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Abstract 

 

This paper formalises feedback trading arising from the popularity of technical analysis. 

It provides a systematic study on the effect of feedback trading on price dynamics. The 

analysis shows under different conditions how prices asymptotically approach the 

fundamental equilibrium and how a significant feedback effect drives them off the 

equilibrium path: prices are observed to exhibit patterns such as momentous 

overshooting and prolonged cycles. Fluctuations off the fundamental equilibrium can 

be systematically and endogenously induced by feedback trading. The results suggest 

that non-fundamental multiple equilibria are possible even though socially undesirable.  
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1. Introduction 
 

In the economics and finance literature, the applications of technical analysis have long 

remained controversial. Technical analysis employs historical price information to 

predict future market activity; it includes techniques from simple visual pattern 

recognition, such as head-and-shoulders, to sophisticated neural networks. The ability 

of technical analysis in generating systematic trading profits has been subject to a high 

degree of scepticism by the implications of one important cornerstone in the field of 

financial economics, the efficient market and random walk hypotheses. Previous efforts 

have been made to investigate the performance of technical analysis, but conclusions 

differ1. Although the issue remains unsolved, it is undeniable that technical analysis has 

been widely adopted among institutional and individual traders (Frankel and Froot 

1990; Taylor and Allen 1992). From our perspective, the popularity of technical 

analysis, regardless of its true profitability, will have an impact on markets.  

 

While much of the existing literature seeks to provide analytical solutions or empirical 

evidence concerning the validity of technical analysis as an investment tool, it is only 

until recent years that studies concerning its market impact have started to emerge. On 

the empirical side, the investigation on its market impact has been largely impeded by a 

lack of appropriate data, and perhaps more importantly, by the difficulty in correctly 

identifying the underlying attributes of market phenomena.  

 

On the theoretical side, several efforts have been made. Levy, Levy and Solomon (1994, 

1995) and Levy and Levy (1996) contrasted the market behaviour before and after the 

introduction of heterogeneous expectations in terms of varying spans of price memory, 

and found the latter leads to more realistic price dynamics. Based on this model, Levy 

and Solomon (1996) demonstrate a convergence of the agents’ wealth distribution to a 

power law. In a partial equilibrium setting2, Farmer and Joshi (2000) showed that some 

commonly used trading strategies induce excess volatility.  

                                                
1 In favour of technical analysis, see Brock, Lakonishok and LeBaron (1992), Lo and MacKinlay (1988, 
1999), Neftci (1991); against its predictive value, see Dempster and Jones (1999a, 1999b, 2001), 
Goodhart and O’Hara (1997), Sulliven, Timmerman and White (1999). 
 
2 In the authors’ terminology, a ‘market maker’ is included in the model to absorb excess demand or 
supply; unlike a general equilibrium setting, there is no market clearing. 
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Other related work studies the market dynamics arising from the interaction and 

adaptation of heterogeneous agents; these are often referred to as agent-based 

modelling 3  where agents with varying risk attitudes and beliefs switch between 

investment strategies according to trading performance (Brock and Hommes 1997a, 

1997b, 1998; Chiarella 1992; Chiarella and He 2001, 2002; Day and Huang 1990; 

Gaunersdorfer 2000; Hommes 2001, 2002; Lux 1997, 1998; Lux and Marchesi 1999, 

2000). Models with artificial intelligence agents4 also look into their resulting market 

behaviour (Arthur et al. 1997; LeBaron et al. 1999). Research in this area expands 

partly owning to the unsatisfactory assumptions of homogeneous agents and complete 

rationality in conventional models. Many of these studies have successfully connected 

their results with some empirical stylised facts.  

 

In the present paper, we develop independently a simple framework to study the market 

impact of technical analysis. Technical analysis, involving studies of historical data, 

has a feedback effect on prices through trading. We study the feedback effect and how it 

induces systematic price deviations from the fundamental equilibrium, using both 

bifurcation analysis and numerical simulation. A related empirical study is by Sentana 

and Wadhwani (1992), who examine the links between volatility and serial correlation 

via the role of feedback trading.  

 

The concern of the present study is related to the work by Farmer and Joshi (2000) but 

with different approaches. One major difference is that, instead of having a market 

maker to absorb excess demand or supply, we conduct the investigation in a general 

equilibrium setting where the market clears in each trading period. Besides, the focuses 

are somehow different in that their analysis on price behaviour is centred at volatility 

issues while we ask whether price dynamics exhibits certain recognisable patterns 

under the impact of technical analysis.   

 

When compared with most computational agent-based models, our model is simple yet 

unrealistically free from agents’ adaptation and interaction. This enables us to 

                                                
 
3 See Hommes (2002) for a recent review. 
4 See LeBaron (2000) for a recent review.  



  

  3

investigate the feedback effect on the market in isolation from the complication of 

strategic behavioural issues. The aim here is not to reflect real markets but to answer 

the more fundamental question that arises with the increasing popularity of technical 

analysis.   

