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Abstract

This thesis explores higher order numerical methods for solving fractional differential

equations.

Firstly, we consider two approaches to construct higher order numerical methods for

solving fractional differential equations. Based on a direct discretization of the fractional

differential operator we show that, the order of convergence of the linear fractional differ-

ential equation with 0 < α < 1 is O(h3−α), where α denotes the order of the fractional

derivative. Based on discretization of the integral in the equivalent form of non-linear frac-

tional differential equations the order of convergence of the numerical method is O(h3)

for α ≥ 1 and O(h1+2α) for 0 < α ≤ 1 for sufficiently smooth functions.

Secondly, we introduce extrapolation algorithms for accelerating the convergence order

of the two considered numerical methods. Numerical experiments are given for each

algorithm to show that the numerical results are consistent with the theoretical results.

Finally we introduce a higher order algorithm for solving two-sided space-fractional

partial differential equations. The space-fractional derivatives we consider here are left-

handed and right-handed Riemann-Liouville fractional derivatives which are expressed

by using the Hadamard finite-part integrals. We approximate the Hadamard finite-part

integrals by using piecewise quadratic interpolation polynomials and obtain a numerical

approximation of the space-fractional derivative with convergence order O(∆x3−α), 1 <

α < 2. A shifted implicit finite difference method is applied for solving the two-sided

space-fractional partial differential equation and we prove that the order of convergence

of the finite difference method is O(∆t + ∆xmin(3−α,β)), 1 < α < 2, β > 0, where ∆t,∆x

denote the time and space stepsizes, respectively, and α is the order of the fractional

derivative and β is the Lipschitz constant related to the exact solution. Numerical exam-

ples, where the solutions have varying degrees of smoothness, are presented and compared

with the exact analytical solution to compare the practical performance of the method

with the theoretical order of convergence.
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Chapter 1

Introduction

1.1 Fractional calculus

Fractional calculus deals with the study of so-called fractional order integral and deriva-

tive operators over real and complex domain and their applications. It does not mean

the calculus of fractions [76]. Neither does it mean a fraction of any calculus - differen-

tial, integral or calculus of variations. The fractional calculus is a name for the theory

of integrals and derivatives of arbitrary order, which unify and generalize the notions of

integer-order differentiation and n-fold integration.

Fractional derivatives and fractional integrals are not new in the household subject

area of mathematics. In recent years a huge interest in fractional calculus has arisen

because of its applicability to vast areas of scientific interest. In 18th and 19th centuries

many brilliant scientists motivated to focus their attention on fractional calculus [4]. For

instance, we can mention Euler(1738), Laplace (1812), Fourier (1822), Abel (1823-1826),

Liouville (1832-1873), Riemann (1847), Holmgren (1865-1867), Grünward (1867-1872),

Letnikov (1868-1872), Laurent (1884), Nekrassov (1888), Krug (1890), Hadamard (1892),

Heaviside (1892-1912), Pincherle (1902), Hardy and Littlewood (1917-1928), Weyl (1917),

Lévy (1923), Marchaud (1927), Davis (1924-1936), Zygmund (1935-1945), Love (1938-

1996), Erdelyi (1939-1965), Kober (1940), Widder (1941), Riesz (1949).

However the interest in the specific topic of fractional calculus surged only at the end of

the last century. Fractional differential equations, that is, those involving real and complex

1
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order derivatives, have assumed an important role in modelling the anomalous dynamics

of many processes related to complex systems in the most diverse areas of science and

engineering [4]. During the last 25 years there has been a spectacular increase in the use

of fractional differential models to simulate the dynamics of many different anomalous

process, especially those involving ultra-slow diffusion. The following table is only based

on the Scopus database, but it reflects this state of affairs clearly: [4]

Words in title or abstract 1960-1980 1981-1990 1991-2000 2001-2010

Fractional Brownian Motion 2 38 532 1295

Anomalous Diffusion 185 261 626 1205

Anomalous Relaxation 21 23 70 61

Superdiffusion or Subdiffusion 0 22 121 521

Fractional Models, Kinetics, Dynamics 11 24 128 443

Fractional Differential Equations 1 1 74 943

Table 1.1.1: Evolution in the number of publications on fractional differential equations

and their applications.

1.2 Basic functions of fractional calculus

In fractional calculus, the gamma function and beta function are the basic mathematical

tools to understand the origin of its computational challenges. The Gamma function

generalizes the factorial n! and allows n to take also non-integer and even complex values

[76].

1.2.1 Gamma Function

The gamma function Γ(z) is defined by the integral [51]

Γ(z) =

∫ ∞
0

e−ttz−1dt, Re(z) > 0 (1.2.1)

which is the Euler integral of the second kind and converges in the right half of the

complex plane Re(z) > 0. If z = x+ iy, indeed we have
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Γ(x+ iy) =

∫ ∞
0

e−ttx−1+iydt =

∫ ∞
0

e−ttx−1eiylog(t)dt.

=

∫ ∞
0

e−ttx−1
(

cos(ylog(t)) + i sin(ylog(t))
)
dt, (1.2.2)

which is convergent for any x > 0. The reduction formula of the gamma function is

Γ(z + 1) = zΓ(z), Re(z) > 0 (1.2.3)

which can be proved by integrating by parts [76], with z > 0, z ∈ R

Γ(z + 1) =

∫ ∞
0

e−ttzdt = [−e−ttz]∞0 + z

∫ ∞
0

e−ttz−1dt = zΓ(z).

Since, Γ(1) = 1, the recurrence shows that for any positive integer z [72],

Γ(z + 1) = zΓ(z) = z(z − 1)Γ(z − 1) = · · · = z(z − 1)(z − 2) . . . 2.1.Γ(1) = z!

1.2.2 Beta Function

The beta function B(z, w) is defined by [76]

B(z, w) =

∫ 1

0

tz−1(1− t)w−1dt, Re(z) > 0, Re(w) > 0, (1.2.4)

which is the Euler’s integral of first kind. By using Laplace transform the beta function

can be written in terms of gamma function.

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
, Re(z) > 0, Re(w) > 0. (1.2.5)

1.2.3 Mittag-Leffler function

The Mittag-Leffler function also plays a very important role in the research of fractional

calculus. The classical Mittag-Leffler function for one parameter is defined by [51],

Eα(z) :=
∞∑
k=0

zk

Γ(αk + 1)
, z ∈ C, Re(α) > 0, (1.2.6)
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In particular, when α = 1 and α = 2, we have, E1(z) = ez and E2(z) = cosh(
√
z).

The Mittag-Leffler type function with two parameter α, β, is defined by the series

expansion as follows [76],

Eα,β(z) :=
∞∑
k=0

zk

Γ(αk + β)
, (α > 0, β > 0).

1.3 Structure of the thesis

In Chapter 2, we will look into the basic preliminaries and fundamentals of fractional

differential equations. Some of the important solution methods of fractional calculus

are discussed in this chapter. Additionally we will present the existence and uniqueness

theorems of the solution.

In Chapter 3, we will discuss Diethelm’s numerical method for solving fractional ordi-

nary differential equations (ODEs). In [26], Diethelm considered linear fractional differ-

ential equation and used a first-degree compound quadrature formula to approximate the

Hadamard finite-part integral in the equivalent form of the considered equations and de-

fined a numerical method for solving the equations. Here we approximate the Hadamard

finite-part integral by using the second-degree compound quadrature formula and obtain

a higher order numerical method for the considered fractional differential equations.

In Chapter 4, we will discuss another numerical method, the fractional Adams-type

method (also called predictor-corrector method) for solving fractional differential equa-

tions (FDEs) which has been developed by three well-known mathematicians Kai Di-

ethelm, Neville J. Ford and Alan D. Freed. In [29], the authors approximated the equiva-

lent integral equation by using a piecewise linear interpolation polynomial and introduced

a fractional Adams method for solving fractional ODEs. We will use piecewise quadratic

interpolation polynomials to approximate the integral and introduce a high order frac-

tional Adams method for solving the fractional ODEs.

In Chapter 5, we will consider the Richardson extrapolation technique for solving

fractional differential equations. In this chapter we will also discuss the initial value

and the initial integral approximation appeared in the numerical algorithm based on the

piecewise quadratic interpolation polynomial approximations.
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In Chapter 6, we will consider finite difference method for space-fractional partial

differential equations. We will examine the stability, consistency and convergence of the

proposed finite difference method. A shifted implicit finite difference method is introduced

for solving two-sided space-fractional partial differential equation and we prove that the

order of convergence of the finite difference method is O(∆t + ∆xmin(3−α,β)), 1 < α <

2, β > 0, where ∆t,∆x denote the time and space stepsizes, respectively.

In Chapter 7, we will outline the summary of the thesis and will indicate the further

research plan.



