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Abstract: There are varieties of methods available for the exploration of solids using nuclear magnetic
resonance (NMR) spectroscopy. Some of these methods are quite sophisticated, others require special-
ized equipment. This review is addressed to those for whom NMR is not the main research method.
It discusses simple methods that can be applied to solids with little or no adaptation to a specific
system. Despite their technical simplicity and ease of use, these methods are powerful analytical tools
that provide unique insights into the structure, dynamics, and noncovalent interactions in homo- and
heterogeneous systems. Particular attention is paid to the characterization of porous materials and
solids containing phosphorus. 31P NMR of organometallic compounds has been used as an example
of how theoretical calculations can help in deeper analysis of experimental data.

Keywords: 1H NMR; 13C NMR; 15N NMR; 29Si NMR; 31P NMR; mesoporous silica; organometallic
complexes; surface; hydrogen bonding; DFT

1. Introduction

Science is becoming more and more interdisciplinary [1]. This happens at all scales.
Almost all experimental studies use more than one method to characterize the object under
study. Even when each particular method is supervised by an expert in the field, the
principal investigator should be able to formulate the questions that each method should
answer. Commonly used methods do not cause this problem. One of such universal
methods is solution-state nuclear magnetic resonance (NMR) when used for structure
elucidation in chemistry. In most cases, a given structure can be determined using the
usual set of standard methods familiar to every synthetic chemist. On the contrary, when
this method is used to study noncovalent interactions, the set of required NMR techniques
must be expanded and adapted to the particular system under consideration. Many of
these techniques are easy to implement as well. When done correctly, NMR can provide
truly unique information [2–5]. The same is with solid state NMR. Much can be gained by
asking clearly. The studied system can be crystalline, amorphous, porous, polymeric, or
heterogeneous. The main thing is to find NMR-active nuclei, whose parameters depend on
the property that needs to be studied. A deeper understanding of the systems under study
can be achieved by calculating the effect of conformation and intermolecular interactions
on NMR chemical shifts. Such calculations are not always difficult, but can be very helpful
in interpreting experimental results.

In this short review, we demonstrate how the simplest methods of one-dimensional
solid-state NMR can be applied to a variety of solid and heterogeneous samples in order to
expand the possibilities of their research. These experiments do not require any special
hardware or software or much experience in solid state NMR. Only examples nuclei with a
spin quantum number of 1

2 are considered. Neither the general theory of solid-state NMR
nor the physical background of these experiments or quadrupolar nuclei specialized NMR
experiments are discussed here. A number of books [6–8] and reviews are devoted to these
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topics [9–18]. Only the basics that are necessary to understand the methods in question are
presented. This review includes only a very limited number of examples of simple static
calculations of NMR parameters using the density functional theory (DFT). More detailed
descriptions of these and advanced methods can be found elsewhere [19–23].

2. Chemical Shift Anisotropy

One of the main and easiest to measure spectral characteristics of NMR is a chem-
ical shift. Chemical shift is a tensor quantity, the principal components of which are
δ11 ≥ δ22 ≥ δ33. In a powdery sample, the chemical shift of a given molecule depends on its
orientation relative to the direction of the applied magnetic field and is ≤δ11 and ≥δ33. For
some molecules, these components can be easily represented in the molecular coordinate
system. Let us consider 15N chemical shift of pyridine. When the molecular C2 symmetry
axis is along the direction of the applied magnetic field, the rotation of the molecule around
this axis does not change the shielding of the 15N nucleus. This component of the tensor
will be labeled as δr, Figure 1 top left. The same is true when the direction of the applied
magnetic field is normal to the molecular plane and the molecule rotates around this axis.
This component will be labeled as δ⊥. The third axis, δt, lies in the molecular plane and is
orthogonal to δr and δ⊥. For pyridine, δ11 = δt, δ22 = δr, and δ33 = δ⊥, Figure 1a [24].
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talline lead(II) methylphosphonate. 15N NMR chemical shifts are referenced to liquid nitromethane 

[24,25]. 31P NMR chemical shifts are referenced to H3PO4 (85% in H2O) [26]. 

