be no displacement due to unwanted interaction between the
magnetic ûeld and the permanent magnets.
As the vertical magnetic ûeld consists of only one coil, it is quite inhomogeneous. his

makes it all the more important that its distance to the sample is as small as possible and
that the measurements take place along the coil axis. he latter can be ensured by selecting
a proper tip position on the sample. he former we tried to optimize by minimizing the
thickness of all samples by milling out the sample plates to lower the crystals as far as
possible. Furthermore, we are using the �attest possible crystals of only 1mm.
Another advantage of this STM design compared to those with magnetic ûelds embedded

in the cryostat is its good accessibility. Samples and tips are transferred through openings
in the shields using a wobble stick. he openings in the 77 K and 4K shielding are realized
by closable doors to protect the STM from thermal radiation during operation. hese doors
are also operated with the wobble stick. Due to this uncomplicated handling, transfers are
relatively fast and straightforward. Combined with the use of small and light sample plates,
crystals can be transferred and cooled in a relatively short time. he junction is optically well
accessible. here is optical access from the front, for transferring sample and tip. Moreover,
there is optical access from both sides through the core holes of both Helmholtz coils. It
may be used to directly deposit adsorbates onto the sample in the STM or to integrate a
laser into the system. We use one of these two accesses to have more control over the tip
during the sample transfer and the subsequent approach of the tip. For this, we use a CCD
camera with a corresponding zoom lens.
Although the head is already quite compact, CreaTec’s design still oòers us space and

freedom to make modiûcations. Overall, the accessibility and the available space make the
setup �exible for possible extensions in more advanced experiments, such as the realization
of high-frequency integration.

Cabling and Measurement Electronics

A STM can detect currents of a few picoamperes. To separate these currents from back-
ground noise it is not only necessary to provide mechanical damping, it is also necessary to
use sophisticated wiring, high precision measurement electronics, and to ûlter electronic
noise to a minimum. A detailed layout of the cabling circuit is shown in Fig. 4 .3. he
STM, at the heart of the experiment, is depicted as an equivalent circuit diagram (with blue
background), consisting of a parallel circuit of a resistor, a capacitor, and a tunnel barrier. It
is surrounded by the UHV chamber, illustrated by a grey area with a dashed outline. All
wiring inside the chamber must pass at least a distance of 1.5m through the cryostat, along
which the cables are cooled before reaching the STM. his long path results in a typical
resistance of about 200Ω for all of these cables. he chamber itself acts as a Faraday cage,
preventing the entry of external radiation that could be picked up as noise. his is mainly
high-frequency radiation, like radio waves, but also �uctuations due to the acmains voltage
which is typically transposed at 50Hz. All cable feedthroughs into the vacuum provide a
gateway for such noise. For this reason, we ûlter all supply lines, except for the HF lines,
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Figure 4.3 | Detailed circuit diagram of the setup showing the wiring of all diàerent ex-
periments performed. The core of the experiment is the STM (blue) consisting of tip and
substrate which is shown here as an equivalent circuit diagram in the format of the RCSJ model
as a parallel arrangement of a resistor, a capacitor, and a tunnel barrier. The UHV chamber is
indicated as a grey area with a dashed outline. Filters for noise reduction are highlighted in
purple. All components with HF reference are highlighted in orange and those of the Josephson
setup in green.
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directly at the feedthroughs. his is illustrated here by Pi-ûlters of 5.5 nF (Tusonix/CTS) at
the supply for bias voltage and current. hese are used as well at the high-voltage piezo-
control lines. he bias line, which is connected to the sample, is additionally ûltered with
a home-built 23.4 kHz R-C low pass ûlter. We use a Nanonis™control system, to provide
the bias voltage and for data acquisition. he current is pre-ampliûed by a variable-gain
low-noise ampliûer (Femto, DLPCA 200) and then ûltered by a 1 kHz R-C low-pass ûlter.
dI/dV spectra were recorded using an external lock-in ampliûer (Ametek, 7270 DSP

lock-in ampliûer). Its ac reference signal was divided by a factor of 100 before being added
to the dc bias-voltage output of the Nanonis controller. A second voltage divider reduces
the noise on the bias signal even further. As an example, the 1/100 divider is depicted,
which scales the signal from the ±10V of the Nanonis™to ±100mV and reduces the noise
accordingly by the same ratio.

he performance of the ûltering and shielding concept is directly re�ected in the eòec-
tive energy resolution of a Pb/Pb junction as high-frequency noise would lead to energy
broadening. he dI/dV spectra of superconductor–superconductor junctions are ideal
test systems for probing the eòective energy resolution because they are not limited by
Fermi-Dirac broadening (see Section 3.2 .3). We routinely obtain peak widths of ∼ 80µV
and coherence peak to normal conductance ratios > 10 due to the well-designed ûltering
scheme.

In addition to this basic setup, Fig. 4 .3 contains the components for our two implemented
spectroscopy methods. On the one hand the components for our Josephson setup (with
green background), with an ampliûer, which outputs the voltage diòerence over the junction
and an additional 1MΩ resistor. his setup is described in detail in 4.4. he Josephson
resistor is shorted in normal operation. On the other hand, all components that are related
to the creation of HF radiation are marked with a orange background. here are two ways to
bring this radiation into the junction. he HF signal from the signal generator (R&S® SMB
100A) is either emitted from an antenna or with the help of a bias tea (SHF BT45-B) directly
applied to the tip. For the latter transmission path, we assume that technically speaking
the tip also functions as an antenna. In the course of our experiments, we have found that
feeding the HF via the antenna is the path with fewer losses and less noise compared to the
tip path. Both ways are similar in terms of cabling, the details of which can be found in the
next Section 4.2. Since each coaxial cable automatically acts as a ûlter because it contains a
capacitance and can therefore be considered a simple R-C ûlter, the HF cables inside the
UHV chamber are shown in an equivalent circuit diagram.

4.1 . 1 Magnetic Field Issues

In their present state, the magnetic ûelds are unusable. he magnets generate a large
amount of heat and noise during their operation, due to the non-superconductive joints.
his is a clear design �aw of CreaTec. We have invested a lot of time in identifying and
solving this issue and have tried to acquire the expertise ourselves to create superconducting
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connections between coil-wires. Unfortunately, we could not ûnd a satisfactory solution
without redesigning the STM from scratch.

In summary, the problem can be ascribed to ohmic heating, caused by the high coil
currents. his heat input is so signiûcant that the regular operation of the STM is no longer
possible. he coils themselves are wound from superconducting Nb-Ti wires that are em-
bedded into a Cu matrix and therefore support a loss-free current �ow. NbTi is particularly
suitable for the production of superconducting magnets with a critical temperature of about
10K [151] and critical magnetic ûelds of about 15 T [152]. For the installation of the coils,
however, the wires are soldered on the corresponding cooling shields to the supply lines
running through the cryostat. hese soldered joints are not superconducting and as a
normal conducting contact, they obey Ohm’s law. Due to a ûnite resistance, this leads to the
generation of heat when a current �ows through the contact. his heat has to be dissipated
mainly by the 1 K cooling stage. A rough estimate of the maximum resistance of the solder
joints can be made: he cooling power of the JT stage is approximately 10mW to 20mW,
which corresponds to a permitted resistance of 10 µΩ per contact (ûve in total). his is to
be understood as an upper limit and is based on the assumption that the entire cooling
capacity is available to the magnet and that no further heat input exists.

In order to reduce the heat input, we have conducted a detailed study and investigated
various connection techniques between the NbTi wires, based on the work of Brittles et
al. [153]. he greatest challenge is that Nb-Ti forms an oxide layer on its surface when
exposed to air. Nb has a very high oxygen aõnity and consequently forms a NbO layer
very quickly. Subsequently, the slow formation of a very stable Nb2O5 layer follows [154].
It requires temperatures of ∼2000K under ultra-high vacuum conditions to remove the
oxide layer. Alternatively, it can be dissolved in hazardous hydro�uoric acid (HF) [154, 155].
Both methods are not feasible for us, since the connections must be made directly at the
STM head. here is only very limited access to these joints, combined with the diõculty of
diòerent spatial orientations. he use of hydro�uoric acid for us is impossible because we
do not have the facilities to use it in our laboratory. his prefabrication would therefore
have to be done in specially equipped chemical laboratories. However, this contradicts
the idea of dividing the supply lines in order to protect the cables from bending during
installation and to be able to replace broken cables later on.

In total, the methods for creating a low-resistance connection between two NbTi cables
can be divided into three connection techniques: hese are soldering, cold-pressing, or
welding. Direct soldering of the pure NbTi ûlaments is not a possibility, as we have already
discovered. he standard method of soldering is the hornton matrix replacement method.
he idea is that the individual ûlaments in the copper matrix have not formed an oxide layer
during production. A successful joint could therefore be achieved by replacing the copper
matrix with a soldering tin without exposing the ûlaments to an oxygen atmosphere. his
is exactly what happens in hornton’s method. he copper matrix is dissolved in molten Sn
and the Sn layer is a�erward replaced by superconducting tin solder in a second bath of
molten metal. he wires are ûnally joined in a solder pot of the same superconducting tin.
Both, the handling of molten Sn and larger quantities of molten tin solder, combined with
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the limited accessibility of the joints have led us to distance ourselves from this bonding
method. Cold pressing of the joints is based on the idea that NbTi can be metallurgically
joined as a so� alloy by simply crimping the ûlaments at room temperature. his method
unfortunately fails due to the fragility of our wires. With a diameter of a few tenths of a
micrometer, we were not able to ûx the wires and then apply the necessary force without
damaging the wires. he ûnal bonding method is spot welding. It is hoped that the high
current that �ows during welding will break the oxide barrier due to resistive heating and
thus lead to a connection of the two NbTi cores. Because it is not possible to verify whether
the joining was successful, it is advantageous to make the connection with several spot weld
joints. We have been able to produce welded joints of ∼5 µΩ in a test setup. his is far from
the values described in the literature of up to <10−13 Ω. [156]. Nevertheless, these values are
an improvement and therefore we installed new coils. Unfortunately, the heat input was
still excessive and the STM proved to be unsuitable for the use of magnetic ûelds. Neither
was the consultation of external help in the form of specialized companies successful. All
companies contacted have refused to manufacture the joints outside their laboratories.

4.2 Introducing High Frequencies into the STM Junction

he following section describes the selection, installation, and characterization of the
used coaxial cables. We will explain why coaxial cables in their design are for us the
best compromise for the transmission of high frequencies. Besides, a detailed technical
description of the installation follows, together with a summary of all the precautions we
have taken to avoid unnecessary heat and noise input into the microscope.

Comparison Between Waveguides and Coaxial Cables for High-Frequency Transmission
into the STM

Exposing a STM to high-frequency (HF) radiation in the GHz range requires a dedicated
circuit [131, 157–159]. Typical cables used in low-temperature STMs are specially designed
for eõcient ûltering of environmental radiation, which would otherwise induce noise in the
tunneling junction. As such, they are very bad conductors for high-frequency signals. In
total, a distance of ∼2mmust be covered from the ac source to the junction, making low-loss
transmission important. High-frequency signals in the GHz require specially designed
cables. Despite all the speciûcations that the cables must meet, they are not allowed to
compromise the stability and resolution criteria of the STM.

It is important to take a closer look at the requirements that must be met for a cable
to conduct alternating currents. In free space, an electromagnetic wave, such as our HF
radiation, propagates in all directions as a spherical wave. Its power decreases with one
over the distance square. A normal cable consisting of a single copper core is no longer
able to guide such alternating currents because it eòectively acts as a long antenna. Hence
it radiates electromagnetic waves in all directions along its entire length, causing massive
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signal losses. In order to transmit HF radiation directionally, the wave must remain spatially
constrained. Conductors that are capable of doing this are called waveguides. hey conûne
and channel the waves along one direction due to total re�ection from their walls. Under
ideal conditions, this propagation occurs free of energy loss. Waveguides are widely used in
physics and are used for acoustic waves, radar waves, as well as for light, which is transmitted
over long distances in optical ûbers.

We have chosen coaxial cable as transmission lines. Coaxial cables are a type of electrical
cable consisting of an inner conductor surrounded by a concentric conductive shield. At
this shield, also called the outer conductor, the total re�ection takes place, which conûnes
the electromagnetic wave. Inner and outer conductors are separated by a dielectric material
which is an insulatingmaterial, usually polytetra�uoroethylene (PTFE).Wewant to transmit
a very wide spectrum of frequency over these cables, ranging from some ∼100MHz up to
∼50GHz. From a physical point of view, the interesting spectrum is that of the centimeter
waves, from 3GHz to 30GHz, because electron spin signals fall into this frequency band.
However, coaxial cables are not necessarily suitable for the majority of this frequency range.
Since the power losses in the dielectric increase with frequency, coaxial cables start to
transmit increasingly poorly above 1 GHz. Unwanted higher frequency modes occur, which
fundamentally change the principle of transmission as soon as the inner circumference of the
coaxial shielding becomes smaller than the wavelength to be transmitted. For this reason,
microwaves of suõciently short wavelengths are normally guided in hollow waveguides, as
these have lower losses. In the following, we will explain why coaxial cables are nevertheless
the best compromise for our application.
For this purpose we will ûrst take a look at the advantages and disadvantages of waveg-

uides: Waveguides are hollow metal tubes with a mostly rectangular, circular, or elliptical
cross-section. hey can transmit electrical power in the frequency range above 1 GHz with
much smaller losses than electrical cables like coaxial cables. he minimum width of a rect-
angular waveguide corresponds to about half the wavelength of the transmitted frequency –
this is exactly when only a single antinode ûts in the transverse direction. Consequently, for
a frequency range of 1 GHz to 30GHz the width of the waveguide would vary between 16 cm
to 7 cm. It is possible to transmit higher frequencies on oversized waveguides, although in
addition to the transmission of the desired fundamental mode, undesired higher modes
are also transmitted. However, this problem applies equally to coaxial cables. he main
disadvantage is the size and stiòness of the waveguides. Apart from the complications of
accommodating such cross-sections near the tip, they must also be guided through the
thermal shields. Holes of this size would lead to a high thermal load to the STM and have
a noticeable eòect on the achievable ûnal temperature and the helium consumption. he
latter is of major relevance from an economic point of view since liquid helium is expensive
and accounts for a large part of operating costs. Another problem is that waveguides are
relatively rigid in design, with corresponding large bending radii, leading to the propagation
of vibrations into the STM. A solution would have to be found here which appears not to
be obvious. Moreover, this stiòness would also lead to enormous stresses in the materials
during the cooldown of the machine due to diòerent thermal expansion coeõcients. In
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summary, although we have made slight sacriûces in attenuation with coaxial cables, we
have ensured that we can keep the measurement temperature and the vibrational noise
under control. Also, the handling of much smaller cross-sections during installation is a
decisive argument in favor of coaxial cables.

Coax Cable Installation and Optimization

When planning the machine, we concluded that one single uninterrupted cable from the
top of the cryostat to the STM was the best solution. his was based on the motivation
that any transition between two cables, typically realized as SMK connectors, would lead
to losses on the one hand and the formation of unwanted higher modes due to re�ections
on the other. Our demands on the cable were very high for the reasons already described
– low thermal conductivity should minimize the heat input and certain �exibility should
minimize the input of mechanical vibrations. Our choice was the cryogenic semi-rigid
coaxial cable (type SR) distributed by LakeShore. his was installed by CreaTec during
assembly and ended at one of the PTFE connection pads at the head (see Fig. 4 .5(f)). For
the remaining distance to the tip, the HF signal was transmitted on the wire for the direct
current, thus no longer meeting the requirements of a waveguide. his conûguration turned
out to be almost completely useless with attenuations in the range of 65 dB to 80 dB (over a
range of 1 GHz to 40GHz).
We could not ûnd the reason for the poor attenuation values, but we could make two

important observations with the LakeShore cables. Firstly, despite these high attenuations,
we were still able to detect HF signals in the junction. Secondly, we had to conclude that
a clean transmission of the high frequencies without the generation of higher modes was
an unrealistic prospect. Most likely, the geometries of the head and shields alone generate
a large number of standing waves, leading to higher modes. Since it was technically not
possible to ensure a smooth transmission curve as a function of frequency, we solved the
problem by implementing a control loop. By measuring the power at the junction, we can
ensure a constant output regardless of frequency. For this purpose, we record the speciûc
attenuation for each irradiated frequency in a data table and use this lookup table to correct
the power later during data acquisition. his table has to be refreshed at regular intervals
but is a practical solution under the condition that the attenuation changes slowly and
continuously. With the implementation of such a measurement compensation, we could
now also accept re�ections at connectors and our requirement for a single continuous
cable was no longer necessary. Also, the power losses at the connectors of about ∼1 dB are
negligible compared to our total losses.

he possibility of using diòerent cables led to a complete re-evaluation and optimization
of the selected cables in terms of thermal conductivity and rigidity. A scheme of the
improved transmission line is shown in Fig. 4 .4. By dividing the cabling into several
segments, we were able to start with a low-loss cable for the major part of the distance
that has to be covered through the cryostat, for which we could tolerate a higher thermal
conductance and larger cable diameter, see Tab. 4.1. his is followed by a superconducting
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Figure 4.4 | Sketch of theHF cabling from the signal generator down to the STM junction.
The high frequencies generated at the signal generator are brought to the STM junction via a
cable route optimized for this purpose. The cables are thermally intercepted at multiple points
on the cooling shields (red areas). The signal is transmitted contactless onto the sample via an
antenna. The antenna is realized by an open-ended coaxial cable. All connectors are assembled
as SMK connectors and are therefore designed for frequencies up to 40GHz.

coaxial cable with a much smaller diameter, which is nearly loss-free and also superb in
terms of low heat conductance. he cable path is realized as follows: he high frequencies
are generated at the signal generator followed by a semi-�exible H+S Astrolab cable (H+S
Astrolab KK-SF240-2X11SK, l = 0.5m) forming the low-vibration connection to the ultra
high vacuum (UHV) chamber. All connectors outside and inside the chamber as well as
the feedthrough (Allectra 242-SMAD40G-C16) are designed as SMK 2.92mm, suitable
for frequencies up to 40GHz. Inside the UHV chamber, a silver-plated beryllium-copper
coaxial cable (SC-219/50-SB-B, l = 1.25m) is passed through the cryostat and attached to
the cryostat’s radiation shields for thermal equalization. At the bottom of the 4K-plate it
is connected (via SMK connectors) to a superconducting niobium titanate (NbTi) coaxial
cable (SC-086/50-NbTi-NbTi, l = 0.4m), which has negligible attenuation losses at low
temperature. his cable terminates close to the STM junction with the outer conductor
being removed over a length of 5mm ≈ λ30GHz/2 and bent up ∼45°.
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Table 4.1 | Comparison of the installed cable types. Performance data of the installed cables
regarding dimensions, thermal conductivity, and attenuation.

Company LakeShore Coax Co., LTD.

Cable type SR SC-219/50-SB-B SC-086/50-NbTi-NbTi

Material
Center conductor Carbon steela Beryllium copper NbTi

Dielectric PTFEb PTFE PTFE

Outer conductor 304 stainless
steelc

Silver-plated
beryllium copper NbTi

Dimensions∅ Center conductor [mm] 0.114 0.51 0.203∅ Dielectric [mm] 0.38 1.67 0.66∅ Outer conductor [mm] 0.51 2.19 0.90
Properties

Thermal conductivity
4 × 10−1 4.88 × 10−2 4.63 × 10−4

@ 4K [W/(mK)]

Attenuation
[dB/m]

f n.a. 300K 4K 300K 4K

0.5GHz 4.43 0.6 0.2 6.8

< 0.5
1.0GHz 6.27 0.8 0.3 9.6
5.0GHz 14.09 1.8 0.6 21.6
10.0GHz 20.01 2.5 0.9 30.5
20.0GHz 28.45 3.5 1.2 43.1

a Silver plated copper clad carbon steel (0.103mm outer diameter carbon steel covered by 0.0057mm
thick copper cladding covered by 0.001mm thick silver plating.

b Polytetraæuoroethylene (PTFE)
c A seamless tubular metal jacket serves as the outer conductor/shield

In ûgure Fig. 4 .5 the technical precautions taken to thermally intercept the HF cable
and to avoid mechanical vibrations are documented. Fig. 4 .5(a) and (b) show the thermal
coupling of the copper-beryllium cable with a cross-section of 2.2mm. his cable is winded
with copper wires and silver conductive lacquer is applied to the windings for good thermal
contact (blue arrows). hese wires act as cooling ûngers and are ûrmly screwed to the
corresponding 30K and 70K shields (orange arrow). In Fig. 4 .5(c) and (d) the transition
between the copper-beryllium cable and the superconducting NbTi cable is shown. he
SMK connector is pressed onto an angle acting as a cooling ûnger by using a clamping
device. he angle itself is ûrmly screwed to the bottom plate of the 4K cryostat. It is
important for all thermal contacts that they are connected with a large force so that as
much contact as possible exists at the microscopic level. In Fig. 4 .5(e) the much larger
cross-section of the NbTi cable compared to all other cables that reach the STM head can
be seen, including the previous HF cable (see Tab. 4.1). For this reason, the cable is wound
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(a) (b) (c) (d)

(e) (f)

Figure 4.5 | Installation of the new HF cables. The ägure shows the technical precautions
that have been taken to ensure good thermal contact between the HF line and the antenna and
to avoid the transmission ofmechanical vibrations. (a) Thermal coupling of the copper-beryllium
cable by copperwires acting as cooling ängers (blue arrows) (b) Furthermore, the thermal contact
of the wires to the coaxial cable was increased with silver conductive epoxy adhesive. These
wires are ärmly screwed to the corresponding 30 K and 70 K shields (orange arrow). (c) and (d)
show the transition between the copper-beryllium cable and the superconducting NbTi cable.
The SMK connector is pressed tightly to a Au-coated copper angle with a clamping device. The
angle itself acts as a cooling änger and is ärmly screwed to the base plate of the 4 K cryostat. (e)
The much larger cross-section of the NbTi cable can be seen in comparison to all other cables
that go to the STM head. For this reason, the cable is wound like a spring in several loops (white
arrows) that are intended to dampen themechanical transmission of vibrations. Another cooling
änger couples the line to the 1 K stage (blue arrow). (f) On the head itself the HF cable is only
loosely attached to hold it in position. The end is stripped and serves as an antenna (white
arrow). A comparison with the position of the tip (green arrow) shows the spatial proximity. PTFE
connection pad as an interface between the old HF line and the tip cable (orange arrow).
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like a spring in several loops, which are intended to dampen mechanical vibration. On
the head itself (see Fig. 4 .5(f)), the HF cable is only loosely attached to hold it in position,
but without strong mechanical coupling. he cable ends with the stripped part that acts as
an antenna (white arrow). he proximity to the tip position (indicated by green arrow) is
< 15mm.