Chapter 2

Fractional differential equations

(FDEs)

2.1 Introduction

Fractional differential equations provide an excellent mathematical tool for the descrip-

tion of memory and hereditary properties of various materials and processes [10]. These

operators are non-local which is the most significant advantage in the applications. The

standard derivative of a function includes information about the value of the function at

certain earlier time points only, while the fractional derivative encapsulates information

about the function’s behaviour from the earliest point in time up to the present.

The advantages of fractional differential equations become apparent in modelling me-

chanical and electrical properties of real materials, as well as in the description of rhe-

ological properties of rocks [10]. FDEs have been used successfully to model frequency

dependent damping behaviour of many viscoelastic materials [52], cardiac electrophysio-

logical model [8], electrochemical process [50], a radial flow problem [64]. Many papers

have also been involved in illustrating the application of FDEs in dielectric polarization

[87], control of viscoelastic structures [3].

Several analytical methods have been proposed to solve FDEs, for example Laplace

transform, Mellin transform, Fourier transform, model synthesis, eigenvector expansion

6
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etc.. Most of these methods are only applicable to solve linear FDEs but cannot be applied

in non-linear FDEs.

Recent developments have seen a tremendous interest in approximating numerical so-

lution for FDEs which can be effectively applied to both linear and non-linear FDEs (see

Diethelm [25, 31], Lubich [55]). As pointed out by Diethelm and Freed [31], most of the

techniques of solving initial value problems (IVPs) of FDEs are equivalent to Volterra

integral equations. Therefore the numerical schemes for Volterra integral equations can

be applied to FDEs. Lubich [53, 54] took the advantage for the fact FDEs can be con-

verted into Volterra integral equations. Diethelm and Walz [33] presented an extrapolation

method for numerical solution of FDEs. This was based on the algorithm of [26] where the

application of extrapolation was justified. The algorithm used the Hadamard finite-part

integral stated in [24] to determine the weights of the numerical solution. Diethelm et al.

[29] presented a predictor-corrector numerical method for solving FDEs. It was demon-

strated that the Adam-Moulton predictor-corrector method of ODEs can be extended to

predictor-corrector method of FDEs and a detailed error analysis for fractional Adams

method was produced.

2.2 Definitions

In this section we will introduce some of the fundamental definitions of fractional deriva-

tives and integrals, such as Riemann-Liouville integral, Riemann-Liouville fractional deriva-

tives, Caputo derivative, Hadamard finite-part integral etc. We will also discuss some

theorems and facts related to fractional calculus that we will apply in our research.

2.2.1 Riemann-Liouville (R-L) fractional integral

Let n ∈ R+. The operator Jna defined on L1(a, b) by [25]

Jna f(t) :=
1

Γ(n)

∫ t

a

(t− τ)n−1f(τ)dτ, (2.2.1)

for a ≤ t ≤ b, is called the Riemann-Liouville fractional integral operator of order n.
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For n = 0 we set J0
a := I, the identity operator and in this case the operator is quite

convenient for further manipulations. In fact,

lim
n→0

Jna f(t) = lim
n→0

1

Γ(n)

∫ t

a

(t− τ)n−1f(τ)dτ,

= lim
n→0

1

Γ(n)

∫ t

a

f(τ)d
(
− (t− τ)n

n

)
,

= lim
n→0

1

Γ(n+ 1)

[
f(a)(t− a)n +

∫ t

a

f ′(τ)(t− τ)ndτ
]
,

= 1 · [f(a) · 1 +

∫ t

a

f ′(τ) · 1dτ
]
,

= f(a) + f(t)− f(a) = f(t).

Thus, J0
af(t) = f(t).

Moreover, in [25] the case of n ≥ 1 it is obvious that the integral Jna f(t) exists for

every t ∈ [a, b] because the integrand is the product of an integrable function f and the

continuous function (t−·)n−1. One of the most important property of Riemman-Liouville

integral is as follows.

Theorem 2.2.1. [25] Let α, β ≥ 0 and f ∈ L1(a, b).Then

Jαa J
β
a f = Jα+β

a f. (2.2.2)

holds almost everywhere on [a, b]. If additionally f ∈ C[a, b] or α + β ≥ 1, then the

identity holds everywhere on [a, b]. Theorem 2.2.1 gives the commutative property,

Jαa J
β
a = Jβa J

α
a . (2.2.3)

2.2.2 Riemann-Liouville fractional derivative

Suppose p > 0 we define the following Riemann-Liouville fractional derivative as [76]

R
0 D

p
t f(t) = Dn[R0 D

p−n
t f(t)] = Dn 1

Γ(n− p)

∫ t

0

(t− τ)n−p−1f(τ)dτ, p > 0, (2.2.4)

where Dn = dn

dtn
and n − 1 < p < n. Recall that Dn = dn

dtn
is the derivative part while

[R0 D
p−n
t f(t)] = Jn−p0 f(t) is Riemann-Liouville integral part.

Example 1. Suppose f(t) = t2, find the value of R
0 D

1
2
t f(t)?
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Solution: Here p = 1
2

and lies on the interval 0 < p < 1 such that n = 1. Using (2.2.4)

gives

R
0 D

1
2
t f(t) = D1[R0 D

− 1
2

t f(t)] =
d

dt

[
1

Γ(1
2
)

∫ t

0

(t− τ)−
1
2 τ 2dτ

]
. (2.2.5)

2.2.3 Caputo fractional derivative

Suppose n − 1 < p < n and p > 0 we define the following Caputo’s fractional derivative

as [76]

C
0 D

p
t f(t) =R

0 Dp−n
t [Dnf(t)] =

1

Γ(n− p)

∫ t

0

(t− τ)n−p−1 [Dnf(τ)] dτ, (2.2.6)

Example 2. Suppose f(t) = t2, find the value of C
0 D

1
2
t f(t)?

Solution: Here p = 1
2

and lies on the interval 0 < p < 1 such that n = 1. Using (2.2.6)

gives

C
0 D

1
2
t f(t) =R

0 D
1
2
−1

t [D1f(t)] =
1

Γ(1
2
)

∫ t

0

(t− τ)−
1
2

[
d

dτ
f(τ)

]
dτ. (2.2.7)

Remark 3. Suppose p > 0 and n − 1 < p < n, then the relation between Riemman-

Liouville and Caputo fractional derivative can be expressed by the theorem [25] below

Theorem 2.2.2. Let p > 0 and n− 1 < p < n, we have,

R
0 D

p
t f(t) =C

0 Dp
t f(t) +

n−1∑
k=0

f (k)(0)

Γ(−p+ k + 1)
tk−p. (2.2.8)

Proof. We only consider the case for n = 1 and 0 < p < 1

R
0 D

p
t f(t) = D1[R0 D

p−1
t f(t)] =

d

dt

[
1

Γ(1− p)

∫ t

0

(t− τ)−pf(τ)dτ

]

=
d

dt

(
1

Γ(1− p)

[
−f(τ)

(t− τ)−p+1

−p+ 1

]τ=t

τ=0

+

∫ t

0

(t− τ)−p+1

−p+ 1
f ′(τ)dτ

)

=
d

dt

(
1

Γ(1− p)

[
f(0)

t1−p

1− p
+

∫ t

0

(t− τ)1−p

1− p
f ′(τ)dτ

])
=

1

Γ(1− p)
f(0)t−p +

d

dt

1

Γ(1− p)

∫ t

0

(t− τ)1−p

1− p
f ′(τ)dτ

=
1

Γ(1− p)
f(0)t−p +

1

Γ(1− p)

∫ t

0

[
∂

∂t

(
(t− τ)1−p

1− p
f ′(τ)

)]
dτ

=
1

Γ(1− p)
f(0)t−p +

1

Γ(1− p)

[∫ t

0

(t− τ)−pf ′(τ)dτ

]
= C

0 D
p
t f(t) +

1

Γ(1− p)
f(0)t−p.
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Similarly, we can prove the case for n− 1 < p < n, n > 1, i.e;

R
0 D

p
t f(t) =C

0 Dp
t f(t) +

n−1∑
k=0

f (k)(0)

Γ(−p+ k + 1)
tk−p. (2.2.9)

2.2.4 Hadamard finite -part integral

Hadamard finite-part integral is one of the most important mathematical tools in frac-

tional derivatives, integral equations and partial differential equations. Let N denote the

set of all natural numbers then, for p /∈ N, on a general interval [a, b] Hadamard finite-part

integral is defined in [24] as follows:

∮ b

a

(x− a)−pf(x)dx (2.2.10)

:=

bpc−1∑
k=0

f (k)(a)(b− a)k+1−p

(k + 1− p)k!
+

∫ b

a

(x− a)−pRbpc−1(x, a)dx,

where

Rµ(x, a) :=
1

µ!