Hydrogen bonding causes significant change in δt, but only slightly affects δr and δ⊥ 

[24]. In the pyridinium cation δ11 = δr, δ22 = δt, and δ33 = δ⊥, Figure 1b. Very similar values 

and changes were observed for 2,4,6-trimethylpyridine (collidine), Figure 1c,d [25]. The 

fact that the effect of noncovalent interactions on the 15N NMR chemical shift tensor of 

Figure 1. Static and magic-angle spinning (MAS) 15N and 31P NMR spectra of nitrogen heterocycles (a–d) and methylphos-
phonic acid (e–h): (a) pyridine, (b) pyridinium chloride, (c) collidine, (d) collidinium tetraphenylborate, (e) methylphospho-
nic acid, this structure is optimized using DFT, (f) methylphosphonate, DFT optimized, (g) polycrystalline methylphosphonic
acid, (h) polycrystalline lead(II) methylphosphonate. 15N NMR chemical shifts are referenced to liquid nitromethane [24,25].
31P NMR chemical shifts are referenced to H3PO4 (85% in H2O) [26].

Hydrogen bonding causes significant change in δt, but only slightly affects δr and
δ⊥ [24]. In the pyridinium cation δ11 = δr, δ22 = δt, and δ33 = δ⊥, Figure 1b. Very similar
values and changes were observed for 2,4,6-trimethylpyridine (collidine), Figure 1c,d [25].
The fact that the effect of noncovalent interactions on the 15N NMR chemical shift tensor
of pyridines is caused by a significant change of the value of only one of its principle
components, δt, leads to monotonic and characteristic changes in δiso = (δ11 + δ22 + δ33)/3.
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For example, for all studied symmetrically substituted pyridines the difference in δiso(15N)
of the base and its conjugate acid is about 125 ppm [27].

In solution NMR, the anisotropy of chemical shift tensors is averaged out by fast
molecular tumbling and only single isotropic chemical shift values are observed, δiso.
For powdered samples, this anisotropy can be averaged out by magic-angle spinning
(MAS) [6,15,28]. The signals in MAS spectra become narrow and Gaussian/Lorentzian
shaped, Figure 1 bottom spectra. When multiple signals are present in the spectrum, they
are either resolved or can be obtained by deconvolution. The signal-to-noise ratio increases
significantly since the given integral intensity is distributed in these MAS spectra over a
much narrower spectral range.

The direction of the principal components of the chemical shift tensor in the molecular
coordinate system is not always user friendly. In the 31P NMR chemical shift tensor of an
isolated molecule of methylphosphonic acid, δ22 is directed approximately along the P=O
bond while δ33 is in the plane between the hydroxyl groups, Figure 1 top right [26]. De-
protonation or noncovalent interactions change these directions. As a result, the observed
changes in the 31P NMR chemical shift tensor are difficult to discuss in the molecular
coordinate system. The effect of noncovalent interactions on the 31P NMR chemical shift
tensor of this molecule is very large. Compare, for example, the tensors of the isolated,
noninteracting molecule and of a molecule in the crystal phase, Figure 1e,g, or the tensors
of an isolated molecule of methylphosphonate and of the same molecule in a polycrys-
talline sample of this anion in the complex with Pt, Figure 1f,h. In contrast, changes in the
corresponding δiso are quite moderate. In this case, it is no longer obvious whether the
significant loss of information about the system is compensated for by a significant increase
in the signal-to-noise ratio.