4.3 Characterization of HF circuit

To determine the attenuation of our HF setup we use a nonlinearity in the current-voltage
dependence. By measuring the current while modulating the ûxed dc bias with the HF
voltage we can determine the strength of the HF amplitude. A comparison with the set HF
power at the source gives directly the value for the attenuation. As shown in Fig. 4 .6(a) we
use the highly nonlinear current-voltage characteristics of the pristine superconducting
Pb-Pb tunnel junction. Similarly, other nonlinearities such as inelastic spin excitations
could also be used [131].

In detail, we set the dc bias at V = 2.6mV, just below the onset of the quasi-particle
current at eV = 2∆. hus, we expect to measure a vanishing current within the gap. For
large enough applied HF amplitudes, the ac voltage Vac(t) added to the dc bias generates a
current contribution as it is entering the nonlinearities. Since the bandwidth of our current
ampliûer¹ is not suõcient for detecting current changes in the frequency range of GHz, we
will measure only the time-averaged current I(t) = ⟨I⟩. Here the demand of a nonlinearity
becomes obvious because otherwise the contribution of the HF voltage is averaged out. A
representative measurement of time-averaged current as a function of HF power is shown
in Fig. 4 .6(b). he indicated power level refers to the output level at the signal generator.
Since the electrical power varies over several orders of magnitude, it is given in logarithmic
form as power level L(dBm) = 10 log10( P

1mW) based on a reference power of 1mW.
We determine the attenuation of our signal path by modeling this current-power depen-

dence. hemodel is based on the dc voltageVdc and the precisely determined current-voltage
relation I(0)(V) without applied high frequencies from Fig. 4 .6(a). he time averaged
current is by deûnition

⟨I⟩ = 1
τ ∫

τ

0
dτ′ I(0) (Vdc + Vac(τ′)) . (4.1)

Since the HF voltage modulation Vac(τ) = VPK sin(ωτ) is a periodic function, it is suõcient
to integrate over one of its periods. he amplitude (peak voltage) is related to the power as

¹Variable Gain Low Noise Current Ampliûer DLPCA-200: For this measurement, we use the highest
sensitivity with a trans-impedance of 109 V/A (also referred to as gain 9). At this gain the−3dB bandwidth
of the ampliûer is 1.1 kHz.
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Figure 4.6 | Transmission characteristics of the HF circuit. (a) Example of an I(V) character-
istic with pronounced nonlinearities. In this case the I(V) dependence of a superconducting
Pb-Pb tunnel junction at GN = 3.7 × 10−1 G0, shown in blue. Schematically as an inset the HF
voltage modulated on top is shown in green. Its amplitude indicates the window in which the
current is averaged. (b) Exemplary measurement of the time-averaged current as a function
of the HF power level (blue curve) and the corresponding ät using Eq. (4.4) (orange curve) to
determine the power in the junction and thus also the attenuation. (c) Transmission curve of the
setup. The attenuations determined from (b) are plotted over the complete range of frequencies
available to us up to 40GHz.

follows

P = IVRMS =
V 2

RMS
R

(4.2)

⇔ VPK =
√

2R ⋅ P , (4.3)

where R is the impedance, which is 50Ω for our setup. he root mean square of a sinusoidal
function VRMS = VPK/

√
2 is the peak amplitude divided by

√
2. hus the time averaged

current can be calculated as

⟨I(L)⟩ = 1
2π ∫

2π

0
dϕ I(0) (Vdc + sin(ϕ)

√
2R ⋅ 10

L(dBm)−g(dB)
10 1mW) . (4.4)
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Here g(dB) is the damping of the setup, which reduces the incoming power level at
the junction accordingly. In Fig. 4 .6(b) the ût using Eq. (4.4) is shown next to the data.
he comparison between the experiment (blue curve) and the ût (orange curve) shows a
good agreement. hus, this model is suõciently well suited for the determination of the
attenuation. he ût procedure proved to be very robust and stable with error rates below
5%. he ût is most error-prone when the attenuation is so large that hardly any signal is
received, which is a systematic error and cannot be attributed to the model.

he extracted damping over a wide range of frequencies is shown in Fig. 4 .6(c). To
generate small enough ac modulations we have to artiûcially increase the damping of
the transmission line with a ∼40 dB attenuator. his value is subsequently subtracted
in Fig. 4 .6(c). Overall we get a very discontinuous frequency response with many ûne
structures due to standing waves. Given the design of the setup, with all the shields and
connectors, we expected similar results. In general, our attenuation �uctuates between
10 dB to 60 dB over the entire frequency range. Besides many small spikes, we also notice
more wider range structures. Two attenuation bands can be identiûed between 13GHz to
20GHz, and 22GHz to 32GHz.

In the range from 30GHz to 40GHz, which is important for our experiments, the fre-
quency response is particularly loss-free with attenuations <20 dB. We note that also during
data acquisition, we artiûcially increased the damping of the transmission line with a ∼40 dB
attenuator. We observe that the total attenuation at 40GHz slowly �uctuates between 53 dB
to 57 dB over time (13 dB to 17 dB without the attenuator). We attribute these �uctuations to
external in�uences such as the He level of the cryostat. For the duration of onemeasurement
sweep, however, we ûnd the attenuation to be constant to a good approximation.
An alternative way of measuring the HF energy-level in the junction oòers a comparison

with the theory of Tien and Gordon. he microwave radiation leads to a distinct V-shaped
splitting. So, for example, the coherence peaks in the power-dependent dI/dV maps can be
used to make an accurate measurement of the power level at the junction by evaluating the
resulting photon-assisted tunneling pattern (see Section 7.1). his method is very precise
and is well suited for single maps. We determine the attenuation of each map in Chapters 7
and 8 by ûtting one of the spectra of each sweep with the corresponding Tien-Gordon-like
expressions in Eqs. (6.12), (6.17), and (6.19). Although this method works very well for a
single frequency, it is too time-consuming to characterize the complete frequency response
due to the large amount of data required. Both ways of determining the attenuation were
cross-checked and provide consistent results.

4.4 Josephson Setup

To measure current-biased Josephson spectra we have added a 1MΩ resistor to our experi-
mental setup. he reduced circuit diagram is shown in Fig. 4 .7. his Josephson resistor
is connected in series to the junction (again shown within the resistively and capacitively
shunted junction (RCSJ) model, explained in Section 2.4). he resistor is signiûcantly
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Current Source:

VBias
1MΩ

IBias
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∼10 fF

∼100 kΩ

V

Josephson Voltage

A

Figure 4.7 | Equivalent circuit diagram for the Josephson setup. Voltage source and resis-
tance of 1MΩ together form a constant current source (green). The voltage across the junction
(blue, shown in the RCSJ model) is measured by an additional ampliäer (labeled: Josephson
Voltage). HF radiation can be emitted into the junction via the antenna.

larger than the junction resistance itself, which in these Josephson experiments is around
100 kΩ and less. Accordingly, almost all the bias voltage drops across the Josephson resistor,
which acts eòectively as a constant-current source. In order to record V(I) characteristics
of the Josephson junction, a highly precise measurement of the junction voltage is necessary.
For this, we use an additional ampliûer with an ampliûcation gain of 103, connected in
a four-point conûguration. he ampliûer itself has a �oating ground, which means that
the zero-level adapts to the input signal over time. For this reason, the spectra should be
recorded at times of < 1 s so that eòects due to the oòset does not have any impact on the
measured data.
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5
Superconducting Lead and its

Interaction with Manganese Adatoms

All measurements presented in this thesis use lead (Pb) as a substrate. Lead is a su-
perconducting material at low temperatures, which has been studied intensively in our
group for many years. he two-band nature of lead has been established [160], but also the
interaction of magnetic adatoms [97, 161, 162] and magnetic molecules [95, 141, 163–167]
with this superconductor has been studied extensively and many new insights into YSR
states have been gained [35]. hese studies form the basis for further investigations such as
the research on the coupling of iron and cobalt chains and the Majorana zero modes arising
at their ends [37, 168].

Lead is a type I superconductor with a critical temperature of Tc = 7.2K. Studies on bulk
Pb show typical London penetration depths λL of 32 nm to 39 nm and Ginzburg-Landau
coherence length ξGL of 51 nm to 83 nm [169]. We use single crystals as substrates in our
experiments. hese are cleaned in several cycles, where one cycle consists of successive Ne+
ion sputtering at a Ne pressure of 2 × 10−4 mbar and subsequently heating to about 400K
for approximately 30min.

In Fig. 5 . 1(a) a typical STM topography of the surface is shown. It contains several very
typical characteristics: he surface shows �at terraces that are conûned by step-edges, which
usually have a height of exactly one atomic layer. With our preparation procedure, we
achieve a terrace size of up to several 100 nm, which are very well suited for STM studies.
Vapor-deposited atoms appear as small round protrusions on the surface. AlsoNe inclusions
are visible, which are trapped underneath the surface during the sputtering process. hese
show up as hexagonal depressions and protrusions, where the exact shape and electronic
properties depend on their depth and the corresponding scan parameters.

he strength of a scanning tunnelingmicroscopes (STMs) is the combination of the spatial
resolution with its spectroscopic possibilities in scanning tunneling spectroscopy (STS).
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Figure 5.1 | Exemplary lead surface with vapour-deposited Mn adatoms. (a) The image
shows a 30 nm × 30 nm large segment of the surface of a lead single crystal. It was cleaned and
heated under special conditions to form large terraces. In the lower-left corner a single atomic
terrace step can be seen. As a consequence of the cleaning process, the surface is covered with
numerous hexagonal depressions of diàerent sizes, which originate from Ne impurities. The
vapor-depositedMn atoms are seen as small protrusions and are encircled. In this segment there
is one single atom (blue circle), but also collections of Mn atoms in the form of two dimers (green
circles) and one trimer (orange circle). Setpoint VBias = 5mV, I = 100 pA. (b) dI/dV spectrum
(blue) and ät (orange) of the plain lead surface recorded with a superconducting Pb tip. The
spectrum is the result of the convolution of the BCS density of states of substrate and tip and
therefore shows a gap of e∣V ∣ = ∆t + ∆s = 2∆, with a superconducting pairing parameter of
Pb of ∆ = 1.35meV. At e∣V ∣ ≈ 7meV begins the onset of the phonon shoulders. Setpoint and
measurement parameters: VBias = 10mV, I = 400 pA, VLock-in = 25 µV and fLock-in = 873 Hz.

he STS spectra must always be regarded as a convolution of the densities of states of both
electrodes. he assumption that the signal is a direct re�ection of the sample density of
states (DoS) is only valid for a �at density of states in the tip, where the resolution 3.5kBT ≈
400µeV is limited by the experimental temperature of T = 1.35K. We can circumvent this
thermal restriction and go beyond the Fermi-Dirac limit by using superconducting tip
material with their BCS coherent peaks as a probe. herefore we coat tungsten tips with a
thin layer of lead by controlled submersion of the tip into the surface. Fig. 5 . 1(b) shows
a spectrum (blue) of such a pristine Pb-Pb junction. It becomes apparent that now the
BCS density of states of tip and sample are convoluted and an energy of e∣V ∣ = ∆t + ∆s =
2∆ is needed to break a Cooper pair in the tip and substrate each, before quasi-particle
transport between the coherence peaks can take place. From the ût of the superconductor-
superconductor spectrum (orange), we can determine an instrumental broadening of Γsetup =
60µeV and a Dynes parameter of Γs = 20µeV, which is one of the corrections needed to
describe the density of state of lead as described in the next section. With these two
broadenings we are able to estimate our resolution to 80 µeV (see Section 3.2 .3). So far, we
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could not detect an in�uence of the Ne impurities on the spectroscopy. Nevertheless, we
avoid measurements in their vicinity, so that our results can always be separated from the
impurities.

5. 1 Corrections Applied to the BCS Density of States

Although the BCS theory provides a robust basis for the understanding of superconductors,
early experiments in planar tunneling junctions showed that the experimental density of
states deviates from the theory even in elementary superconductors such as lead, vanadium,
or tantalum. hese deviations are small and can be introduced as correction terms to
Eq. (2.52). For the Pb superconductors we use, three corrections have to be considered:
A ûnite lifetime eòect, a strong electron-phonon coupling, and that Pb is a tow-band
superconductor.

5. 1 . 1 Finite Lifetime Eàects on the Density of States

To consider pair breaking of the quasiparticles at the edge of the superconducting gap, a
small imaginary energy E → E + iΓs (Dynes parameter [170]) is introduced to account for
ûnal lifetime eòects[171]:

ρs(E) = ρ0 Im
⎛
⎝

E + iΓs√
∆2

k − (E + iΓs)2

⎞
⎠

. (5.1)

Γs is usually small compared to the minimum excitation energy ∆k. he eòects of this
correction are demonstrated in Fig. 2 .6(b). It is known, that the simplest way to create such
a correction is to assume an energy-dependent gap function of the form ∆(E) = ∆0E/(E +
iΓs) [172, 173]. Various eòects are imaginable that lead to such a pair breaking processes.
Electron-photon scattering alone has a pair breaking character at ûnite temperatures [172].
However, the expected temperature dependence of this mechanism is not consistent with
experimental observations [174–176], whichmeasured only a weak temperature dependence
nor did the eòect disappear in the low-temperature limit. Elastic pair-breaking processes
due to the scattering at magnetic impurities [177] or the �uctuation of the order parameter
[178] are other possibilities. he latter can be excluded due to the spatial homogeneity
of the observed tunnel spectra [174]. More generally, however, it can be shown, that by
assuming a very weak random scattering potential disorder occurs and is accounted for by
the self-energy, resulting in a correction as Dynes suggested [173].
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5. 1 .2 Phonon Structure in Strong Electron-Phonon Coupled
Superconductors

For materials with strong electron-phonon coupling, the gap parameter can also become a
function of energy ∆(E). his eòect was ûrst observed by Giaever on Pb [179] and discussed
in detail by Rowell et al. [180]. hey showed that the Eliashberg phonon interaction between
electrons causes ∆(E) to exhibit structures at energies determined by the phonon energies.
Especially at the gap ∆ plus multiples of the phonon frequencies. We also see such phonon
shoulders on lead at e ∣V ∣ ≈ 7meV, visible in Fig. 5 . 1(b). he agreement between the theory
and the experiments in materials like lead and mercury has also clariûed the last doubts on
the assumption, that electron-phonon mechanisms are the cause of superconductivity in
these materials.

5. 1 .3 Two-Band Superconductors

Lead is a so-called tow-band superconductor. his fact has been theoretically predicted
by density functional theory by Floris et al. [181] and experimentally conûrmed by Ruby
et al. [160] in our group. hey found that the Fermi surface of Pb consists of a compact
Fermi sheet mainly with s-p character and a tubular Fermi sheet with p-d character, both
are illustrated in Fig. 5 .2. he diòerences in the origin of the Fermi sheets lead to diòerent
electron-phonon coupling strengths [183] and thus to diòerent pairing energies in the
superconducting condensate. hese two diòerent superconducting pairing energies can
be seen for Pb(111), Pb(110), and Pb(100), as a double structure in their coherence peaks
representing tunneling into the two Fermi sheets. Depending on the orientation of the lead
crystal, tunneling occurs with diòerent amplitudes. his becomes clear if we recall that the
wave functionΨ ∝ exp(−κz) is decaying exponentially with a decay constant κ =

√
k2⊥ + k2

∥.
his constant is a combination of the vector component k⊥ which is necessary to overcome
the tunneling barrier and the vector component k∥ which is parallel to the surface (see
Eq. (3.3)). Consequently, wave functions will decay slower from the Γ point, since k∥ = 0
and tunneling takes place mainly in the direction of k⊥. Due to the exponential form of the
decay, it even follows that the larger the tunnel barrier becomes, the smaller the contribution
of k∥ will be. he comparison of the Fermi surfaces in Fig. 5 .2 shows that we always tunnel
into the s-p-like band, whereas we need a k∥ ≠ 0 for tunneling into the p-d-like band. he
only exception here is the Pb(110) direction. Due to these distinctions in the Fermi-sheets,
the ratio of the peak heights is diòerent. With increasing conductivities and thus increasing
tunnel probabilities, the ratio becomes equal, since tunneling in the direction of k∥ leads to
a less signiûcant decay in the wave function.
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Figure 5.2 | The two-band characteristic of Pb. Figure is taken from Ref. [160]. Shown are
dI/dV spectra, taken on clean terraces of Pb(111), Pb(100) and Pb(110) single crystals (top to
bottom). The quasiparticle coherence peaks surrounding the gap consist of two peaks which
are 150 µeV apart. The peak energy is the sum of the pairing energies of the tip (here called
∆tip) and the substrate (here called ∆s1 and ∆s2 respectively). The insets in the middle show the
corresponding top views of the two diàerent Fermi surfaces (FS) of the two bands of Pb crystal.
The orange one has a s-p character, while the purple one has a p-d character. These 3D models
are taken from Ref. [182]. Depending on the shape of the Fermi surface in tunneling direction,
the associated coherence peaks are respectively stronger or weaker.

5.2 Mn Adatoms on Pb(111)

To induce YSR states in the s-wave superconductor Pb(111) we use magnetic Mn adatoms.
his system has already been studied in detail by Ruby et al. [97]. In the following, we will
summarize some of their results because we will use them as a reference to discuss our
results on photon-assisted tunneling.

he adatoms are evaporated under ultra high vacuum (UHV) conditions in the prepara-
tion chamber. We use the possibility to cool down the sample in the evaporation position
to approximately 60K with the He �ow cryostat. We deposited a coverage of less than 20
atoms per 100× 100nm2 (Fig. 5 . 1 shows a typical preparation). For spectroscopy, we always
make sure that we measure isolated adatoms that have nothing but clean lead surface in a
surrounding radius of at least 5 nm. he Mn can sit in two diòerent absorption states on
the lead surface, the down and up adsorption side. hese diòer in their apparent height
and diòerent spectroscopic ûngerprints. A�er the evaporation process, all atoms have the
same apparent height and are on the lower adsorption side, which was investigated by Ji et
al. [36]. It is possible to manipulate an adatom back and forth between the two states by
tip manipulation. By contacting the adatoms with the tip while applying a bias voltage of
5mV a change to the higher conûguration is induced. his process can be well monitored
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Figure 5.3 | Diàerential conductance spectra recorded at two diàerent tip-substrate dis-
tances above the center of single Mn atoms on Pb(111). (a) Spectrum with low normal
state conductance of Glow

N = 2.6 × 10−5 G0 and (b) spectrum with high conductance GhighN =
5.2 × 10−2 G0. All spectra on top of Mn have the following features (in descending order, from
high to low bias voltages): The BCS coherence peaks at 2∆ (i.) are followed by the tunneling into
the three YSR states (ii.). The tip’s gap is represented by the gray-shaded area. The tunneling
of thermally excited quasiparticles (iii.) falls within this area. At high junction conductances –
panel (b) – we additionally observe resonant Andreev reæections (iv.), next to multiple Andreev
reæections (v.), and Josephson tunneling (vi.).

and controlled during a z-approach of the tip while applying the voltage. To reverse the
adsorption side the atom is contacted by the tip at a bias of −180mV.

5.2 . 1 Distance Dependent Measurement: From Single-Electron
Tunneling to Andreev Tunneling

In order to observe diòerent tunneling processes through the YSR states we perform tip
approaches on the Mn adatoms. We use the Mn atoms in the up adsorption side, because
they were found to be more stable upon tip approach. Diòerential conductance spectra
at two diòerent tip-substrate distances on a Mn adatom are shown in Fig. 5 .3 giving an
overview of the observed basic tunneling processes. he two spectra stand exemplarily
for the extremal points of a distance-dependent measurement and represent two opposite
tunnel regimes as described below. he shape of dI/dV spectra is composed of diòerent
tunneling processes, some of which can be found in both spectra, others only becoming
apparent at high tunnel coupling. he following six tunneling processes can be distinguished
in the spectra:

i. Quasiparticle tunneling from the coherence peaks at e ∣V ∣ = ∆t + ∆s = 2∆
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Figure 5.4 | Sketchesof the tunnelprocessesacross theYSRstates. (a)At eV = ∆+є0, single-
electron tunneling transfers an electron with rate Γe into the positive-energy YSR state, which is
then excited with rate Γ1 into the positive-energy quasiparticle continuum of the substrate. (b)
Thermal occupation of the YSR state with rate Γ2 followed by single-electron tunneling with rate
Γe leads to a thermal replica of the experimental YSR resonance at eV = −(∆ − є0). (c) Resonant
Andreev reæections transfer a Cooper pair to the substrate via electron tunneling with rate Γe
and hole tunneling with rate Γh. The process takes place at eV = ∆ + є0 like the single- electron
process; the analogous hole processes take place at eV = −(∆ + є0) for the process of panel (a),
eV = +(∆ − є0) for the process of panel (b), and eV = −(∆ + є0) for the process of panel (c).

ii. Quasiparticle tunneling into the YSR subgap states at e ∣V ∣ = ∆ + є0
iii. Tunneling of thermally excited quasiparticles at e ∣V ∣ = ∆ − є0
iv. resonant Andreev re�ections at e ∣V ∣ = ∆ + є0
v. (multiple) Andreev re�ections at e ∣V ∣ = 2∆/k for k = 2, 3, . . .

vi. Josephson eòect: Tunneling of Cooper pairs at e ∣V ∣ = 0

In more detail: (i.) Above the threshold of e ∣V ∣ = 2∆ the energy is suõcient to excite a
Cooper pair in the tip and substrate each, similar to the spectra of plain superconductor-
superconductor junctions in Fig. 5 . 1(b). (ii.) In addition to the coherence peaks, the YSR
subgap states can be seen symmetrically around the Fermi energy at e ∣V ∣ = ∆ + є0 in
Fig. 5 .3. As described in section 2.6, magnetic atoms like Mn can induce YSR states in the
superconductor. In the case of Mn in the high absorption conûguration, three YSR states
are induced at energies of є0 = 0.25meV, 0.77meV and 1.2meV. In the following, our main
focus lies on the energetically lowest of these three YSR states, which we label as α, with α±
at the corresponding polarity. he tunneling process into such a YSR state is described in
the scheme in Fig. 5 .4(a). As soon as enough voltage is applied so that electrons from the
quasi-particle continuum of the tip can tunnel into YSR resonances, peaks become visible in
the spectrum. (iii.) A thermal YSR state can be detected at e ∣V ∣ = ∆−є0. hermal excitation
of the YSR state, as shown in Fig. 5 .4(a), results in a current already below e ∣V ∣ < ∆. For
Mn, only the thermal YSR states of the lowest lying YSR state can be detected.
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Figure 5.5 | Crossover of the YSR peak heights when increasing the conductance. Peak
heights α± of the two resonances associated with the energetically lowest YSR state as a function
of normal-state conductance at T = 1.35 K. The labels (a) and (b) mark the conductance values at
which the spectra in the corresponding panels of Fig. 5 .3 and Fig. 8 . 1 were taken.