∫ x

a

(x− y)µf (µ+1)(y)dy, (2.2.11)

and
∮

denotes the Hadamard finite-part integral. bpc denotes the largest integer not

exceeding p, where p 6∈ N.

Hadamard finite-part integral is the mathematical tool which reformulates a boundary

value problem for a partial differential equation with integer-order singularities and also

encountered the non-integer order singularities.

In particular, from [24] we can see that the Riemann-Liouville fractional derivatives

R
aD

p
xf of order p > 0, p /∈ N of the function f may be expressed as a finite-part integral

according to

R
aD

p
xf(x) =

1

Γ(−p)

∮ x

a

(x− y)−p−1f(y)dy. (2.2.12)

2.2.5 Grünwald-Letnikov fractional derivative

Grünwald and Letnikov independently developed another non-integer derivative nearly the

same time when Riemann and Liouville developed Riemann-Liouville fractional derivative
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to solve fractional differential equations. Later on many other authors use this Grünwald-

Letnikov fractional derivative to construct numerical methods for fractional differential

equations.

The Grünwald-Letnikov fractional derivative can be expressed as follows [51]. Let

α ∈ R+. The operator GLDα
a defined by,

GLDα
a f(t) = lim

h→0

(∆α
hf)(t)

hα
= lim

mh=t−a, h→0

1

hα

m∑
k=0

(−1)k

 α

k

 f(t− kh), (2.2.13)

for a ≤ t ≤ b, is called the Grünwald-Letnikov fractional derivative of order α. Here,

(∆α
hf)(t) is a fractional formulation of backward difference. This definition holds for

arbitrary function f(t), but the convergence of the infinite sum cannot be ensured for all

functions.

2.3 Numerical methods for solving FDEs

In this section we will briefly review some numerical methods for fractional differential

equations. There are a number of numerical and analytical methods developed for various

types of FDEs, for example, variational iterative method, fractional differential transform

method, a domain decomposition method, homotopy perturbation method and power

series method [4].

Hadamard finite-part integral is used by Diethelm[1997] [24] to obtain an approximate

algorithm for solving fractional differential equation. Podlubny [76] used the Grünwald-

Letnikov method to solve FDEs. And very recently Diethelm, Ford and Freed [29] intro-

duced a fractional Adams-type predictor-corrector method for solving FDEs. Lubich [53]

wrote the fractional differential equation in the form of an Abel-Volterra integral equation

and used the convolution quadrature method to approximate the fractional integral and

obtained an approximate solution for fractional differential equations.

In our research we are aiming to use Diethelm’s algorithm and Adams-type predictor-

corrector algorithm for higher order numerical methods for solving fractional differential

equations, the methods that are more accurate and cost effective in mathematical mod-

elling. Diethelm [26] considered a linear fractional differential equation, with 0 < α < 1,

and used a first-degree compound quadrature formula to approximate the Hadamard
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finite-part integral in the equivalent form of the considered equations and defined a nu-

merical method with order of convergence of O(h2−α), 0 < α < 1, see also [30]. Here

we are aiming to use the second-degree compound quadrature formula to approximate

the Hadamard finite-part integral for higher order convergence method. And in [29] Kai

Diethelm, Neville J. Ford and Alan D. Freed introduced Adams-type predictor-corrector

method for solving both linear and nonlinear fractional differential equations. In the

numerical algorithm the authors converted the considered equations into the Volterra

integral equation and then approximated the integral by using a piecewise linear inter-

polation polynomial and proved that the order of convergence of the numerical method

is O(h2) for 1 < α < 2 and O(h1+α) for 0 < α < 1 if C
0 D

α
t y(t) ∈ C2[0, T ]. We will use

piecewise quadratic interpolation polynomials to approximate the integral and introduce

a high order fractional Adams method for solving the fractional differential equations and

prove that the order of convergence of our numerical method is higher than the order of

the method in [29].

2.4 Existence and uniqueness of the solution of FDEs

Existence and uniqueness of the solution are very important mathematical elements for

any differential equations. In this section we will discuss about the existence and unique-

ness of FDEs in the Riemann-Liouville sense and the initial conditions are specified accord-

ing to Caputo’s suggestions [27], thus allowing for interpretation in a physically meaningful

way.

Let us consider the initial-value problem, with m− 1 < q < m, m ≥ 1

C
0 D

q
xy(x) = f(x, y(x)), (2.4.1)

y(k)(0) = yk0 , k = 0, 1, 2, . . . ,m− 1. (2.4.2)

where C
0 D

q
xy(x) represents the Caputo fractional derivative of order q > 0, with m− 1 <

q < m,

C
0 D

q
xy(x) :=

1

Γ(m− q)

∫ x

0

(x− u)m−1−qy(m)(u)du. (2.4.3)
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The existence and the uniqueness of the solution is described by Diethelm and Ford

[27] in the following two theorems that are very similar to the corresponding classical

theorems known in the case of first-order equation.

Theorem 2.4.1. (Existence) [27] Assume that D := [0,X ∗]× [y0
0 − α, y0

0 + α] with some

X ∗ > 0 and some α > 0, and let the function f : D → R be continuous. Furthermore,

define X := min{X ∗, (αΓ(q+1)
||f ||∞ )

1
q }. Then there exists a function y : [0,X ]→ R solving the

initial value problem (2.4.1)-(2.4.2).

Theorem 2.4.2. (Uniqueness) [27] Assume that D := [0,X ∗]× [y0
0−α, y0

0 +α] with some

X ∗ > 0 and some α > 0. Furthermore, let the function f : D→ R be bounded on D and

fulfil a Lipschitz condition with respect to the second variable, i.e.

|f(x, y)− f(x, z)| ≤ L|y − z|.

with some constant L > 0 independent of x, y, and z. Then, denoting X as in Theorem

2.4.1 there exists at most one function y : [0,X ] → R solving the initial value problem

(2.4.1)-(2.4.2).

To prove the existence and uniqueness theorems we need to know the following results:

Lemma 2.4.3. [27] If the function f is continuous, then the initial value problem (2.4.1)-

(2.4.2) is equivalent to the non-linear Volterra integral equation of the second kind

y(x) =
m−1∑
k=0

xk

k!
y(k)(0) +

1

Γ(q)

∫ x

0

(x− z)q−1f(z, y(z))dz. (2.4.4)

with m − 1 < q ≤ m. In other words, every solution of the Volterra equation (2.4.4) is

also a solution of our initial value problem (2.4.1)-(2.4.2), and vice-versa.

Theorem 2.4.4. [27] Let U be a nonempty closed subset of a Banach space E, and

let αn ≥ 0 for every n and such that
∑∞

n=0 αn converges. Moreover, let the mapping

A : U → U satisfy the inequality

||Anu− Anv|| ≤ αn||u− v||, (2.4.5)

for every n ∈ N and every u, v ∈ U . Then, A has a unique defined fixed point u∗.

Furthermore, for any u0 ∈ U , the sequence (Anu0)∞n=1 converges to this point u∗.
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Proof. of Theorem 2.4.2 (Uniqueness): [27] As we identified previously, we need only

discuss the case 0 < q < 1. In this situation, the Volterra equation (2.4.4) reduces to

y(x) = y0
0 +

1

Γ(q)

∫ x

0

(x− z)q−1f(z, y(z))dz. (2.4.6)

we thus introduce the set U = {y ∈ C[0,X ] :‖ y − y0
0 ‖∞≤ α}. Obviously, this is a

closed subset of the Banach space of all continuous functions on [0,X ], equipped with the

Chebyshev norm. Since the constant function y ≡ y0
0 is in U , we also see that U is not

empty. On U we define the operator A by

(Ay)(x) = y0
0 +

1

Γ(q)

∫ x

0

(x− z)q−1f(z, y(z))dz. (2.4.7)

Using this operator, the equation under consideration can be rewritten as

y = Ay.

and in order to prove our desired uniqueness result, we have to show that A has a unique

fixed point. Let us therefore investigate the properties of the operator A. First we note

that, for 0 ≤ x1 ≤ x2 ≤ X ,

∣∣∣(Ay)(x1)− (Ay)(x2)
∣∣∣

=
1

Γ(q)

∣∣∣ ∫ x1

0

(x1 − z)q−1f(z, y(z))dz −
∫ x2

0

(x2 − z)q−1f(z, y(z))dz
∣∣∣ (2.4.8)

=
1

Γ(q)

∣∣∣ ∫ x1

0

(
(x1 − z)q−1 − (x2 − z)q−1

)
f(z, y(z)dz +

∫ x2

x1

(x2 − z)q−1f(z, y(z))dz
∣∣∣

≤ ‖ f ‖∞
Γ(q)

[ ∫ x1

0

(
(x2 − z)q−1 − (x1 − z)q−1

)
dz +

∫ x2

x1

(x2 − z)q−1dz
]

=
‖ f ‖∞

Γ(q + 1)

(
2(x2 − x1)q + xq1 − x

q
2

)
. (2.4.9)

proving that Ay is a continuous function. Moreover, for y ∈ U and x ∈ [0,X ], we find

∣∣∣(Ay)(x)− y0
0

∣∣∣ =
1

Γ(q)

∣∣∣ ∫ x

0

(x− z)q−1f(z, y(z))dz
∣∣∣ ≤ 1

Γ(q + 1)
‖ f ‖∞ xq

≤ 1

Γ(q + 1)
‖ f ‖∞ X q ≤ 1

Γ(q + 1)
‖ f ‖∞

αΓ(q + 1)

‖ f ‖∞
= α.

