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Abstract

DCM (Discrete Choice Models) is a package for estimating a
class of discrete choice models. Written in Ox, DCM is a class
that implements a wide range of discrete choice models including
standard binary response models, with notable extensions includ-
ing conditional mixed logit, mixed probit, multinomial probit, and
random coefficient ordered choice models. The current version can
handle both cross-section and static panel data. DCM represents
an important development for the discrete choice computing envi-
ronment in making available a broad range of models which are now
widely used by academics and practitioners. Developed as a derived
class of Modelbase, users may access the functions within DCM by
either writing Ox programs which create and use an object of the
DCM class, or use the program in an interactive fashion via OxPack
in GiveWin. We demonstrate the capabilities of DCM by using a
number of applications from the discrete choice literature.

JEL Classification: C87, C25, C15

Keywords: Discrete choice models, simulation methods, multi-
nomial probit, mixed logit, ordinal response, revealed preference.
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1 Introduction

DCM (Discrete Choice Models) is a package for estimating a class
of discrete choice models. Written in Ox, DCM is a class that im-
plements a wide range of discrete choice models including standard
binary response models, with notable extensions including condi-
tional mixed logit, mixed probit, multinomial probit, and random
coefficient ordered choice models. The current version can han-
dle both cross-section and static panel data. DCM represents an
important development for the discrete choice computing environ-
ment in making available a broad range of models which are now
widely used by academics and practitioners. Developed as a derived
class of Modelbase, users may access the functions within DCM by
either writing Ox programs which create and use an object of the
DCM class, or use the program in an interactive fashion via OxPack
in GiveWin. We demonstrate the capabilities of DCM by using a
number of applications from the discrete choice literature.

In this paper we outline the functionality of a new piece of
software for estimation in discrete choice models, and demonstrate
its use with reference to a number of applications. In section 2
we introduce notation and in order to provide the user with the
necessary econometric background, we provide an overview of a
broad class of multiple and single index discrete choice models.
In section 3 and 4, respectively, we introduce the members of the
multiple and single index class of models that are available in DCM.
In section 5 we introduce the DCM class, and examine the main
member functions. In section 6 we demonstrate the use of DCM by
considering a number of applications.
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1.1 Disclaimer

The DCM package is functional, but we provide no warranty.
For general issues relating to Ox and the DCM package we
refer users to the ox-users discussion group1. We are happy to
receive suggestions for improvement, although the program for
future updates and revisions will be determined by the authors.
For Matias Eklof: matias.eklof@nek.uu.se; for Melvyn Weeks:
Melvyn.Weeks@econ.cam.ac.uk.

1.2 Availability and Citation

DCM is available free of charge for academic users from
http://www.econ.cam.ac.uk/faculty/weeks/DCM/.

The only condition of use is that authors cite this document in
all reports and publications involving the application of the DCM
package.

1.3 Installation

1. Make sure you have properly installed Ox version 3.10 or later.
The DCM package does not work fully with earlier versions of
Ox. Type oxl at the command prompt to check.

2. Create a DCM subdirectory in the ox/packages folder and put
dcm100.zip in that subdirectory, then unzip this file.

3. Read the readme.txt file for information on last minute
changes.

4. If Ox has been installed properly, this will allow using the DCM

package from any directory. To use the package in your code,
add the command

#include ’’packages/dcm/dcm.ox’’

at the top of all files which require it.

1Subscription information and archiving is available at
www.mailbase.ac.uk/lists/ox-users
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1.4 Running DCM code

The current version of DCM runs under either the Ox Console ver-
sion or GiveWin with OxProfessional. This implies that the user can
write short Ox programs that creates the DCM object. In addition,
there is an OxPack graphical user interface implemented where the
user may run DCM interactively. OxEdit, an easy to use text edi-
tor which supports syntax highlighting and running external tools,
may be used to both develop and run Ox programs. This editor can
be obtained from http://www.oxedit.com/oxedit.html. A set of
example files can also be downloaded from the DCM website.

2 Specification of Discrete Choice Models: A

Canonical Framework

To introduce notation we consider the following general canonical
model of discrete choice behaviour which includes both individual
specific characteristics and alternative specific attributes.2 For all
that follows we assume that the investigator has knowledge of the
density from which the observed sample is obtained and requires
estimates of an unknown parameter vector, θ. The model is
general in the sense of nesting a range of alternate formulations
based upon the inclusion or exclusion of individual characteristics
and alternative attributes, and allowing elements of θ to be either
fixed or random. For the sake of completeness we also consider
discrete choice models that are both additively separable in these
two types of variables, and those which utilise interaction effects.
For example, in specifying a model which includes only individual
characteristics, identification of model parameters is achieved by
ascribing a parameter vector which varies over alternatives. A
different (and perhaps more realistic) solution to the identification
problem would be to allow individual characteristics to interact
with alternative attributes. For example, if one believes that the

2Henceforth, variables that are alternative specific are referred to as ”attributes”,
whereas variables that are individual specific (and thus invariant across alternatives)
are referred to as ”characteristics”.
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utility derived from the size of an automobile is dependent upon
household size, then it would be necessary to include an interaction
term representing this effect.

All individuals face a finite set, ΩJ , of discrete alternatives
indexed by j. We employ a latent variable formulation where for
a given individual the value (or utility) from alternative j may be
expressed as

y∗j = αj + x′βj + v′jω + τPI(vjPxI)+εj, j = 1, ..., J. (1)

We differentiate between the following components of θ: a K×1
vector βj = {βjk}, containing parameters representing the effects
of individual characteristics upon choice; a L× 1 vector ω = {ωl},
denoting the effect of alternative specific attributes ; and a J × 1
vector α = {αj} of alternative-specific constants. x = {xk} is a
K × 1 vector of non-stochastic components of utility, containing
the K alternative invariant individual characteristics of alternative
j; vj = {vjl} is a L × 1 vector of alternative specific attributes.
(vjPxI) represents an interaction term allowing for, as an example,
the marginal evaluation of attribute vP to vary according to an
individual characteristic xI ; τPI is the associated coefficient.

The stochastic component of the model ε = {εj} is a J×1 vector
of disturbance terms whose distribution is known, possibly up to
a knowledge of a further set of unknown variance and covariance
parameter. Writing ε ∼ (0,Ξε), where Ξε is the J × J covariance
matrix of disturbance terms, we collect any free variance and
covariance parameters in the vector κ. (1) may be compactly written

y∗ = α + β̃
′
x + V′ω + τPI(vP � xI) + ε = D + ε, (2)

where y∗ = {y∗j} collects the J × 1 vector of utilities, β̃ is a
K × J vector, and V is a L × J matrix of alternative specific
attributes, vP is a J × 1 vector, representing the J elements of
the attribute with a marginal effect which varies according to the
characteristic xI . � is the component by component product. D =
{Dj} = {αj + x′βj + v′jω + τPI(vjPxI)} denotes the deterministic
component of choice, which we will also refer to as the linear index.
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In what follows i = 1, ..., N indexes individuals. At this juncture
we implicitly assume that there are T = 1 choice occasions.

The combination of the J × 1 linear index D, assumptions
regarding the stochastic component of choice ε, an observational
rule, and a link function F (D), generate a class of multinomial
response models. Ee note that these models are also referred to as
multiple index models. DCM can also estimate single index models,
such as ordered probit, and ordered mixed probit. By imposing
an ordinality assumption on the choice set, single index models,
such as ordinal response (OR) models, are able to circumvent
dimensionality problems that arise in certain multiple index models.
For example, the observational rule associated with OR models, may
be written

yi = 1(αj−1 < y∗i = Di + εi < αj) · j,
where αj−1 and αj are unknown threshold parameters. For each
individual Di is a scalar, giving rise to the notion of a single index.

We note that in the current version there are limitations to the
class of models available within DCM. First, although the class
of models we consider is inherently non-linear, DCM can only
handle models in which the index function D is linear. Second,
in the discussion that follows kernel logit, mixed logit, and random
coefficient logit are, in general, synonymous terms used to refer to an
extension of a vanilla logit model encompassing a composite error
structure permitting two additive components: a type I extreme
value error, and an error component that facilitates a departure
from iid disturbances due to random parameters. In this sense our
canonical form is limited in the range of departures we consider from
vanilla logit that maintain a logit kernel. For example, Ben-Akiva,
Bolduc, and Walker (2001) refer to a highly general factor analytic
logit kernel model which encompass a range of non iid variants, and
include heteroscedastic logit, nested and cross-nested logit, together
with a random parameter specification. In the current version of
DCM departures from vanilla logit that maintain a logit kernel are
the nested logit and the random parameters logit model.
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3 Multiple Index Models

Given that y∗ is unobserved, we require a mapping to represent
the relationship between y∗ and an observed outcome, say y. We
represent this relationship by the many-to-one observational rule

y = κ(y∗), (3)

where y is the index of the maximum element of the vector y∗. Thus,
in the case of multiple index discrete choice models the function κ(·)
simply represents the maximum index of the components of y∗. A
given individual chooses alternative j′ if the following set of linear
inequality constraints are satisfied

−∞ < y∗j < ∞ (4)

0 < y∗j′ − y∗j < ∞∀j 6= j′ ∈ ΩJ .