In addition to the single-electron processes, multi-electron processes can take place, if
the conductance and thus the tunneling probability is increased. In an Andreev re�ection
an electron (hole) is re�ected as a hole (electron), and thus a Cooper pair is transported over
the junction. (iv.) If a YSR state is involved in this process, resonant Andreev processes are
obtained by resonantly transported Cooper pairs across the barrier. he energy e ∣V ∣ = ∆+є0
at which this process occurs is the same as for the single-particle processes including the
YSR state (compare (ii.)). (v.) Without a YSR states regular (multiple) Andreev processes
occur at voltages of e ∣V ∣ < 2∆. Depending on the number of charge carriers k involved
in the process, the corresponding threshold values are e ∣V ∣ = 2∆/k for k = 2, 3, . . . (see
Section 2.5). he resonant Andreev re�ections already occur at much lower tunneling
conductance than the once not including a YSR state, since an electron (hole) can virtually
enter the state. One also expects to observe resonant multiple Andreev re�ections involving
the YSR state occurring at e ∣V ∣ = (∆ + є0)/k. It is diõcult to assign these peaks marked
multiple Andreev re�ection (MAR) to speciûc processes, due to the large number of possible
resonant processes involved with three YSR states, as well as (multiple) non-resonant MARs.
(vi.) In addition to the Andreev processes, Cooper pairs can also tunnel directly from the
tip into the sample. his Josephson current is observed at zero energy.
A closer look at the YSR resonances at є0 = 0.25meV reveals that their shape changes

signiûcantly during the tip approach. When comparing their amplitudes α± it appears
that their ratio is inverted. In Fig. 5 .5 the amplitudes are plotted against the normal state
conductance conûrming the crossover and revealing that it is a continuous process. he
crossover can be explained by the change in the predominant tunneling process. In the
low conductance case, single-electron processes dominate the current, whereas for high
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conductance they become negligible compared to the resonant Andreev processes, see
Section 5.2 .3. For large tip-substrate distances, the ratio of the amplitudes α± corresponds
to the ratio of electron and hole wave functions u and v of the YSR states as the tunneling
process consists only of single-electron tunneling [97]. From Fig. 5 .3(a) a ratio of α+/α− =
(u/v)2 = 0.253 can be determined. With the knowledge of the YSR wave functions, we can
describe the tunneling processes through the YSR states theoretically. Following Fermi’s
golden rule we obtain rate equations for the transition from tip states to the YSR state
described by u and v. hese rate processes will be discussed in the following section and
theoretically in chapter 6.

5.2 .2 Description of the Tunnel Process by Means of Rate Equations

An important diòerence between single-electron and the Andreev processes is the change in
the occupation of the YSR state [184]. he single-electron processes change the occupation
while Andreev processes just transfer Cooper pairs into the condensate. For this reason, a
continuous current �ow carried by single-electron processes requires a relaxation process,
which empties (ûlls) the state a�er it has been occupied from (emptied into) the tip. he
description of these processes is done by rate equations which follow Fermi’s golden rule. In
Fig. 5 .4 these rates are included in the illustration of the processes. Fig. 5 .4(a) shows that
the YSR state at eV = ∆ + є0 is ûlled at the rate Γe from the tip. In order for this process to
be repeated, the YSR state must ûrst be emptied again. his can be realized by an inelastic
excitation into the quasiparticle continuum of the substrate at the rate Γ1. If Γ1 becomes
smaller than Γe, this process saturates. he equivalent is the formulation for the thermally
excited YSR states, happening at a rate Γ2 and at an energy of eV = −(∆−є0), see Fig. 5 .4(b).
Another possible process is that the electron with rate Γe is re�ected as a hole with the rate
Γh, as shown in Fig. 5 .4(c). his leaves two electrons in the substrate, which can be formed
into a Cooper pair and enter the condensate. his process is possible once a threshold
value of eV = ∆ + є0 is reached. If the bias is below the threshold, these resonant Andreev
re�ections are not possible, because of the lack of a free state in the tip for the hole to tunnel
into.

Thermal Relaxation Processes

he Γ1 and Γ2 rates that describe the occupation of the YSR state also determine its intrinsic
line width. hese two rates are added to the theory as phenomenological parameters, as
their origin can be caused by various microscopic mechanisms. We believe that they can be
attributed to phonon processes because Ruby et al. [97] has seen that the crossover point
between the linear and sublinear regime in Fig. 5 .5 is strongly temperature-dependent.
his would lead to a thermal distribution of the YSR state f (E) = nF(є0) in the absence of
any tunneling coupling to the tip, where f (E) = Γ2/(Γ1 + Γ2) (see Section 2.6 .2).
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For purely thermal relaxations we can assume in general

Γ1

Γ2
= eβє0 , (5.2)

with β being the inverse temperature. he simplest relaxation process involves a direct
transition between YSR state and quasiparticle continuum. For such processes it has been
shown that the relaxation rate is given by [185]

Γ1 ∼
√

1
β∆
e−β(∆−є0) [(∆ − є0) + (∆ + є0)e−βє0] , (5.3)

Γ2 ∼
√

1
β∆
e−β∆ [(∆ − є0) + (∆ + є0)e−βє0] . (5.4)

he relaxation rate Γ1 has the thermal factor exp(−β(∆ − є0)), which contains the required
phonon energy ∆ − є0 for the transition to the continuum. In contrast, Γ2 is only limited
by the thermal occupation exp(−β∆). he ratio of the two results in Eq. (5.2). he fact
that there is more than one subgap state makes complicated relaxation dynamics possible,
such as pairs of quasiparticles from subgap states, that can relax inelastically in the form of
Cooper pairs. he possibility and eòects of such processes were discussed further in Ref.
[97]. Another plausible process would including the transitions assisted by photons as a
relaxation mechanisms.

Electron and Hole Tunneling Rates

he electron and hole tunnel rates Γe and Γh describe the tunneling process across the
vacuum barrier of the junction. hey follow Fermi’s golden rule (see Section 2.6 .2)

Γe(ω) = 2π
ħ

T2∣u∣2ρ(ω−) , (5.5)

Γh(ω) = 2π
ħ

T2∣v∣2ρ(ω+) , (5.6)

with the notation ω± = ω ± eV . he electron and hole wave functions of the YSR states u

and v are included as well as the DoS ρ(ω) of the tip and the tunnel coeõcient T .

5.2 .3 Expressions for the Current of Single-Electron and Resonant
Andreev Tunneling

In general, the total tunneling current via YSR states is the sum of single- and two-electron
(resonant Andreev) processes, I = Is + Ia. Ruby et al. [97] derived the expression for the
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current by using a non-equilibrium Green function method resulting in

Is(V) = e
h ∫ dω

Γ1 [ΓnF
e (ω) − ΓnF

h (ω)] − Γ2 [Γ1−nF
e (ω) − Γ1−nF

h (ω)]
(ω − є0)2 + Γ(ω)2/4 , (5.7)

Ia(V) = 2e
h ∫ dω

Γh(ω)ΓnF
e (ω) − Γe(ω)ΓnF

h (ω)
(ω − є0)2 + Γ(ω)2/4 , (5.8)

where Γ(ω) = Γe(ω) + Γh(ω) + Γ1 + Γ2, together with the tunneling rates weighted by the
Fermi distribution nF(ω)

ΓnF
e (ω) = Γe(ω)nF(ω−) , (5.9)

Γ1−nF
e (ω) = Γe(ω)[1 − nF(ω−)] . (5.10)

he single-electron current contains products of the form Γ1/2Γe/h ∝ T2, i.e. a tunnel process
combined with thermal relaxation. In contrast, the Andreev current contains two tunnel
processes, represented by the products of the form ΓeΓh ∝ T4. Given the dependence on
the tunnel coeõcient, it can be summarized why in the distance-dependent measurement
the single-electron process dominates, for large tip-substrate distances, because Γ1/2 ≫ Γe/h.
Once this ratio is reversed, the Andreev current becomes the dominant process, due to
the higher power in the tunneling coeõcient. he two spectra shown in Fig. 5 .3 re�ect
situations in which one of the two processes dominates.
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6
Theoretical Framework for Describing

Photon-Assisted Tunneling

Within this chapter, we summarize the theoretical considerations about photon-assisted
tunneling in superconductor-superconductor junctions. A�er a short description of photon-
assisted tunneling in the most general way, we start with a summary of photon-assisted
tunneling from a superconducting tip into a pristine superconducting substrate. his
includes the three processes for which we show experimental data in chapter 7: (i) the
tunneling of single electrons at e∣V ∣ ≃ 2∆ (coherence peaks), (ii) Andreev re�ections at
e∣V ∣ ≃ ∆, and (iii) the Cooper pair tunneling (Josephson peak) at e∣V ∣ ≃ 0. We will use a
Fermi’s golden rule approach for all three of these processes based on the theory of Tien and
Gordon [52]. henwewill present our derivation of the single-particle andAndreev currents
through Yu-Shiba-Rusinov (YSR) states, in case the junction is exposed to HF radiation.
For this purpose, we rework the rate-based description from Section 5.2 .2 under the same
assumption that Tien and Gorden met. his rate-based model provides the background
for the discussion of photon-assisted resonant Andreev re�ections through YSR states in
chapter 8. Finally, a short discussion of the recurring Tien-Gordon-like patterns follows. I
follow the description my colleagues and I used in González et al. [186] and Peters et al.
[187] in large parts.

6.1 General Formalism of Photon-Assisted Tunneling

Photon-assisted tunneling is caused by the interaction of the tunneling electrons with high-
frequency radiation in the MHz/GHz range. In the simplest case, these high frequencies
radiated into the scanning tunneling microscope (STM) junction can be regarded as an
electromagnetic ûeld. In the presence of this ûeld with frequency Ω, the electrons can
exchange energy with it by absorbing or emitting n photons of energy Eph = ħΩ during
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Figure 6.1 | Energy-level shift due to externally applied HF radiation. Visualization of the
periodic shift of the quasiparticle energy levels in a superconductor-superconductor tunneling
junction due to HF radiation. In general, this shift aàects all energy levels, here indicated by
shifting the chemical potential. The HF äeld acts as a time-dependent ac voltage of amplitude
VHF applied in addition to the dc bias voltage Vdc. We apply this additional modulation to the
energy levels of the tip, without loss of generality. In the style of [84].

tunneling. he maximum exchangeable energy is given by the amplitude VHF of the ûeld,
which forms an upper boundary. We describe this by the maximum number of photons
Λ = eVHF/ħΩ ≥ n.

Tien and Gordon were the ûrst to model qualitatively the eòects of such an electric ûeld
on the conduction electrons in superconductors.[52] heir assumption was that the ûeld
creates a time-dependent potential diòerence

Vac(τ) = VHF cos(Ωτ) (6.1)

between the two superconductors in tip and substrate. Fig. 6 . 1 illustrates the eòect of this
time-dependent potential. As usual for light, within the wave-particle dualism, it can be
described as a time-dependent wave as well as a photon of energy Eph. Both descriptions
are valid and correct and we alternate between them, according to which one is more
comprehensible. By choosing the quasiparticle energy levels in the substrate as a reference,
the irradiated high-frequency solely leads to a potential change of the form described in
Eq. (6.1) to the electrons in the tip. his reduces the threshold voltage e∣Vdc∣ = 2∆ − ΛħΩ

above which the electrons from outside the energy gap can tunnel.
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he general theoretical framework for describing photon-assisted tunneling starts from
the transfer Hamiltonian used for the tunneling process (see Section 2.1 . 1)

H̃ = H̃L + H̃R + H̃T , (6.2)

which is composed of three parts. he two superconducting contacts are each described
by their Hamiltonian H̃α, where α ∈ {L, R} stands in the most general form for the le�
and right contact of the junction, in the case of an STM they are a reference to the tip and
substrate. In the scope of this thesis, we will always refer to the le� side as the tip and
the right side as the substrate, without loss of generality. he Hamiltonian measures the
energies on an absolute scale and conserves the total number of particles N = NL + NR.

Assuming that tip and substrate charge carriers are each a grand canonical ensemble,
as is the case with superconductors in the Bardeen-Cooper-Schrieòer (BCS) theory, the
chemical potential is the energy associated with adding a particle to the system. herefore
the grand canonical Hamiltonians H̃L = HL + µLNL and H̃R = HR + µRNR measure the
single-particle energies in tip and substrate with their corresponding chemical potentials µL
and µR as a reference point. he applied voltage V leads to a shi� of the chemical potentials
against each other

eV = µL − µR . (6.3)

As illustrated in Fig. 6 . 1 the high-frequency radiation causes the chemical potentials to
be time-dependent and thus the voltage V → V(τ) becomes time-dependent as well. It
consists of a time-independent dc voltage Vdc, the bias voltage, and a time-dependent ac
voltage Vac of frequency Ω

V(τ) = Vdc + VHF cos(Ωτ) . (6.4)

his ac voltage can be seen as a modulation of the dc voltage caused by the external radiation
ûeld as described in Eq. (6.1) [52].

Consequently, the tunnel barrier also becomes time-dependent and in order to apply the
usual BCS mean-ûeld description we perform a time-dependent canonical transformation

U(τ) = exp{ i
ħ ∫ τ

0
dτ′ [µL (τ′)NL + µR (τ′)NR]} . (6.5)

his transformation converts the Hamiltonian from Eq. (6.2) to a form H = UH̃U† −
iħU∂τU†, like

H = (H̃L − µLNL) + (H̃R − µRNR) +UH̃TU
† . (6.6)

Here explicitly the property that H̃L and H̃R each conserve their corresponding particle
number NL and NR is used so that UH̃αU† = Hα is valid. However, the tunneling Hamilto-
nian for our system only conserves the total number of electrons N . NL and NR on their
own are not a conserved quantity. Because of this, the transformed tunneling Hamiltonian
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HT = UH̃TU† becomes time dependent

HT = ∑
kk′σ

[Tkk′e
iφ(τ)c†R,k′σ(R)cL,kσ(R) + h.c.] , (6.7)

whereby the time-dependent phase

φ(τ) = 1
ħ ∫ τ

0
dτ′eV(τ′) = eVdc

ħ
τ + eVHF

ħΩ
sin(Ωτ) (6.8)

includes all eòects of the applied time-dependent voltage. In Eq. (6.7) the electron creation
and annihilation operators c†

α,kσ
(r) and cα,kσ(r) at a position r represent the transfer of

an electron with a spin of σ between the electrodes. he position of the tip is denoted
by R and the probability of this process occurring is described by the tunneling matrix
element Tkk′ . No momentum dependence is considered in the matrix element because
for the small energies in superconducting tunnel spectroscopy the matrix element can be
assumed to be approximately constant (see Section 3.1 . 1).

It is now possible to treat the transformed Hamiltonian from equation Eq. (6.6) within
the framework of the mean-ûeld approximation in the form of H = H0 + H′, where H′

contains the tunneling Hamiltonian as a small perturbation.

6.2 Photon-Assisted Tunneling into Pristine
Superconductors

Being able to use mean-ûeld approximation we can describe the two pristine supercon-
ducting leads of our junction by the mean-ûeld Hamiltonian from Eq. (2.36) and thus the
unperturbed HamiltonianH0 becomes

H0 = HL +HR = ∑
k,α
∑
σ

[ξk,αc†α,kσ
cα,kσ + (∆c†

α,k↑c
†
α,−k↓ + h.c.)] . (6.9)

he Hamiltonian contains the creation and annihilation operators c†
α,kσ

and cα,kσ for an
electron with momentum k, the normal state dispersion ξk,α = єk − µα and the supercon-
ducting gap ∆. he latter is assumed to be the same in tip and substrate for this description,
which is a justiûed presumption since in our experiment both are made of lead and are
exposed to the same external conditions.
As we will see below, photon-assisted tunneling depends on the number of charge carriers

involved in the tunneling process. herefore, we will perform a single derivation of the
tunnel current in the presence of HF radiation for all three processes for which we will
show data in the next chapter, namely the tunneling into the coherence peaks, the Andreev
re�ections, and the Josephson eòect.
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6.2 . 1 Coherence Peaks

he coherence peaks follow from single-electron tunneling through the superconducting
junction. For this, a Cooper pair must be broken and a quasi-particle must be formed
in both the source and drain electrodes. his breaking requires excitation energies of ∆
each, which results in a corresponding higher threshold voltage of V = 2∆/e at which the
coherence peaks appear. To discuss the in�uence of high frequency a series expansion of
the time-dependent phase in the tunneling Hamiltonian Eq. (6.7) within a Fourier series
is performed. By using the deûnition of the time-dependent phase from Eq. (6.8) and the
Jacobi Anger expansion¹ one obtains

eiφ(τ) =
∞
∑

n=−∞
Jn (

eVHF

ħΩ
) ei(eV/ħ+nΩ)τ , (6.10)

with the coeõcients involving the Bessel functions Jn(x). Under the for this experiment
valid assumption that the temperature is small compared to the superconducting gap, no
thermally excited quasiparticles exist, and tunneling will only occur from source to drain.
When using the sum identities for the Bessel functions [∑Jn(x)]2 = ∑J 2

n
(x) = 1, Fermi’s

golden rule (Eq. (2.26)) yields for the tunneling current

I = 2e
h
∑
n

J 2
n
( eVHF

ħΩ
)∑

k

∑
k′

∣Tkk′ ∣2u2
kv

2
k′δ(ξk + ξk′ − eV − nħΩ) , (6.11)

with the factor of two accounting for the spin and uk and vk being the coeõcients of the
Bogoliubov transformation (see Eq. (2.39)). his can be written as [52]

I(V) = ∑
n

J 2
n
( eVHF

ħΩ
) I(0)(V + nħΩ/e) , (6.12)

with I(0)(V) being the current-voltage characteristic in the absence of any radiation ûeld.
By using the superconducting density of states from Eq. (2.52)²

ρ(E) = ρL(E) = ρR(E) = ρ0
∣E∣ θ (∣E∣ − ∆)√

E2 − ∆2
, (6.13)

with ρ0 being the normal-state density of states per spin direction and θ(x) the Heaviside
function³, it is possible to bring all the terms belonging to I(0)(V) in Eq. (6.11) into the

¹Jacobi Anger expansion: e iz sin(φ) = ∑n∈ZJn (z) e inφ

²his theoretical expression for the density of states is identical to the previous description in Eq. (5.1), if
the Dynes parameter responsible for depairing is set to zero.

³he Heaviside step function is deûned as

θ(x) = ⎧⎪⎪⎨⎪⎪⎩
1, x ≥ 0
0, x < 0

.
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known form for the tunneling current from Eq. (3.1)

I(0)(V) = 4πe
ħ

∣T ∣2 ∫ ∞

−∞
dξρL(ξ)ρR(ξ + eV) [nF(ξ) − nF(ξ + eV)] . (6.14)

We will refer to this mathematical form derived in Eq. (6.12) and all its variations as
Tien-Gordon-like terms. It always contains two components, the Bessel function squares
and the current without HF radiation, or in the case of dI/dV spectra, the conductance
without HF radiation. Performing the discrete sum leads to the formation of sidebands
around the coherence peaks. he sidebands, in this case of single-electron tunneling, have
a separation of ħΩ/e in the dc bias voltage direction. A complete discussion of the splitting
pattern resulting from this Tien-Gordon-like equation can be found in section 6.4.

6.2 .2 Andreev Reæections

At subgap voltages and suõciently low temperatures, the elementary tunneling processes
involve the transfer of multiple electrons. Here we focus on Andreev processes transferring
two electrons across the transition, which are still clearly resolved in our experiment. he
transfer can be treated as a scattering process and thus within the Born approximation.
As the tunneling amplitude can be related to the T-matrix, the amplitude for transferring
multiple electrons can be obtained from higher-order terms in the Born series for the T-
matrix,T = HT +HTG0HT + . . . . he intermediate state contains two quasiparticles, which
clearly distinguishes it from processes in which two electrons tunnel one a�er the other
since here both electrons share the same phase of the intermediate state. One quasiparticle
each is in the source and drain electrode, and the electron tunneling gains energy in the
order of ∆ due to the applied bias voltage. hus, the energy denominator of the Green’s
operator G0 is in the order of ∆ in the absence of HF radiation (compare with Eq. (2.49) for
G0). he ac bias changes the energy denominator by at most eVHF due to photon emission
and absorption. Concentrating now on the termHTG0HT of second order, which transfers
two electrons at a time, it is possible to approximate its contribution to the T-matrix

T ≃ −HT
1
∆
HT , (6.15)

as long as eVHF and ħΩ are small compared to ∆. Both tunneling Hamiltonians contribute
a time-dependent phase factor eiφ(τ), which can be expressed as

e2iφ(τ) =
∞
∑

n=−∞
Jn (

2eVHF

ħΩ
) ei(2eV/ħ+nΩ)τ . (6.16)

A calculation similar to the one in the previous section based on Fermi’s golden rule shows
that the Andreev re�ections also form sidebands (see [188] for an alternative Blonder-

It is discontinuous at x = 0 and its derivative is the Dirac delta distribution δ(x).
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Tinkham-Klapwijk approach)

I(V) = ∑
n

J 2
n
(2eVHF

ħΩ
) I(0)(V + nħΩ/2e) . (6.17)

I(0)(V) again describes the current-voltage dependence in the absence of any HF radiation.
Again we get a form similar to Tien-Gordon (see section 6.4 for a complete discussion).
his form already includes the two-electron character of the tunneling process, to be found
within the spacing of the sidebands. Compared to the single-electron tunneling, these now
have a halved distance of ħΩ/2e as a function of the dc bias voltage and a period of ħΩ/2e
as a function of VHF.