Thus, we have shown that Ay ∈ U if y ∈ U ; i.e., A maps the set U to itself. Then next

step is to prove that, for every n ∈ N0 and every x ∈ [0,X ], we have
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‖ Any − Anȳ ‖L∞[0,x]≤
(Lxq)n

Γ(1 + qn)
‖ y − ȳ ‖L∞[0,x] . (2.4.10)

This can be seen by induction. In the case n = 0, the statement is trivially true. For the

induction step n− 1→ n, we write

‖ Any − Anȳ ‖L∞[0,x] = ‖ A(An−1y)− A(An−1ȳ) ‖L∞[0,x]

=
1

Γ(q)
sup

0≤w≤x

∣∣∣ ∫ w

0

(w − z)q−1[f(z, An−1y(z))− f(z, An−1ȳ(z))]dz
∣∣∣.

In the next steps, we use the Lipschitz assumption on f and the induction hypothesis and

find

‖ Any − Anȳ ‖L∞[0,x] ≤
L

Γ(q)
sup

0≤w≤x

∫ w

0

(w − z)q−1
∣∣∣An−1y(z)− An−1ȳ(z)

∣∣∣dz
≤ L

Γ(q)

∫ x

0

(x− z)q−1 sup
0≤w≤z

∣∣∣An−1y(w)− An−1ȳ(w)
∣∣∣dz

≤ Ln

Γ(q)Γ(1 + q(n− 1))

∫ x

0

(x− z)q−1zq(n−1) sup
0≤w≤z

∣∣∣y(w)− ȳ(w)
∣∣∣dz

≤ Ln

Γ(q)Γ(1 + q(n− 1))
sup

0≤w≤x

∣∣∣y(w)− ȳ(w)
∣∣∣ ∫ x

0

(x− z)q−1zq(n−1)dz

=
Ln

Γ(q)Γ(1 + q(n− 1))
‖ y − ȳ ‖L∞[0,x]

Γ(q)Γ
(

1 + q(n− 1)
)

Γ(1 + qn)
xqn.

which is our desired result (2.4.10). As a consequence, we find, taking Chebyshev norms

on our fundamental interval [0, x],

‖ Any − Anȳ ‖∞≤
(Lxq)n

Γ(1 + qn)
‖ y − ȳ ‖∞ .

We have now shown that the operator A fulfills the assumptions of Theorem 2.4.4

with αn = (Lxq)n/Γ(1 + qn). In order to apply that theorem, we only need to verify that

the series
∑∞

n=0 αn converges. This, however, is a well known result; the limit

∞∑
n=0

(Lxq)n

Γ(1 + qn)
= Eq(Lx

q).

is the Mittag-Leffler function of order q, evaluated at Lxq (see[36, Chapter 18] for general

results on Mittag-Leffler functions or [49] for details on the role of these functions in

fractional calculus). Therefore, we may apply the fixed point theorem and deduce the

uniqueness of the solution of our differential equation.
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Remark 1. Note that Theorem 2.4.4 not only asserts that the solution is unique; it

actually gives us (at least theoretically) a means of determining this solution by Picard-

type iteration process.

Remark 2. Without the Lipschitz assumption on f the solution needs not be unique.

To see this, look at the simple one-dimensional example

C
0 D

q
xy = yk, 0 < q < 1,

with initial condition y(0) = 0. Consider 0 < k < 1, so that the function on the right-

hand side of the differential equation is continuous, but the Lipschitz condition is violated.

Obviously, the zero function is a solution of the initial value problem. However, setting

pj(x) = xj, we recall that

C
0 D

q
xpj(x) =

Γ(j + 1)

Γ(j + 1− q)
pj−q(x).

Thus, the function y(x) = k
√

Γ(j + 1)/Γ(j + 1− q)xj with j = q/(1 − k) also solves the

problem, proving that the solution is not unique.

Proof. of Theorem 2.4.1 [27]: We begin by argument similar to those of the previous

proof. In particular, we use the same operator A defined in (2.4.7) and recall that it maps

the nonempty, convex, and closed set U = {y ∈ C[0, x] :‖ y − y0
0 ‖∞≤ α} to itself.

We shall now prove that A is a continuous operator. A stronger result, (2.4.10), has

been derived above, but in that derivation we used the Lipschitz property of f which

we do not assume to hold here. Therefore, we proved differently and note that, since f

is continuous on the compact set D, it is uniformly continuous there. Thus, given an

arbitrary ε > 0, we can find δ > 0 such that

|f(x, y)− f(x, z)| < ε

xq
Γ(q + 1) whenever |y − z| < δ. (2.4.11)

Now let y, ȳ ∈ U such that ‖ y − ȳ ‖< δ. Then, in view of (2.4.11),

|f(x, y(x))− f(x, ȳ(x))| < ε

xq
Γ(q + 1), (2.4.12)
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for all x ∈ [0,X ]. Hence,

|(Ay)(x)− (Aȳ)(x)| =
1

Γ(q)

∣∣∣ ∫ x

0

(x− z)q−1(f(z, y(z))− f(z, ȳ(z)))dz
∣∣∣

≤ Γ(q + 1)ε

xqΓ(q)

∫ x

0

(x− z)q−1dz =
εxq

xq
≤ ε,

proving the continuity of the operator A.

Next we look at the set of functions

A(U) := {Ay : y ∈ U}.

For z ∈ A(U) we find that, for all x ∈ [0,X ],

|z(x)| = |(Ay)(x)| ≤ |y0
0|+

1

Γ(q)

∫ x

0

(x− z)q−1
∣∣f(z, y(z)

)∣∣dz
≤ |y0

0|+
1

Γ(q + 1)
‖ f ‖∞ X q,

which means that A(U) is bounded in a pointwise sense. Moreover, for 0 ≤ x1 ≤ x2 ≤ X ,

we have found in the proof of Theorem 2.4.2 that

|(Ay)(x1)− (Ay)(x2)| ≤ ‖ f ‖∞
Γ(q + 1)

(xq1 − x
q
2 + 2(x2 − x1)q) ≤ 2

‖ f ‖∞
Γ(q + 1)

(x2 − x1)q.

Thus, if |x2 − x1| < δ, then

|(Ay)(x1)− (Ay)(x2)| ≤ 2
‖ f ‖∞

Γ(q + 1)
δq.

Noting that the expression on the right-hand side is independent of y, we see that the

set A(U) is equicontinuous. Then, the Arzelà-Ascoli theorem yields that every sequence

of functions from A(U) has got a uniformly convergent subsequence, and therefore A(U)

is relatively compact. Then, Schauder’s fixed point theorem asserts that A has a unique

fixed point. By construction, a fixed point of A is a solution of our initial value problem.

2.5 Applications of fractional differential equations

Applications come from a very wide range of science and engineering. Fractional differen-

tial equations are becoming increasingly used as a modelling tool for understanding the

many aspects of nonlocality, for example;
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• Fractional-order viscoelasticity models in blood flow [14] : The integer-order stress-

strain relation models (such as; Hook’s law for elastic solids and Newton’s law for

viscous liquids , Voigt and standard liner or Kelvin-Zener) for heterogeneous soft

tissue with complex bio-mechanical properties in blood flow, provide a reasonable

qualitative description; however, they do not satisfactorily describe the real situation

in the real world [75, 17]. On the other hand for the cell and tissue biomechanics

the fractional-order models proposed by Craiem and Armentano [16], Craiem et al

[15], and Doehring et al. [23], seem to be more adequate from both quantitative

and qualitative view points.

• Fractional-order model of neurons in biology [17]: In 1981, the neurodynamics of

the vestibulo-ocular reflex (VOR) model have been described by Robinson [78].

This model is based on direct and integrated parallel pathways to the motoneurons.

The first-order transfer functions approximate time and frequency domain data

from canal afferents, vestibular and prepositus nuclei neurons, and motoneurons.

Anastasio [1] recognized some difficulties in the classical integer-order models to

describe the behaviour of premotor neurons in the vestibulo–ocular relax system.