3. Cross-Polarization

When the nuclei under study are nuclei other than 1H, 19F, and 31P, the sensitivity
of the method becomes a bottleneck. In particular, for 13C and 29Si NMR, whose natural
abundances are 1% and 5%, one would prefer to use the original samples without laborious
isotope enrichment. These dilute spins can borrow magnetization from protons that
results in a signal enhancement up to a factor of 4 (13C) and 5 (29Si). This technique
is called cross-polarization (CP). Another advantage of this technique that the recycle
delay required to avoid signal saturation is controlled by the T1 relaxation time of the
1H nuclei, not that of the dilute spins. The former in most cases is several times shorter
than the latter. Note that CP can be combined with other methods that enhance relaxation.
Figure 2a,b shows 13C{1H} CPMAS NMR spectra of two filter paper (100% cellulose)
samples. The best recycle delays for a dry paper sample and the same paper moistened
with an aqueous solution of the 2,2,6,6-tetramethylpiperidinyloxyl radical (TEMPO) were
5.0 and 0.5 s, respectively. In the latter sample, fluctuating local magnetic fields induced
by unpaired electron spins return excess of nuclear spin energy in the form of heat to the
surroundings. However, everything has a price. First, the presence of the magnetic dipole–
dipole interaction between the proton spins and the spins under observation requires the
use of a high-power heteronuclear decoupling, which is designated here as {1H}. In many
cases, higher decoupling strengths provide better signal-to-noise ratios. However, it is
dangerous to use a high-power decoupling for more than a few tens of milliseconds. The
rf-coil can be damaged. If you are not sure about the correctness of the parameters, contact
a specialist. Second, the gain obtained by CP depends on the magnetic dipole–dipole
interaction between the dilute spins and neighboring protons. Therefore, the observed gain
is nonuniform for heterogeneous samples. Figure 2c,d shows 29Si{1H} MAS NMR spectra
of an MCM-41 mesoporous silica sample collected without and with CP. The relative
intensities corresponding to chemically different silicon atoms differ significantly, because
CP specifically enhances the magnetization of surface siloxane groups [29]. Be critical when
evaluating sample composition using CP NMR spectra.
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Figure 2. 13C{1H} CPMAS NMR spectra of (a) dry filter paper (b) the same paper moistened with an aqueous solution
of 2,2,6,6-tetramethylpiperidinyloxyl radical (TEMPO). 29Si{1H} MAS NMR of an MCM-41 mesoporous silica sample
(c) without and (d) with cross-polarization (CP). The 29Si spectra are adapted from [29].

This problem is not specific to 29Si NMR. Figure 3 shows the 15N{1H} CPMAS NMR
spectra of a lyophilized sample of the mutant H64A of human carbonic anhydrase II [30].
The natural abundant 15N nuclei of the peptide backbone contribute to a peak at around
120 ppm. This sample contained doubly 15N labeled 4-methylimidazole. These nitrogen
nuclei resonate at 253 and 173 ppm, =N- and >NH, respectively. However, only the latter
is observed when using the standard CP pulse sequence, Figure 3a. The magnetization
transfer to =N- could probably be improved by using a longer cross-polarization contact
time. However, this approach has a number of associated problems. Instead, before the
FID was acquired, the 15N magnetization was directed for 1 s along the direction of the
applied magnetic field (Z-filter sequence). Under these conditions, the magnetization of
the >NH nitrogen atoms can be transferred to the =N- nitrogen atoms (spin diffusion).
This equilibration process was successful but not complete, and an intensity difference
remained, Figure 3b.
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Figure 3. 15N{1H} CPMAS NMR spectra of a lyophilized sample of the mutant H64A of human
carbonic anhydrase II [30]. (a) CP pulse sequence with a cross-polarization contact time of 3 ms.
(b) The 15N magnetizations is equilibrated for 1 s using a Z-filter sequence.

4. Calculation of NMR Chemical Shifts

Theoretical calculations provide the absolute chemical shielding tensor, σ, the compo-
nents of which are σ11 ≤ σ22 ≤ σ33. σiso = (σ11 + σ22 + σ33)/3. The experimentally reported
chemical shift, δ, is measured relative to the absolute chemical shielding of a reference,
δ = (σref − σ)/(1 − σref). σref is of the order of 10−4 that is δ ≈ (σref − σ). Therefore, in
order to compare the values of the experimentally observed δ and calculated σ, a σref