 

This paper is organised as follows. Section Two provides a simple asset pricing model 

with myopic mean-variance optimising investors. Section Three discusses the roles of 

heterogeneous conditional expectations. Section Four defines a feedback function that 

has some desirable properties of the average technical forecast. Section Five studies 

price dynamics using bifurcation analysis and generates numerical simulation results. 

Section Six discusses the implications of our finding and concludes.   

 

 

2. A Simple Asset Pricing Model    
 

Consider the following classic portfolio choice problem. Two assets are available to an 

investor at time t. One is risk free and one is risky. The risk free asset pays a fixed rate 

of return fr  for each time period, thus the gross rate of risk free return is ff rR += 1 . 

The risky asset has a gross rate of return 1+tR  from time t to time 1+t . Let ][ 1+tt RE  

and ][ 1+tt RV  denote the conditional mean and conditional variance; they are the mean 

and variance of 1+tR , conditional on the investor’s information at time t. The investor 

places a portfolio weight tw  on the risky asset at time t. The portfolio return is given by  

 tttf
P
t wRwRR 11 )1( ++ +−= .  (1)

  

Investors are assumed to be myopic mean-variance maximisers. That is, investors trade 

off mean and variance in a linear fashion: 

 ][
2

][ 11
P
tt

P
ttw

RVaREMax
t

++ − ,  (2) 

where a is the risk aversion parameter. The solution to this maximisation problem is  
 

 
][

][

1

1

+

+ −
=

tt

ftt
t RaV

RRE
w .  (3) 

 



  

  4

This is the well-known result of mean-variance analysis: the optimal portfolio share in 

the risky asset is given by the expected excess rate of return divided by the conditional 

variance times the risk aversion coefficient.  

 

Denote by tP  the price per share of the risky asset at time t. We assume the risky asset 

pays periodic dividends and denote by td  the stochastic dividend process of the risky 

asset. td  is assumed to be an IID process, ( )2,~ dt dIIDd σ . The gross risky payoff 

between time t and time 1+t  is given by 11 ++ + tt dP . The gross rate of return on the 

risky asset, 1+tR , is defined as  

 
t

tt
t P

dP
R 11

1
++

+
+

= ,  (4)

  

and the net rate of return is simply 11 −+tR . Substituting in the definition of 1+tR , the 

portfolio weight on the risky asset at time t, given by (3), can be rewritten as  

 
][

][

11

2
11

++

++

+
−+

=
ttt

fttttt
t dPVa

RPdPEP
w .  (5) 

 

We assume heterogeneous investors and add superscript i for investor type i. Investors 

differ in their forecasting strategies (or beliefs) on the risky payoff. Let i
tθ  denote the 

fraction of investor type i at time t, representing the popularity of strategy i at time t  

and satisfying ∑
=

=
N

i

i
t

1

1θ , where N is the number of different investor (or strategy) types. 

Let K denote the total size of capital in this two-asset market, and let sx denote the 

supply of risky shares; both are assumed to be constant5. i
tKθ  measures the capital size 

invested in strategy i at time t. Market equilibrium requires  

 s
t

N

i

i
t

i
t xPwK =∑

=1

θ .   (6) 

 

Substituting in the portfolio weight (5) with superscript i, and assuming the conditional 

                                                
5 These are simplifying assumptions. In a short time horizon, the total size of market capital and the 
supply of risky shares may be regarded as approximately constant.  
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variance of the risky payoff to be constant6 and equal for all types7, i.e. 2
11 ][ σ=+ ++ tt

i
t dPV , 

the market equilibrium equation can be rewritten as  

 
K

xa
dPEPR

s

tt
i
t

N

i

i
ttf

2

11
1

][
σθ −+= ++

=
∑ .  (7) 

 

Market equilibrium yields the equilibrium price dependent on economic fundamentals 

and also the conditional forecasts influenced by investor psychology and emotion. In 

the next section, we will discuss the formation of heterogeneous investors’ conditional 

forecasts. We now consider a conventional economic world of homogeneous and 

perfectly rational investors. First, equation (7) can be written as  

 
K

xa
PRdPE

s

tfttt

2

11 ][
σ=−+ ++ .  (8) 

The term 
K

xa s2σ
 measures the expected excess amount of risky payoff and therefore 

may be interpreted as a risk premium.   

 

Solving equation (8) by repeatedly substituting out next period’s prices and assuming 

the transversality (no-bubble) condition 0
)(

][
lim =+

∞→ h
f

htt

h R
PE

 holds8, we then obtain 

 







−= +

∞

=
∑ K

xa
dE

R
P

s

htt
h

h
f

t

2

1

][
)(

1 σ
. (9) 

 

The equilibrium price is the discounted sum of future dividends minus the risk 

premium. Equation (9) gives the expression known as the fundamental value of the 

risky asset. Since the dividend process is assumed to be an IID process, we know that 

ddE htt =+ ][ . The fundamental price can be written as  

 







−=

K
xa

d
r

P
s

f

F
21 σ

.  (10) 