To overcome this problem he proposed a fractional-order model in terms of the

Laplace transform of the premotor neuron discharge rate and proved that fractional

differentiation and integrations can effectively be used to describe various aspects

of vestibulo-oculomotor dynamics.

• Fractional calculus in physics : Fractional derivatives are involved in the modelling

of electrical circuits and generalized voltage divider [17]. Le Mehaute and Crepy [59]

suggested electrical circuits may have the fractance which represents an electrical

element with fractional-order impedance.

• Fractional calculus in electrochemistry and tracer fluid flows: The fractional advection-

dispersion equation (FADE) is used in groundwater hydrology to model the trans-

port of passive tracers carried by fluid flow in a porous medium. Dispersion (or

spreading) of tracers depends strong on the scale of observation. In general, there

are three different mechanisms of dispersion [17]: molecular diffusion, variations in

the permeability field (microdispersion), and variations of the fluid velocity in a
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porous medium (microdispersion). These mechanisms take place at different scales.

At large scale, dispersion is essentially controlled by permeability heterogenetic. A

fractal structure model for heterogeneous media has been developed by Maloy et al

for details see [69].

• Continuous time random walk (CTRW) model: The CTRW models impose a ran-

dom waiting time between particle jumps [67] and the non-local CTRW model is a

good phenomenological description of the tick-by-tick dynamics, which can take into

account the pathological time evolution of financial markets. This non-local CTRW

model is very much related to the fractional calculus. For details see [63, 68].

• Cardiac electrical propagation model [8] : Fractional diffusion model in electrical

propagation with heterogeneous media describe their application to cardiac muscle

as a representative case of composite biological tissue. It describes the propagation

of electrical excitation in the cable equation; for details see [8].

• Fractional order dynamical systems in control theory [17] : This is the generaliza-

tion of the classical PID-controller, the concept of the PIλDµ-controller, involving

fractional-order integrator and fractional order differentiator [76], which has been

found to be a more efficient control of fractional order dynamic systems.



Chapter 3

Higher order numerical method for

fractional ODEs (Diethelm’s method)

3.1 Introduction

We consider numerical methods for solving the fractional differential equation

C
0 D

α
t y(t) = f(t, y(t)), 0 < t < T, (3.1.1)

y(k)(0) = yk0 , k = 0, 1, 2, . . . , dαe − 1, (3.1.2)

where the yk0 may be arbitrary real numbers and α > 0. Here C
0 D

α
t denotes the differential

operator in the sense of Caputo, n− 1 < α < n,

C
0 D

α
t y(t) =

1

Γ(n− α)

∫ t

0

(t− u)n−α−1y(n)(u) du,

where n = dαe is the smallest integer ≥ α.

Existence and uniqueness of solutions for (3.1.1) -(3.1.2) have been studied, for exam-

ple, in Podlubny [76], Diethelm and Ford [27]. Numerical methods for solving fractional

differential equations have been considered by many authors and we mention here a few

key contributions. Lubich [53] wrote the fractional differential equation in the form of

an Abel-Volterra integral equation and used the convolution quadrature method to ap-

proximate the fractional integral and obtained approximate solutions of the fractional

differential equation. Diethelm [26] wrote the fractional Riemann-Liouville derivative by

20



21

using the Hadamard finite-part integral and approximated the integral by using a quadra-

ture formula and obtained an implicit numerical algorithm for solving a linear fractional

differential equation. Diethelm and Luchko [32] used the observation that a fractional dif-

ferential equation has an exact solution, which can be expressed as a Mittag-Leffler type

function. Then they used convolution quadrature and discretised operational calculus to

produce an approximation to this Mittag-Leffler function. Blank [5] applied a colloca-

tion method to approximate the fractional differential equation. Podlubny [76] used the

Grünwald and Letnikov method to approximate the fractional derivative and defined an

implicit finite difference method for solving (3.1.1)-(3.1.2) and proved that the order of

convergence is O(h), where h is the stepsize. Gorenflo [47] introduced a second order O(h2)

difference method for solving (3.1.1)-(3.1.2), but the conditions to achieve the desired ac-

curacy are restrictive. In [28], the authors converted the equations (3.1.1)-(3.1.2) into a

Volterra integral equation and then approximated the integral by using a piecewise lin-

ear interpolation polynomial and introduced a fractional Adams-type predictor-corrector

method for solving (3.1.1)-(3.1.2), proving that the order of convergence of the numerical

method is min{2, 1+α} for 0 < α ≤ 2 if C0 D
α
t y ∈ C2[0, T ]. Deng [18] modified the method

in [28] and introduced a new predictor-corrector method for solving (3.1.1)-(3.1.2) and

the convergence order is proved to be min{2, 1 + 2α} for α ∈ (0, 1]. In [95], the authors

introduced a so-called Jacobi-predictor-corrector approach to solve (3.1.1)-(3.1.2) which

is based on the polynomial interpolation and the Gauss-Lobatto quadrature with respect

to some Jacobi-weight function and the computational cost is O(N), N = 1/h and any

desired convergence order can be obtained. In [9], a higher order numerical method for

solving (3.1.1)-(3.1.2) is obtained where a quadratic interpolation polynomial was used

to approximate the integral. Ford, Morgado and Rebelo recently (see [41]) used a non-

polynomial collocation method to achieve good convergence properties without assuming

any smoothness of the solution. There are also several works that are related to the fixed

memory principle and the nested memory concept for solving (3.1.1)-(3.1.2), see, e.g.,

[44, 29, 18, 19, 22].

In [26], Diethelm considered the following linear fractional differential equation, with
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0 < α < 1,

C
0 D

α
t y(t) = βy(t) + f(t), 0 ≤ t ≤ 1, (3.1.3)

y(0) = y0, (3.1.4)

where β < 0, f is a given function on the interval [0, 1]. Diethelm [26] used a first-degree

compound quadrature formula to approximate the Hadamard finite-part integral in the

equivalent form of (3.1.3)-(3.1.4) and defined a numerical method for solving (3.1.3)-

(3.1.4) and proved that the order of convergence of the numerical method is O(h2−α), 0 <

α < 1. Here we approximate the Hadamard finite-part integral by using the second-degree

compound quadrature formula and obtain an asymptotic expansion of the error for solving

(3.1.3)-(3.1.4), which implies that the order of convergence of the numerical method is

O(h3−α), 0 < α < 1. Moreover, a high order finite difference method (O(h3−α), 0 < α < 2)

for approximating the Riemann-Liouville fractional derivative is given, which may be

applied to construct high order numerical methods for solving time-space-fractional partial

differential equations.

3.2 Diethelm’s method

In this section we review Diethelm’s method for solving fractional differential equations

where the Hadamard finite-part integral is approximated by piecewise linear interpolation

polynomials.

Consider, with 0 < α < 1,

C
0 D

α
t y(t) = βy(t) + f(t), (3.2.1)

y(0) = y0. (3.2.2)

It is well-known that (3.2.1)- (3.2.2) is equivalent to, with 0 < α < 1,

R
0 D

α
t [y(t)− y0] = βy(t) + f(t), 0 ≤ t ≤ 1, (3.2.3)

where α is the order of the derivative, f is a given function on the interval [0,1], β ≤ 0 and

y is the unknown function. From the definition of Riemann-Liouville fractional derivative
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in Chapter 2, for 0 < α < 1 we get

R
0 D

α
t y(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− τ)−αy(τ)dτ. (3.2.4)

Let us recall the Diethelm’s numerical algorithm for piecewise linear interpolation poly-

nomial with the equispaced nodes. The Lemmas below will help the reader to understand

the algorithm of the numerical method for solving fractional differential equations.

Lemma 3.2.1. [35] The Hadamard finite-part integral for the Riemann-Liouville deriva-

tive (3.2.4) can be written as

R
0 D

α
t y(t) =

1

Γ(−α)

∮ t

0

(t− τ)−1−αy(τ)dτ.

where 0 < α ≤ 1,
∮

represents the symbol of Hadamard finite-part integral.

Lemma 3.2.2. [26] Assume that 0 = t0 < t1 < t2 < · · · < tk < · · · < tn = 1 is the

partition on the interval [0, 1] and 0 < α < 1, then at t = tj,

R
0 D

α
t [y(tj)] = h−α

j∑
k=0

ωkjy(tj − tk) +
t−αj

Γ(α)
Rj, j = 1, 2, 3, . . . , n.

where ωkj are called the weights and Rj is the remainder term given by

|Rj| ≤ Cjα−2‖y′′(tj − tjω)‖∞, 0 < ω ≤ 1,

where ω is the new variable [y(τ) = y(tj − tjω)] introduce in the proof, h is the time-step

size and the weights ωkj satisfy

Γ(2− α)ωkj =


1, k = 0

−2k1−α + (k − 1)1−α + (k + 1)1−α, k = 1, 2, . . . , j − 1

−(α− 1)k−α + (k − 1)1−α − k1−α, k = j

The proof for this Lemma 3.2.2 is straightforward and requires a piecewise linear

Lagrange interpolation polynomial.