We begin by considering the most general density for ε in the form
of the multivariate normal distribution, ε ∼ MV N(0,Ξε).

3.1 Multinomial Probit

We write the conditional probability of choosing alternative j′ as

Pr(y = j′|z, θ) =

(Dj′−D1)∫
−∞

...

(Dj′−DJ)∫
−∞

g(η1j′, ..., ηJj′, ΞεJ−1)dη1j′, ..., ηJj′

(5)
where g(.) is a multivariate normal density of dimension J − 1,
with components ηsj = εs − εj ∀s = 1, ..., J (s 6= j), z is the
information set available to the analyst comprised of the observed
attributes of alternatives and individual characteristics, and ΞεJ−1

is the covariance matrix for the error differences ηsj. Obviously
as the dimension of ΩJ increases a curse of dimensionality makes
the estimation of probability expressions such as (5) extremely
time consuming. However, although much has been written on
methods to circumvent the dimensionality problem, the problem of

7



identification is also noteworthy, and logically precedes estimation.3

Although this issue is covered in depth in an accompanying paper
(see Eklof and Weeks (2003)), here we simply make a number
of observations. First, using the observational rule in (3), if we
consider the discrete information as imperfect measures on an
underlying (latent) utility model, then the realisation that the
analyst will only observe the sign of U(j) − U(j′) ∀ j 6= j′ ∈ Ω,
will have implications for the identification of the location and
scale of the model. Second, and following Ben-Akiva, Bolduc,
and Walker (2001), DCM facilitates the specification of covariance
matrix components that are alternative specific, and those that, in
the case of a random parameter specification, vary over individuals.
For example, in specifying a utility model with a representative
agent determining the mean, we may consider a stochastic term as
composed of two components: unobserved attributes of alternatives,
and in the case of observed characteristics, deviations of individual
tastes from an average.

Here we consider the following propositions for identification,
based upon a number of alternative representations of the the
random component εij. See Eklof and Weeks (2003) for a proof
of these propositions.

3.1.1 Identification under Different Covariance Structures

Proposition 1 (Alternative Specific Random Component)
For the multinomial probit model with J alternatives and an alternative-
specific error covariance matrix Ξε, and assuming that there is no
random taste variation on observed attributes, a maximum of (J −
1)J/2− 1 free error covariance parameters are identified.

Proposition 2 (Individual Specific Random Components)
For the multinomial probit model with J alternatives and random
taste variation over all L attributes, then assuming that alternative-

3Testimony to this observation has been provided by a number of authors including
Bunch and Kitamura (1989) and Ben-Akiva, Bolduc, and Walker (2001) who note that
in a number of published (and refereed) articles and textbooks, models were formally
underidentified.
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specific errors are iid, a maximum of L(L + 1)/2 covariance
parameters are identified.4

Proposition 3 (Individual and alternative specific random components)
For the multinomial probit model with J alternatives, with random
taste variation over the L attributes and an alternative-specific error
covariance matrix ΞεJ , a maximum of (J − 1)J/2− 1 + (L + 1)L/2
error covariance parameters are identified.5

3.2 Approximating the MNP Model

The analytical tractability of (5) is critically dependent upon the
restrictions placed upon ΞεJ−1. The MNP model belongs to a class of
models where both the criterion function and first order conditions
are without a simple analytical form. In this particular case the
maximisation of the likelihood function requires the evaluation of
a multi-dimensional integral for each sample point. For choice
problems where the dimension of ΩJ exceeds four the evaluation
of multidimensional integrals is computationally prohibitive, hence
the curse of dimensionality (see Bellman (1957)). In this case DCM
provides the user with a number of options:

i) maintain an assumption of multivariate normality and utilise
simulation techniques to circumvent the dimensionality con-
straint. See, for example, McFadden (1989) and Pakes and
Pollard (1989).

ii) replace the stochastic specification ε ∼ MV N(0, Ξε) with
ε ∼ Λ(0, γ), where Λ denotes the Type 1 extreme value density

f(ε) = e−εe−e
−ε

,

with variance terms γ = π2/6. Dependent upon the mix of
alternative specific attributes and individual-specific charac-
teristics, we have the conditional and multinomial logit model.

4We note that the MNP model (implied in the above proposition) with Ξε set equal to IJ
is also referred to as the mixed probit model.

5This assumes that the scaling restriction has been set by fixing one of the elements of Ξε.
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iii) mix a standard logit model with an assumed distribution
for the vector of mean parameters. In other words take a
standard logit choice probability conditional upon a set of mean
parameters, say β, and weight each probability (at the level
of the individual) with a weight given by the mixing density
f(β|η), where η is a vector of hyperparameters. The resultant
mixed logit model (MXL) may then be motivated using a
random coefficient interpretation of RUM.

iv) The mixed logit model represents one way to circumvent the
restrictive set of assumptions consistent with vanilla logit,
whilst avoiding the dimensionality problems attendant with
the MNP model. An alternative to this approach is the
Nested Logit model, which is a member of a broad class of
models based upon Generalised Extreme Value. The specific
generalisation here is based upon the use of prior information
to group the choice set into a number of mutually exclusive
partitions, and imbue each partition with a common factor.
The common factor, shared across members of the same
partition, facilitates a departure from the IIA assumption
within nests; and an IIN (independence of irrelevant nests)
assumption across partitions. Below, we examine this form,
and also demonstrate how the canonical form of the mixed logit
model can be used to generate an analog nested logit model.

3.3 The Conditional and Multinomial Logit Model

The combination of simulation technology and computational power
has elevated the MNP model to a feasible model of discrete choice.
However, the logit model remains a highly tractable benchmark
model across many users and applications. Writing the utility of
choice j for individual i as

y∗ij = Dij + εij,

then for εi = (εi1, εi2, ..., εiJ)
′ distributed independent and identi-

cally type I extreme value, the probability that individual i chooses
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j may be written

Pr(yi = j|z, θ) =
eDij

ΣJ
j=1e

Dij
(6)

=
eαj+x′

iβjev′
ijω

ΣJ
j=1e

αj+x′
iβjev′

ijω
.

We note that (6) represents the probabilities for the conditional logit
model. Note that Dij contains both alternative specific attributes
(in vij) and individual characteristics (in xi) which are invariant
over the choice set. Although the form of (6) is common in models of
transportation choice, marketing, and also stated preference, most
datasets analyzed by economists in models of revealed preference do
not include alternative specific attributes. A model including only
individual characteristics xi is referred to as the multinomial logit
model.

3.4 The Mixed Logit Model

We consider the simple the linear random utility model

y∗i = α + v′iωi + εi, (7)

where the parameter vector ωi = ω̄ + ω̃i is a random quantity, with
ω̄ (ω̃i) denoting a mean (individual specific) component. There
are a number of distinguishing features concerning the mixed logit
representation of random taste variation.6 First, we write the
distribution of ωi more generally as ωi ∼ Υ(ω̄,Ξ$), where Υ
denotes a multivariate density with mean ω̄ and covariance matrix
Ξ$. Unlike the MNP model Υ need not be multivariate normal.
Second, the J × 1 vector of residual error terms εi is distributed iid
Type 1 extreme value. This will have a number of implications, the

6Note that in this representation of the mixed logit model we choose to specify a
mean component of utility which includes only a vector of alternative specific attributes.
We do this to simplify notation. It is of course possible to estimate a model where
functions of attributes are included, based upon interacting attributes and individual
characteristics. In addition we present a model where mixing is imposed across all
elements of v. This need not be the case as discussed below.
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most critical being that conditional on integrating out the random
quantity ωi, we are left with a logit probability (logit kernel). As a
result, there is no need to impose any additional scale normalisations
as, for example, is required in specifiying an estimable set of error
covariance parameters in Ξε in the case of multinomial probit.