value is needed. For example, δ(31P) ≡ 0 ppm for 85% H3PO4 in H2O. This value is easy
to measure but not to calculate. Neither the polarizable continuum model (PCM) nor
solvation model based on density (SMD) approaches [31–33] can satisfactorily simulate
the effect of solvation on the chemical shielding of H3PO4. Therefore, δ(31P) is known, but
the corresponding σ(31P) cannot be calculated, so σref(31P) remains unknown. For 31P this
problem has been solved recently [34]. The values of δ(31P) were measured for a number
of solids in which δ(31P) was not influenced by noncovalent interactions, Figure 4. The
conformation of the molecules was taken from X-ray diffraction (XRD) data. For these
conformations were calculated the values of σ(31P), from which the mean value, σref(31P),
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was evaluated. The margin of error of σref(31P) ranged from ±9 to ±4 ppm, depending
on the level of approximation. The best results were obtained for the specialized pcSseg-3
basis set [35] and the ωB97XD DFT functional [36]. However, smaller basis sets and simpler
DFT functionals also provide satisfactory accuracy. The reported molecular structures can
be used to determine σref(31P) for any approximation of interest [34].
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Figure 4. σ(31P) calculated under the pcSseg-3/ωB97XD approximation as a function of the experimental δ(31P) of
polycrystalline 1,3,5-triaza-7-phosphaadamantane (a), triphenylphosphine (b), diphenyl-2-pyridylphosphine (c), tricyclo-
hexylphosphane (d), and 1,2-bis(diphenylphosphino) ethane (e) [34].

Note that for molecules with large dipole moments, the measured magnetic shield-
ing of 31P depends on the electric field generated by surrounding molecules [37]. As a
result, there is a large deviation between the observed and predicted δ(31P) even if the
conformation of the molecules is known and the shielding does not depend on noncovalent
intermolecular interactions. The results obtained indicate that the field strength experi-
enced by these molecules in crystals is similar to that in polar solvents. This effect cannot
be satisfactorily reproduced within the PCM and SMD approaches. However, it can be
successfully accounted for by the adduct under field approach (AuF) [37]. The dependence
of the electron density on the applied electric field and the associated changes in chemical
and spectral properties were widely studied [38–43]. Within the AuF approach, both the
structure and NMR properties were calculated in the presence of an external electric field.
This external electric field is a tool to put pressure on the electron density of the molecule
under investigation in order to simulate changes caused by the environment. A detailed
description of this method can be found elsewhere [44–46].

5. 1H NMR

In most solids, protons form strongly coupled spin networks. As a result, high
resolution 1H NMR in solids requires ultrafast MAS or specific pulse sequences. A detailed
description of these methods can be found elsewhere [47–53]. The problem is absent when
protons either are diluted or possess high mobility.

Figure 5 shows 1H MAS NMR spectra of polycrystalline samples of pyridinium tetrakis
[3,5-bis(trifluoromethyl)-phenyl]-borate and the proton-bound homodimer of pyridine
tetrakis [3,5-bis(trifluoromethyl)-phenyl]-borate [54,55]. The chemical shifts of mobile
protons at 12.0 and 20.7 ppm are clearly detected at small MAS rates due to the use of
pyridine-d5, Figure 5a,b. In these samples, protons were diluted spins and proton–proton
magnetic dipolar interactions were weak.
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Figure 5. 1H MAS NMR spectra of polycrystalline samples of (a) the conjugate acid and (b) the
proton-bound homodimer of pyridine-d5 at 300 K [54].

Figure 6a shows 1H MAS NMR spectra of dry mesoporous silica MCM-41. The
distance between the surface silanol groups of MCM-41 is about 3–6 Å [29,56] while the
rotation around the Si-O bond is most likely not hindered. Therefore, the proton–proton
magnetic dipolar interactions are weak and a narrow signal belonging to these surface
silanol groups is present at 1.8 ppm in different types of porous silica. When this silica is
loaded with pyridine, the chemical shift of these groups increases to the limiting value of
9.9 ppm, Figure 6b [57]. The resonance is broadened because of the hydrogen bonding
exchange. The vanishing of the original resonance of the noninteracting silanol groups
shows that all these groups are accessible for pyridine. It is not always so. In other samples
and for other guests, a gradual redistribution of signal intensity between noninteracting
and interacting sites can be observed [58].
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loaded with an excess of pyridine-d5 at 300 K. The spectra are adapted from [57].