Proof. We have

R
0 D

α
t y(tj) =

1

Γ(−α)

∮ tj

0

y(τ)

(tj − τ)α+1
dτ.

Suppose tj − τ = tjω, then

R
0 D

α
t y(tj) =

t−αj
Γ(−α)

∮ 1

0

y(tj − tjω)

ωα+1
dω.
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Performing another substitution such that g(ω) = y(tj − tjω), we have

R
0 D

α
t y(tj) =

t−αj
Γ(−α)

∮ 1

0

g(ω)ω−(α+1)dω.

For every j, we replace the integral by a piecewise interpolation polynomial with equi-

spaced nodes 0, 1/j, 2/j, 3/j, . . . , j/j. That is,∮ 1

0

g(ω)ω−α−1dω =

∮ 1

0

g1(ω)ω−α−1dω +Rj,

where g1(ω) is the piecewise linear interpolation polynomial of g(ω) with the equispaced

nodes and Rj is the remainder term.

Note that,

g1(ω) =
ω − k

j

k−1
j
− k

j

g

(
k − 1

j

)
+
ω − k−1

j

k
j
− k−1

j

g

(
k

j

)
, on

[
k − 1

j
,
k

j

]
.

Thus,∮ 1

0

g(ω)ω−(1+α)dω ≈
∮ 1

0

g1(ω)ω−(1+α)dω = Qj(g). (3.2.5)

Here we observe generally that

Qj(g) =

∮ 1

0

g1(ω)ω−(1+α)dω =

∮ 1
j

0

g1(ω)ω−(1+α)dω +

j∑
k=2

∮ k
j

k−1
j

g1(ω)ω−(1+α)dω(3.2.6)

Applying the Lagrange interpolation polynomial on each integral on the right hand side

of (3.2.5) gives∮ 1
j

0

g1(ω)ω−(1+α)dω =

∮ 1
j

0

[
ω − 1

j

0− 1
j

g(0) +
ω − 0
1
j
− 0

g

(
1

j

)]
ω−(α+1) dω

∮ 2
j

1
j

g1(ω)ω−(1+α)dω =

∮ 2
j

1
j

[
ω − 2

j

1
j
− 2

j

g

(
1

j

)
+
ω − 1

j

2
j
− 1

j

g

(
2

j

)]
ω−(α+1) dω

. . .∮ j−1
j

j
j

g1(ω)ω−(1+α)dω =

∮ j−1
j

j
j

[
ω − j

j

j−1
j
− j

j

g

(
j − 1

j

)
+
ω − j−1

j

j
j
− j−1

j

g

(
j

j

)]
ω−(α+1) dω.
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We can deduce that∮ 1
j

0

g1(ω)ω−(1+α)dω =
g1(0)

(
1
j

)1−(1+α)

(0 + 1− (1 + α))0!
+

∫ 1
j

0

ω−(1+α) 1

0!

[∫ ω

0

(ω − y)0g
(1)
1 (y)dy

]
dω

=
1

(−α)j−α
g(0) +

∫ 1
j

0

ω−(1+α)

[∫ ω

0

(
jg

(
1

j

)
− jg(0)

)
dy

]
dω

=
1

(−α)j−α
g(0) +

[
jg

(
1

j

)
− jg(0)

]
.

∫ 1
j

0

ω−αdω

=

[
1

(−α)j−α
− 1

(1− α)j−α

]
g(0) +

1

(1− α)j−α
g

(
1

j

)
=

1

(1− α)j−α
g

(
1

j

)
− 1

α(1− α)j−α
g(0).

Now we consider in general:∫ k
j

k−1
j

g1(ω)ω−(1+α) dω =

∫ k
j

k−1
j

[
ω − k

j

−1
j

g

(
k − 1

j

)
+
ω − k−1

j

1
j

g

(
k

j

)]
ω−(1+α)dω

= g

(
k − 1

j

)∫ k
j

k−1
j

j

(
k

j
− ω

)
ω−(1+α) dω

+ g

(
k

j

)∫ k
j

k−1
j

j

(
ω − k − 1

j

)
ω−(1+α) dω

= g

(
k − 1

j

)∫ k
j

k−1
j

(
kω−(1+α)dω − jω−α

)
dω

+ g

(
k

j

)∫ k
j

k−1
j

(
jω−α − (k − 1)ω−(1+α)

)
dω

= g

(
k − 1

j

)[
k

−α

(
k

j

)−α
− j

1− α

(
k

j

)1−α

− k

−α

(
k − 1

j

)−α
+

j

1− α

(
k − 1

j

)−α]

+ g

(
k

j

)[
j

1− α

(
k

j

)1−α

− k − 1

−α

(
k

j

)−α
− j

1− α

(
k − 1

j

)1−α

+
k − 1

−α

(
k − 1

j

)−α]
.
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Therefore

Qj(g) =
1

(1− α)j−α
g

(
1

j

)
− 1

α(1− α)j−α
g(0)

+

j∑
k=2

(
k − 1

j

)[
k

−α

(
k

j

)−α
− j

1− α

(
k

j

)1−α

− k

−α

(
k − 1

j

)−α
+

j

1− α

(
k − 1

j

)−α]

+ g

(
k

j

)[
j

1− α

(
k

j

)1−α

− k − 1

−α

(
k

j

)−α
− j

1− α

(
k − 1

j

)1−α

+
k − 1

−α

(
k − 1

j

)−α]

=

j∑
k=0

αkjg

(
k

j

)
=

j∑
k=0

αkjy(tj − tk),

where αkj satisfy the following:

when k = 0,

α0j =
−1

α(1− α)j−α
,

and when k = j,

αjj =

[
j

1− α

(
j

j

)1−α

− j − 1

−α

(
j

j

)−α
− j

1− α

(
j − 1

j

)1−α

+
j − 1

−α

(
j − 1

j

)−α]

=
j

1− α
− j − 1

−α
− (j − 1)1−α

(1− α)j−α
+

(j − 1)1−α

(−α)j−α

=
αj1−α + (1− α)(j − 1)j−α − α(j − 1)1−α + (α− 1)(j − 1)1−α

α(1− α)j−α

=
αj1−α + (1− α)j1−α − (1− α)−α − (j − 1)1−α

α(1− α)j−α

=
(α− 1)j−α − (j − 1)1−α + j1−α

α(1− α)j−α
.
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For k = 1, 2, 3, 4, . . . , j − 1, we have

αkj =
k + 1

−α

(
k + 1

j

)−α
− j

1− α

(
k + 1

j

)−α
− k + 1

−α

(
k

j

)−α
+

j

1− α

(
k

j

)1−α

+
j

1− α

(
k

j

)1−α

− k − 1

−α

(
k

j

)−α
− j

1− α

(
k − 1

j

)1−α

+
k − 1

−α

(
k − 1

j

)−α
=

[
1

−αj−α
− 1

(1− α)j−α

]
(k + 1)1−α +

[
− 1

(1− α)j−α
+

1

(−α)j−α

]
(k − 1)1−α

+

[
−k + 1

−α

(
k

j

)−α
− k − 1

−α

(
k

j

)−α]
+

[
1

(1− α)j−α
+

1

(1− α)j−α

]
k1−α

=
α− 1− α
α(1− α)j−α

(k + 1)1−α +
−α + (α− 1)

α(1− α)j−α
(k − 1)1−α

+
2k

α

(
k

j

)−α
+

2

(1− α)j−α
k1−α

=
(k + 1)1−α

α(1− α)j−α
− (k − 1)1−α

α(1− α)j−α
+

2k1−α

α(1− α)j−α

=
1

α(1− α)j−α

[
2k1−α − (k − 1)1−α − (k + 1)1−α

]
.

Thus, we get

R
0 D

α
t y(tj) =

t−αj
Γ(−α)

∮ 1

0

g(ω)ω−(α+1)dω =
t−αj

Γ(−α)

[ j∑
k=0

αkjy(tj − tk) +Rj(g)
]

= hα
j∑

k=0

wkjy(tj − tk) +
t−αj

Γ(−α)
Rj(g),

where

α(α−1)j−ααkj = Γ(2−α)ωkj =


1, k = 0

−2k1−α + (k − 1)1−α + (k + 1)1−α, k = 1, 2, ..., j − 1

−(α− 1)k−α + (k − 1)1−α − k1−α, k = j

Together these estimates complete the proof of Lemma 3.2.2.