6.2 .3 Josephson Eàect

In superconducting tunneling contacts, small tunneling barriers cause the incoherent
transfer of Cooper pairs, known as the Josephson eòect [45]. Since two charge carriers
are transferred in the tunneling process, the Cooper pairs gain or lose 2eV in energy. his
transfer takes place with the help of an intermediate state in which a quasi-particle is located
in both the source and the drain electrode. Since the Josephson peak occurs at energies
eV ≪ ∆, the denominator of the Green’s operator can be approximated by 2∆. Following
the same line of reasoning, the denominator remains unchanged due to photon absorption
or emission as long as eVHF ≪ 2∆. As already seen for the Andreev re�ections, both of
the Hamiltonians have a time-dependent phase factor, which makes the amplitude for the
Cooper pair transfer from the tip to the substrate

EJ

2
e−i2φ(τ) = EJ

2
e−i2φ̃∑

n

Jn(
2eVHF

ħΩ
) e−i2eVτ/ħ−inΩτ . (6.18)

Here EJ is the Josephson energy which satisûed the usual Ambegaokar-Baratoò relations.
To describe the coupling to the environment, the tunneling Hamiltonian needs to be
complemented by the operator e−i2φ̃, which describes the charge transfer 2e associated with
the transfer of the Cooper pair. Once again, Fermi’s golden rule yields an expression for the
current similar to the one used by Tien-Gordon (see [86] for a functional integral approach)

I(V) = ∑
n

J 2
n
(2eVHF

ħΩ
) I(0)(V + nħΩ/2e) , (6.19)

which directly encodes the transfer of Cooper pairs between tip and substrate. he current
in the absence of the HF radiation for a perfectly voltage biased source without series
resistance or capacitance takes the form [87] (see section 2.4)

I(0)(V) = I2
c
R

2
V

V 2 + ( 2e
βħ

R)
2 , (6.20)

85



Chapter 6 THEORETICAL FRAMEWORK FOR DESCRIBING PHOTON-ASSISTED TUNNELING

where the current is written in terms of the critical current Ic = 2eEJ/ħ.

6.3 Extending the Theory of Photon-Assisted Tunneling in
Superconductors by a Magnetic Impurity

Within this section, we will describe the formalism used to simulate the photon-assisted
processes associated with resonant Andreev re�ections. All simulations in this thesis of
the YSR subgap states and Peters et al. [187] are based on the hypothesis that the tunneling
rates for the tunneling through the YSR states must be substituted by Tien-Gordon like
terms. his approximation is based on the work of Ruby et al. [97], whereby we have added
the photon-assisted processes to their derived expressions for the tunneling current. his
assumption was validated a�erward by S. Acero González and L. Melischek following Ruby
et al. but include an external HF ûeld to the tunneling Hamiltonian. Furthermore, they
completed the approximation even further by including the real part of the self-energy into
the calculation.
For the purpose of deriving the photon-assisted tunneling current the consideration from

section 6.1 is continued and a magnetic adatom is added on the substrate side. Eq. (6.9) is
therefore extended for a classical impurity with spin S

H0 = ∑
k,α
∑
σ

[ξk,αc†α,kσ
cα,kσ + (∆c†

α,k↑c
†
α,−k↓ + h.c.)] + ∑

k,k′
∑
σ

(V0 − JSσ)c†R,kσ
cR,k′σ . (6.21)

Here the impurity couples to the substrate electrons by the potential scattering of strength
V0 and the exchange coupling J. he quantization axis of the electron spins is chosen such
that it is parallel to the spin of the impurity.
For the conductivity measurements carried out, we have to provide an expression of

the current �owing through the junction. In the actual description, the current can be
determined for example using the expectation value of the temporal change of the number
of electrons in the tip. We obtain the current using that iħ dNL/dt = [NL,H], and that NL
commutes with HL and HR

I = −e ⟨dNL

dt
⟩ = i e

ħ
⟨[NL,HT]⟩

= i e
ħ
∑
kk′σ

(Tkk′e
iφ(τ)⟨c†L,σ(R)cR,σ(R)⟩ − h.c.) . (6.22)

his expression can be rewritten using the lesser Green’s functions in Nambu space

G<
αβ
(τ1, τ2) = i

⎛
⎝

⟨c†
β↑(τ2)cα↑(τ1)⟩ ⟨cβ↓(τ2)cα↑(τ1)⟩

⟨c†
β↑(τ2)c†α↓(τ1)⟩ ⟨cβ↓(τ2)c†α↓(τ1)⟩

⎞
⎠
, (6.23)
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so the current reads

I(τ) = e
ħ
Tr{τz [T̂(τ)G<

RL(τ, τ) −G<
LR(τ, τ)T̂∗(τ)]} . (6.24)

Here the Pauli matrix τz in Nambu space is used and the hopping matrix

T̂(τ) = (Tkk′eiφ(τ) 0
0 −T∗

kk′e
−iφ(τ)) , (6.25)

is introduced. All electron operators, as well as Green’s functions and self energies, which
have no explicit momentum or location argument, always refer to the tip position R.

he YSR state in the substrate ampliûes the Andreev processes, leading to the formation
of resonances at the YSR energies є0. However, there is no ampliûcation in the tip due
to the absence of the YSR bound state. In contrast to the resonant Andreev re�ections,
the non-resonant ones in the tip can be neglected, which is achieved by neglecting all
oò-diagonal contributions of the pure Nambu Green’s function gL of the tip in the following
calculation. As a consequence, also all multiple Andreev re�ections are not regarded in this
approximation.

Writing Dyson equations for the Keldysh Green’s function and using the Langreth rules,
the lesser Green’s functions can be written as

G<
LR = (gLT̂GR)< = g<L T̂Ga

R + gr

LT̂G<
R

G<
RL = (GRT̂

∗gL)< = G<
RT̂

∗gaL +Gr

RT̂
∗g<L ,

(6.26)

with the superscripts r and a labeling the retarded and advanced Green’s functions. Here,
the bare Nambu space Green’s function of tip and substrate without tunneling is given by gα
with α = L,R. In particular, the Green’s function for the substrate includes the coupling to
the spin of the impurity (compare Eq. (6.21)), which is accounted for in the corresponding
Dyson equation g−1R = g−10 + JS − V0τz. If this Green’s function is now expressed with the
help of the Bogoliubov-deGennes formalism and its wave function ψT = (u, v) one gets

gR(ω) = ∣ψ⟩ 1
ω − є0

⟨ψ∣ (6.27)

as an approximation. he tunneling process introduces a self-energy to the denominator of
the Green’s function

GR = ∣ψ⟩ 1
ω − є0 − Σ̃R

⟨ψ∣ , (6.28)

with
Σ̃R = ⟨ψ∣ΣR∣ψ⟩ , (6.29)
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taking into account the tip-substrate tunneling by its self-energy

ΣR(τ, τ′) = T̂∗(τ)gL(τ, τ′)T̂(τ′) . (6.30)

With combining Eq. (6.26) and Eq. (6.24) and using the fact that the hopping matrix T

commutes with the Pauli matrix τz the current reads

I(τ) = e
ħ ∫ dτ′ Tr{τz [G<

R(τ, τ′)ΣaR(τ′, τ) +Gr

R(τ, τ′)Σ<
R(τ′, τ)

−Σ<
R(τ, τ′)Ga

R(τ′, τ) − Σr

R(τ, τ′)G<
R(τ′, τ)]} . (6.31)

he time-dependent phase in the hopping matrix from Eq. (6.25) can again be developed
in a Fourier series when including the HF ûeld, similar as it is done in Eq. (6.10). By using
this result and inserting it in Eq. (6.30) the self-energy becomes

ΣR(τ, τ′) = ∣T ∣2∑
n,m
Jn (

eVHF

ħΩ
)Jm ( eVHF

ħΩ
) e−i(eV/ħ+nΩ)ττz gL(τ − τ′)ei(eV/ħ+mΩ)τ′τz . (6.32)

his sum can be divided into a diagonal (n = m) and a non-diagonal (n ≠ m) component

ΣR = Σ0
R + Σ1

R , (6.33)

where the diagonal component reads

Σ0
R(τ, τ′) = ∣T ∣2∑

n

J 2
n
( eVHF

ħΩ
) e−i(eV/ħ+nΩ)ττz gL(τ − τ′)ei(eV/ħ+nΩ)τ′τz . (6.34)

At this point, we follow the approximation of keeping only the diagonal self-energy Σ0
R,

which greatly simpliûes the following calculation. he non-diagonal part of the self-energy
only plays a role if the broadening of the Green’s functions induced by tunneling reaches
or even exceeds the photon energy. So it is to be expected that the diagonal approxima-
tion is suõciently accurate as long as only a small broadening and well-resolved photon
sidebands are present. his is suõcient for the scope of this work, and it turns out that this
approximation is adequate for explaining all our data (for the more general calculation, see
González et al. [186]).

In the context of this approximation, the Green’s function gL of the tip in Eq. (6.34)
depends only on the time diòerence τ − τ′, so the corresponding Hamiltonian has become
time-independent, and thus also the self-energy is diagonal in the frequency representation.
herefore we can perform a Fourier transformation to represent the Green’s function in the
energy domain. he prior and subsequent exponential functions eòectively only perform
as a translation operator, changing the self-energy to

Σ0
R(ω) = ∣T ∣2∑

n

J 2
n
( eVHF

Ω
) gL (ω − (eV + nħΩ) τz) . (6.35)
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Now the Green’s function gL can be interpreted in the way, that due to the bias voltage
and its ac ûeld component the electrons (holes) tunneling into the substrate lose (gain) an
energy of eV + nħΩ.

If we now focus on the retarded and advanced correlation functions, not much changes,
and Eq. (6.28) becomes

G
r/a
R = ∣ψ⟩ 1

ω − є0 − Σ̃
0,r/a
R

⟨ψ∣ , (6.36)

with the projection of the self-energy onto the YSR states split into real and imaginary part

Σ̃
r/a
R = ⟨ψ∣Σ0,r/a

R ∣ψ⟩ = Λ(ω) ∓ iΓ(ω)
2

. (6.37)

Performing the projection results in

Σ̃
0,r/a
R (ω) = ∣T ∣2∑

n

J 2
n
( eVHF

ħΩ
) [∣u∣2gr/a

L (ω−n) + ∣v∣2gr/a
L (ω+n)] , (6.38)

where we deûne ω±i = ω ± (eV + iħω). With the explicit expression of the tip Green’s
function4 g

r/a
L the imaginary part Γ(ω) of the self energy can be calculated by

Γ(ω) = ∑
n

J 2
n
( eVHF

ħΩ
) [Γh(ω−n) + Γh(ω+n)] . (6.39)

Here electron and hole tunneling rates are deûned similar to Eq. (6.40) and Eq. (6.40) in
the previous chapter as

Γe(ω) = 2π
ħ

∣u∣2∣T ∣2ρ(ω−) and (6.40)

Γh(ω) = 2π
ħ

∣v∣2∣T ∣2ρ(ω+) , (6.41)

including the BCS density of states ρ(ω) as its already deûned in Eq. (6.13). his allows one
to interpret Γ as the broadening of the YSR state due to the photon-assisted tunneling of
electrons and holes in the tip.

4he retarded and advanced Green’s function of the tip is

g
r/a

L (ω) ≃
⎧⎪⎪⎨⎪⎪⎩
−πρ0

ω
√

∆2−ω2
, ∣ω∣ < ∆

∓iπρ0
∣ω∣

√

ω2−∆2
, ∣ω∣ > ∆
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In the same way, the real part of the self-energy can be determined as

Λ(ω) = −πρ0∣T ∣2∑
n

J 2
n
( eVHF

ħΩ
)
⎡⎢⎢⎢⎢⎣

∣u∣2ω−n√
∆2 − ω2−n

θ(∆ − ∣ω−n∣) +
∣v∣2ω+n√
∆2 − ω2+n

θ(∆ − ∣ω+n∣)
⎤⎥⎥⎥⎥⎦
,

(6.42)

describing a frequency-dependent renormalization of the energy of the YSR state.
To ûnally calculate the current from Eq. (6.31) the lesser self energy, which results from

Eq. (6.38) and the lesser tip Green’s function g<L ≃ 2πinF(ω)ρ(ω), is needed

Σ̃<
R(ω) = i∑

n

J 2
n
( eVHF

ħΩ
) [Γe(ω−n)nF(ω−n) + Γh(ω+n)nF(ω+n)] . (6.43)

as well as the lesser Green’s function of the sample, which also follows directly as

G<
R(ω) = ∣ψ⟩ Σ̃<

R(ω)
[ω − є0 − Λ(ω)]2 + [Γ(ω)/2]2 ⟨ψ∣ , (6.44)

using the identity G<
R = Gr

RΣ
<
RG

a

R. So the current can now be expressed as a function of the
energy

I(ω) = e

h ∫ dωTr{τz [G<
R(ω)ΣaR(ω) +Gr

R(ω)Σ<
R(ω)

−Σ<
R(ω)Ga

R(ω) − Σr

R(ω)G<
R(ω)]} . (6.45)

and by using the further identity Gr

R −Ga

R = Gr

R(Σr

R − Σa
r
)Ga

R, as well as the fact that the self
energy ΣR is diagonal in the Nambu space and commutes with τz, we can rewrite it one last
time to

I = e

h ∫ dωTr{τz [Gr

R(ω)(Σr

R(ω) − ΣaR(ω))Ga

R(ω)Σ<
R(ω)

−Gr

R(ω)Σ<
R(ω)Ga

R(ω) (Σr

R(ω) − ΣaR(ω))]} . (6.46)

By evaluating this equation we obtain for the current

Ia =
2e
h ∫ dω∑

n,m
J 2

n
( eVHF

ħΩ
)J 2

m
( eVHF

ħΩ
) Γe(ω−n)Γh(ω+m)[nF(ω−n) − nF(ω+m)]

[ω − є0 − Λ(ω)]2 + [Γ(ω)/2]2 . (6.47)

So far we have only considered the coupling between the tip and YSR state due to tun-
neling. he current resulting from this interaction is carried by Andreev processes. No
single particle processes are possible at zero temperature (T = 0). But the YSR state also
couples to the substrate itself as described in section 2.6 .2. his leads to relaxation and
excitation processes mediated by phonons or photons for ûnite temperatures (T ≠ 0), which
themselves contribute a self-energy Σph to the Green’s function of the substrate. hese
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processes enable single-electron (hole) tunneling processes which occupy (empty) the YSR
state by being thermally relaxed into the continuum (excited from the continuum) with the
new introduced rate Γ1 (Γ2). For the theoretical description of these processes, we consider
this time only the imaginary part of the self-energy

Im(Σ̃ph) = Im(⟨ψ∣Σph∣ψ⟩) = 1
2
Γph =

1
2
(Γ1 + Γ2) . (6.48)

hus the projected self-energy from Eq. (6.38) becomes

Σ̃
0,r/a
R (ω) = ∣T ∣2∑

n

J 2
n
( eVHF

ħΩ
) [∣u∣2gr/a

L (ω−n) + ∣v∣2gr/a
L (ω+n)] +

1
2
(Γ1 + Γ2) , (6.49)

and the imaginary part from Eq. (6.39) changes to

Γ(ω) = ∑
n

J 2
n
( eVHF

ħΩ
) [Γe(ω−n) + Γh(ω+n)] + Γ1 + Γ2 . (6.50)

Finally the lesser self-energy from Eq. (6.43) is transformed into

Σ̃<
R(ω) = i [∑

n

J 2
n
( eVHF

ħΩ
) [Γe(ω−n)nF(ω−n) + Γh(ω+n)nF(ω+n)] + Γ2] , (6.51)

including Γ2. Γ1 enters accordingly into the greater self-energy Σ̃>
R. So we are now getting a

single particle current

Is =
e

h ∫ dω∑
n

J 2
n
( eVHF

ħΩ
) Γ1

Γe(ω−n)nF(ω−n) − Γh(ω+n)nF(ω+n)
[ω − є0 − Λ(ω)]2 + [Γ(ω)/2]2

−∑
m

J 2
m
( eVHF

ħΩ
) Γ2

Γe(ω−m)(1 − nF(ω−m)) − Γh(ω+m)(1 − nF(ω+m))
[ω − є0 − Λ(ω)]2 + [Γ(ω)/2]2 (6.52)

next to the Andreev current which add up to the total current I = Is + Ia. By making the
replacements

Γe(ω) = 2πT2∣u∣2∑
n

J 2
n
( eVHF

ħΩ
) ρ(ω−n) , (6.53)

ΓnF
e (ω) = 2πT2∣u∣2∑

n

J 2
n
( eVHF

ħΩ
) ρ(ω−n)nF(ω−n) and (6.54)

Γ1−nF
e (ω) = 2πT2∣u∣2∑

n

J 2
n
( eVHF

ħΩ
) ρ(ω−n)[1 − nF(ω−n)] , (6.55)

together with the similar replacements for Γh, where ∣u∣2 → ∣v∣2 and ω−n → ω+n has to
be substituted, Eq. (6.47) and Eq. (6.52) can be reduced to the already known form from
Eq. (5.7) and Eq. (5.8). he electron and hole tunneling rates Γe,h(ω), which also in�uence
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the resulting broadening, now include the absorption and emission of photons. Here, these
tunneling rates each take on a structure similar to the one of Tien-Gordon (see section
6.4). It should be noted that although these individual processes described by the rates
have a Tien-Gordon like form, it can be directly seen from Eqs. (6.47) and (6.52), that this
no longer applies to the entire tunneling current, as combinations of the rates are included
in the expressions as well as the width of the bound state resonance in the denominator.
his last point, that the width of the bound state resonance is given by the sum of the
single rates, which in the case of the Andreev re�ections are dominated by the electron and
hole tunneling rate, is only describable by low order perturbation theory in the tunneling
Hamiltonian.

6.4 Discussion of the Tien-Gordon-Like Patterns

In the description of photon-assisted tunneling processes, one encounters a very speciûc
mathematical form, no matter if regarding the tunneling current I, the conductance G, or
the tunneling rates Γe,h. All of them contain a sum over the squared Bessel function J 2

n
(α),

like for example the conductivity

G(V) = dI
dV

= ∑
n

J 2
n
(VHF

Vph
)G(0)(V + nVph) , (6.56)

where the Bessel functions argument α consists of the ratio between HF amplitude VHF and
the voltage Vph = ħΩ/ke associated with the photon energy per tunneling electron. he
absorbed (emitted) energy is thereby distributed over all k electrons involved in a tunneling
process. he squares of the Bessel functions of the ûrst kind are shown in Fig. 6 .2(a) up
to the fourth-order n. he graphs of Bessel functions resemble oscillating sine or cosine
functions for large α, decaying proportionally to α− 1

2 .
If one recalls the integral deûnition of the Bessel function

Jn(α) =
1
π ∫ π

0
dτ cos(nτ − α sin(τ)) (6.57)

one can see that the integrand only becomes relevant when α ≈ n. While α < n the
oscillations are strongly suppressed and the Bessel functions are as good as zero, since the
sine can be neglected compared to nτ and thus the integral of the cosine disappears since it
is integrated over integer multiples of a half-period. Only starting at α ⪆ n the oscillations
are formed.

Next to the sum of the Bessel function squares, there is always the corresponding term
without the in�uence of high frequency, in this case, the conductivity without HF radiation
G(0). his term is not evaluated at the voltage V itself but shi�ed by nVph, where n is the
order of the Bessel function.
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Figure 6.2 | Discussion of the Tien-Gordon like sideband structure occurring during
photon-assisted tunneling. (a) Bessel function squares J 2

n (α) up to order n = 4. Its argu-
ment is proportional to the HF amplitude VHF. (b) Theoretical composition of the 2D plots by
horizontal plotting of the Bessel function. Thereby the n-th Bessel function is shifted along the
bias voltage by ±n.

here is also the possibility to understand the V-shape as a visual composition of several
shi�ed Bessel functions as shown in the 2D representations in Fig. 6 .2(b). Here, the
idealized representation of the Bessel function is shown as a function of the HF amplitude
and the bias voltage, where G(0) is assumed as a Lorentz peak with an amplitude of one.
Taking a horizontal cut in the middle of the spectrum at Vdc = 0, one gets the zeroth order
of the Bessel function J 2

0 along the horizontal line. he ûrst order J 2
1 is also mapped along

a horizontal cut, but now shi�ed by Vph along the vertical direction. Generalized, the Bessel
function J 2

n
is being shi�ed by nVph. It becomes apparent that the frequency Ω of the HF

wave enters at two points. On the one hand, it determines the distance of the shi� and thus
the spacing of the pattern of the internal structure of this splitting, on the other hand, it
also enters the argument of the Bessel function as a compression factor, which leads to the
fact that the splitting always has an opening angle of ∼1VHF/Vdc.
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7
Inæuence of HF Radiation on Pristine
Superconducting Tunnel Junctions

Within this chapter, I will describe how photon-assisted tunneling can be used to
gain detailed knowledge about the tunneling process across a scanning tunneling mi-
croscope (STM) junction. For this purpose, we examined three diòerent processes. First,
we used photon-assisted tunneling to study single-electron tunneling into superconducting
substrates. hen we looked at two-electron processes, like Cooper pair tunneling in the
Josephson eòect or Andreev re�ections. We use the simulation based on the method of
Tien and Gordon from Section 6.2 as a theoretical basis to describe these processes. his is
of relevance for understanding the tunneling in subgap states in the following Chapter 8.

7. 1 Photon-Assisted Tunneling Through Coherence Peaks

With large junction resistances, tunneling into a superconductor-superconductor junction
takes place primarily above a threshold value of ∣V ∣ = 2∆/e. Beyond this voltage, it is possible
to excite a quasi-particle in both, tip and substrate, which is necessary for a single-electron
tunnel process in a superconducting junction. his process leads to the formation of so-
called Bardeen-Cooper-Schrieòer (BCS) coherence peaks at the threshold ∆tip+∆sample = 2∆.
For bias voltages below this threshold, the tunneling process would have to involve either
tunneling into subgap states that are not existing in clean superconductors or Cooper
pairs would have to be transmitted directly, e.g. in the Josephson eòect or as Andreev
re�ections. As two-electron processes, these two latter processes are far less probable at
large junction resistances as the probability for each tunneling process is proportional to
the square of the tunneling amplitude T2 ≪ 1 (Fermi’s golden rule, Eq. (2.26)). herefore
the current for single-electron processes is proportional to T2, compare with Eq. (3.1). Two-
electron processes, in contrast, scale to the fourth power (∝ T4) as two tunnel processes
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take place and can be neglected for large junction resistances as in this case for 20MΩ,
which corresponds to a junction conductivity of GN = 50nS.
Exposing the BCS coherence peaks to an HF ûeld splits them into symmetric sidebands

with a distinct pattern of maxima and minima, as shown in Figure Fig. 7. 1(a) and (c), with
the latter being a magniûcation of the ûrst. he shape of the splitting follows a V-like shape.
Within the V shape, an oscillating pattern with alternating dark and bright regions appears.
he intensity of the dI/dV signal decreases as the splitting progresses, i.e. the stronger
the irradiated HF is. Along the bias voltage direction, the outermost oscillations have the
greatest intensity, decreasing with each maximum towards the center and thus having the
maximum with the lowest intensity near the center. he opening angle of the shape is
approximately ∼1 V/V.

he distance of adjacent maxima along the bias voltage direction is 161(10)µV. To
determine this distance, we placed vertical lines by eye through several maxima along
the direction of increasing HF amplitude VHF. We then averaged over several of these
distances between adjacent lines and calculate the error from the statistical distribution of
the distances (see the Appendix A.1 for more details). To make the best use of our energy
resolution, we have chosen to use the maximum frequency that our setup allows, which
is f = Ω/2π = 40GHz. his followed directly from one of the ûrst observations we ever
made, namely that the splitting is HF frequency-dependent and increases proportionally as
a function of the frequency (see Section 6.4).