3.4.1 The Mixed Logit Model: Choice Probabilities

Assuming a single observation per individual, probabilities for the
mixed logit model (MXL) may be written

PΩ(yi = j|v, η) =

∫
LΩ(yi = j;v; ω)g(ω|η)dω =

∫
evjω/

∑
j∈Ω

evjωg(ω|η)dω,

(8)

where PΩ(yi = j|v, η), is a choice probability for alternative j
in choice set Ω, and η is a vector of hyperparameters describing
the probability density function of the mixing distribution g(·).
LΩ(j;v; ω) is a logit model for choice set Ω, ω = ω̄ + Λζ, denotes
a L × 1 vector of random coefficients, comprised of $, a L × 1
vector of mean parameters, Λ, a L × L matrix of second moment
hyperparameters (ΛΛ′ = Ξ$), and ζ, a L× 1 random vector of iid
variates with density f(ζ). The mixed logit log-likelihood for given
ω and η is then written as

l(ω, η) =
∑
i

∑
j

yij log[

∫
ω

{evijω/
∑
j∈Ω

evijω

︸ ︷︷ ︸
Q

}g(ω|η)dω], (9)

where yij = 1 (0) if individual i chooses (does not choose) alternative
j. As an example, if the distribution over the parameters $ is
driven by an independent normal mixing distribution then Λ is a
diagonal matrix with a L × 1 vector of standard deviations of the
random coefficients along the diagonal.

Note that if we assume that g(.|η) is multivariate normal then
a mixed MNL model can be used to approximate a mixed probit
model. We note that the advantage of MXL is that conditional
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upon integrating out the random taste heterogeneity, a tractable
logit choice probability remains, as is evident by the term Q in (9).7

The MNL model is delivered if we set to Λ to a null matrix. In this
case the distributions over all coefficients are degenerate such that
ω = $̄ is a vector of fixed coefficients. In this regard we see that
the MNL is the natural benchmark model with which to evaluate
departures designed to incorporate different variants of the random
coefficient model. The disadvantage of the MXL is that since the
dimension of ω is L×1, then if mixing is performed over all elements
of ω, maximisation of the likelihood function involves the estimation
of a L−dimension integral.

Note that when we explicitly allow for the panel structure the
mixed logit log-likelihood for given ω and η is written as

l(α, η) =
∑
i

∑
t

∑
j

ytij log[

∫
ω

{evt
ijω/

∑
j∈Ω

evt
ijω}g(ω|η)dω]

 ,

(10)
where ytij = 1 if individual i chooses the jth alternative on the tth

choice occasion, where t = 1, ..., T. If we assume that preferences are
constant for a given individual over the T choice occasions, then in
simulating the probability for the ith individual we make a draw
from g(ω|η), say ωil, where l indexes the lthattribute, and keep this
fixed for all T .

Proposition 4 (Individual specific random components) For
the mixed logit model with J alternatives, and L characteristics with
random taste variation over all L attributes, there are a maximum
of (L + 1)L/2 free error covariance parameters.

The proof of this proposition follows from the same as Proposi-
tion 2. Note that in both cases the normalisation with respect to
location does not impact upon the number of estimable parameters
in Ξω. Second, in both models the normalisation with respect to

7Note that for this reason the mixed multinomial logit (MXL) model, equivalently
the random coefficient logit model, is sometimes referred to as Kernel Logit.
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scale is automatic. For the mixed logit model this normalisation is
automatic since the εi in (7) is i.i.d. Type 1 extreme value; and for
the mixed probit model in question ΞεJ has been set to an identity
matrix, which encompasses both a scale plus additional overidenti-
fying restrictions.8

3.5 Nested Logit

A number of generalisations of vanilla logit can be considered within
a class of generalised extreme value (GEV) models. The most
utilised departure is the nested logit (NL) model. We introduce the
NL model by considering the decomposition of a joint distribution
as a product of a marginal and a conditional distribution; and then
link this decomposition to a hierarchical structure which overlays
the original choice set. We begin by examining a simple two
level hierarchy which divides the choice set into two partitions
(or nests). Let the top level of this hierarchy define an aggregate
choice over subset Ω1 and Ω2, where Ω1 = {a1, a2, . . . , aJ1}, Ω2 =
{b1, b2, . . . , bJ2}, and Ω1 ∪ Ω2 = ΩJ . We write the indirect utility
associated with choice aj ∈ Ω1 as

Uaj
= VΩ1

+ Vaj |Ω1
+ εΩ1

+ εaj |Ω1
, (11)

where both the deterministic and random components of utility
are partitioned into two components: VΩA

and Vaj |Ω1
represent,

respectively, observed attributes of choice that depend on the top
and lower level of the hierarchy; εΩ1

denotes the aggregate choice
specific error component; and εaj |Ω1

is the unobserved component
which is specific to alternative aj in the aggregate choice set Ω1.
Obviously the composite error term ηaj

= εΩ1
+ εaj |Ω1

will, in
analogous fashion to a standard error components formulation,
generate non-zero covariance in unobserved utilities across all
alternatives which belong to the same top level partition; covariance
for alternatives aj ∈ Ω1 and bj ∈ Ω2 will be zero. This basic
observation encapsulates the fundamental nature of the departure
of NL from the vanilla logit model.

8See Eklof and Weeks (2003) for a number of important caveats.
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To introduce the NL model formally we let η = (ηΩ1, ηΩ2, ...,ηΩK)
denote the vector of unobserved utility over partitions Ωk, k =
1, ..., K, where ηΩk = (ηk1

, ηk2
, ..., ηkJ

). The cumulative distribution
of η may be written as

exp−

(
K∑
k=1

(∑
j∈Ωk

e−ηj/λk

)λk

)
,

where k indexes the number of partitions and λk is a measure of the
degree of independence in partition k. For any two alternatives
in partition Ωk we have a common factor εΩk

in the stochastic
component. Therefore, despite the fact that each element of ηj is
distributed univariate extreme value, alternatives within the same
partition are not independent. λk = 1 indicates independence of all
alternatives in nest k. A test of the null hypothesis λk = 1 ∀ k
represents a test of whether the NL model represents a statistically
significant departure from vanilla logit. Different magnitudes of
λk represent degrees of correlation among the unobserved portion
of utility within each partition. As demonstrated inter alia by
McFadden (1981) and Daly and Zachary (1981), the probability
of choosing aj in particular Ω1 is given by

Paj |Ω1
=

eVaj
/λΩ1

(∑
j∈Ω1

eVj/λ1

)λ1−1

∑2
l=1

(∑
j∈Ω1,Ω2

eVj/λl

)λl
. (12)

For aj ∈ Ω1 and bj ∈ Ω2, the ratio of the respective probabilities is
given by

Paj |Ω1

Pbj |Ω2

=
eVaj

/λ1

(∑
j∈Ω1

eVaj/λ1

)λ1−1

eVbj
/λ2

(∑
j∈Ω2

eVbj
/λ2

)λ2−1 (13)

For alternatives aj and al, j, l ∈ Ω1, the terms in parenthesis in (13)
fall out, such that this ratio may be written

Paj |Ω1

Pal|Ω1

=
eVaj

/λ1

eVal
/λ1

, (14)
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which is independent of all other alternatives.
We note that this form of partitioning introduces a different

form of the IIA assumption. Namely, for pairs of alternatives
within the same partition the standard IIA condition applies, as in
(14). However, across partitions the parenthetical terms in (13) are
distinct. IIA is now relaxed in a particular way given that the ratio

of probabilities, say
Paj |Ω1

Pbj |Ω2

, depends on the attributes of a specific set

of alternatives, namely those which share the same partitions as aj
and bj. In this respect, as Train (2002) comments, we may modify
the IIA statement, stating that an Independence of Irrelevant Nests
(IIN) condition now holds over alternatives in different nests.

4 Ordinality and Discrete Response: Single

Index Models

Multinomial probit and logit models are examples of multiple
index models with both the unobserved (continuous) latent variable
and observed discrete indicators indexed by the alternative. The
assumption that there exists an ordering over ΩJ facilitates the
specification of a single index ordinal response model.9 In this
instance the observational rule is characterized by the following
mapping.

yi = κ(y∗i ) = 1(αj−1 < y∗i = Di + εi < αj) · j (15)

where y∗i is a scalar quantity and αj are thresholds. This gives rise
to a single index, here Di.

To motivate the use of ordinal response models, we consider the
following example. Let y∗i = Ui(A) − U(B) denote the difference
in value (or utility) for the ith respondent from choosing product A
over B. Using the mapping in (15) we write the observed discrete
outcomes as: yi = 1 (2) representing a choice Definitely B (Probably
B); yi = 4 (5) depicts the choice Probably A (Definitely A); and

9Note that for J = 2, the ordered response and binary models are equivalent.
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yi = 3 represents the region on < where the respondent is indifferent
between the two products.