Thus the solution of (3.2.3) has the form

y(tj) =
1

α0j − tαj Γ(−α)β

[
tαj Γ(−α)f(tj)−

j∑
k=1

αkjy(tj−k) (3.2.7)

+ y0

j∑
k=0

αkj −Rj(g)
]
,
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where

|Rj(g)| ≤ Cjα−2t2j ||y′′||∞.

Let yj ≈ y(tj) denote the approximate solution of y(tj), j = 1, 2, 3, . . . , n, then based on

(3.2.7) we can define the following numerical method for solving (3.2.3) as

yj =
1

α0j − tαj Γ(−α)β

[
tαj Γ(−α)f(tj)−

j∑
k=1

αkjyj−k + y0

j∑
k=0

αkj

]
. (3.2.8)

We remark that Lemma 3.2.2 for 0 < α < 1 can be extended to the case for 1 < α < 2

to yield the following weights,

α(1− α)j−ααkj =



−1, k = 0

α, k = 1, j = 0

2− 21−α, k = 1, j > 1

2k1−α − (k − 1)1−α − (k + 1)1−α, k = 1, 2, . . . , j − 1, j ≥ 3

(α− 1)k−α − (k − 1)1−α + k1−α, k = j, j ≥ 2.

These weights are obtained by following the same process from Lemmas 3.2.1 and 3.2.2.

The only difference lies from the Hadamard finite-part integral.

3.2.1 Error analysis

Theorem 3.2.3. [26] Let 0 < α < 1. Assume y(tj) and yj are the exact and approximate

solutions of (3.2.7) and (3.2.8), respectively. Also, assume that the function involved is

sufficiently smooth, then there exists a constant C = C(α, g, β), such that

|y(tj)− yj| ≤ Ch2−α||y′′||∞. j = 1, 2, . . . , n.

To prove the Theorem 3.2.3, we need the following Lemma.

Lemma 3.2.4. Let 0 < α < 1 be the order of derivative and the sequence (dj) satisfy d1 = 1

dj = 1 + α(1− α)j−α
∑j

k=1 αkjdj−k.

Then, we have

1 ≤ dj ≤ Cαj
α, j = 1, 2, . . . , n.

where the positive constant Cα = 1
[(−α)(−α+1)Γ(−α)Γ(α+1)]
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Proof. of Theorem 3.2.3:

Assume

ej = y(tj)− yj.

then we have the error equation, subtracting (3.2.7) from (3.2.8),

ej =
1

α0j − tαj Γ(−α)β

[
−

j∑
k=1

αkjej−k −Rj

]
.

Note that

α0j =
1

−α(1− α)j−α
< 0, Γ(−α) < 0, β < 0, αkj > 0.

then we have

|ej| ≤
1

−α0j

(
j∑

k=1

αkj |ej−k|+ |Rj|

)

≤ α(1− α)j−α

(
j∑

k=1

αkj |ej−k|+ jα−2t2j ||y′′||∞

)

≤ α(1− α)h2||y′′||∞ + α(1− α)j−α
j∑

k=1

αkj |ej−k| .

By denoting a = α(1− α)h2||y′′||∞ and assume for simplicity that e0 = 0 then we get

|ej| ≤ a+ α(1− α)j−α
j∑

k=1

αkj |ej−k| , j = 1, 2, . . . , n,

which implies that

|ej| ≤ adj, j = 1, 2, . . . , n,

where d1 = 1

dj = 1 + α(1− α)j−α
∑j

k=1 αkjdj−k

Hence, the proof of Theorem 3.2.3 is complete.
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Next we will show that yn− y(tn) has an asymptotic expansion. We have the following

Theorem.

Theorem 3.2.5. [33] Let tn = 1 be fixed. Let yn and y(tn) be the solutions of (3.2.8)

and (3.2.7), respectively. Then there exist coefficients Cµ(α) and C∗µ(α) such that the

sequence {yn}possesses an asymptotic expansion of the form.

y(tn) = yn +

M1∑
µ=2

Cµ(α)nα−µ +

M2∑
µ=1

C∗µ(α)n−2µ +O(n−M3) for n→∞,

where M1 and M2 depend on the smoothness of y, and M3 = min{M1 − α, 2M2}.

To prove Theorem 3.2.5, we need the following

Lemma 3.2.6. [Theorem 1.3 in [33]]

Let 0 < α < 1 and let g ∈ Cm+2[0, 1], m ≥ 2

Then

Rj(g) =

∮ 1

0

t−1−αg(t)dt−
∮ 1

0

t−1−αg1(t)dt

=

j−1∑
k=0

∫ k+1
j

k
j

t−1−α[g(t)− g1(t)]dt =
m+1∑
µ=2

dµj
α−µ +

µ∗∑
µ=1

d∗µj
−2µ +O(jα−m−1),

where µ∗ is the integer satisfying 2µ∗ < m + 1 − α < 2(µ∗ + 1), dµ and d∗µ are certain

coefficients that depend on g. Here g1(t) is the linear interpolation polynomial of g(t) on

[0, 1].

For example, assume that g ∈ Cm+2[0, 1], m = 4. Then we have

Rj(g) = d2j
α−2 + d∗1j

−2 + d3j
α−3 + d4j

α−4 + d5j
α−5 + d∗2j

−4 +O(jα−5),

Here µ∗ = 2 , and 2× 2 < 5− α < 2(2 + 1).

Proof of Theorem 3.2.5. To understand the idea of the proof. We assume, e.g, that

y ∈ Cm+2[0, 1], m = 4. Then we shall prove that, there exist C̃2, C̃
∗
1 , C̃3, C̃4, C̃

∗
2 , such

that

y(tn)− yn = C̃2n
α−2 + C∗1n

−2 + C̃3n
α−3 + C̃4n

α−4 + C̃5n
α−5 (3.2.9)

+C̃∗2n
−4 +O(nα−5), n→∞,
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To prove (3.2.9), we will consider yj − y(tj), j →∞, for fixed tj such that
tj
tn

= j
n

=

c0, c0 is a constant, that is n depends on j. Here tn = 1, tj = c0.

For example, choose c0 = 1
2
, then when j = 1 we have n = 2 and when j = 2, we have

n = 4,. . . . We will prove that

εj = y(tj)− yj = C̃2n
α−2 + C∗1n

−2 + C̃3n
α−3 + C̃4n

α−4 (3.2.10)

+C̃5n
α−5 + C̃∗2n

−4 +O(nα−5), j →∞,

Then let j = n. We get (3.2.9)

By Lemma 3.2.6, we see that, for g ∈ Cm+2[0, 1],m ≥ 2, (m = 4), we have

Rj(g) =

∮ 1

0

t−1−αg(t)dt−
∮ 1

0

t−1−αg1(t)dt =

j−1∑
k=0

∮ k+1
j

k
j

t−1−α[g(t)− g1(t)]dt

= d2j
α−2 + d∗1j

−2 + d3j
α−3 + d4j

α−4 + d5j
α−5 + d∗2j

−4 +O(jα−5). (3.2.11)

Note that j = c0n, we can write (3.2.11) into

Rj(g) = d̃2n
α−2 + d̃∗1n

−2 + d̃3n
α−3 + d̃4n

α−4 + d̃5n
α−5 + d̃∗2n

−4 +O(nα−5). (3.2.12)

Next we will prove that

εj = y(tj)− yj = C̃2n
α−2 + C̃∗1n

−2 + C̃3n
α−3 + C̃4n

α−4 + C̃5n
α−5 (3.2.13)

+C̃∗2n
−4 +O(nα−5), j →∞,

where

C̃` =
1

−cα0 Γ(−α)β − 1
α

d̃`, ` = 2, 3, 4, 5.

C̃∗` =
1

−cα0 Γ(−α)β − 1
α

d̃∗` , ` = 1, 2.

Suppose that (3.2.13) holds, then (3.2.9) follows by replacing j by n since j =

1, 2, . . . , n.
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We shall use mathematical induction to prove (3.2.13).

Step 1: When j = 0, we have ε0 = 0, therefore (3.2.13) is true.

Step 2: When j = 1, we have, by (3.2.7) and (3.2.8),

ε1 = y(t1)− y1 =
1

cα0 Γ(−α)β − (nc0)α

α(α−1)

(
ε0

[ 1∑
k=0

αk1 − α01

]
+R1[g]

)
.

That is, noting that
∑1

k=0 αk1 = − 1
α

, by (3.2.10),[ 1

α(α− 1)
(nc0)α − cα0 Γ(−α)β

]
ε1

=
1

α

[
C̃2n

α−2 + C̃∗1n
−2 + C̃3n

α−3 + C̃4n
α−4 + C̃5n

α−5 + C̃∗2n
−4 +O(nα−5)

]
+

1

α(α− 1)
(nc0)α

[
C̃2n

α−2 + C̃∗1n
−2 + C̃3n

α−3 + C̃4n
α−4 + C̃5n

α−5 + C̃∗2n
−4 +O(nα−5)

]
+
[
d̃2n

α−2 + d̃∗1n
−2 + d̃3n

α−3 + d̃4n
α−4 + d̃5n

α−5 + d̃∗2n
−4 +O(nα−5)

]
.