                                                
6 A detailed derivation that solves the conditional variance to a constant value under some distributional 
assumptions can be found in Hoel (1962). 
7 This is an approximation in a world where volatility forecasts are well established and agreed but mean 
forecasts are not; such a situation arises when there is a dominant risk management system or a implied 
volatility methodology that is universally accepted, see Merton (1980) who agrees that means are much 
harder to forecast than variances.  
8 Relaxing this assumption leads to “rational bubbles”. There are however theoretical and empirical 
arguments that can be used to rule out the existence of rational bubbles (see Campbell, Lo and 
MacKinlay 1997 for a brief discussion). 
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In the world of homogeneous and perfectly rational investors, the price of the risky 

asset should equal its fundamental value, independent of the trading and price history 

of the asset. Changes in the fundamental price can only be caused by exogenous shocks 

on economic fundamentals.  

 

3. Heterogeneous Forecasts 

 

In the asset pricing model with heterogeneous investors, market equilibrium (7) states 

that the price of the risky asset equals the discounted weighted average of 

heterogeneous forecasts on the risky payoff minus the risk premium, with the weights 

being the popularity of different forecasting strategies. In this section, we will discuss 

the risky payoff forecasts by heterogeneous, boundedly rational investors.  

 

The attributes to investors heterogeneity can go beyond the conventional paradigm of 

asymmetric information to include diversity in prior beliefs. Kurz (1997) argues that 

the centre of individuals’ disagreement lies in their diverse prior beliefs instead of 

information asymmetry; diverse beliefs explain why different interpretations arise 

given the same information. On the other hand, prior beliefs also influence information 

selection. Investors with different beliefs are likely to pick up dissimilar sources for 

their forecasts.  

 

We will mainly focus on two classes of investors: fundamentalists and technical traders. 

Fundamentalists believe that the price of the asset should reveal its fundamental value. 

For fundamentalists, the stock price reflects the underlying value of the company and 

its potential for growth. Fundamental analysis thus involves studying the overall 

economy condition as well as the financial condition and management of the company, 

but dismisses market activity as the behaviour of unreliable, emotional herd. In contrast, 

technical analysis involves analysing statistics generated by market activity. Technical 

traders focus on the price and trading histories to seek to identify patterns in price 

movement and to forecast future activity.  
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Denote by iTA
tP ,  investor i’s technical forecast on the risky asset price, made at time t, 

and denote by tε  some random noise at time t. We make the following assumptions 

about heterogeneous investors’ conditional forecasts on future dividends and prices:  

 

 ddEdE ttt
i
t == ++ ][][ 11 .  (11) 

 t
iTA

t
iFi

t
i
t PPPE εββ ++−=+

,
1 )1(][ .  (12) 

 

(11) is a simplified assumption about the conditional mean dividend. Investors are 

assumed to share the same information and beliefs about the dividend payments so that 

they have a common conditional expectation on future dividends. For a stochastic IID 

dividend process, this implies that the conditional mean is the unconditional one.  

 

We assume the fundamental value FP of the risky asset is common knowledge. 

Technical traders however believe that short term prices will deviate from the 

fundamental value. (12) expresses the conditional expectation on the risky asset price 

as a weighted sum of the fundamental price and technical forecast, plus some random 

noise assumed to be common for all investors. The noise tε  is to capture the effect of 

all other sources that may influence the price forecast. The weight iβ  reveals the 

investor type. iβ−1  and iβ  are investor i’s forecasting weights on the fundamental 

price and technical forecast respectively.  

 

We will consider fundamentalists to be using only fundamental analysis ( 0=iβ ) and 

technical traders to be using only technical analysis ( 1=iβ ), although the mixture of 

both analyses is possible.  

 

Assumptions (11) and (12) are consistent with the asset pricing model discussed in the 

previous section. The consistency can be seen in the following illustration: if all 

investors are fundamentalists, assumptions (11) and (12) should lead to the equilibrium 

price being the fundamental price.  

  

When all investors are fundamentalists, the asset pricing (7), with assumptions (11) and 

(12), can be rewritten as  
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  t

s
F

tf K
xa

dPPR εσ +−+=
2

.  (13) 

Substituting out FP  in (13) using the formula given by (10), we obtain the equilibrium 

price as 

 
f

t
s

f
t RK

xa
d

r
P

εσ +







−=

21 .  (14) 

 

The equilibrium price (14) is in fact the fundamental price (10) with some noise.  