In this instance the choice set represents an ordering which
overlies the scalar utility difference y∗i , in the sense that yi ∈
{1, 2, ..., J} represents as set of discrete ordinal indicators on a single
unobserved latent variable y∗i . We note that this example represents
an observational rule which is consistent with the elicitation of
probabilistic intentions. In particular, note that in a revealed
preference setting stochastic uncertainty in the random utility
model is predicated upon imperfect information on behalf of the
analyst. However, in formulating the use of a discrete choice
model to represent stated preferences, it is possible that consumers
are also uncertain as to which alternative to choose given current
information. (See Manski (1995) and Manski (1990)).

For a single respondent probabilities calculated using (15) are
given by

Pr(yi = j|xi) = Pr(αj−1 ≤ y∗i < αj)

= Pr[((αj − x′iδ)/σ) ≤ εi ≤ ((αj−1 − x′iδ)/σ)]

= F ((αj − x′iδ)/σ)− F ((αj−1 − x′iδ)/σ),

for j = 1, ...., J, and αJ = ∞, α0 = −∞. The log-likelihood is given
by

N∑
i=1

yij(log[F ((αj − x′iδ)/σ)− F ((αj−1 − x′iδ)/σ)].

where yij is 1 (0) for chosen (not chosen) alternatives. For εAi , εBi
distributed type 1 extreme value (normal) then εi = εAi − εBi
is also type extreme value (normal). DCM can estimate both
ordered probit and ordered mixed probit models. Therefore, if
we allow for δ to be random (as opposed to fixed) coefficients,
then the ordered mixed probit model is simply the ordered probit
probabilities weighted by the density of δ, say g(δ|η). In this case
the log-likelihood is simply
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N∑
i=1

yij log[

∫
[F ((αj − x′iδ)/σ)− F ((αj−1 − x′iδ)/σ)]g(δ|η)dδ].

where, as discussed in section 3.4, η is a vector of hyperparameters
describing the probability density function of the mixing distribu-
tion g(·).

4.1 Identification

As with the multinomial model, if the vector α constitute parame-
ters to estimate, the scale parameter σ is not separately identifiable.
Subsequently, αj/σ may be interpreted as a type of intercept for
each probability, thereby precluding separate identification of an
intercept in x

′

iδ. It is obviously possible to separately identify a
constant term in conjunction with J − 2 threshold parameters if
we introduce a normalisation such as setting one of the threshold
values equal to zero. Therefore, in general there exists the follow-
ing choice: either estimate J − 1 composite thresholds of the form
(α̃j = (αj − γ) OR set one threshold to zero and then estimate
estimate J − 2 thresholds plus γ. In DCM we impose the former
identification condition.

5 Using the DCM class

This section demonstrates the use of the DCM class in Ox pro-
grams. The DCM class is derived from the Modelbase class and
consequently inherits the main features of this class. However, there
are some features specific to discrete choice models that do not fit
the general Modelbase class and therefore some member functions
of the Modelbase class have been modified to fit our purposes. In
the following sections we will focus on model specification and esti-
mation. In an accompanying manual we present the complete set of
modified Modelbase member functions as well as the DCM member
functions.10

10http://www.econ.cam.ac.uk/faculty/weeks/DCM/DCMManual/
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5.1 Data organization

DCM can read any data format available in Ox and GiveWin. Fur-
thermore, DCM accepts multiple types of data organizations, i.e.,
the organization of the data in the database. For example, in re-
vealed preference or ordered models, data is usually organized such
that each row in the data set refers to a specific individual-period
observation where the columns hold both individual characteristics
and possible alternative attributes. Individual characteristics can
be either in a single column or repeated in J columns. The depen-
dent variable is given either in a single column as the index of the
chosen alternative, or in J columns with a non-zero value in the col-
umn corresponding to the chosen alternative. On the other hand,
in stated preference models, the organization is often such that each
row refers to a specific individual-period-alternative observation and
the dependent variable is given in a single column indicating with
a non-zero value the chosen alternative. Observations are finally
stacked by alternative, by time periods, and by individuals.

Most software programs can handle one of the possible combi-
nations. With DCM, this has all been taken care of. From the
information on the dependent variable, DCM infers the organiza-
tion of the data without any input from the user. The data is then
internally transformed to a unified framework. Hence, DCM can
interpret most permutations of data organizations: rows can refer
to individual-period or individual-period-alternative observations,;
the dependent variable can either an index or an dummy variable
(the index can start at any number); and individual characteristics
can be in a single column or repeated across columns. The cost of
this property is that DCM needs variable names for all columns in
the dataset. Columns that refer to the same variable must have the
same names such that names are repeated across columns. Also,
given the number of time periods in a balanced panel, DCM will in-
fer the number of individuals and the number of alternatives. In the
case of unbalanced panels users can create an individual ID variable
which is indicated to DCM using SetID(sPar). DCM is then able
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to infer the number of individuals, time periods and alternatives
from this variable.

In essence, the requirements on data organization in DCM are
as follows: a) observations should be stacked by period and by
individuals; b) each column should have a name that reflects the
organization of the data11. In unbalanced panels, there should be
one variable indicating the ID of the individual.

5.2 Model specification

Once the data has been loaded and variables selected,12 the user
must make a number of choices over type of model and specification
of the stochastic components. Below we discuss the following DCM
member functions:

SetModel(iModel), ScaleVar(aScaleVar),
SetRefAlt(iAlt), SetScaleAlt(iAlt),
SetCoeffDist(iType,asPar,bCorr), and
SetErrDist(iType).

We first begin with the SetModel() statement and the options
available for each model

SetModel(iModel) Selects the model to be estimated. The
available options for iModel are presented in Table 1 with
the total number of model parameters13. Note that all model
parameters are not identified. Table 2 gives an overview of
the options available for the various models. These options are
discussed in detail below.

SetRefAlt(iRefAlt) Sets the reference alternative, i.e., the alter-
native against which other alternatives’ utilities are compare.
This necessary for identification with respect to location. Note

11There is one caveat in DCM 1.0. In the OxPack implementation we are forced to
restrict the available data organizations to the case where observations are stacked by
alternatives, by periods, and by individuals (c.f. stated preference data). However,
there is a member function in the DCM class that transforms any dataset to this
organization. For details, we refer the reader to the DCM manual.

12See the documentation on the Modelbase class for loading and selecting variables.
13 F ( R ) denotes the number of fixed (random) coefficients.
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Table 1: SetModel() options

iModel Description #par
M CL Conditional/multinomial logit (J − 1)K + L
M NL Nested logit (J − 1)K + L + #nests
M MXL Mixed logit F + R + R(R + 1)/2
M MXP Mixed probit F + R + R(R + 1)/2
M MNP Multinomial Probit F + R + R(R + 1)/2 + J(J − 1)/2− 1
M OP Ordered probit F + J − 1
M OMP Ordered mixed probit F + R(R + 1)/R + J − 1

Table 2: Model specifications

SetModel(iModel) CL NL MXL MXP MNP OP OMP
SetRefAlt(iRefAlt) X X X X X n.a. n.a.

(D: iRefAlt=0)

SetScaleAlt(iScaleAlt) n.a. n.a. n.a. X X n.a. n.a.
(D: iScaleAlt=1)

SetNest(avNest) n.a. X n.a. n.a. n.a. n.a. n.a.

SetCoeffDist(iType,asPar,bCorr)
iType = FIXED (A) (A) X(D) X(D) X(D) (A) (A)

NORMAL n.a. n.a. X X X n.a. X
LOGNORMAL n.a. n.a. X n.a. n.a. n.a. X

SetErrDist(iType)
iType = ED IID n.a. n.a. (A) (A) X(D) (A) (A)

ED HETEROSC n.a. n.a. n.a. n.a. X n.a. n.a.
ED UNREST n.a. n.a. n.a. n.a. X n.a. n.a.

SetRandom(iType,cR)
iType = R UNIFORM n.a. n.a. X X X n.a. X

R HALTON n.a. n.a. X(D) X(D) X(D) n.a. X(D)
R NONE n.a. n.a. n.a. X X n.a. n.a.

(D: cR=50)
Note:X=Option available, n.a.=Option not available, A=Automatic, D=Default
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that Ox indices starts at zero, hence the first alternative will
have index 0. The variance of the error term for the iRefAlt

is set to 1 in the MNP model. iRefAlt cannot be the same as
iScaleAlt (see below).

SetScaleAlt(iScaleAlt) Sets the scale alternative of the model i.e.
the alternative for which the diagonal element in the cholesky
decomposition of the error covariance matrix is set to unity.
This is only relevant for models with normally distributed error
terms. This cannot be the same alternative as iRefAlt (see
above).

SetNest(avNest) Sets the nesting structure of the model.14 The
argument is an array of vectors with alternative indexes. The
current version of DCM only supports one level of nesting, i.e.
nests within nests are not supported.