Within themechanismoutlined in Fig. 6 . 1 we can understand this splitting into sidebands
as the emission and absorption of photons within the tunneling process. his leads to a
modiûcation of the threshold voltage e∣V ∣ + nħΩ = 2∆ from which on coherent tunneling
is possible. he resulting V-like shape follows from the maximum number of photons
n < Λ = eVHF/ħΩ that a tunneling electron can exchange with HF ûeld. he splitting of the
inner structure corresponds to ħΩ/e and is therefore direct evidence for single-electron
tunneling.
A quantitative analysis is done using the conductivity resulting from the equation (6.12)

G(V) = dI
dV

= ∑
n

J 2
n
( eVHF

ħΩ
)G(0)(V + nħΩ/e) . (7.1)

he strength of the nth sideband includes the Bessel function Jn and the function G(0),
which represents the dI/dV signal in the absence of HF radiation and is evaluated at a
voltage shi�ed by n times the photon energy over the electron charge. Fig. 7. 1(b) and (d)
show the excellent agreement between our experimental results and the simulation that is
based on equation Eq. (7.1) (see also Fig. 7.6). Note that even the 2-band character of the lead,
which can be seen in the zoom by the double structure of the coherence peak, is reproduced
by the simulation. his property of lead is already introduced into the simulation by the
spectrum without HF radiation. A detailed discussion of the in�uences of the two-band
characteristic and a comparison with other surface orientations can be found in section
7.5. However, the fact that this property is also re�ected in such a convincing form in the
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Figure 7.1 | Splitting of the BCS coherence peaks in an HF äeld and comparison with ac-
companying simulation based on the spectrum not exposed to HF. Color maps of the split-
ting of the coherence peaks in a Pb-Pb(110) junction, with the dI/dV spectra under HF radiation
of f = 40GHz (left) and their simulation (right). (a) The BCS coherence peaks surrounding the
superconducting energy gap of 2∆ split in a V-shaped pattern due to HF radiation. The sideband
splittingwithin the pattern is ħΩ/e, which indicates single-electron tunneling. The spectrumwas
recorded using the following setpoint and measurement parameters: VBias = 10mV, I = 500 pA,
VLock-in = 40 µV and fLock-in = 873 Hz. For the rescaling of the HF amplitude, an attenuation of
the cable path up to the junction of 56.6 dBm was determined. (c) Detailed view of the splitting
in (a) for the coherence peak at negative bias voltage up to an HF amplitude of 1.5mV. (b) and
(d): Simulations corresponding to the measurements. The simulations are based on a Tien-
Gordon-like expression from Eq. (7.1), which includes the HF amplitude VHF, the frequency Ω and
the measured conductance G(0) without HF äeld. It is assumed that the number of electrons k
involved in the tunneling process is k = 1.
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Figure 7.2 | Josephson peak splitting in an HF äeld and comparison with simulation in-
volving Cooper pair tunneling. (a) Splitting the Josephson peak at zero bias into a V-shape
with a sideband spacing of ħΩ/2e, revealing the Cooper pair tunneling. The spectrum is recorded
in the same Pb-Pb(110) junction as Fig. 7. 1, with the following setpoint and measurement param-
eters: VBias = 10mV, I = 50 nA, VLock-in = 40 µV and fLock-in = 873 Hz. For the rescaling of the HF
amplitude, an attenuation of 57.3 dBm was determined. (b) Simulation that shows the splitting
of the Josephson peak. It is based on the Tien-Gordon like expression from Eq. (7.2). To reæect
the Cooper pair tunneling k = 2 charge carriers per elementary tunneling process are assumed.

results is proof that the model of photon absorption and emission captures the regime set
by large tunnel resistances and adequate HF amplitudes (VHF ⪅ ∆).

7.2 Photon-Assisted Josephson Eàect

In contrast to single-electron tunneling, the Cooper pair tunneling in the Josephson eòect
does not require excitations of quasiparticles in tip and substrate. Consequently, it can
be observed as a Josephson peak at zero bias voltage. Again, the HF ûeld splits the peak
into a distinct V-shape with structures of resonant sidebands, as shown in Fig. 7.2(a).
hese results conûrm the observations also made in the investigations of Ref. [189, 190].
As a two-electron process, the eòect scales with∝ T4, the fourth power of the tunneling
amplitude, and thus can be observed as soon as the junction conductance is large enough.
he setpoint of GN = 5 µS is chosen in such a way, that the Josephson peak is already intense,
that even a�er the splitting and the resulting distribution of the intensity to the sidebands,
these bands are still well resolved. he distance between these sidebands is now 82(5)µV,
which is about half of the distance we found for the BCS coherence peaks. his is consistent
with the theoretical considerations from Eq. (6.19), which predict a splitting of ħΩ/2e and
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Figure 7.3 | Simulating the Josephson peak splitting with single electrons. Simulation
analogous to Fig. 7.2(b) where this time only k = 1 charge carriers per elementary tunneling
process were assumed, resulting in an expression similar to Eq. (7.1). The comparison shows a
clear diàerence to the experimental data. The inner pattern has doubled in distance due to the
assumption of single electrons tunneling, whereas the V-shape remains unchanged in its outer
boundaries.

yields the conductivity

G(V) = dI
dV

= ∑
n

J 2
n
(2eVHF

ħΩ
)G(0)(V + nħΩ/2e) . (7.2)

he simulation that is based on this equation is compared to themeasured data in Fig. 7.2(b)
and shows excellent agreement with the data. In contrast, Fig. 7.3 shows how the simulation
changes when assuming single electrons instead of Cooper pairs as it is described in Eq. (7.1).
his direct comparison is in perfect agreement with the predictions discussed in Section
6.4. he opening angle of the split and the outer boundary remain identical, but the inner
pattern of the split changes. here is a doubling of the distances between the regions with
maxima and minima if only a one-electron process is assumed. In summary, the simulation
can be seen as direct evidence for Cooper pair tunneling.

7.3 Photon-Assisted Andreev Reæections

To further demonstrate our ability to determine the number of elementary charge carriers
in the superconducting STM junction, we next investigate multiple Andreev re�ections
(MARs) in the presence of an HF ûeld. Andreev re�ections appear at energies of e ∣V ∣ =
2∆/k, with k ≥ 2. he dI/dV peak, in the case of k = 2, results from the transfer of a
Cooper pair into the substrate, for which two quasi-particles are generated in the tip, or
from the opposite process, in which two quasi-particles are generated in the substrate and a
Cooper pair is transferred into the tip. For larger k, additional Cooper pairs are transferred
by means of further re�ections. While for odd k a quasi-particle is generated in tip and
substrate each and transferred as Cooper pair, two quasiparticles are created on the same
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Figure 7.4 | Splitting of theMAR peaks under HF radiation and comparison with the sim-
ulation. (a)MARs measured on a Pb adatom on Pb(111). As explained in the text, the d2I/dV 2
signal is shown here to make the rather weak splitting in the ärst Andreev reæections at eV = ±∆
visible by increasing the contrast. The splitting also follows the known V-shape and splits like
the Josephson eàect with ħΩ/2e, which reæects a two-electron transfer. The spectrum was
recorded at rather high normal state conductance of GN = 40 µS using the following setpoint
and measurement parameters: VBias = 5mV, I = 200 nA, VLock-in = 20 µV and fLock-in = 929Hz. For
the rescaling of the HF amplitude, an attenuation of 53.3 dBm was determined. (b) Simulation,
which shows the splitting of the MARs. It is based on the expression from Eq. (7.3), in which k = 2
represents the two-electron character.

side of the junction for even k as for k = 2 (see Fig. 2 . 10 in Section 2.5). In Fig. 7.4(a), the
ûrst two (multiple) Andreev re�ections for k = 2 and 3 can be seen next to the zero-bias
Josephson peak, accordingly at energies of eV = ±∆ and eV = ±2∆/3.
Compared to the two previous measurements, the measurement of the MAR was done

on the Pb(111) orientation. Since the signal of MARs is relatively weak, e.g. compared to the
signal of the Josephson peak, we had to adjust two things in the measurement procedure
to be able to resolve the splitting of the Andreev re�ections with our setup. On the one
hand, we would like to increase the normal state conductance even more in order to further
increase the signal-to-noise ratio. However, this is where we encounter a material-speciûc
limit of lead, namely that it is relatively so� compared to other superconducting materials
such as niobium or rhenium. his causes the junction to become unstable when the tip
and the substrate are brought into too close proximity, resulting in an unsuitable signal-
to-noise ratio due to increasing attractive forces between tip and substrate, which can lead
to a premature deformation of the junction or even to an accidental tip crash. To prevent
this we can take advantage of a general property of superconductors (as we study a purely
superconductive eòect with the Andreev re�ections), namely that superconductivity is a
macroscopic phenomenon on the order of the intrinsic Ginzburg-Landau coherence length
that is for lead ξGL = 51 nm to 83nm [169]. For this reason, we are able to change the
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geometry of the junction at the atomic level to increase stability. his is achieved by adding
a lead adatom to the junction and since the substrate is no longer �at, the intermolecular
forces are reduced when measuring above the adatom. hus it is possible to increase the
normal state conductance to a value of GN = 40µS for this measurement while maintaining
the stability of the junction. A second way to increase the signal to noise ratio is to record
the d2I/dV 2, which gives a better resolution and makes even smaller changes visible. In the
measurements of the coherence peaks and the Josephson eòect, this was not necessary and
we preferred the direct display of the conductivity. To further improve the signal quality, we
have chosen quite high averaging times per data point for this measurement, which must be
carefully weighed against the low-frequency noise that can render the measurement useless
due to artifact production.

he ûrst thing to notice when comparing the process with one re�ection (k = 2) with the
following (k = 3) is that the latter has a much lower intensity as a direct consequence of the
additional electron transported across the junction. he in�uence of the HF ûeld is again
a splitting of both detectable Andreev re�ections into a V-shaped pattern, as previously
observed for the Josephson eòect (a direct comparison with the Josephson peak at zero
bias voltage is possible in Fig. 7.4). It can also be seen that although the energetically lower
Andreev re�ection splits in a V-shape, due to the weak intensity and the small distance to
the much more intense two-electron Andreev re�ection, it is not possible to investigate an
internal structure in this splitting. For the more intense Andreev signal, we ûnd a sideband
spacing of 91(9) µV, equal to ħΩ/2e, revealing the underlying charge transfer of 2e. Fig. 7.5
shows a schematic illustration for the photon-assisted Andreev re�ections demonstrated
by the formation of the ûrst sideband of the Andreev re�ection at eV = ±∆. It is shown
that with the help of the HF ûeld it is possible to transport a Cooper pair by means of
an Andreev re�ection already at a voltage lowered by ħΩ/2e. Here, the energy ħΩ of the
absorbed photon is shared between both charge carriers involved in the process.
Also for the Andreev re�ections, the simulation shown in Fig. 7.4(b) is in excellent

agreement. Instead of the conductivity as in Eq. (7.2) we have here simulated its derivative,
which directly results as

dG(V)
dV

= d2I

dV 2 = ∑
n

J 2
n
(2eVHF

ħΩ
)dG(0)(V + nħΩ/2e) , (7.3)

where within dG(0) again the spectrum recorded without HF voltage forms the basis for
the simulation.

7.4 Generalized Tien-Gordon Theory

his chapter has so far investigated photon-assisted tunneling using three characteristic
transport resonances of the superconducting spectra. he splitting of all three processes
is summarized in Fig. 7.6. Here selected spectra (blue) are presented and compared to
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eV = ∆ − ħΩ/2
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Figure 7.5 | Photon-assisted tunneling process leading to the ärst sideband of the ärst
Andreev reæection. The Andreev reæection takes place at a bias voltage of V = ∆/e − ħΩ/2e.
Without HF radiation the process would be prohibited at this voltage. The HF äeld allows an
electron to be excited in the tip and tunnel at an energy increasedby ħΩ. This electron is reæected
symmetrically to the Fermi energy of the substrate as a hole. Thus a Cooper pair can relax into
the substrate and the reæected hole can tunnel at −∆ into the älled quasi-particle states of the
tip.

their respective simulations (red). Once again, the impressive agreement of the data with
its theoretical description is apparent. hese ûts can be used to determine the attenuation
very precisely because the peak structure with all its details is very sensitive to the smallest
changes in the HF amplitude.

he simulations are based on the Tien-Gordon-like expressions in Eq. (6.12), Eq. (6.17),
and Eq. (6.19), all derived in Chapter 6. hese three expressions can be generalized to a
single formula for the conductance

G(V) = dI
dV

= ∑
n

J 2
n
(keVHF

ħΩ
)G(0)(V + nħΩ/ke) , (7.4)

where k indicates the number of transferred electrons. One of the explicit advantages of
this model by Tien and Gordon is that it does not require a complete understanding of
the physics underlying the tunneling process to describe photon-assisted tunneling. It is
suõcient to measure the eòect without the in�uence of high frequency. Once a spectrum
of the eòect has been recorded, it is also possible to describe the eòects of the HF ûeld
on it, despite the fact that such a spectrum, with its large number of measurement points,
introduces a lot of redundant information into the simulations. In summary, this is a
simplistic method to determine the number of charge carriers k just by comparing the
results of diòerent simulations without the need for additional parameters, apart from the
known HF frequency.
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Figure 7.6 | Cuts of PAT of the Coherence, MAR and Josephson peaks. Selected individual
dI/dV and d2I/dV 2 spectra from the color maps. Shown are experimental data (blue) at diàerent
HF amplitudes from (a) the BCS coherence peaks from Fig. 7. 1, (b) the Josephson peak from
Fig. 7.2, and (c) the MAR from Fig. 7.4. The corresponding simulations (red) are based on the
Tien-Gordon-like expressions generalized in Eq. (7.4). For (c), the simulation was diàerentiated
once more accordingly. The simulation includes the applied HF voltage of VHF, the frequency
Ω/2π = 40GHz, and G(0)(V ) the measured spectrum without applied high frequencies as input
parameters. The one-electron processes in (a) is simulated with k = 1, whereas the two-electron
processes in (b)-(c) k = 2 is used. The spectra are oàset for clarity. The experimental parameters
can be taken from the captions of the color maps.

he question is whether the generalization remains valid for processes with k > 2? We
have only shown examples for k = 1 and 2. he obvious system to test this are multiple
Andreev re�ections as shown schematically in Fig. 2 . 10(d) for k = 3. Although we detect
these, as can be seen in Fig. 7.4(a) and Fig. 7.6(c) from the peaks at e ∣V ∣ = 2∆/3 = 0.9meV,
we have not yet been able to validate the generalization. Our resolution is not suõcient
to resolve the splitting in the Andreev bound states, which become weaker and weaker in
intensity for higher-order Andreev processes. Two factors make this measurement diõcult.
First, the photon-assisted splitting reduces the signal intensity even further, and second, the
signal of interest is superimposed by the splitting of neighboring peaks with most likely
diòerent k. To obtain conclusive results, it is advisable to avoid these interferences. his
is possible by either reducing the frequency which leads to a faster formation of the inner
patterns at lower HF amplitudes, but requires a higher energy resolution in order to be
able to resolve the reduced distances in the pattern. Alternatively, superconductors with
larger gap parameters ∆ can be used to increase the separation between the Andreev peaks.
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Figure 7.7 | Photon-assisted splitting of the coherence peaks on Pb(111). Color plot of the
dI/dV spectra on a clean Pb(111) sample. This plot contrasts with the Figs. 7. 1 and 7.2 and
is intended to allow comparison with a diàerent surface orientation of the lead crystal. The
junction conductance is 18 µS and the junction is exposed to radiation of 31 GHz. The splitting of
the Coherence peaks, the Josephson peak and (very faint) the ärst MAR can be observed. The
spectrumwas recorded using the following setpoint andmeasurement parameters: VBias = 5mV,
I = 90 nA, VLock-in = 30 µV and fLock-in = 873 Hz.

However, the generalization seems plausible, since it eòectively states that k charge carriers
share the energy ħΩ provided by the HF ûeld, but it remains to be conûrmed.

7.5 Inæuence of the Two-Band Characteristic of Pb

Pb is a two-band superconductor as already outlined in Section 5.1 .3. In the following,
we show based on our results, how the two Fermi sheets of Pb aòect the photon-assisted
tunneling. herefore, in addition to the previously described data of the coherence and
Josephson peaks on Pb(110), we also measured on Pb(111) shown in Fig. 7.7 and Fig. 7.8.
he tunneling spectra for the two surface orientations diòer only in the relative strengths
of tunneling into the two distinct Fermi sheets of the Pb substrate. his leads to diòerent
relative weights of the two BCS-like coherence peaks [160]. Fig. 7.7 shows in a 2D diòerential
conductance map the individual splitting of the two coherence peaks as a function of the
HF ûeld. his is shown in greater detail in Fig. 7.8(a) using exemplary dI/dV spectra
(blue) from the 2D map. he similar amplitudes of the two coherence peaks indicate that
the tunneling probability in the two diòerent Fermi sheets is approximately the same for
this high-conductance data. he coherence peaks were again simulated based on Eq. (7.4)
with k = 1 (orange). Besides the coherence peaks, the ûrst Andreev re�ections and the
Josephson peak are also visible due to the high conductance. In Fig. 7.8(b) the splitting of
the Josephson peak is also shown as a 2D map.

Within the framework of the Tien-Gordon theory, the two coherence peaks are each in-
dividually split when exposed to HF radiation. his is included in the previously established
simulation. A comparison of the experimental data with the simulations in Fig. 7.8(a)
shows again an excellent agreement and thus conûrms the independent splitting. hus, we
have shown that the two-band nature of Pb does not aòect photon-assisted tunneling in
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Figure 7.8 | Comparison of photon-assisted tunneling for the Coherence peaks and the
Josephsoneàect on another surface orientation. (a) Single spectra showing photon-assisted
tunneling for the Coherence peaks and the Josephson eàect on Pb(111) surface orientation
contrasting the data in Figs. 7.6(a) and (b) on Pb(110). The data (blue) are taken from Fig. 7.7 and
are accordingly exposed to HF radiation of 31 GHz and recorded at a junction conductance of
18 µS. The two coherence peaks of the two-band superconductor split up individually by the
photon-assisted tunneling, which is conärmed by the superimposed simulation (orange) based
on our theory using Eq. (7.4) with k = 1. (b) Close-up view of the Josephson peak splitting. The
spectrumwas recorded using the following setpoint andmeasurement parameters: VBias = 5mV,
I = 90 nA, VLock-in = 30 µV and fLock-in = 873 Hz.

a particular way. As before, the splitting results from the features of the irradiation-free
spectrum, which already includes the two-band character.

Moving our focus away from the coherence peaks and towards the subgap states, we
do not ûnd any in�uence of the two-band nature of Pb. Fig. 7.8 shows the Josephson
eòect analogous to the coherence peaks above also on the Pb(111) surface. We can not ûnd
any diòerence to the split from Fig. 7.2, as the Josephson peak is not aòected by the gap
structure. For the MAR we would expect an eòect similar to the coherence peaks since this
process involves tunneling into them as shown in Fig. 7.5. However, our resolution is not
suõcient to draw any conclusions, because the MAR intensities are too small to detect the
two diòerent thresholds, regardless of the surface orientation.
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8
Photon-Assisted Tunneling through YSR

States under the Inæuence of HF
Radiation

In the previous chapter, we showed that the approach of Tien-Gordon, as presented in
its generalized form in Eq. (7.4), is very successful in describing photon-assisted tunneling
between a superconducting tip and a bulk superconducting substrate. As a direct result, it
reveals the number of electrons involved in the tunneling process. In this chapter, we ûnd
that Eq. (7.4) does not apply generally for tunneling into subgap states and has to be replaced
by a more elaborate description. Here, we use our extension of the theory described in
Section 6.3 to describe the photon-assisted tunneling through Yu-Shiba-Rusinov (YSR)
states.

8.1 Diàerences Between Single-Electron and Resonant
Andreev Tunneling in the Presence of HF Radiation

In the following, we return to the system of Mnup adatoms on a Pb(111) surface (see Chapter
5), in which several YSR states are induced within the superconducting gap. We concentrate
on the YSR state with the lowest energy at є0 = 0.25meV. he energetic position of the
resonance remains unchanged even when the tip approaches the Mn atom, which is moni-
tored by a change in conductance by three orders of magnitude. However, the relative ratio
of the resonance amplitudes α± changes and is eventually inverted, as shown in Fig. 5 .5.
he inversion re�ects the transition from single-electron tunneling at large tip distances to
a regime at close distances where the dominant processes are resonant Andreev re�ections.
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Figure 8.1 | Photon-assisted tunneling into the YSR state under HF irradiation. (a) Three
V-shaped splittings of the YSR peaks for a low (normal-state) junction conductance (Glow

N =
2 nS = 2.6 × 10−5G0 with G0 = 2e

2/h). The faint structure emerging from eV = ∆ − є0 = 1.1mV is
due to thermally excited quasiparticles. (b) At high conductance (GhighN = 4 µS = 5.2 × 10−2G0),
we observe a V-shaped pattern at positive bias and a distinct Y-shaped pattern with a double-
peak structure on the low-bias branch at negative bias. (c, d) Simulations corresponding to
the junction conductances in (a, b) which are in excellent agreement with the experiment (BCS
peaks were omitted for clarity). For the simulation parameters see Section 8.2 . 1.

he amplitude diòerences between α± reveal the asymmetry in the electron wave function
uє and the hole wave function vє of the YSR state, where ∣uє∣2 ≪ ∣vє∣2.

he measured dI/dV maps of the photon-assisted tunneling through the Pb–Mn–Pb
junction are shown in Fig. 8 . 1(a) and (b) for low and high junction conductance, respectively.
he normal state conductance of this data is identical to that of the data shown in Fig. 5 .3.
For clarity, these conductance values are also marked in the approach curve in Fig. 5 .5.
At low junction conductance, three V-shaped splits are distinctly visible (indicated in
Fig. 8 . 1(a)). For high junction conductances on the other hand (shown in Fig. 8 . 1(b)),
the YSR resonances show a clear diòerence in their splitting structure compared to the
splitting that is expected by the Tien-Gordon theory (see Chapter 7). he map exhibits
the familiar V-shaped pattern for positive bias voltages but exhibits a diòerent pattern at
negative biases. In particular, the V-shaped pattern gives way to a Y-shaped structure, which
is fundamentally diòerent from all previously discussed HF radiation patterns observed on
the unstructured surfaces. However, not only for negative biases but also for positive polarity
the high-conductance data is surprising. We have learned from Ruby et al. that at such
high normal state conductance the current through the YSR state is dominated by Andreev
re�ections, thus by two-electron processes. his number of charge carriers, on which the
tunneling process is based, should be re�ected in the periodicity of the sideband spacing
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with a separation of ħΩ/2e, corresponding to 83 µV at a frequency of 40GHz. However, the
data show a splitting of 163(5) µV, which would correspond to a charge transfer of 0.99(3) e.
his result would suggest single-electron tunneling and is therefore in clear contradiction
to our expectation. It becomes obvious that our previous understanding of photon-assisted
tunneling is no longer suõcient to resolve this contradiction. A third and ûnal observation
in the high-conductance data is a double structure along the low-voltage arm of the Y-shape.
It appears that on this side of the outer boundary of the Y-shape, two diòerent gradients
deûne the splitting.