An NMR study of fluids in confinement is in demand today. The main attention
has been focused on water and water–alcohol mixtures [59–65]. Some other substances
have been studies as well [66–70]. Interaction with the surface causes a change in the
melting/freezing point of the adsorbate [71–75]. When the confinement is not very tight
and the surface concentration is below monolayer coverage, the reorientation of adsorbed
molecules is fast on a millisecond time scale and their 1H NMR linewidths are small [76].
Specific examples are not considered here in detail because the methods, temperature
ranges, filling factors, and other parameters used depend on the host, the guest, and the
property in question.

There is a general method for investigating various local spaces of powdery porous
solids containing surface OH-groups using 1H NMR [77]. Consider a sample of MCM-
41 mesoporous silica loaded with 4-methyl-1H-pyrazole (MPz). Pyrazole molecules are
distributed over three local spaces. These spaces are shown in Figure 7: (a) internal pores
of a given crystallite, (b) an external space between crystallites, and (c) an axial void space
at the center of the NMR rotor because the crystallites are compressed toward the NMR



Solids 2021, 2 145

rotor walls due to a fast MAS rotation. MPz is liquid at room temperature and can be easily
loaded onto porous materials where it forms hydrogen bonds with surface OH-groups.
At room temperature, the coalesced NH/OH signal exhibits some exchange broadening,
which disappears at high temperatures. On the other hand, up to at least 400 K, the
exchange of MPz molecules between the different local spaces is slow on the NMR time
scale. At this temperature, 1H NMR spectra contain three resolved NH/OH signals, one
for each of the local spaces, Figure 7d. This is because the OH/NH ratios are different in
these local spaces. These ratios can be measured from the relative integral intensity of the
respective signals. The OH/NH ratios depend on the MPz/host ratio used. Therefore, they
provide insight into the pore filling mechanisms, surface/volume, volume/volume, and
surface/surface ratios of the different spaces. Note that the volumes of the external void
spaces of the MCM-41 and SBA-15 mesoporous silica studied turned out to be larger than
those of the internal pores. The surface areas of the external spaces were much smaller
than those of the internal pores, although in the case of SBA-15 this difference was not
significant [77].
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6. 15N NMR
15N NMR is not among the most popular routine NMR methods. The natural abun-

dance of this isotope is 0.4%, and the strength of its magnetic moment is rather small.
However, in some cases, the efforts spent on obtaining isotopically enriched compounds
pay off with the results obtained. As explained in Section 2, the isotropic 15N NMR chemical
shift of symmetrically substituted pyridines exhibits significant and characteristic changes
upon hydrogen bonding. Figure 8a shows average N···H distances obtained by 15N NMR
of collidine–15N-acid complexes as a function of δiso(15N) [25]. Here δiso(15N) ≡ 0 ppm for
frozen collidine and is about 125 ppm for collidinium [27]. This dependence can be used
for any symmetrically substituted pyridine. For a detailed discussion about geometric and
NMR parameter correlations, refer to other publications [78,79]. The 15N NMR spectrum



Solids 2021, 2 146

of an 15N-enriched pyridine derivative can be easily measured in solution [80–82], crys-
tals [55,83], and polymeric materials [84], which provides insight into the hydrogen bond
geometry and the protonation state of this base. δiso(15N) is sensitive to other noncovalent
interactions as well [85,86]. It is quite probable that δiso(15N) characteristically correlates
with some parameters of these interactions. However, no such analysis has been carried
out to date.
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Figure 8. (a) Average N···H distances obtained by 15N NMR of collidine-15N-acid complexes as a function of δiso(15N).
Here δiso(15N) is 0 ppm for frozen collidine [25]. 15N {1H} CPMAS NMR spectra at 130 K of pyridine-15N loaded onto a
dry unfunctionalized SBA-15 mesoporous silica sample (d) and a propionic acid functionalized SBA-15 in the presence of
water (h). The observed signals were attributed to frozen pyridine (b), pyridine hydrogen bonded to silanol groups (c,f),
pyridinium (g), and pyridine-water-pyridine complex (e). Here δiso(15N) is 0 ppm for 15NH4Cl and 276 ppm for frozen
pyridine [87]. (i) Schematic representation of species present in the propionic acid functionalized SBA-15 loaded with
pyridine/water [87].