 

Now we turn to the case when both investor types are present. One aim of this study is 

to investigate the market impact of the popularity of technical analysis. This 

investigation is made possible in a controlled experiment that looks into what outcome 

arises, given exogenously different ratios of technical traders in the market. Therefore, 

the ratio of investors will not be modelled as an time-varying endogenous variable. As 

shown later, the investor ratio is in fact part of the control variable in the price dynamic 

system. We thus drop the time subscript, and denote by θ  and θ−1  the fractions of 

technical traders and fundamentalists in the market. With assumptions (11) and (12), 

the asset pricing (7) now becomes 

 ( ) t

s
N

TAi

iTA
t

i
F

tf K
xa

d
P

PPR εσ
θ

θ
θθ +








−+













+−= ∑ =

2,1

1 ,  (15) 

where 1N  is the number of technical traders. Define ∑ =
= 1 ,1 N

TAi

iTA
t

iTA
t PP θ

θ
 as the 

average technical forecast among technical traders, made at time t, on the price of the 

risky asset. Substituting out the third term on the right hand side of (15) using the 

formula given by (10), we rearrange (15) to obtain 

 
f

tTA
t

f

F

f
t R

P
R

P
R

P
εθθ ++








−= 1 .  (16) 

  

Therefore, in the presence of both fundamentalists and technical traders, the 

equilibrium price is a weighted combination of the fundamental price and the average 

technical forecast, plus some random noise. The weights depend on the fractions of 

different investors, which indeed represent the popularity of different forecasting 

strategies. In the next section, we will discuss the formation of the average technical 

forecast on the price of the risky asset.  
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4. The Feedback Function  
 

Although technical analysis can take many different forms, all of them share a common 

feature: the use of price history. Investors take positions in the market based on their 

forecasts. The forecasts by technical traders however come from the analysis of price 

history. Thus, through trading, price history is partially incorporated into the new price 

to give a “feedback”. We shall refer to TA
tP , the average technical forecast on the price 

of the risky asset, as the feedback function. A nonlinear feedback function gives rise to 

nonlinear price dynamics.  

 

We propose that the feedback function satisfies the following properties:   

(i) It is a function of past prices. More precisely, it is a function of a trend 

indicator, which is a function of past prices.  

(ii) In order to be self-consistent, the feedback function is considered to be 

either monotonically increasing or decreasing in its trend indicator.  

(iii) Since the feedback function represents the average of collective technical 

forecasts, we assumed that it is bounded between two real numbers.    

(iv) When the trend indicator is neutral, the feedback function is assumed to 

become the fundamental price. That is, when past prices provide no 

information on future price movement, the average predicted asset value by 

technical traders coincides with the asset’s fundamental value.  

 

There is virtually no information available to empirically estimate the feedback 

function. Properties (ii) and (iii) make any cumulative distribution function9 (CDF) a 

good choice for the feedback function without loss of generality. First, let 

( )Mttt
P
t PPPf −−−= ...,,, 21τ  denote the trend indicator at time t; it is a function of past 

prices of M lags. We define the feedback function by  

 
)0(

)(
CDF

CDF
PP

P
tFTA

t

τη
= ,  (17) 

                                                
9 Alternatively, see Sentana and Wadhwani (1992) who assume linear feedback to estimate the demand 
functions of technical traders.  
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where η  is the sensitivity parameter to the trend indicator. A large size of η  means, in 

average, technical traders being more responsive to the trend signal. A positive 

(negative) η  leads to the feedback function monotonically increasing (decreasing) in 

its trend indicator. When 0>η , the trend chasing strategy dominates, and when 0<η , 

the contrarian strategy that “buys low and sells high” prevails. In either case, the 

feedback function is bounded between 







)0(
,0

CDF
PF

. If the probability density 

function (PDF) is symmetric, the bound is simply )2,0( FP .   

 

The definition of the feedback function given by (17) is consistent with the asset 

pricing model. When historical prices provide no information (for example, when 

prices are in steady state) and the trend indicator is neutral, i.e. 0=P
tτ , it is clear that 

the feedback function (17) becomes only the fundamental price. In this case, it is 

straightforward to show that the equilibrium price (16) will coincide with the one when 

all investors are fundamentalists.  

 

We now rewrite the equilibrium price (16) using the feedback function given by (17) as 
 

 t
P
tt bCDFbbP ετη 210 )( ++= ,  (18) 

 where F

f

P
R

b 







−= θ10 , 

)0(1 CDF
P

R
b

F

f

θ= , and 
fR

b 1
2 = .  

   

We will mainly focus on the deterministic dynamics10 free from the stochastic noise tε . 

For convenience, let  

 )(
1

0 P
t

t
t CDF

b
bP

q τη=
−

= .  (19) 

 

tq  is bounded between )1,0( . We shall call tq  the normalised price at time t.   

 

Let ( )Mttt
q
t qqqf −−−= ...,,, 21τ  denote the trend indicator at time t of past normalised 

                                                
10 The stochastic noise can disguise the detection of a particular structure in a dynamic system. With the 
stochastic noise above a certain level, any dynamic system would behave like a purely stochastic process 
no matter what the deterministic component is.  
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prices. In order to express tq  in terms of q
tτ , we make an additional assumption on P

tτ  

that it is a linear function of price differences. Based on the relationship between tP  

and tq  given by (19), this assumption implies q
t

P
t b ττ 1= . Now we can rewrite the 

normalised price as  

 )( q
tt CDFq τµ= ,  (20) 

where 
)0(1 CDF

P
R

b
F

f

θηηµ == . The parameter µ  essentially reflects the influence of 

feedback trading on prices. The size of µ  decreases with fR : an increase in the 

riskfree rate of return will divert risky investments into bonds and reduce feedback 

trading on the risky stock. FP  as a factor in µ  is simply due to the design of the 

feedback function (17).  