8.1 . 1 Single-Electron Tunneling

Before we go into detail on how to interpret the high conductance data with its surprising
observations, we ûrst have to discuss the low conductance data in Fig. 8 . 1(a). his map
shows for both polarities the familiar V-shaped patterns centered around e ∣V ∣ = ∆ + є0. We
extract a sideband spacing of 161(7) µV, corresponding to a charge transfer of 0.97(5) e. For
this reason, we interpret the process as tunneling of a single electron, leaving a quasiparticle
in the tip and occupying the YSR state at the energy є0.
We have shown in Section 6.2 and demonstrated in the previous chapter, that the

in�uence of the HF radiation can be simulated based on a radiation-free spectrum – which
we will refer to as spectrum-based simulation. However, the information content of a single
spectrum is very large. Since every data point of the spectrum can be considered as an
input parameter, a large number of partly redundant information enter the simulation.
his redundancy can be resolved by basing the simulation solely on rate equations for the
electron and hole tunneling into the YSR state – the rate-based simulation. hese rates
together with only a few other physical quantities, such as the YSR state energy and the
superconducting order parameter, characterize our system completely, as we described in
Section 6.3. Hence, we have been able to reduce the number of input parameters with
our new rate-based simulation signiûcantly. In Section 8.2 we describe in detail how we
determine each of these parameters. he resulting simulation is shown in Fig. 8 . 1(c) and
demonstrates excellent agreement with the data in Fig. 8 . 1(a).

In a nutshell, this new type of simulation describes the conductance in terms of the
tunneling rates Γ

(0)
e (E) and Γ

(0)
h (E) for electrons and holes. Here the superscript (0)

indicates the radiation-free rates. he energy E → E + nħΩ changes by interactions of the
charge carrier with the HF ûeld. In the case of electrons, a positive value of the integer
number n represents the number of absorbed photons with frequency Ω and a negative
value represents their emission. he reverse is true for holes. Combining rates and energy
change, the Tien-Gordon model yields

Γe,eò(E) = ∑
n

J 2
n
( eVHF

ħΩ
) Γ

(0)
e (E + nħΩ) (8.1)
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as rate for electrons exposed to HF radiation (compare with Eq. (6.53)). he hole rate
Γh,eò(E) results analogously. At relatively small junction conductances, inelastic thermal
processes in the substrate with rates of Γ1 and Γ2 (see Fig. 5 .4) are suõcient for the depletion
of the YSR state long before the next tunneling event takes place, making the tunneling
rates the current limiting factor. herefore the total current can be calculated by integrating
all rates taking into account the thermal occupations of the available states in the tip, as
it is done in Eq. (6.52). In particular, our simulation even reproduces a second, much
weaker V-shaped structure centered around eV = ∆ − є0 originating from the thermally
activated quasi-particles. Finally, it should be noted that for this case of the small junction
conductance, both the spectrum-based simulation model of Section 6.2 and the rate-based
simulation model of Section 6.3 yield the same results. Mathematically they are equivalent
and can be transformed into each other as long Γ1 and Γ2 are large compared to Γ

(0)
e (E) and

Γ
(0)
h (E).
Nevertheless, our rate approach has the advantage of the smaller number of input param-

eters, and is only based on the asymmetry of the YSR states and the particular relaxation
rates. Another advantage is that the model explicitly incorporates the understanding of
the tunneling process. his was not the case for the simple Tien-Gordon model of the
spectrum-based simulation, where only the number of charge carriers underlying the tun-
neling process had to be assumed. An understanding of the physical origin of the spectral
features was not necessary. Overall, we can conclude from the good agreement between the
rate-based simulation and experiment that our assumption of the single-electron tunneling
processes through the YSR state for small conductances is valid.

8.1 .2 Resonant Andreev Reæections

In this section, we want to demonstrate that the rate-based simulation is also applicable
for high conductances, allowing to describe tunneling processes through the YSR state in
the presence of resonant Andreev re�ections. Single-electron tunneling was characterized
by the fact that the inelastic relaxation processes are fast compared to the electron and
hole tunneling rates. By increasing the junction conductance this proportion is reversed as
already described in Section 5.2 . 1. hus, the statistical probability for an inelastic relaxation
process of the YSR state is much lower compared to the electron and hole tunneling rates,
and consequently, the resonant Andreev re�ections become the dominant process for
large enough conductances. As pointed out at the beginning of Section 8.1, the naive
expectations for theHF splitting of a two-electron process being ħΩ/2e and the experimental
observations in Fig. 8 . 1(b) contradict each other.

We need to be able to explain three things: (i) he origin of the Y-shape, (ii) the fact why
the inner distances of the splitting do not re�ect a charge transfer of 2e, and (iii) the double
structure along the low voltage arm of the Y-shape. Since the one-electron tunnel process is
the subordinate process for high conductances, we neglect it for the discussion presented in
this section. he in�uence of HF radiation within the framework of the rate-based model
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results in Eq. (8.1) for the eòective rates and Eq. (6.47) for the resulting current. hese
equations allow us to understand the HF-splitting at the level of the sub-processes involved.

Let us ûrst focus on the Andreev processes detected at negative bias voltage forming the
Y-shape in Fig. 8 . 1(b) that evolves from eV = −(∆ + є0). he process under consideration
consists of a hole tunneling into the resonance of the YSR state at negative energy and an
electron tunneling out of the YSR state at positive energy. For this to be possible, a Cooper
pair is broken in the substrate (see Fig. 5 .4). he resonant nature of this process has two
important implications. At ûrst, Andreev re�ections involving YSR states are stronger than
those of unstructured substrates, as the YSR resonance provides in-gap states in which the
electrons and holes can tunnel into. Additionally, there are clear threshold conditions for
when electron and hole tunneling from the YSR resonance into the quasi-particle states of
the tip is possible. hese are eV +mħΩ ≤ −(∆ + є0) for holes and eV + nħΩ ≤ −(∆ − є0)
for electrons (see Fig. 8 .2). Here, the integers m and n indicate the number of absorbed or
emitted photons of the hole or electron respectively. Not satisfying these inequalities means
that no states in the tip are available for the tunneling process due to the superconducting
tip-gap. In our terminology, we speak of on-threshold processes when equality occurs
in the threshold conditions, meaning the tunneling process originates exactly from the
sharp edge of the coherence peak. All other valid solutions of the inequality are described
as above-threshold processes. Accordingly, in the absence of HF radiation, the electron
process is automatically above-threshold at negative bias when the hole process is. With
incident HF radiation, however, this no longer has to be true, as it will be the case within
the violet-hashed cross-section in Fig. 8 .2(a).

he larger the amount of energy available in the HF ûeld becomes with increasing
amplitudeVHF, the more photons can be emitted and absorbed during the tunneling process.
We can introduce the maximum number of photons Λ = eVHF/ħΩ, which is representing an
upper boundary for ∣m∣ ≤ Λ and ∣n∣ ≤ Λ. As a result, the two thresholds deûne two distinct
V-shaped regions in the negative bias voltage range. One may expect the orange V-shape
in Fig. 8 .2(a) from the hole threshold ∣eV + (∆ + є0)∣ ≤ ΛħΩ = eVHF and another blue
V-shape for the electrons from the threshold ∣eV + (∆ − є0)∣ ≤ ΛħΩ = eVHF. For resonant
Andreev re�ections to occur, both processes must be above-threshold, which means that
resonant Andreev re�ections can only be measured in the outer (orange) V-shaped region.
Likewise, without HF radiation, no spectral ûngerprint of the Andreev processes occurs at
the energy eV = −∆ + є0, because the electron process is only possible together with the
associated hole process.

We can now attribute the observation of both, the Y-shape and the unexpected spacing,
to the strong asymmetry ∣uє∣2 ≪ ∣vє∣2 in the YSR state amplitudes uє and vє for electrons
and holes respectively. Since the tunnel rates are directly proportional to these amplitudes
(compare Eq. (5.5) and Eq. (5.6)), this also implies that the hole tunnel rate Γh,eò is generally
signiûcantly larger than the electron rate Γe,eò. Because we have to consider separate thresh-
olds for the two rates, the electron tunneling can be regarded primarily as the rate-limiting
component. It may be counterintuitive at ûrst, but it is the limiting component of a current
that determines its �ow. his is analogous to rivers or roads, where the narrowest point also
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Figure 8.2 | Portfolio of photon-assisted resonant Andreev tunneling processes illustrat-
ing various thresholds. (a) Schematic overview of the 2D color maps. V-shaped regions with
separate photon-assisted tunnel thresholds for electrons (blue; originating from eV = ±∆ + є0)
and holes (orange; originating from eV = ±∆ − є0). For resonant Andreev reæections to occur,
both electron and hole tunnels must be above-threshold, which has the consequence that
only the structure within the outer V-shapes can be seen. Due to a large asymmetry between
the YSR wave function of electrons and holes at the peak position, electron tunneling is eàec-
tively rate-limiting, and the photon sidebands are most visible in the (blue) electron regions.
At negative biases, this makes the violet region particularly prominent, resulting in a distinct
Y shape indicated by full lines. With positive bias, the outer V (blue) is the result of electron
tunneling, and the sidebands are visible throughout. The dots marked (b)-(m) indicate bias and
HF amplitude, for which tunneling processes are outlined in corresponding panels. In these,
long arrows mark processes that are on-threshold, short full (faint) arrows mark processes above
(below) the threshold. The small black arrows indicate the energy available at the corresponding
HF voltage, which can be absorbed or emitted by the photons.
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determines the maximum transport capacity. Hence, the features in the experiment due
to Γe,eò (blue V-shape) are more pronounced but result only from one of the two separate
threshold conditions. herefore the distance between maxima is ħΩ/e, although the un-
derlying process is based on two-electron tunneling. In combination with the previously
made observation that Andreev re�ections can only occur within the outer orange V-shape,
this also explains why the sidebands occur with stronger intensities in the region where
both V-shapes overlap (violet region). While the electron rate is more important for the
overall appearance of the spectrum, the hole processes can not be neglected. he threshold
of the hole processes leads to a contribution along the low-voltage arm of the Y-shape (solid
orange line in Fig. 8 .2(a)). Along this line, the rates of the electron processes and the hole
processes are of comparable size, since the latter is just beginning to emerge. So in essence,
we explained the Y-shape in two steps, by pointing out the regions in which the rates are
limited and lead to pronounced features. hese are the solid orange line together with the
violet hatched region and both combine to the Y-shape in Fig. 8 .2(a). Moreover, as a result
of the comparable rates along the low-voltage arm, the electron and hole thresholds become
visible side by side. hat region is the only one where the asymmetry is not apparent. his
means that the observed double structure consists of features that can be attributed to both
rate equations.
For a deeper understanding, we take a closer look at the sub-processes involved in the

rate-based description for diòerent characteristic combinations of bias voltage V and HF
amplitude VHF. he panels in Figs. 8 .2(b)-(m) show the underlying processes for selected
points marked in the schematic overview in Fig. 8 .2(a). hese sketches all follow the same
systematic representation: he electron and hole components of the YSR states are shown
as lines in the gap of the substrate (for the electrons blue and solid, the holes orange and
dashed). Here the asymmetry in the amplitude of the states is characterized by the diòerent
length of the lines. Fans indicate all possible energies that the tunneling hole or electron can
have a�er emitting or absorbing photons. Black arrows denote the HF amplitude deûning
the maximum number of photons Λ that can be absorbed or emitted during the process.
Tunneling processes that are on-threshold are marked by long arrows, as they are more
pronounced in intensity due to the large density of states available at the tip. Processes
above and below the threshold value are marked by short arrows. Since below threshold
processes are forbidden, they are shown only for the sake of completeness but in a lighter
color.

To understand the Y-shape, we ûrst focus on the selected points (b)-(d), whose sketches
can be found in the ûgures of the same name in Figs. 8 .2(b)-(d). In (b) and (d), cases are
shown where the hole process is on-threshold, whereas in (c) this is the case for the electron
process. As the weaker of the two processes determines the shape of the spectrum, the
asymmetry of the YSR amplitudes comes into play. Here, in general, the electron process is
the bottleneck. his explains, why the high-voltage arm (orange dashed line) of the orange
V-shape fades, by comparing (b) with the other two sketches. In (b), the electron tunneling
processes take place at energies at which only states in the decaying shoulder of the BCS
coherence peak are available. In (c) and (d), one of the paths of the fan is always in the
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vicinity of the threshold value, which leads to a signiûcantly higher intensity. Since the
electron process is the bottleneck, slight variations in the hole rate are irrelevant and will not
be reproduced by spectral features. Conclusively, as long as these variations occur around
the threshold, the hole process will never become the limiting contribution. he reasoning
can be applied one-to-one to the comparison between points (h) and (i).

Next, we want to explain why the purple hatched intersection of the two V-shapes is
strongly pronounced. he explanation for this can be seen in (c) and (d). he branches of
the fan of the electron process are now energetically in the range of the threshold energy,
i.e. the increased density of states of the BCS coherence peak is available for tunneling as
they are close to being on-threshold.

he last observation to be discussed is the double structure, which is explained by (d).
he crucial point for this argument is that the BCS gap is not inûnitely sharp, but broadened
mainly due to depairing and instrumental broadening. With the further reduction of
the bias voltage proceeding from the situation shown in (d), the hole rate will decrease
continuously and reach the point where it becomes smaller than the electron rate. For this
reason, there are features in this area along the low voltage arm that are due to the changes
in Γe,eò as well as features that are due to the changes in Γh,eò. his results in the particular
double structure. If the bias is reduced even further, the hole processes no longer have any
density of states available and the Andreev processes stop being possible. Following the
same argument, point (j) can be explained, accordingly.
For the explanation of the Y-shape, we have now ûnally used the same approach as we

used in the previous section for simulating the low conductance data, namely transferring
the model from Tien-Gordon to individual tunneling rates. In Fig. 8 . 1(d) the rate-based
simulation for the high conductance case is shown. A comparison once again demonstrates
the excellent agreement with our data. It correctly simulates the Y-shape in which both the
double structure and the sideband spacing are reproduced. A detailed discussion of this
simulation follows in the next Section 8.2.

Now that we have explained in detail how the Y-shape is formed, the question arises why
this does not apply equally for positive bias voltages. his process is also dominated by
resonant Andreev processes and therefore the in�uence of the single-electron processes
by inelastic relaxation is negligible. he question to be answered is, why for positive bias
voltages the splitting does not also exhibit a Y-shaped form but returns to a V-shaped
appearance.

In Fig. 8 .2(a) the V-shape expected from the electron threshold is centered around
eV = ∆ + є0 and is again hatched in blue. he inner V-shape at eV = ∆ − є0 is based on
the hole threshold and hatched in orange. An observation of the Andreev processes is
again only possible within the outer (blue) V-shape because only here both processes are
above-threshold. he asymmetry ∣uє∣ ≪ ∣vє∣ of the YSR wave functions remains unchanged
so that in contrast to the negative polarity, the rate-limiting electron processes are now
associated with the outer V-shape. his ûnding directly explains the diòerences in the
splitting pattern for positive and negative bias voltages. Strongly pronounced sidebands
occur in the entire outer V-shape, only due to changes in Γe ,eò. Since the shape of these
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spectral features is determined again by only one rate, this is also re�ected in the splitting
ħΩ/e of the sidebands.

his can also be seen when looking at the individual processes outlined for positive bias
voltages in Fig. 8 .2. he processes presented in Figs. 8 .2(k)-(m) are equivalent to those
in (h)-(j), with the diòerence that the variations in the hole rate have no in�uence, as it is
not the limiting process within the Andreev re�ections. he same applies to points (e)-(g).
Here Γh,eò and Γe,eò are not comparable, so that the shape is still determined exclusively by
Γe,eò.

he V-shape is also nicely reproduced in our theoretical calculations, on which the
simulation in Fig. 8 . 1(d) is based. It is important to note that for large junction conduc-
tivities, these V-forms are also due to resonant Andreev re�ections and therefore diòerent
from those at low conductivities and should not be confused with them. hermal pro-
cesses require an inelastic relaxation and are therefore much weaker than resonant Andreev
re�ections.

In summary, the analysis of the sub-processes has demonstrated the following: he
limiting electron tunneling rate leads to a fading-high voltage branch at negative bias
voltages. As soon as these limiting rates come close to being on-threshold, they mainly
determine the shape of the spectrum. When the rates become comparable, the in�uence of
the asymmetry is li�ed and both tunneling processes leave their traces in the spectrum. All
things considered, the Y-shape can be described entirely including the double structure, as
well as the V-shape for positive bias voltages.

8.2 Simulating the Photon-Assisted Current Through the
YSR States

In this section, we describe in detail the simulations performed to describe the photon-
assisted diòerential conductance through the YSR state used for Fig. 8 . 1(c) and (d). Our
rate-based simulation relies on only a few input parameters that can be extracted from
the experiment. his is new and distinguishes it from previous theoretical descriptions
of photon-assisted tunneling. So far, the simple Tien-Gordon model required a complete
spectrum without HF radiation as input in order to simulate the in�uence of HF radiation
(see Chapter 7). he following is a summary of the calculation’s formal basis and a detailed
description of how the required parameters are obtained.

he tunneling processes through the YSR states are described using rate equations.
Eq. (8.1) already describes how these rates were modiûed using the model of Tien and
Gordon. Together with the thermal population of the states, these rate equations form the
basis to simulate the currents, i.e. the diòerential conductance. Section 6.3 discusses the
detailed derivation resulting in the two equations Eq. (6.52) and Eq. (6.47): For single-
electron processes, where inelastic excitations and relaxations are required, the current is
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given by
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he current of the resonant Andreev processes is given by

Ia =
2e
h ∫ dω∑n,mJ 2
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ħΩ
)J 2

m
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)
ΓnF
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h
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[ω − є0 − Λ(ω)]2 + [Γ(ω)/2]2 . (8.3)

To obtain the expressions for the conductance required for the simulations, we have to per-
form the derivative of the two currents with respect to the voltage. he voltage dependence
can be found in the expression ω±i = ω ± (eV + iħω).

8.2 . 1 Simulation Parameters

Here we describe, how we determined the input parameters needed for the rate-based
simulation. Practically all parameters can be determined from the HF radiation-free dI/dV
spectrum at low junction conductance (compare with Fig. 5 .3(a)). he only exception is
the overall tunnel strength at large conductance.

General material quantities like the superconducting gap, but also the normal density of
states ρ0 can be assumed to be the same for tip and substrate. Consequently, we can deter-
mine the dimensionless product of ρ0 ∣T ∣ from the normal-state diòerential conductance
GN using equation Eq. (3.10). A normal-state conductance of Glow

N = 2.6 × 10−5G0 gives
ρ0tlow = 8.1 × 10−4. We select the remaining parameters so that the peak heights and the
broadening in the dI/dV spectra in the absence of HF radiation, shown in Fig. 5 .3, are well
represented by equation Eq. (8.2). We ûnd that the following parameter set provides the
best results for reproducing the experimental dI/dV spectra:

є0 = 0.25meV , (8.4)
Γ1 = 0.70 µeV , (8.5)
Γ2 = 0.11 µeV , (8.6)

∣uє∣2 /ρ0 = 0.21meV , (8.7)
∣vє∣2 /ρ0 = 0.83meV . (8.8)

he YSR state energy є0 is read from the spectrum by eye and iteratively corrected in the
simulation process, so that the energetic positions of the peaks are re�ected in the best
possible way. A similar approach was used for the thermal relaxation rates. Here, the
thermal peaks in this spectrum are a very sensitive measure of these rates Γ1 and Γ2, as they
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account for the broadening of the spectra at low conductance. By assuming the spectrum in
Fig. 5 .3(a) to re�ect mainly single-electron tunneling, it can be used to determine ∣uє∣2 /ρ0
at positive bias voltage and ∣vє∣2 /ρ0 at negative bias voltage. In particular, the YSR wave
functions re�ect the ratio ∣uє∣2 / ∣vє∣2 = 0.253 between the peak intensities at ±(∆ + є0).
herefore the electron tunneling process exhibits smaller intensities than the hole tunneling
process.

Moreover, the superconducting gap, the HF frequency, the temperature, and two broad-
ening parameters are used:

∆ = 1.35meV , (8.9)
f = 40GHz , (8.10)
T = 1.35K . (8.11)
Γs = 20µeV , (8.12)

Γsystem = 60µeV , (8.13)
(8.14)

he superconducting gap is the result of ûtting the superconducting coherence peaks of
a clean Pb/Pb junction. In the superconducting density of states in Eq. (5.1) the Dynes
parameter Γs is inserted to describe the depairing of the Cooper pairs. It is determined in
the same ût as the gap, together with the instrumental broadening. his is included to com-
pensate for broadening of unknown source as a Gaussian averaging of the simulated dI/dV
spectra with a width of Γsystem = 60µeV (see Section 3.2 .3). Frequency and temperature are
recorded during the experiment.