SetCoeffDist(iType,asPar,bCorr) Sets the mixing distribution
of random coefficients. The first argument defines the distri-
bution of the parameters listed in the second argument. The
third optional argument allows for correlated random coeffi-
cients. This function can be called several times to specify
different distributions for different sets of coefficients.

As the log-normal distribution is defined with a positive
support, in order to model e.g. a negative price effect, it is
necessary to create a price variable that has a negative support.

SetErrDist(iType) Sets the structure of the error covariance
matrix. All available options in DCM will result in an identified
error covariance matrix. See Appendix B.1 for a detailed
description of the error covariance structure.

SetRandom(iType,cR) Sets the type and number of random draws
for models that requires Monte Carlo integration techniques
(MXL, MXP, MNP, and OMP). For multiple index models

14Only relevant for cModel=M NL.
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where the dimension of ΩJ is three or less, and assuming nor-
mally distributed errors, the user can choose the option R NONE

and thereby utilise the Ox numerical integration routines for
the univariate and multivariate normal probabilities.

5.2.1 Comments

One of the principle distinctions between the mixed logit and
multinomial probit model can be appreciated from Table 2. For
example, consider the case where an analyst is contemplating
estimating either a mixed logit or multinomial probit model, and
is interested in allowing for random preference heterogeneity. In
the case of the M MXL model the user will use SetCoeffDist to
make choices as to whether individual mean coefficients are to be
considered as fixed or random; and, if random, both the form of the
mixing distribution and whether random components are correlated,
needs to be specified. However, the use of the M MNP model requires
both this setting in conjunction with a specification on the residual
error component using SetErrDist. This follows from the fact
that whereas the M MXL model partitions the stochastic component
into two additive parts - one heteroscedastic and correlated over
the choice set, and another which is i.i.d. type 1 extreme value,
the M MNP model does not make such a distinction. Two other
observations are worth making. First, one disadvantage of the MNP
model is that the form of the mixing distribution is fixed and normal.
In the current version of the paper, a mixed logit model comes
with two mixing distributions: normal and log-normal. Second,
if a MNP model is chosen and a user allows for free covariance
parameters, identification restrictions are required. In contrast the
mixed logit model has at its core a kernel logit model, and therefore
identification is automatic.

5.3 Estimation

This subsection discusses the following member functions:
SetAlgorithm(iAlg),SetStdErr(iType),
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Table 3: SetAlgorithm() options

iAlg Description
A BHHH BHHH optimizer that comes with DCM (default)
A BFGS Ox’s intrinsic MaxBFGS optimizer
A NEWTON Ox’s intrinsic MaxNewton optimizer
A SQP Ox’s intrinsic MaxSQP optimizer

Table 4: SetStdErr() options

iType Description
SE ROBUST Robust standard errors used (default)
SE HESSIAN Standard errors calculated using the Hessian
SE OPG Standard errors calculated using the outer product of the gradient

SetStartPar(vP), and Estimate().

SetAlgorithm(iAlg) Sets the optimization algorithm. Table 3
presents the available options.

SetStdErr(iType) Sets the standard errors. Table 4 presents the
available options.

SetStartPar(vP) Sets the vector of starting values. Note that
DCM by default constructs starting values using either CL
(for multiple index models requiring simulation) or OP (for
single index models requiring simulation). This is overridden
by SetStartPar(). The organization of the parameter vector
is described in Table 5.

Estimate() Estimates the specified model.

Examples of these commands will be given in the following
section on examples.

5.4 Post-estimation analysis

In DCM there is a single post-estimation option for analysis.

TestRandCoeff(const asPar) Tests for individual heterogeneity
in the coefficients listed in the the array asPar. If asPar=-1,
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Table 5: Organization of vector of starting values

# of pars. Description
(J − 1) alternative specific constants

(Deterministic(TRUE))
(J − 1) ·K individual characteristics ordered as in the

Select(I VAR,...) statement
L attributes ordered as in the

Select(A VAR,...) statement
M interaction terms ordered as asV[1]·asW[1],

asV[1]·asW[2], . . . ,asV[k]·asW[l]
#nest inclusive values (NL)
J − 1 thresholds (OP and OMP)

Q estimated elements of stacked columns of
lower triangular cholesky decomposition of
random coefficients covariance matrix (MXL,
MXP, and MNP)

P estimated elements of stacked columns of
lower triangular cholesky decomposition of
normalized error covariance matrix (MNP).

all coefficients are tested for heterogeneity. asPar can also be
a vector of coefficient indices.

The use of these commands will be demonstrated in the following
section on examples.

6 Examples

In the following section we present some examples which demon-
strate the use of DCM in estimating parameters of a number of
discrete discrete choice models. The focus of the presentation is not
the modelling and interpretation of the estimates, but the syntax
of the DCM commands the output produced by DCM.

6.1 Multinomial Models of Labour Force Status

To demonstrate the specification and estimation of multinomial
probit models we use the trinomial discrete choice model of the
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labour force status of married women in the UK as considered by
Duncan and Weeks (1998). The model is discrete in that they allow
for three states: non-workers supplying zero hours of work; part-
time workers whose weekly supply is between 0 and 30 hours; and
full-time workers supplying more than 30 hours. The data consist
of a random sample of married women drawn from the 1993 Family
Expenditure Survey (FES).

Across all specifications we condition our labour supply model on
wage rates15, and the following socio-demographic characteristics ;
age of the woman, dummies for children in the age groups 0-
2, 3-4, 5-10, and above 11, number of children, level of formal
education and marital status (whether married or cohabiting). We
also include a single attribute variable, net incomes at various
hours levels. To generate state-specific net incomes as condition
variables for the structural discrete choice models, we simulate tax
liabilities and benefit receipts and total net incomes at 0, 20 and
40 hours for each individual in our sample.16 Finally, to allow for
age dependent income effect we interact net income and age. Our
dependent variable is a three-state variable which distinguishes non-
participants (category 0), part-time workers between 1 and 30 hours
(category 1) and full-timers working in excess of 30 hours (category
2). The reference alternative is the non-participation category.
In reading the economic significance of the parameter estimates,
a negative coefficient represents a decrease in the likelihood of
working either part-time or full-time relative to not working. Which
comparison is appropriate is identified for each parameter estimate
in the table. The DCM commands for estimating the model are

15Since wage rates are not observed in the FES for those not in employment, we
base our simulations on wage rate estimates derived from an appropriately corrected
reduced form equation. See Duncan and Weeks for further details.

16The wage equation is identified from the inclusion of demand-side (quarterly
unemployment) and regional characteristics (vacancies and redundancies by region)
as well as socio-demographic characteristics (quadratics and interactions between age,
partners’s age and education; age and number of children). Estimates are available
from the authors on request. A problem with this approach is that it becomes difficult
to correct the standard errors in the structural model for the inclusion of the generated
wage rate term, since the simulated net income terms also depend (non-linearly) on
the wage rate used. In the structural models, therefore, the standard errors remain
uncorrected.
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presented in Table 6.17

Table 6: A discrete choice model of labor supply: Multinomial Probit

1 #include "/packages/dcm/dcm.ox"
2 main()
3 {
4 fopen("LS_MNP.OUT","l");
5 decl obj = new DCM();
6 obj.Load("../data/Married4.xls");
7 obj.Select(Y_VAR,{"REFPRED" ,0,0}); // Y_VAR: Dependent variable
8 obj.Select(I_VAR,{"DKID02" ,0,0, // I_VAR: Individual characteristics
9 "DKID34" ,0,0, // Automatically interacted with an

10 "DKID510" ,0,0, // alternative specific constant.
11 "DKID110" ,0,0,
12 "TOT_KIDS" ,0,0,
13 "AGE" ,0,0,
14 "EDGT16" ,0,0,
15 "COHAB" ,0,0,
16 "LNWFIT" ,0,0});
17 obj.Select(A_VAR,{"INC",0,0}); // Alternative attributes
18 obj.Interact({"AGE"},{"INC"});
19 obj.ScaleVar({"INC",0.01});
20 obj.SetAlgorithm(A_BFGS);
21 obj.SetModel(M_MNP);
22 obj.SetErrDist(ED_UNREST);
23 obj.Estimate();
24 delete obj;
25 }

In line 1 we include the DCM class in the program.18 Line 4
opens a log-file to which the output will be printed in addition to
the screen. Line 5 creates the object obj in which we will load
the data set (line 6) and select the variables (line 7-17). There are
three groups of variables in DCM reflecting the canonical model
presented in previous sections; the dependent variable (Y VAR), in-
dividual characteristics (I VAR), and alternative attributes (A VAR

). A variable in the loaded data set is selected in to one of these
groups using the Select(iGroup,...) command.19 The dependent

17See Duncan and Weeks (1998) for a discussion of parameter estimates and the application
of both nested and non-nested tests across models.