 

The two crucial terms, η  and θ , represent different aspects of feedback trading. As 

discussed before, η  measures the average responsiveness among technical traders to 

the trend signal, and the sign of η  indicates whether the trend chasing strategy or the 

contrarian strategy prevails; θ  is the popularity of technical analysis. Therefore, the 

size of µ  increases with the size of the feedback effect, holding all other variables in 

µ  constant. Besides, the sign of µ  indicates a positive or negative feedback. As 

shown later, µ  is in fact the control variable that determines the price dynamics.  

 

5. Price Dynamics  
 

The use of the normalised price simplifies the analysis of price dynamics. The 

normalised price given by (20) is indeed a difference equation of order M. The 

dynamics has a simple steady-state solution. In steady state, because the (normalised) 

prices provide no information, i.e. 0=q
tτ , we will have )0(* CDFq = . For a symmetric 

PDF, the steady-state normalised price is simply 
2
1* =q . The steady-state price is the 

fundamental price as discussed before.  
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For the dynamic analysis, the M-th order difference equation (20) is transformed into a 

first order difference equation using vectors:  

 

 )(f 1−= tt QQ , where )',,,( 11 +−−= Mtttt qqqQ L .  (21) 

 

We provide in Appendix 1 some necessary background knowledge for the analysis of a 

dynamic system. It is given on three subject matters relating to first, the definitions of 

Lyapunov (weak) and asymptotic (strong) stability, second, the stability conditions of a 

non-linear dynamic system in terms of eigenvalues, and third, the types of bifurcation 

and bifurcation analysis.  

 

We now calculate the Jacobian matrix for the difference equation (21). The Jacobian 

matrix is an MM ×  matrix given by  

 




















∂
∂

∂
∂

∂
∂

∂
∂

=
∂

∂=
−+−−−

∗−

−

0100

0010
0001

)(f **1*2*1

1

1

L

MMOMM

L

L

L

qMt

t

qMt

t

qt

t

qt

t

qt

t

qqqq

Q
Q

qqqq

J .  (22) 

 

Let λ  denote the eigenvalues. The characteristic equation is given in the following 

proposition.  

 

Proposition: The characteristic equation for the Jacobian matrix (22), using the 

normalised price defined by (20), is given by  

 

 0=γγλλ ,  (23) 

 where ( ) )1(1
1 1,,...,, +×

−= M
MM λλλλλ , and 

1)1(
1

)0(

1

×+∗− 















∂
∂

−=

Mqt

q
t

Q
PDF

τ
µγγ .  

Proof: See Appendix 2.  

 

To solve the characteristic equation, we proceed with an arbitrary choice of the CDF 

and the trend indicator function defined by the common moving average trading rule.  
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Corollary: Choose the CDF to be the logistic function, and define the trend indicator 

function by11 ∑
=

−− −=
M

j
jtt

q
t q

M
q

1
1

1τ . Then the coefficient vector in the characteristic 

equation (23) becomes  

 ),...,,,1( 21 ′= Mγγγγγ , where 








=

=
−

−
=

.,...,2,
1

4

;1,
1

4

Mkfor
M

kfor
M

M

k µ

µ

γ  (24) 

Proof: See Appendix 3.   

 

We start our analysis with the simple case 2=M . The characteristic equation is now 

0
88

2 =+−
µ

λ
µ

λ , and the eigenvalues are ( )32
16
1

16
−±= µµ

µ
λ .  

 

Price dynamics depends on the parameter µ . The difference equation (21) can be 

viewed as ),(f 1 µ−= tt QQ , and µ  is the control parameter. That is, price dynamics 

changes with µ , and µ  defines stability. As discussed before, an increase in the size of 

µ  can be caused by either a higher ratio of technical traders, or traders being more 

responsive to trend signals. The size of µ  reflects the size of the feedback effect, and 

the sign of µ  indicates a positive or negative feedback. Figure 1 plots the eigenvalue 

trajectory in the complex plane with respect to µ , in the case of 2=M . This plot is 

useful for the analysis of stability and bifurcation.  

 

                                                
11 This is equivalent to defining ∑

=
−− −=

M

j
jtt

P
t P

M
P

1
1

1τ . As discussed before, based on (19), the 

relationship between P

tτ  and q

tτ  is given by q

t

P

t b ττ 1= . From here, it is not difficult to see the two 
definitions are equivalent.  
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In addition to the theoretical analysis, we simulate price time series for different values 

of µ  to see how prices reach their fundamental value and how they behave when out of 

equilibrium. The simulation is carried out using (20), with the logistic CDF and the 

trend indicator defined by the moving average rule, as discussed in Corollary. Based on 

the simulation results, phase diagrams are drawn on two-dimensional tq  against 1−tq . 