In Fig. 8 .3 single selected dI/dV spectra are compared to the simulations based on the
parameters given above. his is done for four diòerent HF amplitudes, respectively, for low
conductance in Fig. 8 .3(a) and high conductance in Fig. 8 .3(b). he spectra are taken from
the same data set as the data shown in Fig. 8 . 1. For both conductances, the lowest of the four
spectra are recorded with almost no HF amplitude. Here it is evident that all the important
characteristics of the spectrum are represented in the simulation, namely the position and
shape (i.e. width and height) of the YSR resonances. Additionally, the simulation also
shows eòects like the well-established negative diòerential conductances (NDCs). Despite
a further increase in the voltage, there is a reduction in the current a�er a process was on-
threshold and therefore, in the simulation, an NDC also mathematically follows as a result
of a convolution between the YSR state with the coherence peak density of states (DoS) of
the tip. he other spectra in Fig. 8 .3(a) re�ect nicely in which detail the simulation can
reproduce the photon-assisted splitting. Note that the simulations do not take the substrate’s
coherence peaks into account. his is why the simulations are always �at towards the edges
and do not share the increase at large bias seen in the data.

he simulations in Fig. 8 .3(b) with high junction conductance required only the adjust-
ment of one parameter compared to the parameter set for the low conductance case, namely
ρ0t. We choose this parameter with ρ0thigh = 39 × ρ0tlow so that we have a good overall
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Figure 8.3 | Individual spectra of the HF splitting of the YSR states at small and large
junction conductance together with the corresponding simulations of photon-assisted
tunneling. We show individual spectra of the experimental data from Fig. 8 . 1 (blue) and the
corresponding rate-based simulations (orange) at diàerent HF amplitudes. (a) shows the data in
the low-conductance and (b) in the high-conductance regime. The spectra are oàset for clarity.

agreement between Eq. (8.3) and the measured data for high junction conductance for the
case without HF radiation. When choosing this parameter we tried to ûnd the balance
so that peaks developing from the YSR state at є0 are re�ected as well as possible in their
energetic position, leading to a small underestimation of their amplitudes. We explicitly
do not use Eq. (3.10) as before to calculate the value from the normal state conductance.
However, both values lie within a range of 15% and are therefore comparable. A�er all,
the simulated results for high junction conductances in Fig. 8 . 1(d) is based on the same
parameter set as the simulation in Fig. 8 . 1(b) for low junction conductances.

In summary, this just discussed comparison of single spectra with simulation shows a
good agreement between experiment and theory. In particular, this representation method
is well suited for the evaluation of the amplitudes and thus for a peak-by-peak comparison.
In contrast, the previously discussed 2D color maps in Fig. 8 . 1(c) highlight other features.
Although the amplitudes of the dI/dV signal are more diõcult to comprehend here, it is
possible to follow the shi�ing and splitting of the individual peaks in great detail.

We can now check this parameter set for consistency against our previous interpretation.
It should show that electron and hole tunneling is slow compared to the relaxation rates Γ1
and Γ2 at low junction conductance and fast at high conductance. he extracted numerical
values for the electron and hole tunneling rate are

Γe = 4.0neV (8.15)
Γh = 15.8 neV (8.16)
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at low junction conductance, and

Γe = 6.2 µeV (8.17)
Γh = 24.5 µeV (8.18)

at large junction conductance. hese values signiûcantly diòer from Γ1 = 0.70 µeV and
Γ2 = 0.11 µeV by at least one order of magnitude. his is in agreement with the observation
of the crossover between single-electron and resonant Andreev tunneling. Here an inversion
in the amplitudes α± of the YSR resonances at є0 = 0.25meV takes place, when the tip is
approached (demonstrated in Fig. 5 .5). he extracted rates thus conûrm our interpretation
numerically that in the two extreme cases shown we can assume either dominant single-
electron tunneling or dominant Andreev tunneling. Both simulations contain nonetheless
always the total current Itot = Is + Ia. he only point where it was relevant that there is no
mixing is in the determination of the electron and hole wave functions u and v. Here, the
assumption that we can derive these from the ratio of the amplitudes α+/α− applies only in
the case of pure single-electron tunneling.

8.3 Advanced Data Analysis Supported by the Rate-Based
Simulation

he rate-based simulation allows us to investigate the expected characteristics of the spectra
in more detail. Since the simulation is no longer based on input spectra but concrete
physical quantities, it is possible to investigate their in�uence individually. By varying
the input parameters we can eõciently simulate spectra for diòerent asymmetries in the
YSR wave function, YSR state energies, or frequencies. hus, we can make predictions for
experimental situations that we cannot realize in our Mn/Pb system, which leads to the
enormous potential of rate-based simulation.

8.3 . 1 Advanced Simulations for a Better Understanding of the Double
Structure in the Y-Shape

So far we have discussed the splitting due to photon-assisted tunneling at only one single
frequency of f = 40GHz. he choice of this particular frequency was not physically
motivated but based on technical aspects. To make the best use of our energy resolution,
we wanted to maximize the spacing between the sidebands. Since this spacing is directly
proportional to the frequency, we took the highest possible frequency that our signal
generator provides. his however is a special case for the investigated system. he frequency
is such that two times the YSR state energy and the photon energy are an integer multiple
of each other. In our case 2є0 = 3ħΩ, where 2є0 just describes the distance between the two
V-shapes as shown in Fig. 8 .2(a). In Fig. 8 .4 we show theoretical simulations of the double
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Figure 8.4 | Study of the origin of the double structure by comparing the electron and
hole threshold. Simulated dI/dV spectra of the YSR state under HF irradiation at negative bias
voltage. The parameters are chosen such that the Y-shape of the experiment is reæected in its
main characteristics. Along the low-voltage arm of the Y-shape, the double structure is formed,
in which the outer peaks, forming already at smaller HF amplitudes, are to be associated with
the hole threshold, while the peaks just above those are associated with the electron threshold.
In panel (a) with 2є0 = 3ħΩ we have chosen the photon energy to be an integer multiple of the
distance 2є0 between the origins of the electron and hole thresholds. As a consequence, the
peaks of the two branches form at the same sample bias voltages. This situation is very close to
the actual experimental data. For comparison, panel (b) shows the situation where 2є0 = 2.5ħΩ
no longer corresponds to an integer multiple, but the thresholds are shifted by 0.5ħΩ. The two
insets show the diàerence between hole and electron tunneling rates in arbitrary units. This
illustrates nicely which of the two rates limits the Andreev process. The peaks based on the hole
threshold are only visible in regions where electron and hole tunneling rates are comparable
and both are non-zero, i.e. exactly in the white region between the blue and red areas in the
insets.

structure on the low-voltage arm of the Y-shape. For most combinations of bias voltage
and HF amplitude, the large asymmetry between hole and electron wave function of the
YSR state means that only the electron threshold is signiûcant for the changes in current
and is therefore mainly responsible for the shape of the spectrum. he reason for this is
that electron tunneling is weaker than hole tunneling due to the smaller wave function and
therefore eòectively the rate-limiting process. his can be seen in the two insets in Fig. 8 .4,
where the diòerence Γh(є0) − Γe(є0) of hole and electron rates is plotted. he blue-red color
scale can accordingly be understood as a metric indicating which process is dominant
and which is the rate-limiting process. he red areas indicate that the electron process is
rate-limiting, while in the blue area the hole process is rate-limiting. However, this latter
case occurs mainly along the low-voltage branch of the Y-shape, i.e. along the boundary of
the hole tunneling threshold for negative bias voltages. Here the rate for electron tunneling
is already high, while hole tunneling is still very weak since the process is just beginning
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to be energetically allowed. hus, features become visible due to both thresholds, ergo the
double structure is formed.

he simulation gives us the freedom to reproduce this behavior within the experiment. In
the case that the distance between the hole and electron thresholds and the photon energy
are integer multiples of each other, both processes are always on-threshold at the same
voltages, as shown in Fig. 8 .4(a). his simulation comes close to the situation shown in
Fig. 8 . 1(b). In contrast, Fig. 8 .4(b) shows the situation where the thresholds are shi�ed
by 0.5ħΩ, since photon energy and YSR state energy are in the relation 2є0 = 2.5ħΩ.
Remarkably, the lower structure, i.e. the one connected to the hole tunneling, has a smaller
apparent slope than the structure directly above in the double structure connected to the
electron tunneling. his diòerence in slope is also clearly visible in the experimental data in
Fig. 8 . 1(b).

8.3 .2 Investigating the YSR Wave Functions Asymmetry

Based on our full theoretical results obtained from the rate-based simulations, we can study
the in�uence a change in the ratio between electron and hole wave function uє and vє has
on the splitting pattern observed under HF radiation. Fig. 8 .5 shows the corresponding
simulations for diòerent ratios. Along the horizontal direction, the relationship between
the YSR wave functions changes. Along the vertical direction, we have again varied the
ratio between YSR state energy є0 and photon energy ħΩ. he overall shape of the splittings
depends only on the wave function ratio. In the middle column of panels, the ratio of the
two wave functions is balanced (u2

є
= v2

є
). Accordingly, the spectra are axis-symmetric

around the chemical potential, since electron and hole tunneling into the YSR state are
equivalent. In the far le� column, the hole wave function predominates. his corresponds to
our experimental situation with a Y-shape at negative bias voltages and a V-shape at positive
bias voltages (exemplarily highlighted in Fig. 8 .5(c1)). A reversal of the wave-function
ratio to a regime of dominant electron character is shown in the far right column. Here
Y- and V-shape exchange sides. his demonstrates that only the asymmetry in the YSR
wave functions determines the overall spectral form. he relationship between YSR state
energy and frequency does not in�uence this but is important for the inner structures
of the splitting. A change in this ratio is evident in the region where both processes are
above-threshold (overlapped by dashed and dotted V-shapes). In this region, the two inner
structures shi� against each other as the number of sidebands ûtting into 2є0 is changed.
Especially if the frequency and two times the YSR state energy are integer multiples of each
other (thus divisible without remainder) the electron and hole processes are on-threshold
at the same time and their sidebands o�en overlap (see middle column). If the divisibility
is not given, both structures are continuously visible and shi�ed against each other. his
divisibility condition does not play a role in all cases with strong asymmetry in the electron
and hole wave functions (see outer columns). Here one type of sideband dominates, which
is expressed by a regular voltage spacing of ħΩ.
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Figure 8.5 | Investigation of the inæuence of the YSR-state wave functions ratio and YSR-
state energy to frequency ratio on the photon-assisted splitting. Shown is the diàerential
conductance as a function of bias voltage eV and HF amplitude eVHF for resonant Andreev
tunneling from the superconducting tip into the YSR-state. Along the horizontal axis, the panels
diàer in the ratio of the electron and hole wave function uє and vє. For all panels u

2
є + v2є is

kept constant for the sake of comparability. Along the vertical, the ratio between YSR state
energy є0 and photon energy ħΩ is changed. The electron and hole thresholds are indicated by
corresponding dashed and dotted V-shapes. These are centered at e∣V ∣ = ∆± = ∆ ± є0. In (c1) the
resulting Y- and V-shaped regions are exemplarily highlighted. Parameters for the simulation:
Ω/∆ = 0.05, ρ0∣t∣ = 0.04. From [186]
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8.4 Summary and Conclusion

In this chapter, we have studied the in�uence of HF-radiation on the tunneling processes
through a YSR-state. hese states were induced by Mn adatoms on a superconducting Pb
surface. By varying the tip-substrate distance we had access to two fundamentally distinct
tunneling processes, the single-electron tunneling, and the resonant Andreev re�ections.
All in all, these resonant Andreev re�ections also transfer electron pairs, just as we have
previously discussed for Andreev re�ections and Josephson tunneling on pristine supercon-
ductors. Here, however, we have seen that HF radiation in�uences these resonant Andreev
re�ections qualitatively quite diòerently. In the simple Tien-Gordon-like expressions (7.2)
and (7.3) for photon-assisted tunneling of electron pairs, the energy denominator of the
intermediate state and thus the pair tunnel amplitude is assumed to be energy independent,
and therefore only a δ-function in time. his leads to a reduction of the two time-dependent
phase factors associated with the two tunnel electrons to one. he one phase factor alone
thus halves the distance between the sidebands compared to the single-electron tunneling.
We have shown that this assumption is no longer true if we consider resonant Andreev
re�ections by a bound state at energy є0. hat is because the amplitude of the tunneling
electron-pair has a sharp resonance that is connected to the bound state. In pristine super-
conductors, it was possible to describe the tunneling processes in the context of low-order
perturbation theory in the tunneling Hamiltonian. As we have shown, this is generally no
longer possible for resonant Andreev re�ections. he rates for tunneling over the junction
also determine the width of the bound-state resonance. As a consequence, we have to use
all orders of perturbation theory for the description. In the experiment, the width is domi-
nated by inelastic relaxation processes for small tunneling amplitudes (large tip-substrate
distances) and by tip-substrate tunneling for large tunneling amplitudes (small tip-substrate
distances). In the ûrst case, the current is caused by single-electron transfers. his process
can therefore still be described with the low-order perturbation theory in the tunneling
Hamiltonian and thus within the scope of spectrum-based simulation. In the second case,
the width of the bound state resonance is now dominated by the electron and hole tunneling
rates, so that the description of this process must include all orders in perturbation theory.
We have successfully described this process based on the rate-based simulation.
Although we have concentrated on YSR-states, the theory used here is by no means

speciûc to them and is also valid for other subgap states. hus, one of our proposed
applications is the possibility to distinguish Andreev from Majorana bound states. Since
already small deviations of the YSR-state energy є0 from zero, lead to a splitting of the
sidebands, we can distinguish such YSR-states from Majorana states at zero energy. his is
possible even if the deviations are far below our normal energy resolution. Furthermore, an
extension of the theory to several subgap states would be interesting. One would expect to
see additional spectroscopic features if the photon energy becomes comparable to the level
spacing between the subgap states.
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9
Implementation of Josephson
Spectroscopy to Investigate the

Superconducting Order Parameter

It is theoretically predicted that for several non-classical superconducting materials the
order parameter is not constant but has a spatial modulation on atomic scales. Examples of
such materials are heavy fermion materials, high-Tc superconductors, or disordered super-
conductors [39]. Diòerent mechanisms could lead to this change, such as the inhomogeneity
of disordered materials [191–194], a momentum-dependent pairing interaction in heavy
fermion materials [195–197], or the interaction of diòerent electronic orders in the pairing
densities as proposed for high-Tc cuprates [198–200]. Scanning tunneling microscopy
is intrinsically sensitive to local density of states (LDoS) by quasi-particle tunneling and
therefore not sensitive to changes in the superconducting order parameter even with the
use of, for example, YSR states [201, 202]. On the other hand, the critical current of the
Josephson eòect should be related to the BCS ground state, because it is based on Cooper-
pair tunneling. If it were possible to monitor the changes of Cooper pair tunneling locally
at the atomic level, this would allow the direct investigation of the local pairing parameter
and high-resolution studies of novel superconducting phases [203].

Measurements of the Josephson eòect in the STM are a challenge because they require
a low junction impedance to obtain the best possible coupling between tip and substrate,
which in turn enables Cooper pair tunneling and the Josephson eòect. Several experi-
ments have been performed using superconducting tips [204] to measure thermal phase
�uctuations in the Josephson supercurrent close to point contact [46, 205, 206]. Further
measurements have mapped the voltage-biased Josephson eòect on the nanometer scale
on vortices [207, 208] and high-Tc cuprates [209, 210]. Recent studies have succeeded in
imaging variations in the voltage-biased (I(V)) Josephson eòect across magnetic impurities
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[39]. Cooling down to mK-temperatures was the decisive step to image the Cooper pair
current at suõciently stable conditions for atomic resolution.

In voltage-biased junctions, the supercurrent is highly non-linearly depending on the
voltage (see P(E)-theory in Section 2.4) and therefore do not provide a direct measure of
the critical current. Current-biased junctions allow this direct access to the critical current
via retrapping and switching current (see Fig. 2 .8). hey provide a measure of the statistics
and hysteresis of the junction which allows direct conclusions about the junctions damping
and its capacitive charging. Furthermore, current-biased junctions would be interpretable
in the case of coherent Cooper pair tunnels, whereas P(E)-theory breaks down because it
only describes sequential tunneling. Coherent Cooper pair tunneling might be interesting
for applications like locally resolved Shapiro steps (see section 10).

9.1 Josephson-Spectroscopy in Pristine Pb/Pb Junctions

Between two superconductors that are brought into close proximity, a supercurrent con-
sisting of Cooper pairs �ows according to the Josephson eòect (see Section 2.4). his
supercurrent scales with the overlap of the superconducting wave function of the two
superconducting contacts. We use our Josephson setup (see Section 4.4) to perform
current-driven Josephson spectroscopy to determine the critical Josephson current. To
achieve an eòective current source we have connected an external 1MΩ resistor in series to
the junction. Since the normal state resistance of the Josephson junction is much smaller
than the external resistor the voltage drops mostly over the latter and the junction can be
considered as current-biased. To test this setup we ûrst observed Josephson junctions be-
tween two pristine BCS superconductors in the form of a Pb/Pb junction. Establishing stable
contacts in the low impedance range on the rather so� lead is challenging. his requires a
lot of attention to keep the machine in a low-noise condition, but also time-consuming tip
treatments were essential to generate a stable tip geometry.
We were able to obtain the expected V(I) characteristics of the Josephson eòect as

shown in Fig. 9 . 1(a). he spectra were recorded on a clean site of the Pb(111) surface at a
normal state resistance of RN = 113 kΩ. All of them have in common that they exhibit a
horizontal step at small applied currents. his step is deûned by two sharp inclines, with
abruptly changing voltage (grey areas). hese jumps are not symmetrically located around
zero and also have a diòerent statistical distribution (diòerent width of the grey areas). To
illustrate this, Fig. 9 . 1(b) shows the statistical distribution of such jumps in the form of a
histogram for a Pb(110) junction with a normal state resistance of RN = 35 kΩ. Here the
blue distributions describe the backward (BW; from positive to negative current) sweep
and the orange distributions the forward (FW; from negative to positive current) sweep.
he jumps for smaller currents have a signiûcantly smaller width in their distributions than
the jumps for larger currents. Also, the junction shows a clear hysteresis between forward
sweep and backward sweep.
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Figure 9.1 | Determination of the critical Josephson current on pristine Pb. (a) Junction
voltage as a function of the driving current applied to a Pb(111) junction with a resistance of
113 kΩ. Setpoint: VBias = 3mV, I = 26.5 nA. Sweep direction is from positive to negative currents.
The oàset of the voltage ampliäer is corrected and subsequently, the spectra are shifted for
clarity. Visible is the characteristic Josephson step of an underdamped junction. It exhibits
hysteresis and a statistically scattered switching current, whereas the retrapping current is nearly
constant. (b) Histogram of retrapping and switching current of a Pb(110) junction. The total
number of spectra evaluated here is n = 100, all taken at a junction resistance of 35 kΩ. Setpoint:
VBias = 6mV, I = 170 nA. Both sweep directions are shown, where forward sweeps (FW) are
recorded from negative to positive current and backward sweeps (BW) vice versa. (c) Extracted
critical current as a function of junction resistance on Pb(110). A ät of the form A/(x − x0) shows
the inverse proportionality. We get a positive x-oàset, which means the ät underestimates the
experimental junction resistance. For all measurement points, the feedback was opened at
VB = 6mV.

he response of the Josephson junction can be described in the context of the RCSJ model
as outlined in Section 2.4. In this model, the junction is described by its phase, which
can be viewed as a mass particle under the in�uence of friction in a sinusoidal potential
landscape. Without an applied current, the potential has no preferred direction and has a
multitude of local minima. he phase will be located in one of these minima, the trapped
phased junction state. Only by applying a current, the potential will tilt. his leads to a
reduction of the potential barriers until the minima disappear completely when the critical
current is reached. Hence, the phase begins to move down the potential landscape. By
reducing the current and thus restoring the minima, the junction is ultimately trapped
again. Exiting and re-entering this trapped state takes place at two currents characterizing
the junction, the switching and retrapping current. hese currents are represented in the
spectra by the jumps, as marked. he retrapping current is always smaller than the switching
current because the phase still contains inertia and therefore gives information about the
mass and friction associated with the phase. he larger the mass or smaller the friction, the
longer the junction will stay in the running state. he distinctly diòerent size of the two
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and the resulting hysteresis suggests that our junctions are underdamped. he diòerent
width in the distribution of the currents is a result of the diòerent statistics of the underlying
processes. As the mass and friction associated with the phase are approximately constant,
the distribution of the retrapping current is very small. he switching current, however, is a
thermally activated process, combined with the increased possibility of tunneling when the
potential barrier becomes lower, which both lead to an increased spread.

In general, we can state that we can observe steps in the V(I) spectra when the normal
state resistance is about RN = 100 kΩ and smaller. We are able to stabilize some junctions
down to RN = 20kΩ, which is close to point contact at R0 = 1/G0 = 12.9 kΩ. he stability
allowed us to realize measurements of up to n = 100 sweeps, which form the basis for our
statistical evaluation, like the histogram in Fig. 9 . 1(b). For the evaluation of this large
amount of data, we have automated the process with a peak detection algorithm written in
Python. his algorithm determines the characteristic currents from the derivative of the
V(I) measurements. As both characteristic currents are subject to statistical broadening,
the only way to increase the accuracy is by increasing the sample number n. Up to now the
stability and therefore this number is limited by the dri� and creep of the piezos. In order
to minimize these eòects, we let the STM settle for several hours a�er the tunnel contact is
established to reach a state of equilibrium. Still, it remains a limiting factor that we have to
retract the tip once a day to reûll the 1 K pot with helium.

In Fig. 9 . 1(a) and Fig. 9 . 1(b) we were able to show that the measured current biased
Josephson junctions follow the expected behavior. If we now take these two measurements
on Pb(111) and Pb(110) to determine the switching current, we get from Fig. 9 . 1(a) at a
resistance of RN = 113 kΩ a current of IS ≈ 5nA, and for Fig. 9 . 1(b) at a resistance of
RN = 35 kΩ a current of IS ≈ 2nA. his does not satisfy the relation we expect between the
normal state conductance and the switching current which is proportional to the critical
Josephson current. According to the Ambegaokar-Baratoò relation, the critical current and
the resistance should be inversely proportional to each other (see Eq. (2.61)). he surface
orientation should not have a signiûcant in�uence on this, because the crystal orientation
does not play a decisive role in the superconducting order parameter. We rather assume
that capacitive changes might contribute because we could observe that tip-formings and
thus changes of the junction geometry aòect the switching current as well.
For a closer look at the relationship between switching current and normal state resistance,

we have done a distance-dependent measurement series on Pb(110), which is shown in
Fig. 9 . 1(c). he measured data (blue curve) follow here an inverse proportionality as
required by the Ambegaokar-Baratoò relation, demonstrated by the ût (orange curve) of the
form A/(x − x0). However, the resulting amplitude Awith ∼60 µV is orders of magnitude
smaller than the value of π∆/2e ≈ 2mV expected from Eq. (2.61). We explain this deviation
by our relatively large measurement temperature compared to the Josephson energy that
determines the amplitude of the potential landscape. his has a direct in�uence on the
thermally activated switching current. Furthermore, changes in the junction capacitance
are also of importance, since these changes are re�ected by the mass associated with the
phase and thus also in�uence the thermal activation.
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In summary, we are not able to compare absolute values of the switching current for
diòerent measurements between which the measurement conditions have changed due to
variations in the tip or substrate. Also, we have seen that capacitive changes are likely to
in�uence the switching current as diòerent tip conûgurations alter the results. However,
we can detect with the current-biased Josephson spectroscopy changes in the switching
current within a measurement series.