18The DCM code includes oxstd.h and oxfloat.h automatically so the user does
not need to include these header files as well.

19The arguments in the Select() statements use the Modelbase class syntax. Hence,
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variable (REFPRED) is selected into the Y VAR group, whereas
the individual characteristics (DKID02, etc) and the alternative
attribute (INC) are selected into the I VAR and A VAR groups, re-
spectively. Further, line 18 generates and includes the interaction
term between AGE and INC. The variable will be named AGE*INC

in the printout.20 Finally, the ScaleVar({’’INC’’,0.01}) state-
ment will multiply the INC variable by a factor 0.01 and we will
use the BFGS algorithm as stated in line 20. 21

The output from DCM presented in Table 7 includes information
on the sample used for estimation and how DCM has interpreted
the data organization.22 The type and number of pseudo-random
numbers in use are indicated, as well as the relevant base and scale
alternatives. In the table of estimates, the label C(Err)[i,j] refers
to the (i, j)’th element of the cholesky decomposition of the error
covariance matrix as indicated by the note below the table. Below
the tables of estimates and likelihood values, DCM reports the
results from the initial estimation of a restricted conditional logit
model.

We may also consider a number of alternative model specifica-
tions by focusing upon the stochastic component of choice. For
example a mixed probit model (MXP) allows for heterogenous pref-
erences but assumes that the error covariance matrix is iid. Here we
allow for heterogenous preference over the income variable. In the
DCM code, this is implemented by replacing SetErrDist(ED UNREST)

by SetErrDist(ED IID) in line 22 and specifying the distribution
of the relevant coefficients, e.g., SetParDist(NORMAL,{’’INC’’});
before the Estimate() statement.23

It is also possible to estimate a mixed logit model (MXL) which
accommodates heterogeneous preferences but assumes that the ad-

the second and third arguments (0,0) are not used in DCM.
20If any of the two arguments is an array, then all possible combinations of interaction

terms will be created and included in the model.
21If several variables should be scaled, multiple calls to ScaleVar() can be made, or the user

can send an array in a single call, e.g. ScaleVar({’’INC,0.01,’’AGE’’,100});.
22If the data is a unbalanced panel, then information on the number of observations

per cross section unit will be reported.
23We could also replace SetModel(M MNP) by SetModel(M MXP), which is equivalent

to SetModel(M MNP) and SetErrDist(ED IID).
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Table 7: Fragment of output from DCM estimation.

1 Ox version 3.30 (Windows) (C) J.A. Doornik, 1994-2003
2 DCM package version 040109, object created on 20-01-2004
3 NOTE: The number of alternatives is low (<3). For speed and
4 efficiency, DCM recommends numerical integration
5 Use SetRandom(R_NONE,0)
6 DCM package version 040109, object created on 20-01-2004
7 ** NOTE: Estimating a Conditional Logit model to generate starting values...Done! **
8

9 ---- DCM: Multinomial Probit ----
10 The estimation sample is: 1 - 1520
11 The dependent variable is: REFPRED (../data/Married4.xls)
12 Data type : NT x (J or 1)K+JL+(J or 1) with
13 N = 1520
14 J = 3
15 Pseudo random draws: HALTON (R=50)
16 Base alternative: 0
17 Scale alternative: 1
18

19 Coefficient Std.Error t-value t-prob
20 (0) DKID02 1/0 -2.84209 1.886 -1.51 0.132
21 (1) DKID02 2/0 -19.5861 6.027 -3.25 0.001
22 (2) DKID34 1/0 12.5196 2.167 5.78 0.000
23 ...
24 (18) INC 3.56419 0.8131 4.38 0.000
25 (19) AGE*INC -0.000311216 0.003139 -0.0991 0.921
26 C(Err)[0,0] 1.00000 (fixed)
27 C(Err)[1,1] 1.00000 (fixed)
28 C(Err)[1,2] 0.362283 0.5711 0.634 0.526
29 C(Err)[2,2] 1.47302 0.5381 2.74 0.006
30

31 NOTE: Robust standard errors.
32 NOTE: C[i,j] denotes entries in the Cholesky decomposition of the covariance matrix.
33 NOTE: Following variables are scaled.
34 INC x 0.01
35

36 Error term:
37 Std.dev Correlations
38 ALT_0 1.0000 1.0000 0.00000 0.00000
39 ALT_1 1.0000 0.00000 1.0000 0.23883
40 ALT_2 1.5169 0.00000 0.23883 1.0000
41

42 log-likelihood -130.418434
43 no. of observations 1520 no. of parameters 22
44 AIC.T 304.836869 AIC 0.200550572
45

46 Starting values generated from CL estimates: Strong convergence, lnLoglik =-129.19
47 Time to convergence: 5:26.79 (hh:mm:ss.hs, excluding time for covariance.)
48 BFGS using numerical derivatives (eps1=0.0001; eps2=0.005):
49 Strong convergence
50 Used starting values:
51 -3.2131 -18.396 11.385 -21.563 26.807 0.23972
52 22.805 3.6487 -5.9604 -5.6486 2.2276 -16.308
53 -0.054199 -0.010512 -7.6255 3.7605 6.3609 15.216
54 3.3098 -0.00038376 0.00000 1.0000
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ditive (Type 1 Extreme Value) disturbance term is iid across both
alternatives and individuals. In the DCM code, this would be ac-
complished by replacing SetModel(M MNP) by SetModel(M MXL) in
line 21 and specifying the coefficient distribution, e.g.
SetCoeffDist(NORMAL,{’’INC’’}). The SetErrDist(ED UNREST)

statement can be dropped.
The user may also append the code for the additional models to

the original program, where only changes across models is required.
A code fragment which replace lines 21-23 in the previous program
is given in Table 8. Note that we need to restate settings that are
model specific, e.g. the distribution of the random coefficient. This
is related to the fact that not all mixing distributions are allowed in
all types of models. We have also used numerical integration in the
MXP model, and 100 Halton draws in the Monte Carlo integration
in the MXL model.24

Table 8: Multiple specifications in one file, code fragment

1 // This fragment replaces line 21-23 in Table 6.
2 // Unrestricted multinomial probit model
3 obj.SetModel(M_MNP);
4 obj.SetErrDist(ED_UNREST);
5 obj.Estimate();
6 // Mixed probit model with mixing over income
7 obj.SetModel(M_MXP);
8 obj.SetRandom(R_NONE,0);
9 obj.SetCoeffDist(NORMAL,{"INC"});

10 obj.Estimate();
11 // Mixed logit model with mixing over income
12 obj.SetModel(M_MXL);
13 obj.SetRandom(R_HALTON,100);
14 obj.SetCoeffDist(NORMAL,{"INC"});
15 obj.Estimate();

6.2 Choice of Transport Mode

Following earlier work by Daganzo (1979) and McFadden (1977), the
transport mode choice problem has continued to figure prominently

24The output is not reported here but can be requested from the authors.
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in both reflecting and promoting developments in discrete choice
methodology. In recognition of this fact, we now examine a well
known modal choice dataset recording the inter-city travel choices
between Melbourne, Canberra and Sydney. There are a total of 210
observations of non-business travellers faced with the choice between
plane, car, bus, and train.25 This dataset has been used extensively
with examples including Greene (2002), Louviere, Hensher, and
Swait (2000), and Ben-Akiva, Bolduc, and Walker (2001). The
covariates included are terminal waiting time (Ttme), in-vehicle cost
(Invc), in-vehicle time (Invt), generalized costs (GC) calculated
from Invt, Invc, and a measure of wage rates, and household income
(Hinc) interacted with the ”air” alternative. The estimated model
is thus

Uj = αj + β1GCj + β2Ttmej + β3(Hinc ∗ airj) + εj

where αj is an alternative specific constant and airj is a alternative
specific dummy.

We estimate four models. The first model is a simple conditional
logit model, followed by a test for random preference heterogeneity.
The code for this model is presented in Table 9.

Here we have introduced a number of new DCM commands. The
SetAltNames() command is used to set the names of the alterna-
tives. These names are used to refer to the various alternatives
and for print-outs. The Deterministic(TRUE) command is used
to generate and include alternative specific constants in the regres-
sion. The constants can be used to create interaction terms us-
ing Interact() commands (see above). If no alternative names
are given, DCM will create dummies named e.g. ALT 0. The
TestRandCoeff(-1) command will test all coefficients for hetero-
geneity.26 The test in performed as a F-test for excluding the arti-

25Note that the dataset is actually choice-based, with undersampling of the more
popular mode, car. In order to obtain consistent estimates a weighted exogenous sample
maximum likelihood estimator (WESML) should be used. However, we do not do this,
since our primary objective is to compare our estimates with those in Greene (2002)
and Louviere, Hensher, and Swait (2000).