Pyridines-15N appears to be the best NMR probes for studying acidic active sites
in porous solids. Figure 8d shows the 15N{1H} CPMAS NMR spectrum of pyridine-15N
loaded onto a dry unfunctionalized SBA-15 mesoporous silica sample [87]. The spectrum
was measured at 130 K and referenced to 15NH4Cl. In this scale, frozen pyridine resonates
at 276 ppm. This spectrum contains the signals of frozen pyridine and of pyridine hydrogen
bonded to the surface silanol groups, Figure 8b,c. The surface density of these groups
can be measured from the relative integral intensity of these signals. It is about 2.9 nm−2

for MCM-41 and 3.7 nm−2 for SBA-15 [57]. Figure 8h shows the 15N {1H} CPMAS NMR
spectrum of pyridine-15N loaded onto a propionic acid functionalized SBA-15 sample in the
presence of water. This spectrum contains the signals of 2:1 pyridine:water complex [88],
of pyridine-HOSi, and of pyridinium, Figure 8e,f,g. The analysis of these spectra explains
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the mechanism of water’s effect on the surface acidity. Water does not change the acidity
of the surface silanol groups, since it cannot solvate them. When unfunctionalized silica is
loaded with a pyridine/water mixture with an excess of pyridine, pyridine molecules are
distributed between the pyridine-HOSi and 2:1 pyridine:water phases, Figure 8i. The same
phases are present in the case of the propionic acid functionalized SBA-15. In addition,
there are pyridine molecules that interact with the carboxyl moieties. These molecules are
protonated because these fragments are solvated with water, Figure 8i. Note that in the
absence of water, the geometry of hydrogen bonds of the pyridine-HOSi and pyridine-
HOOC surface complexes is the same [87]. This means that, in the absence of water, the
proton-donating ability of silanol groups is equal to that of propionic acid.

The surface silanol groups can only be deprotonated with very strong bases such as 4-
dimethylaminopyridine and 4-diethyl-2,6-di-tert-butylaminopyridine [56]. The protonated
molecules remain immobilized on the surface at room temperature, but can freely rotate
around their C2 molecular axis. Their concentration is not affected by water, and water
does not participate in or coordinate around the protonated species. The situation is
different when the silica surface is functionalized with sulfonic or phosphonic acids. These
acidic groups always protonate pyridine because these materials contain about six water
molecules per acid moiety even after drying at 420 K in high vacuum [89]. Each sulfonic
acid moiety interacts with one pyridine molecule, while each phosphonic acid moiety
can interact simultaneously with two pyridine molecules. In all considered cases, the
geometry of hydrogen bonds can be measured from the experimentally observed 15N NMR
chemical shifts.

As has been explained in Chapter 2, chemical shift is a tensor quantity. Therefore, the
line shapes of NMR signals depend on the rotational diffusion. This effect can be used
to study the surface diffusion of adsorbed molecules. Figure 9 shows the 15N{1H} NMR
spectra of pyridine-15N loaded onto MCM-41 and SBA-15 mesoporous silica [57]. These
spectra were measured at 300 K and are referenced to 15NH4Cl. Less than a monolayer was
occupied in both samples. Under these conditions, pyridine does not leave the surface, and
its surface diffusion is fast on the NMR time scale. The acidity of the surface silanol groups
does not depend on the type of silica. MAS averages out shielding anisotropy, which is
weaker than the spinning frequency. As a result, the 15N{1H} MAS NMR spectra are the
same for both samples, Figure 9a,c. On the other hand, the static 15N{1H} NMR spectrum of
the MCM-41 sample demonstrates the residual shielding anisotropy, which is absent in the
case of the SBA-15 sample, Figure 9b,d. The presence of this residual shielding anisotropy
indicates the very low degree of roughness of the inner surfaces of this MCM-41 sample.
Please refer to the original paper for a detailed analysis [57].
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Figure 9. 15N {1H} CP NMR spectra at 300 K of pyridine-15N loaded onto mesoporous silica [57].
(a) MAS spectrum, MCM-41, (b) static spectrum, MCM-41, (c) MAS spectrum, SBA-15, and (d) static
spectrum, SBA-15MCM-41. Here δiso(15N) is 0 ppm for 15NH4Cl and 276 ppm for frozen pyridine.
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7. 31P NMR