9.2 Inæuence of Magnetic Impurities on the Critical
Josephson Current

Next, we want to use the Josephson spectroscopy to study magnetic perturbations on
superconductors and map their in�uence on the superconducting ground state. Similar
measurements were attempted by Randeria et al. in the group of A. Yazdani [39]. hey
proposed a slightly diòerent approach than ours. Without the use of an additional resistor,
they work in the voltage-driven regime of the Josephson eòect. Here, the Josephson eòect
is re�ected as zero-bias diòerential conductance in the dI/dV spectra (see Fig. 2 .9(b) in
Section 2.4). he critical current enters the diòerential conductance of the Josephson
peak within the P(E)-theory together with other parameters like junction �uctuations
and temperature. his makes qualitative statements about the critical current diõcult
and susceptible to co-in�uencing and one needs to take great care to obtain qualitatively
meaningful results. In contrast, the advantage of the voltage-dependent measurement is
that it is very eòective for spatial mapping. his is possible with the STM’s usual high spatial
resolution. Using the voltage-biased spectroscopy, they were able to detect changes in the
zero-bias diòerential conductance near Fe adatoms on a Pb(110) surface in a 20mK STM
[39]. hey attribute these observations to possible changes in the critical current. hey
quantiûed this proposition by a P(E)-theory ût of single selected voltage biased Josephson
spectra. Unfortunately, we were not able to form stable current-biased Josephson contacts
above Fe adatoms on Pb(110) for a direct comparison of our current-biased approach to
their results. herefore we used again the Mn adatoms on Pb(111) to perform the ûrst tests
of the current-biased approach on magnetic impurities.

Mn adatoms on Pb(111)

In this section, wewant to apply the current-biased Josephson spectroscopy to investigate the
critical current above Mn-adatom on the Pb(111) surface. We have established a procedure
using current-biased Josephson spectroscopy to measure changes in the superconducting
order parameter on the local scale by being sensitive to changes in the switching current.
he YSR-states occurring in the spectra of the Mn adatoms on Pb(111) make a Josephson
spectroscopy study interesting for investigating the in�uences of the Mn magnetic moment
on the superconducting order parameter. In contrast to the previous chapters, we investigate
the Mn atoms in the down adsorption side (see section 5.2). In this conûguration, the
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Figure 9.2 | YSR states of Mndown atom on Pb(111). (a) Topography of the Mndown adatom
on the Pb(111) surface. Setpoint: VBias = 6mV, I = 1 nA. (b) dI/dV spectrum on top of the
Mndown adatom. Several YSR states are visible as a result of the magnetic interaction with the
superconductor. From the energetically lowest ones, the corresponding thermal peaks are visible
at e∣V ∣ < ∆ as well. Setpoint: VBias = 6mV, I = 300 pA. (c) dI/dV map of the YSR state at −1.6mV.
The topography from (a) was replayed while recording the dI/dV signal. It can be seen that this
state is most pronounced above the atom additionally also has oscillating long-range features
with three-fold symmetry. This symmetry reæects the symmetry of the spin-carrying orbital.
Accordingly, this long-range eàect comes from the self-focusing of the scattering electrons on
the corresponding Fermi surface.

interaction between the magnetic moment and the superconductor leads to ûve YSR states
[161], seen in the dI/dV spectrum in Fig. 9 .2(b). he spectrum is taken above the center of
the atom shown in Fig. 9 .2(a). Just like the spectrum of the up conûguration, the thermal
replicas of the YSR states are shown at voltages e ∣V ∣ < ∆.

he YSR-states are not only detectable directly above the atoms but have a spatial extent.
he distribution of the state at −1.6mV is shown in Fig. 9 .2(c) and was recorded using a
dI/dV multipass-measurement. In this measurement, the tip is moved along the surface
contour lines by replaying the previously recorded topographic data while the dI/dV signal
is recorded. hus no topographic eòects are in�uencing the measurement but only those
due to the magnetic interaction. he measurement demonstrates that this interaction
propagates in oscillating beams along the surface. he beams exhibit a three-fold symmetry
along with the three ⟨110⟩ directions. hereby, the YSR state re�ects the symmetry of the
Mn d-levels, which are split by the surrounding crystal ûeld [161]. he spatial extent can be
explained by the self-focusing of scattered electrons perpendicular to the low-curvature
regions of the Fermi surface [161]. he oscillations are expected to have a spacing of 2kF
which can be seen in the expression for the YSR wave function in Eq. (2.70). With this
spacing, the structure can be explained by the coupling to the outer p-d-like Fermi-sheet of
the two-band superconductor.

Having shown that magnetic interaction is indeed present, we can now apply the current-
biased Josephson spectroscopy to map the magnetic interactions. We see a change in the
switching current over the Mn atom (Fig. 9 .3). A line-scan over the adatom (Fig. 9 .3(b) at
the orange positions marked in (a)) shows a reduction of up to 60% in switching current.
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Figure 9.3 | Mapping of the critical Josephson current of theMndown adatoms. (a) Topog-
raphy of the Mn adatom with the corresponding markings of the measuring positions of the
line spectrum (red crosses) and the spacial resolved color-map (complete set of crosses). Set-
point: VBias = 10mV, I = 1 nA. (b) Line spectrum of the switching currents across the manganese
adatom (at orange positions in (a)). A clear reduction of the switching current is visible. (c) Spacial
resolved 2D color-map of the switching current (at grid positions in (a)). No long-range response
is visible. For two measuring points, there were no step detectable at all in the V (I) curves and
we have manually set these points to zero. In (b) and (c) each data point is based on 60 sweeps
of the current biased Josephson junction. Setpoint: VBias = 10mV, I = 110 nA.

his large reduction is a strong indication that there has been a change in the supercon-
ducting order parameter. hus we have successfully implemented a method to measure the
magnetic in�uence on the superconducting ground state. A comparison with the signal
changes in voltage-biased spectroscopy of Randeria et al. [39] shows a higher sensitivity of
the technique we have established.
Finally, we want to use this sensitivity to investigate the spatial distribution of the switch-

ing current. herefore we performed single current-biased measurements along the points
of a grid covering the Mn atom, with the extracted switching currents shown in the 2D
map in Fig. 9 .3(c). he map again shows the clear drop of the switching current over the
atom. Eòects due to the self-focusing arms of the YSR state (see Fig. 9 .2(c)) are not seen.
Further development of the technique with more stable junctions, larger statistics, and
faster measurement routines will hopefully increase the resolution of the technique in the
future. It will then become apparent whether quantiûable statements about the scale on
which the superconducting ground state changes are possible.

9.3 Conclusion

We showed in this chapter that Josephson spectroscopy can be used to study the supercon-
ducting ground state directly. his has not been possible using quasiparticle-spectra. We
ûrst established and tested the method on pristine Pb surfaces. Retrapping and switching
current followed the expected reverse proportional behavior and could therefore be linked
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to the critical current. However, we have seen that these currents are in�uenced by thermal
and capacitive eòects. We could demonstrate, that all of our junctions are underdamped.
Finally, we were able to show a reduction of the switching currents above Mn adatoms on
Pb(111), which suggests a reduction of the critical current.

In conclusion, wewere able to successfully establish this technology and show its potential.
he next direct step will be to increase the resolution. On the one hand, richer statistics
would increase the spectral resolution and on the other hand, faster measurement routines
would increase the spatial resolution by making ûner maps less time-consuming. We expect
the method will also be sensitive to non-magnetic in�uences, although this will need to be
demonstrated in the course of future studies. Subsequently, it will be of interest to explore
other superconducting systems. hese include not only magnetic structures on classical
superconductors but also the investigation of the order parameter in strongly coupled
superconductors, high-temperature superconductors, and disordered superconductors.
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10
Conclusions and Outlook

In this thesis, we have successfully established two new spectroscopic methods to study
the physics of YSR states. For this purpose, we mainly focused on the YSR states induced
by the magnetic moment of Mn adatoms on a superconducting Pb surface. Using HF
radiation and photon-assisted tunneling, we were able to learn more about the transport
through these states. Using Josephson spectroscopy we were able to show the in�uence of
the magnetic moment on the superconducting order parameter.
For the realization of these spectroscopic methods, we have worked out the speciûcations

of a specially designed STM, put the new system into operation, and added coax cabling to
shine high-frequency radiation in the range from 0.3GHz to 40GHz into the junction. his
combination of STM with HF radiation required a sophisticated design and is one of the
very latest technologies implemented in STMs. he main challenge here is to ensure that
the STM is not restricted in its functionality by the installed HF cables. his is inherently
diõcult, as typical coaxial cables cannot simultaneously conduct high-frequency well while
still being compatible with UHV, ultra-cold, and low-vibration conditions. Despite themany
compromises that had to be made, we have succeeded in installing coaxial cables that exceed
our requirements by far with an attenuation of 10 dB to 60 dB over the complete spectral
range up tp 40GHz. Especially the low attenuations for the upper part of the frequency
range from 30GHz to 40GHz with an average attenuation of <20 dB is very good. his
range is mostly no longer accessible in comparable realizations of HF radiations in STMs
[131, 157] and its attenuation is more than two orders of magnitude smaller than their
overall average attenuation. he access to this frequency range enabled us to perform the
experiments on photon-assisted tunneling. In the course of our experiments we investigated
diòerent approaches to introduce the HF signal into the junction and found that, due to the
lower electrical noise, the introduction over an antenna is superior to adding it to the tip
line via a bias tee.

Next, we could use theHF radiation to study the transport processes through our junction
by using photon-assisted tunneling. In this process, the tunneling electron can emit energy
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to, or receive energy from the present photon ûeld, whereby the eòective density of states
is split into sidebands accordingly by multiples of the photon energy. his splitting leads
to V-shaped patterns. We have used the splitting to analyze our frequency response using
the non-linearities in the current-voltage characteristic of the pristine superconductor-
superconductor junctions. Subsequently, we could use these junctions as a reference system
to determine the amount of absorbed and emitted photons from the sideband splitting
using high-resolution spectroscopy as a function of the HF amplitude. his required our
resolution of ∼80 µeV of the superconducting tip and the highest possible frequencies in
order to identify the individual processes in the splitting structures. From these splittings,
we were able to extract the information about the tunnel processes as a multiple of the
HF frequency per electron. We demonstrated this capability of resolving the individual
processes at frequencies of 40GHz using the three typical tunnel processes for pristine
superconducting junctions: he tunneling of single electrons from the coherence peaks and
the tunneling of Cooper pairs in the form of Andreev re�ections and the Josephson eòect.
he resulting 2D maps provide direct information about the resulting sideband patterns.

his experimental method is further supported by simulations based on the simple Tien-
Gordon model. With these simulations starting from the unperturbed density of states, we
have succeeded in reproducing the experimental data in great detail. he combination of
experiment and simulation has enabled us to implement an extremely sensitivemeasurement
procedure. We could identify that quasiparticles form the charge carriers in the case of
the coherence peaks and Cooper pairs in the Andreev re�ections and the Josephson eòect
as expected. Although these are already known results, these measurements show that
we can successfully irradiate the junction with HF radiation and illustrate the potential of
photon-assisted tunneling.
A new aspect was the investigations on the splitting of the conductance through man-

ganese induced YSR states also with a frequency of 40GHz. Here we have exploited the
tunability of the junction conductance over several orders of magnitude to speciûcally
obtain insights into the contributions of resonant Andreev processes to subgap tunneling.
As the tip approaches the Mn adatom, there is a change in the tunneling regime from
predominantly single-electron tunneling to predominantly resonant Andreev tunneling
through the YSR state. his can be described theoretically within a rate-based model.
We have reworked this rate-based model under the very same assumption that Tien and
Gordon used in their model, creating a rate-based model for describing the phonon-assisted
current through subgap states. Central aspects of this theory are the independent sideband
conditions for the tunneling of electrons and holes. hey lead to two sets of sidebands whose
relative distance in bias voltage depends on the ratio of subgap states energy to photon
energy. Due to the asymmetry in the YSR wave functions, we see Y-shaped splittings instead
of the typical V-shaped splittings as for the pristine junctions. his sideband spacing of
the Y-shape indicated a single-electron process, contrary to our assumption of resonant
Andreev processes. Using our rate-based model, we were able to simulate these sideband
structures in all their details. We learned to interpret the Y-shaped structures as the result
of the YSR wave-function asymmetry, meaning that one of the two tunneling processes
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of the resonant Andreev re�ection is rate-limiting and therefore dominating the splitting
in its form. hus, we found that the distance between the sidebars must be considered
in connection with the shape in order to make reliable statements about the number of
charge carriers. From the rate-based model, it can be derived that the observation of these
photon-assisted sideband patterns of resonant Andreev re�ections is determined by two
constraints. First, the tunneling must be weak enough so that the tunneling-induced broad-
ening is small compared to the sideband spacing so that it can be resolved well. At the
same time, the resonant Andreev re�ections require that the tunneling processes are fast
compared to the inelastic relaxation processes. he latter leads to competing channels
that conduct electrons into the quasiparticle continuum of the substrate and thus enable
single-electron tunneling through the subgap state. We fulûll both of these requirements
with high enough HF-frequencies and low enough temperatures to reduce the thermal
excitations. hus, photon-assisted tunneling not only shows us the number of electrons
involved in the elementary tunneling processes but also helps us to understand the process
of resonant Andreev tunneling and to determine the associated tunneling rates from the
sideband patterns. hese tunneling rates conûrmed our understanding of the transition
between single-electron tunneling and resonant Andreev tunneling during the increase of
junction conductance.
Finally, we were able to establish and use Josephson spectroscopy to measure changes

in the critical current of the Josephson eòect above magnetic impurities. he detection of
these changes cannot be achieved with traditional scanning tunneling spectroscopy using
quasiparticles. By adding a 1MΩ resistor we could perform current-biased measurements
of the junction voltage. We succeeded in establishing stable Josephson contacts and we
could observe that below a junction resistance of ∼100 kΩ the Josephson steps are formed.
From these steps, we were able to directly extract the switching and retrapping current.
Both of these currents characterize the Josephson junction. hey are statistically distributed
and follow a hysteresis. We concluded, that we are dealing with underdamped junctions.
We showed that the switching current re�ects changes in the critical current. We used this
to examine Mn atoms on Pb(111) and observe a reduction of the switching current above
the atoms and therefore a reduction in critical current. his can be related to a change in
the superconducting order parameter. he long-range spatial oscillations of the YSR-states
could not be resolved by Josephson spectroscopy so far. We believe that this technique will
not only be sensitive tomagnetically induced changes but to changes in the superconducting
ground state in general.

Outlook: ESR-STM

A�er the successful demonstration of our ability to apply HF radiation into the STM
junction, one of the next steps is the establishment of electron spin resonance (ESR). he
combination of the ESR with the spatial resolution of STM holds great potential for locally
resolved measurements of single localized spins, e.g. on adsorbates or lattice defects. his
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opens up a whole spectrum of applications for the research of spintronics and quantum
computing.
All previous successful implementations of an ESR-STM are based on the possibility of

spin sensitive detection of currents. his requires spin-polarized tips that can measure the
spin orientation by atomic-scale tunneling magnetoresistance. Baumann et al. [131] were
the ûrst to demonstrate this in an STM and also reported that without spin polarization
they could not measure ESR signal. Without this spin contrast, it is not possible to detect
the change in the population of split levels caused by the microwaves. Furthermore, an
external magnetic ûeld was used to show the shi� in the ESR signal due to the changing
Zeeman splitting.

To obtain spin contrast, a stable spin-polarized density of state at the tunneling apex is
required [211]. One possibility to realize this is the vapor deposition of thin magnetic ûlms
on the tip. A common method is the coating with cobalt [212]. As a ferromagnetic material,
cobalt retains the magnetization due to remanence. However, such ûlms require an external
magnetic ûeld to maximize spin contrast by aligning the tip magnetization in the desired
surface direction. Due to the malfunction of our magnetic ûeld, this is not possible for our
system.
Alternatives to this are antiferromagnetic materials. he advantage of these materials

is that they have intrinsic spin polarization and a low stray ûeld [213–215]. his allows the
entire tip to be made of antiferromagnetic material without aòecting the sample as is the
case with large amounts of ferromagnetic material. A lot of research is focused on the use
of Cr, but due to its fragility, it is quite diõcult to prepare. A way that might be feasible for
us has recently been demonstrated by Forrester et al. [216] with the use of commercially
available Mn88Ni12 foil as a tip.
Another promising approach was recently shown by Willke et al. [217]. hey have

demonstrated that it is possible to achieve ESR without the use of an external magnetic
ûeld. hey found that the local ûeld of the tip was suõcient to perform ESR measurements
without the need for an additional external magnetic ûeld. his would make this method
accessible to our existing STM systems.

Outlook: Shapiro-Steps – a Majorana State Detector

Besides photon-assisted tunneling, the combination of the Josephson eòect with HF-
radiation leads to another eòect, the so-called Shapiro steps. hese are created when
the phase dynamics of the ac Josephson eòect is synchronous with the externally applied ac
voltage or one of its multiples. Shapiro steps occur at voltages Vdc

n
= nħΩ/2e, as the phase is

locked and thus becomes time-independent. When this happens, a dc supercurrent occurs
at the corresponding voltages [77].

Shapiro steps can be used to identify Majorana fermions [218–220]. When Majorana
fermions are present in the junction, there should be a transition from the conventional
Josephson relation to an unconventional one: Is ∝ sin(φ) → Is ∝ sin(φ/2). herefore the
characteristic voltage in the ac Josephson eòect should be doubled [219].
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Figure 10.1 | Comparisonbetween Josephson, thermal, and chargingenergy. Comparison
of the Josephson energy (blue) as a function of the normal state conductance normalized to
the conductance quantum G0 with the thermal energy (red) and charging energy (green). For
the latter two, diàerent exemplary values are shown. The solid lines correspond to the realistic
conditions for our junction. The grey conductance window outlined is the potential range in
which the ratios between Josephson energy and thermal energy would allow coherent Cooper
pair tunneling.

Shapiro steps can be distinguished from steps based on photon-assisted tunneling by their
diòerent behavior. For example, in the steps of the photon-assisted tunneling the square
of the Bessel function is considered in its width, whereas in the Shapiro step of the same
order the Bessel function is considered only linear. Unfortunately, we have not been able to
observe Shapiro steps yet. We attribute this to the fact that due to either thermal �uctuations
or the charging energy caused by the junction capacity, the coherence in the tunneling
Cooper pair is destroyed when crossing the junction and we only detect sequential Cooper
pair tunneling, as also reported by other groups for their STM junctions [189, 221]. An
estimation of the energy scales involved is shown in Fig. 10 .1. It becomes apparent that at
our temperatures only a small conductance window is available so that on the one hand the
thermal �uctuations do not destroy the coherence of the Cooper pairs and on the other
hand the tip is not contacting the sample at G0. Depending on the capacity of the junction
the window closes completely. Further investigations are necessary where it is advisable to
try to use larger tip diameter and blunt tip apexes to minimize the charging energy.

Outlook: Identifying True Zero-Energy States by Photon-Assisted Tunneling

Resonant Andreev re�ections are used to investigate presumed Majorana zero modes, [222,
223], for example in chains of magnetic adatoms on s-wave superconductors [28, 97, 224–
227]. Photon-assisted tunneling can be used not only to determine the type of tunneling
processes but also to distinguish true zero-energy states from states with a small but ûnite
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energy є0. Based on our experiments, we have focused our model on YSR states, although
the approach is by no means speciûc to YSR states, but applies equally to other subgap states.
In fact, ûnite energy states with electron and hole wave functions of the same order show
splits due to the separated electron and hole thresholds. Because of their great multiplicity,
this splitting should be detectable in the whole V-shaped region with high resolution [186].

Resumé – The Long and Winding Road Towards Topological Quantum Computing

he presented results in this thesis illustrate the potential of two new spectroscopic methods
to study subgap states in superconductors. hese methods provided fundamental insights
into the electronic and magnetic interactions between magnetic moments with supercon-
ductors. In particular, both of our established methods have potential applications in the
identiûcation of Majorana zero modes. Due to its spatial resolution, STM may play an
important role in the research towards possible topological quantum states. However, it
should be noted that the theoretical concepts are more mature than the experimental im-
plementations. Even if the realization of Majorana zero modes in the STM has already been
successful, it would ûrst require the entanglement of at least two of them to generate a qubit.
A lot of research is still needed to realize controlled bottom-up structures of such Majorana
zero mode networks, and as always, STM will not be a platform to scale up applications due
to its complexity. However, the methods presented by us may be helpful on the long road
within basic research, so that someday user-suitable devices can be realized.
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A
Appendix

A.1 Determination of the Distances in the Internal
Structure of the HF Induced Splittings

In Chapter 7 the spacing between the sidebands is determined, which arises from the
splitting of all features in the dI/dV spectra due to photon-assisted tunneling. his section
describes how we determine these distances.
A ûrst approach to determine the distances is based on the analysis of one single spectrum

showing the splitting. Here the distances between the maxima can be determined directly.
However, the variance is quite high when determining the maxima only from one individual
spectrum since the sidebands do not reach their maximum at the same HF amplitude.
To overcome this diõculty one can use the 2D color maps. In these, the maxima can be
determined much better because the overall amplitude dependence can be used to locate
the maxima within the splitting.
Also, the maxima are repeated with increasing HF amplitude. We use this to place vertical

lines per eye through the maxima, as shown in Fig. A.1. he determination of the distances
from the color maps allows us to minimize the spread as well as to determine at least twice
as many maxima compared to the single spectra, where only every second maximum is
formed. Both of these improvements lead to an increase in the accuracy of the statistics
and thus to a reduction of the uncertainty of the extracted value.
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Figure A.1 | Illustration of the determination of photon-sideband periodicities and their
error margins. Exemplarily, the determination is shown using the Josephson peak with HF
radiation of 40 GHz (same data as in Fig. 7.2(a)). Vertical dashed lines are placed by eye along
the lines of maximum intensity with increasing HF amplitude.
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