26To test a subset of coefficients use e.g. TestRandCoeff({’’GC’’,’’Ttme’’}).
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Table 9: Travel mode example. Conditional logit estimates and test for
heterogeneity

1 #include "/packages/dcm/dcm.ox"
2 main()
3 {
4 decl obj = new DCM();
5 obj.Load("../data/Greene_0.xls");
6 obj.SetAltNames({"air","train","bus","car"});
7 obj.Deterministic(TRUE);
8 obj.SetRefAlt(3); /* Reference alt. is "car" */
9 obj.Select(Y_VAR,{"Mode",0,0});

10 obj.Select(A_VAR,{"GC" ,0,0,
11 "Ttme",0,0});
12 obj.Interact({"Hinc"},{"air"});
13 obj.ScaleVar({"GC",0.1});
14 obj.SetAlgorithm(A_BFGS);
15 obj.SetModel(M_CL);
16 obj.Estimate();
17 obj.TestRandCoeff(-1);
18 delete obj;
19 }

ficial variables.27

We follow this by estimating a nested logit and two mixed logit
models. The first applies independent normal mixing distributions
to each variate, and we then follow this by allowing random param-
eters to be correlated. The additional required DCM commands are
presented in Table 10 which replace line 15-17 in Table 9.

6.3 DCM in OxPack for GiveWin

In this section we provide an overview of the graphical user interface
of DCM using OxPack for GiveWin. The user need a license to
run OxPack via GiveWin. This section presents the estimation of
a MXL model using the transportation mode example discussed
in the previous section. For a detailed description of all available
options and dialogs in DCM in OxPack we refer the reader to the
DCM manual.

27The output of the program is not presented here but can be requested from the
authors.
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Table 10: Travel mode example, cont.

1 // Conditional logit model
2 obj.SetModel(M_CL);
3 obj.Estimate();
4 obj.TestRandCoeff(-1);
5 // Nested logit
6 obj.SetModel(M_NL);
7 obj.SetNest({<0>,<1,2,3>});
8 obj.Estimate();
9 // Mixed logit model, independent coefficients

10 obj.SetModel(M_MXL);
11 obj.SetCoeffDist(NORMAL,{"air","train","bus"});
12 obj.Estimate();
13 // Mixed logit model, correlated coefficients
14 obj.SetModel(M_MXL);
15 obj.SetCoeffDist(NORMAL,{"air","train","bus"},TRUE);
16 obj.Estimate();

We assume that the database has been loaded into GiveWin
and that all the necessary variables have been created. Note
that, in contrast to the stand-alone version of DCM, the OxPack
implementation of DCM is restricted w.r.t. the data organization.
The OxPack version can only handle the NTJ × K + L + 1
organization. We will also assume that DCM has been loaded into
OxPack using Package-Add/Remove packages in OxPack, then
selected using Package-DCM.28 If DCM is successfully loaded, the
OxPack dialog box will indicate DCM in the title bar and there will
be a message in the GiveWin result window.

DCM in OxPack follows the conventional sequence of commands
in OxPack. That is 1) model selection, 2) model formulation, 3)
model settings, 4) estimation, and 5) post-estimation testing.

1. Model selection First we select the model to estimate. This
is done from the “Model” menu as illustrated below. Once
selected, the user will be taken automatically to the Data

selection... dialog.

2. Formulate/Data selection Next, as illustrated in Figure 2,
28Use Add/Remove package... in the OxPack menu Package. Then locate and add

DCM.OX to add the DCM package.
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Figure 1: Model selection dialog

we select the dependent and independent variables from the
data set loaded in GiveWin. Depending on the model, the left
panel gives different options for the variables. In the MXL case,
there are 7 available groups. The first three, Y, A, and I refer to
the dependent variable, alternative attributes, and individual
characteristics, respectively. As each variable is selected, an
indicator will show up to the left of the variable29.

The next three groups refer to the distribution of the random
coefficient associated with the corresponding variable. For
MXL models, there are three alternatives, fixed (non-random,
default), normal and log-normal distribution. Selecting a
variable in the model and clicking the desired distribution
defines the mixing distribution. In the example we have set
the distribution of the alternative specific constants to normal.
The SetID function is used in unbalanced panel to indicate an
individual id variable. Clicking OK takes the user to the Model

Settings dialog.

3. Model settings The options in the Model settings dialog are
different across models. For example, in the MXL model
the user can change the type of covariance estimator, set

29As the first variable is selected into the model, DCM will automatically include
alternative specific constants, which can be removed from the model using Delete if
marked.
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Figure 2: Formulation/Data selection dialog

Figure 3: Model settings dialog

the reference alternative (note that indexing starts at 0, not
1), allow for correlation across random coefficients,30 and
the type and number of random draws used in the Monte
Carlo integration. In this example, (see Figure 3) we use a
robust covariance estimator, the air alternative (alternative 4,
indexed as 3) is the reference alternative, we do not allow for
correlation across random coefficients, and we use 50 Halton
draws in simulations.

30Note that a current limitation of the oxPack implementation of DCM, is that
unlike the standard version of DCM, where individuals write small programs in Ox
(as demonstrated above), it is not possible to allow for correlation across subsets of
random coefficients.
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Figure 4: Estimation dialog

Figure 5: Output in GiveWin

4. Estimation The final step is to set the type of optimizer for
estimation. There are four options as indicated in the figure
below. Further, the user can click Options... to control the
printout during estimation. Clicking OK will estimate the model
and print the results to GiveWin’s result window as illustrated
in the Figure 4.

5. Post-estimation testing The user can test the usual exclusion
and linear restriction test from the Test menu.

The user can now go back to the Formulation dialog to remove
or add new variables and re-estimate the model.
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7 A Word of Warning

With the continued increased in computer resources available
for economic research, the potential of simulation technology to
expand the set of viable models of choice behaviour has been
realised. Access to software which includes the mixed multinomial
logit and multinomial probit is now widespread with computer
packages such as the NLOGIT, HLOGIT and now DCM. However it
is important to offer a word of warning as to the likely impact
of an expanding model choice set on research and ultimately
policy decisions. As an example, Hensher and Greene (2002)
note ten key specification issues that must be considered prior to
estimating a random coefficient logit model. Three key aspects are:
selecting the parameters that are to be random (fixed); selecting
the distribution of the random parameters; and accounting for
correlation over multiple choices made by an individual. Therefore,
as the analyst seeks to accommodate the various manifestations
of uncertainty in the random utility model, it is also appropriate
to recognise that the analyst will have little theoretical guidance
as to the most appropriate choice over these types of specification
issues. Although obvious exceptions to this statement exist, for
example avoiding distributions with positive support in representing
consumer heterogeneity over product price, in many cases prior
information is absent. As experience in the use of these models
in both stated and revealed preference environment accumulates,
this source of specification uncertainty will obviously fall.

In the preceding discussion we have noted the problem of
theoretical identification in terms of locating which parameters
are identified in the population model. However, in confronting
any model with data, especially those with a relatively large
number of covariance parameters, the analyst may be faced with
problems of empirical identification. Over a wide class of discrete
choice models, but with particular emphasis on the MNP model,
this problem has been noted by a number of authors including
McFadden and Train (2000). Keane (1992) refers to this problem
as fragile identification. The key issue here is that after the
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necessary set of scale and level restrictions have been imposed, the
analyst may experience problems in precisely estimating covariance
parameters. One manifestation of this problem is that a number
of competing model specifications, for example, those based on
different covariance specifications, may deliver models with almost
identical measures of fit, including the log-likelihood value.
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A Loading and modifying data

This subsection discusses the loading and modification of data in
DCM. We make the distinction between the concepts data format
and data organization. Data format refers to the file type in which
the database is saved, e.g. an Excel spreadsheet or a Stata file.
Data organization refers to how the data is organized within the
database.

Data formats: The DCM class is derived from the Modelbase and
Database class, and as a result, DCM can read all data formats that
the Database class can handle. These data formats include Excel,
Lotus, formatted and unformatted ASCII files, Stata, and GiveWin
formats. We refer to the Ox manual for a description of available
data formats.

Data organisation: There exist a number of different conventions
to organize data in discrete choice models. We accommodate most
conventions in DCM. Assuming that the dataset contains information
on N individuals, T time periods, and J alternatives; and that we
have K individual characteristics, and/or L alternative attributes,
and a single dependent variable, then we identify two main types of
data organization:

Type 1 (NTJ ×K + L + 1) This organization is common in stated
preference analysis of multiple index models. Observations
are stacked by alternatives, by time periods, and by individuals.
Each row includes K columns for individual characteristics, L
columns for attributes and 1 column indicating the alternative
that is preferred. The same ordering of alternatives in rows is
applied for all individuals and time periods. See Greene1.xls
for an example.