The 31P isotope is present in 100% natural abundance, has a spin quantum number of
1/2 and a chemical shift range of more than 400 ppm. 31P NMR can be routinely used in
the evaluation of the structure of organic complexes in solution [90,91] and solids [92–94]
including organometallic compounds [26,95–98]. Molecules containing phosphorus are
very convenient NMR probes for studying mobility at interfaces [99–101]. For example, 31P
NMR has been used to elucidate thermal and hydration effects on the mobility of compact,
branched, and bulky pharmaceutical molecules loaded in submonolayer amounts onto
mesoporous silica [102]. Great progress has been achieved in our understanding of the
effects of noncovalent interactions on the 31P chemical shift of P=O groups [26,103,104].
However, P=O groups can form two noncovalent interactions simultaneously [105–107].
Since the phosphorus atom of the P=O group is not directly involved in intermolecular
interactions, the changes of its isotropic chemical shift is not strictly specific to a certain
interaction, and different structures can result in similar values [108]. In addition, the
shielding may depend on the conformation of the molecule [26]. Consequently, variations
in δiso(31P) caused by noncovalent interactions and conformational changes cannot always
be interpreted.

On the other hand, there are molecules in which δ(31P) depends only on interactions of
a certain nature. In such cases, NMR allows very accurate analysis of spectral features [109].
For example, 1,3,5-triaza-7-phosphaadamantane (PTA, Figure 10a) is a rigid and relatively
chemically inert molecule. In acidic solution, PTA would be protonated at one of its nitrogen
atoms. This protonation results in a 6 ppm change in δiso(31P) [110]. In contrast, when PTA
is coordinated to transition metals, its chemical shift varies in a wide range [111]. Figure 10b
shows the proposed structure of Hal2Hg(PTA) complexes in crystals (Hal = Cl, Br, I). This
structure is adapted from [112]. In PTA δiso(31P) = −104.3 ppm [34], while changes to
−38.3, −44.1, and −61.4 in Cl2Hg(PTA), Br2Hg(PTA), and I2Hg(PTA) [112]. Therefore, 31P
NMR of organometallic complexes of PTA can be very informative. The structures of these
Hal2Hg(PTA) complexes are difficult to adapt for calculations. However, there is another
important application of 31P NMR. Consider an organometallic complex in which the
metal is coordinated with a phosphorus atom. In many cases, the structure of this complex
is determined from XRD, while δiso(31P) is measured in solution [113–117]. If this value
can be reproduced in calculations using the structure of the crystalline phase, then the
transition to solution has no significant effect on the structure. If this is not the case, then
the experimentally reported δiso(31P) is either not related to the proposed structure, or the
structure is labile. Note that such calculations can be done using moderate basis sets [118].
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Figure 10. The structure of (a) 1,3,5-triaza-7-phosphaadamantane (PTA) and (b) the proposed
structure of Hal2Hg(PTA) complexes in crystals (Hal = Cl, Br, I) [112].

8. Conclusions

Solid-state NMR can do a lot and does not always require excessive efforts. Its ad-
vantages are especially noticeable for polycrystalline, amorphous, and heterogeneous
samples. It is these systems that are especially difficult to study by other spectral meth-
ods. Only a small set of the simplest but broadly applicable methods are discussed here.
There are many other powerful and specialized techniques out there today. You can get
acquainted with them using the references listed in the Introduction. Two-dimensional
solid-state NMR methods are rapidly developing and becoming available for widespread
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use [119–121]. Since 2008, the annual number of publications on “solid-state NMR” has
exceeded 2000 [122]. We hope that this review will help some research to include solid-state
NMR in the list of spectral methods they actively use.
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