The sets of Figure 2 to 5 show the results for varying lengths of M. We simulate 6000 

trading periods in total. In order to see how prices evolve, the first 2000 points are 

shown in red, the next 2000 in green, and the last 2000 in blue.  

 

Asymptotic stability, as discussed in Appendix 1, implies an attracting fixed point. It 

requires all eigenvalues lie strictly inside the unit circle. In the case of 2=M , if the 

feedback effect is sufficiently small, i.e. 84 <<− µ , then the asymptotic stability 

condition holds, and tq  converges to the steady-state equilibrium *q  as shown by 

Figure 2b, or equivalently, prices tP  asymptotically approach the asset’s fundamental 

value FP .   

 

Even in the simplest case 2=M , different bifurcation routes occur depending on µ . 

Suppose µ  is initially in the region of (-4, 8), where prices asymptotically converge to 

FP . Consider now there is a significant negative feedback effect. When µ  reaches the 

critical bifurcation point 4−=∗
−µ , one eigenvalue will just cross the boundary of 

stability at –1. At this point, the fundamental equilibrium is destabilised by a periodic 

doubling bifurcation, and a period-two orbit is created. Thus, in the presence of a large 

λReal

2=λ1−=λ

8=µ

32=µ4−=µ φ

i
2
3

2
1 +=λ

i
2
3

2
1 −=λ

λImaginary

 

Figure 1. The eigenvalue trajectory with respect to µ  in the case of 2=M . 
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negative feedback, prices start to hop around between two non-fundamental points, as 

shown by Figure 2a. As µ  further decreases 4−<µ , the system has one eigenvalue 

outside and one inside the unit circle. Pulled by an unstable and a stable manifold, the 

fundamental equilibrium becomes an unstable saddle point coexisting with the 

period-two orbit.  

 

What happens when there exists a large positive feedback? When µ  reaches the 

bifurcation point 8=∗
+µ , the pair of complex conjugate eigenvalues pierces the unit 

circle. The fundamental equilibrium undergoes a Hopf bifurcation and loses its stability. 

The bifurcation yields a quasiperiodic orbit that behaves like an invariant curve, points 

on which hop around in circles. The angular frequency is determined by the angle at 

which the eigenvalue passes through the unit circle. In this case, the eigenvalues are 

2
31 i±=λ , so the angular frequency is 

3
π . The dynamics is described by a period-six 

cyclic motion, )
3

sin()
3

cos(
t

B
t

A
ππ + , as shown by Figure 2c. As the feedback effect 

amplifies 8>µ , centred at the repelling fundamental equilibrium, the size of cyclic 

motion expands and prices wonder further way. However, the phase diagram does not 

pursue an unlimited expansion as the feedback function is assumed to be bounded.  

 

So far the analysis has focused on the simple case 2=M . For a longer M, direct 

computation of the stability condition however requires tedious work. We thus plots in 

Appendix 4 the absolute eigenvalues against µ  to obtain the stability condition and the 

critical bifurcation points for different lengths of M. For instance, when 7=M , the 

fundamental equilibrium is asymptotically stable if 5.38.5 <<− µ .  

 

One might expect a wealth of distinct phase portraits as M gets longer. The simple logic 

is that a longer M increases the order of the characteristic equation and hence the 

number of eigenvalues. Since bifurcation occurs when an eigenvalue crosses the unit 

circle, the system with a longer M is likely to undergo a secondary or even higher-level 

bifurcation. The plots shown in Appendix 4 are however counter-intuitive. The system 

always has only one positive and one negative bifurcation point despite the length of M. 

This implies that the dynamic system with a longer price memory, as shown by the sets 
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of Figure 3 to 5, will have a similar pattern as the system with 2=M . The only 

difference is that a significant positive feedback will now lead the prices to trace out a 

periodic orbit of a higher order than six.   
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6. Discussions and Concluding Remarks  
 

In this paper, we study the impact of technical analysis on asset pricing dynamics in a 

simple setting of myopic mean-variance optimising investors. There are two classes of 

investors: fundamentalists, who believe the asset price should reflect its fundamental 

value, and technical traders, who forecast using price history and result in price 

feedback. We discuss the properties of the average technical forecast (the feedback 

function) and formalise it with a plausible mathematical expression.  

 

Our analysis has shown how prices reach the fundamental equilibrium and how a 

significant feedback effect drives prices off the equilibrium path. When the feedback 

effect is sufficiently small, the fundamental equilibrium is asymptotically stable (e.g. 

Figure 4b). When the feedback effect is intensified, two situations arise. On one hand, 

if the contrarian trading strategy prevails, the fundamental equilibrium is destabilised 

by a large negative feedback effect (e.g. Figure 4a). Contrarians trade against trend 

signals. Their long positions often coincide with the neighbourhood of falling prices. 

As a consequence, high demand causes a sharp rebound that diverts the falling prices to 

overshoot the equilibrium path. Similarly, the selling pressure near the mounting prices 

triggers a forceful pullback that again overshoots the fundamental value. The 

fundamental equilibrium is in fact an unstable saddle path. Prices oscillate up and down 

and do not settle on the fundamental equilibrium path.  