Type 2 (NT × (J or 1) ·K + J · L + (J or 1)) This organization
is common in revealed preference analysis and single index

models. Observations are stacked by time periods, and by
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individuals. Each row includes J · K or K columns for
individual characteristics, and/or J ·L columns for alternative
attributes, and J or 1 column(s) indicating the preferred
alternative. The same ordering of alternatives in columns
applies to all individuals and time periods. If data for the
dependent variable is supplied as a single column, then the
dependent variable is assumed to represent the index of the
chosen alternative, i.e. 1,2,3,...,J.31 If the dependent variable
spans multiple columns it is assumed to be a (row) vector with
a non-zero value in the position of the preferred alternative.
See Greene2.xls for an example.

Remark 1 Note that the use of or in the representation of the Type
2 data organisation reflects the fact that the dependent variable may
be represented as a NT × 1 column vector indicating the index of
the chosen alternative, or a NT × J matrix, with a non-zero value
in the column of the chosen alternative.

Tables 11 and 12 present two examples of data organizations
using the transportation mode data set in Greene (2002). The tables
give the observations for the first two individuals where the number
of times periods equals 1, and there are four alternatives. Hence,
since Hinc denotes household income it is constant over the first
and second four rows. In table 12 we illustrate the case where the
dependent variable Mode is defined as an index.

Table 11: Data structure Type 1: NTJ ×K + L + 1.

Hinc PSize T tme Invc Invt GC Mode
35 1 69 59 100 70 0
35 1 34 31 372 71 0
35 1 35 25 417 70 0
35 1 0 10 180 30 1
30 2 64 58 68 68 0
30 2 44 31 354 84 0
30 2 53 25 399 85 0
30 2 0 11 255 50 1

31DCM will check if the indexing starts at 0 or 1.
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Table 12: Data structure Type 2: NT ×K + JL + 1.

Hinc PSize T tme Ttme Ttme Ttme . . . Mode
35 1 69 34 35 0 4
30 2 64 44 53 0 4

DCM will determine the organization of the data from the format
of the dependent variable and, conditionally on the user supplied
number of time periods T , the number of individuals N and the
number of alternatives.32 DCM can handle both data structures
but requires column labels that reflect the structure of the data
organization. In Type 1 organization, each column label must be
unique. In Type 2 organization, each column label must be identical
for the J columns holding a specific characteristic or attribute (see
examples in tables). Hence, since DCM needs column labels, some
data formats are problematic if the format does not support column
names.

To load the database into the object, the user calls e.g.

obj.Load(filename);

or any other LoadXXX()-command where XXX can be e.g. Xls

or Dht, etc. (see Ox manual). Note that the DCM version of the
LoadXXX() command loads the data and sets the database name to
filename.33

Limitations in Beta version: In the current version of DCM all
individuals must face the same set of alternatives.

32The number of time periods is set to 1 by default.
33The internal structure of the data is NTJ × K + L + 1 for multiple index models and

NT × JK + JL+ 1 for single index models.
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B Technical appendix

B.1 Covariance matrix Specification in Multinomial Pro-
bit Models.

B.1.1 General

In Sections 3.1 and 3.4 we introduced the error covariance matrix
Ξε and the covariance matrix of the mean coefficients Ξω. In order
to impose non-negative definiteness and symmetry we parameterize
the lower diagonal of the cholesky decomposition of both Ξω and
Ξε, so that e.g. Ξω = CωC

′
ω. The vectorization is performed by

stacking the columns of the lower diagonal: in the case of Ξω
~Cω

denotes a C(C + 1)/2 × 1 vector, where C denotes the number of
mean coefficients. For ΞεJ the same vectorisation results in the
J(J + 1)/2 × 1 vector ~Cε. Note that some elements in ~Cω and ~Cε

are fixed (not estimated).
In what follows we let Ξ∗

ε denote the unrestricted and unidentfied
form of the error covariance matrix E(εε′); and Ξε denote various
just or over-identified forms.

B.1.2 The Initialisation of Ξω and Ξε

Initialisation of Ξε: In InitPar() we initially set Ξε = IJ . Depend-
ing on the assumed structure of the error covariance matrix we fix
the following elements:34

IID: All elements in Ξε are fixed. For example, in a trinomial choice
model, the Ξε matrix will have the following structure:

E(εε′) = Ξε =

 1b . .
0b 1s .
0b 0∗ 1∗

 .

The superscript b indicates that the entry is fixed at this value
because its the base alternative, s indicates that the entry is
fixed because it is is the scale alternative, and ∗ indicates other
fixed entries.

34This is actually done in the SetErrDist() procedure.

44



Heteroscedastic

• All elements in the rows and columns corresponding to the
reference alternative are fixed.

• All off-diagonal elements of the remaining (J − 1× J − 1)-
matrix are fixed at 0.

• The diagonal element corresponding to the scale alterna-
tive is fixed at 1.

• The starting values for the remaining J − 2 diagonal
elements are set to 1.

The resulting Ξε matrix is given below:

Ξε =

 1b . .
0b 1s .
0b 0∗ 1

 .

Unrestricted

• All elements in the row and column corresponding to the
reference alternative are fixed.

• The diagonal element corresponding to the scale alterna-
tive is fixed at 1.

• The starting values for the remaining J(J − 2)/2 − 1
elements are set as follows: diagonal elements at 1 and
off-diagonal elements at 0.

The resulting Ξε matrix is given below:

Ξε =

 1b . .
0b 1s .
0b 0 1

 .

Is this formulation of Ξε identified? The most general structure of
Ξε in the 3 alternative case in DCM is the following:

E(εε′) =

 1b . .
0b 1s .
0b σ23 σ33

 . (16)
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Remark 2 The order condition holds since we have J(J − 1)/2 −
1 = 2 free covariance parameters in Ξε.

Note that if we initially take the difference of Ξ∗
εJ with respect

to alternative 2, this gives us

E((ε1−ε2)(ε3−ε2)′) = ψ2Ξε3ψ
2′

= Ξ2
ε2 =

(
σ11 + σ22 − 2σ12 σ13 + σ22 − σ12 − σ23

σ13 + σ22 − σ12 − σ23 σ33 + σ22 − 2σ23

)
.

(17)

Imposing restrictions which are consistent with setting the reference
alternative to alternative one, and the scale alternative to 2 gives
us

Ξ2
ε2 =

(
1s + 1b .
σ32 + 1b σ33 + 1b

)
. (18)

By subtracting the fixed value of variance of the base alternative
(1b) from each of the entries in (18), we see that we can retrieve the
entries in the original levels error covariance matrix in (16). Hence,
the covariance specification is identified. The sum of the variances
of the reference and scale alternative will set the overall scale of the
model.

Remark 3 Note that imposing the same normalisation (setting the
reference alternative to alternative one) and scaling (setting the
scale alternative to 2) will generate differenced covariance matrices
Ξ1
ε2 and Ξ3

ε2 which are identical to Ξ2
ε2. This guarantees that the

structure of Ξj
εJ−1 is invariant over each jth alternative. In this

regard we may also think of the identifiable set of covariance
parameters as $11 = 1s + 1b, $12 = σ32 + 1b, and $22 = σ33 + 1b.

B.2 Halton Draws

Following seminal work by Bhat (1999), Bhat (2003) and McFadden
and Train (2000), much of the recent emergence of the mixed
logit model as a viable alternative to logit, has coincided with
the use of a different approach to drawing random numbers from
the unit interval. Customised simulators have been developed
which in contrast to the standard type of simulator, use non-
random draws from the distribution to be integrated. Pseudo Monte

46



Carlo methods based upon the simulation methods developed by
McFadden (1989) and Pakes and Pollard (1989), are predicated on
taking a set of Ri independent draws for each ith sample unit. As
a result simulation errors in the criterion function are averaged out,
with simulation variance decreasing at a rate of approximately 1/R.
In contrast, the approach first proposed by Bhat (1999), allocates
Ri draws to each observation in a dependent sequence. Namely for
observation l allocated Rl draws in the unit interval, the subsequent
observation, say, m, is allocated Rm draws which fills in the gaps
left by the previous observation. As a consequence, the averaging
effect is more significant such that the simulation variance falls at a
rate which exceeds 1/R. There now exists a significant amount of
evidence which testifies to the greater efficiency of Halton sequences,
relative to the use of standard random draws (see, for example,
Train (1999)). Although a number of important caveats are noted,
Train also notes that in many instances the computer time required
to achieve the same level of accuracy can be reduced by a factor
of ten! In DCM the user has the option of utilising either Halton or
standard random draws.
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