 

On the other hand, if the trend chasing strategy prevails, the fundamental equilibrium is 

destabilised by a large positive feedback effect (e.g. Figure 4c). Investors buy into a 

rising market and sell into a falling one. As a consequence, fluctuations off the 

fundamental equilibrium are reinforced by the positive feedback effect, which can even 

lead to bear or bull markets. Instead of frequently overshooting the fundamental 

equilibrium, prices now exhibit a prolonged cycle. This observation may be in common 

with the real world where our economy can sometimes spend long periods away from 

equilibrium and where strategies based on buying past winners are commonplace.  

 

The benchmark market in the absence of technical traders would reach the fundamental 

equilibrium with fluctuations only due to exogenous shocks. In the presence of 
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technical traders, fluctuations off the fundamental equilibrium can be systematically 

and endogenously induced by the feedback effect brought about by technical analysis. 

Our results suggest that non-fundamental multiple equilibria are possible in asset 

pricing. They arise as a result of different degrees of speculation by technical traders. 

Speculation allows possible allocations other than the fundamental value to be reached 

in equilibrium, even though they may not be socially desirable. The finding of multiple 

equilibria is in common with several studies, e.g. Pagano12 (1989).  

 

There is a certain lack of realism about these dynamics. The focus of our model has 

been placed on the impact of technical analysis, but the strategic interaction among 

investors has been ignored. In reality, investors are interdependent and are unlikely to 

remain unchanged. Interaction and adaptation will lead to a change in the ratio of 

different types of investors. The “ecology” of market participants can transform over a 

long horizon through market selection, or it can even change abruptly due to emotional 

herding. Exogenous factors, such as institutional changes, can also have a significant 

impulse on market ecology. Modelling the population ratio as a system variable helps 

answer how the feedback effect varies over time in the present study, and is certainly an 

interesting topic that deserves further exploration.  

                                                
12 Pagano (1989) finds the existence of multiple equilibria as a result of an increasing trade volume; the 
idea is in line with that speculation enlarges the trading space and allows multiple equilibria. However, 
his study, with a different focus from the present study, identify that a large trade volume implies a less 
volatile market which is socially desirable.  



  

  21

Appendix 1 

 

There are two types of stability, Lyapunov (weak) stability and asymptotic (strong) 

stability. Their definitions are given as follows.  

 

Definition A1: The fixed point (equilibrium point) ∗Q  is said to be Lyapunov stable if 

for any 0>ε  there exists a neighbourhood )( ∗Ω Q of ∗Q such that for all )( ∗Ω∈ QQ , 

the iterates of Q  satisfy 

ε<− ∗QQ)(tf  for iterations 0≥t .  

 

Or alternatively, the fixed point ∗Q  is Lyapunov stable, if for any 0>ε  there exists a 

δ = 0),( >εδ s  such that  

 

if δ<− ∗QQs , then ε<− ∗QQt  for all st ≥ .  

 

Definition A2: The fixed point ∗Q  is asymptotically stable if  

 (i) it is Lyapunov stable and 

 (ii) ∗

∞→
= QQ)( lim t

t
f  for all )( ∗Ω∈ QQ .  

 

The difference between Lyapunov stability and asymptotic stability is that Lyapunov 

stability only requires a trajectory that starts in a neighbourhood of the fixed point to 

remain close to the fixed point. Asymptotic stability further requires a convergence of 

the trajectory to the fixed point. A fixed point that is only Lyapunov stable but not 

asymptotic stable is called marginally stable. In the present study, we only consider 

asymptotic stability which implies an attracting fixed point.  

 

In applications, it is useful to characterise stability conditions in terms of eigenvalues.  

 

Proposition A1: Consider a discrete linear map 1−= tt AQQ , where A is non-singular. 

The fixed point ∗Q  is asymptotically stable if and only if all the eigenvalues of A lie 

strictly inside the complex unit circle. For completeness, ∗Q  is asymptotically unstable 



  

  22

if it is not asymptotically stable. If one eigenvalue lies outside and one inside the unit 

circle, ∗Q  is a saddle point. The proof can be found in Hale and Kocak (1991, p.73) for 

example.  

 

For a nonlinear dynamic system, the theorem developed independently by Hartman in 

1964 and Grobman in 1965 is helpful.  

 

Theorem A1: The behaviour of a discrete dynamic system )( 1−= tt QQ f  in the vicinity 

of an equilibrium point ∗Q  is topologically equivalent to the behaviour of the linear 

system 1)( −
∗′= tt QQQ f , provided 1)(f ≠′ ∗Q . The proof of the Hartman- Grobman 

linearisation theorem for discrete maps can be found in Robinson (1999, Theorem 6.2).  

 

This theorem basically states that, in discrete nonlinear dynamics, the behaviour of its 

linearisation mimics the true behaviour, provided that the eigenvalues do not lie on the 

unit circle. Proposition A2 hence follows.  

 

Proposition A2: For a discrete nonlinear dynamic system )( 1−= tt QQ f , the behaviour 

of its fixed point ∗Q is determined by the eigenvalues λ  of its linearisation (Jacobian) 

matrix )( ∗′ Qf  as follows  

(i) If all 1<λ , then ∗Q  is an attracting equilibrium, or asymptotically stable.  

(ii) If all 1>λ , then ∗Q  is a repelling equilibrium, or asymptotically unstable.  

(iii) If one 1>λ  and one 1<λ , then ∗Q  is an unstable saddle. 

(iv) If any 1=λ , then a bifurcation takes place.  

 

A change in stability is called bifurcation. There are different types of bifurcation. 

Lemma A1, A2, and A3 give three typical types of bifurcation. The details and the 

proofs can be found in Robinson (1999, Theorem 1.1, 3.1, and 5.1). Alternatively, see 

Kuznetsov (1995) for a comprehensive illustration.  

 

Lemma A1: A transcritical bifurcation takes place when an eigenvalue crosses the 

boundary of stability at +1, i.e. 1=λ . A transcritical bifurcation causes a swap of the 
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stability of two equilibria. Suppose there exists two fixed points, one stable and one 

unstable, before a bifurcation takes place. When the dynamic system undergoes a 

transcritical bifurcation, the two equilibria exchange their stability properties.  

 

Lemma A2: A periodic doubling bifurcation occurs when an eigenvalue crosses the 

boundary of stability at –1, i.e. 1−=λ . The stable equilibrium  ∗Q  looses its stability 

and a period-two orbit emerges. Note that this type of bifurcation is absent in a 

continuous-time system.  

 

Lemma A3: When a pair of complex conjugate eigenvalues crosses the boundary of 

stability, the dynamic system undergoes a Hopf bifurcation. The stable equilibrium  ∗Q  

looses its stability and a limit cycle (or a quasi-periodic orbit) bifurcates. The angular 

frequency is given by the angle at which the eigenvalue crosses the unit circle in the 

complex plane.  

 

λIm

λRe

1=λ

 

λIm

λRe

1=λ

 

λIm

λRe

1−=λ

 

Transcritical bifurcation Hopf bifurcation 

 

Periodic doubling 

bifurcation 
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Appendix 2 

 

 

Proof of Proposition  

 

The characteristic equation for the Jacobian matrix (22) is given by 

 

 01
2

2
1

1 =+++++ −
−−

MM
MMM γλγλγλγλ L ,   

 where 
*1

1
qt

t

q
q

−∂
∂

−=γ , 
*2

2
qt

t

q
q

−∂
∂

−=γ , … , 
*qMt

t
M q

q

−∂
∂

−=γ .  

 

The proof of a similar problem can be found in Hamilton (1994, p. 21). 

 

Now, we rewrite the characteristic equation using vectors:  

 

 0=γγλλ ,   

 where ( ) )1(1
1 1,,...,, +×

−= M
MM λλλλλ , and 

1)1(
1

1

×+∗− 















∂
∂

−=

MQt

t

Q
qγγ .  

 

Using the normalised price given by (20), the 1×M  sub-vector in γγ  becomes 

 

  
*1*1*1*1

)0()(
)(

Qt

q
t

Qt

q
tq

t

Qt

q
t

Qt

t

Q
PDF

Q
PDF

Q
CDF

Q
q

−−−− ∂
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∂
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∂

∂
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∂
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Appendix 3 

 

 

Proof of Corollary  

 

Following the proposition, we calculate the coefficient vector in the characteristic 

equation, using the CDF as the logistic function and the trend indicator function defined 

by ∑
=

−− −=
M

j
jtt

q
t q

M
q

1
1

1τ .   

 

It is easy to obtain the following derivatives.  

 
M

M
q

qt

q
t 1

*1

−=∂
∂

−

τ , and 
Mq

qkt

q
t 1

*

−=∂
∂

−

τ , .,...,2for Mk =  

 

The logistic CDF and the PDF are given by  

 

 
)exp(1

)exp(
)(

x
x

xCDF
µ

µµ
+

= . 

  

 
[ ]

( )2)exp(1
)exp(

)(1)()(
x

x
xCDFxCDFxPDF

µ
µµµµ

+
=−=

. 

Thus, 
4
1)0( =PDF .   

 

Therefore, we can obtain the coefficients of the characteristic equation (23) as 

M
M

q
PDF

qt

q
t 1

4
)0(

*1
1

−−=
∂
∂

−=
−

µτ
µγ , and 

Mq
PDF

qkt

q
t

k
1

4
)0(

*

µτ
µγ =

∂
∂

−=
−

, .,...,2for Mk =  
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Appendix 4 

 

 

x-axis: µ , the control parameter of the dynamic system.  

y-axis: λ , the absolute eigenvalue.  

Since bifurcation takes place when 1=λ , the x-axis is shifted up to the point 1=λ  for 

convenience. The bifurcation points ∗µ  and also the stability condition of 1<λ  can 

then be easily found. The results are produced using Mathematica.  
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