This shows that ε1 possesses an asymptotic expansion w.r.t powers of n, and we can

check indeed by comparing the coefficients of powers of n,

ε1 = C̃2n
α−2 + C̃∗1n

−2 + C̃3n
α−3 + C̃4n

α−4 + C̃5n
α−5 + C̃∗2n

−4 +O(nα−5).

Step 3: Assume that

ε` = C̃2n
α−2 + C̃∗1n

−2 + C̃3n
α−3 + C̃4n

α−4 + C̃5n
α−5 + C̃∗2n

−4 +O(nα−5), ` = 0, 1, 2, . . . , j − 1.

Then we have, same as in Step 2,[ 1

α(α− 1)
(nc0)α − cα0 Γ(−α)β

]
εj =

( j∑
k=1

αkjεj−k +Rj[g]
)

+
[(
C̃2n

α−2 + C̃∗1n
−2 + C̃3n

α−3 + C̃4n
α−4 + C̃5n

α−5 + C̃∗2n
−4 +O(nα−5)

)
( j∑
k=0

αkj − α0j

)
+Rj[g]

]
.

Note that
∑j

k=0 αkj = − 1
α

, we have, by (3.2.12)[ 1

α(α− 1)
(nc0)α − cα0 Γ(−α)β

]
εj

=
1

α

[
C̃2n

α−2 + C̃∗1n
−2 + C̃3n

α−3 + C̃4n
α−4 + C̃5n

α−5 + C̃∗2n
−4 +O(nα−5)

]
+

1

α(α− 1)
(nc0)α

[
C̃2n

α−2 + C̃∗1n
−2 + C̃3n

α−3 + C̃4n
α−4 + C̃5n

α−5 + C̃∗2n
−4 +O(nα−5)

]
+
[
d̃2n

α−2 + d̃∗1n
−2 + d̃3n

α−3 + d̃4n
α−4 + d̃5n

α−5 + d̃∗2n
−4 +O(nα−5)

]
.
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This shows that εj possesses an asymptotic expansion w.r.t powers of n, and we can check

indeed, comparing with the coefficients of powers of n,

εj = C̃2n
α−2 + C̃∗1n

−2 + C̃3n
α−3 + C̃4n

α−4 + C̃5n
α−5 + C̃∗2n

−4 +O(nα−5), j →∞.

Thus (3.2.13) holds.

Together these estimates complete the proof of Theorem 3.2.5.

3.3 Extending Diethelm’s method

In this section we will consider a higher order numerical method for solving (3.1.3)-(3.1.4).

It is well-known that (3.1.3)-(3.1.4) is equivalent, with 0 < α < 1, to the following

problem:

R
0 D

α
t [y(t)− y0] = βy(t) + f(t), 0 ≤ t ≤ 1, (3.3.1)

where R
0 D

α
t y(t) denotes the Riemann-Liouville fractional derivative defined by,

with 0 < α < 1,

R
0 D

α
t y(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− τ)−αy(τ) dτ. (3.3.2)

The Riemann-Liouville fractional derivative R
0 D

α
t y(t) can be written as [26]

R
0 D

α
t y(t) =

1

Γ(−α)

∮ t

0

(t− τ)−1−αy(τ) dτ, (3.3.3)

where the integral
∮

denotes the Hadamard finite-part integral.

In [26], Diethelm approximated the Hadamard finite-part integral in (3.3.3) by piece-

wise linear interpolation polynomials and defined a numerical method for solving (3.3.1).

In this section, we will approximate the Hadamard finite-part integral by using piecewise

quadratic interpolation polynomials.

Let M be a fixed positive integer and let 0 = t0 < t1 < t2 < · · · < t2j < t2j+1 < · · · <

t2M = 1 be a partition of [0, 1] and h the stepsize. At node t2j = 2j
2M

, the equation (3.3.1)

satisfies

R
0 D

α
t [y(t2j)− y0] = βy(t2j) + f(t2j), j = 1, 2, . . . ,M, (3.3.4)



34

and at node t2j+1 = 2j+1
2M

, the equation (3.3.1) satisfies

R
0 D

α
t [y(t2j+1)− y0] = βy(t2j+1) + f(t2j+1), j = 0, 1, 2, . . . ,M − 1. (3.3.5)

Let us first consider the discretization of (3.3.4). Note that

R
0 D

α
t y(t2j) =

1

Γ(−α)

∮ t2j

0

(t2j−τ)−1−αy(τ) dτ =
t−α2j

Γ(−α)

∮ 1

0

w−1−αy(t2j−t2jw) dw. (3.3.6)

For every j, we replace g(w) = y(t2j − t2jw) in the integral in (3.3.6) by a piecewise

quadratic interpolation polynomial with equispaced nodes 0, 1
2j
, 2

2j
, . . . , 2j

2j
. We then have∮ 1

0

w−1−αg(w) dw =

∮ 1

0

w−1−αg2(w) dw +R2j(g), (3.3.7)

where g2(w), defined by (3.3.9), is the piecewise quadratic interpolation polynomial of

g(w) with equispaced nodes 0, 1
2j
, 2

2j
, . . . , 2j

2j
and R2j(g) is the remainder term.

Lemma 3.3.1. Let 0 < α < 1. We have∮ 1

0

w−1−αg2(w) dw =

2j∑
k=0

αk,2jg
( k

2j

)
, (3.3.8)

where

(−α)(−α + 1)(−α + 2)(2j)−ααl,2j =



2−α(α + 2), for l = 0,

(−α)22−α, for l = 1,

(−α)(−2−αα) + 1
2
F0(2), for l = 2,

−F1(k), for l = 2k − 1,

k = 2, 3, . . . , j,

1
2
(F2(k) + F0(k + 1)), for l = 2k,

k = 2, 3, . . . , j − 1,

1
2
F2(j), for l = 2j,

F0(k) =(2k − 1)(2k)
(

(2k)−α − (2k − 2)−α
)

(−α + 1)(−α + 2)

−
(

(2k − 1) + 2k
)(

(2k)−α+1 − (2k − 2)−α+1
)

(−α)(−α + 2)

+
(

(2k)−α+2 − (2k − 2)−α+2
)

(−α)(−α + 1),
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F1(k) =(2k − 2)(2k)
(

(2k)−α − (2k − 2)−α
)

(−α + 1)(−α + 2)

−
(

(2k − 2) + 2k
)(

(2k)−α+1 − (2k − 2)−α+1
)

(−α)(−α + 2)

+
(

(2k)−α+2 − (2k − 2)−α+2
)

(−α)(−α + 1),

and

F2(k) =(2k − 2)(2k − 1)
(

(2k)−α − (2k − 2)−α
)

(−α + 1)(−α + 2)

−
(

(2k − 2) + (2k − 1)
)(

(2k)−α+1 − (2k − 2)−α+1
)

(−α)(−α + 2)

+
(

(2k)−α+2 − (2k − 2)−α+2
)

(−α)(−α + 1).

Proof. For fixed 2j, let 0 < 1
2j
< 2

2j
< · · · < 2j

2j
= 1 be a partition of [0, 1]. Denote

wl = l
2j
, l = 0, 1, 2, . . . , 2j. We then have, for k = 1, 2, . . . , j,

g2(w) =
(w − w2k−1)(w − w2k)

(w2k−2 − w2k−1)(w2k−2 − w2k)
g(w2k−2)

+
(w − w2k−2)(w − w2k)

(w2k−1 − w2k−2)(w2k−1 − w2k)
g(w2k−1)

+
(w − w2k−2)(w − w2k−1)

(w2k − w2k−2)(w2k − w2k−1)
g(w2k), for w ∈ [w2k−2, w2k

]
. (3.3.9)

Let us now consider∮ 1

0

w−1−αg2(w) dw =
[ ∮ w2

0

+

∫ w4

w2

+ · · ·+
∫ w2j

w2j−2

]
w−1−αg2(w) dw.

By the definition of the Hadamard finite-part integral [24], we obtain∮ w2

0

w−1−αg2(w) dw =
g2(0)(w2)−α

−α
+

∫ w2

0

w−1−α
[ ∫ w

0

g′2(y) dy
]
dw

=
2−α

(−α)(2j)−α
g2(0) +

∫ w2

0

w−1−α(g2(w)− g2(0)) dw.

(3.3.10)



36

By using (3.3.9), we have∮ w2

0

g2(w)w−1−α dw

=
2−α

(−α)(2j)−α
g(0) +

∫ w2

0

w−1−α
[(2j)2

2

(
w2 − (w1 + w2)w

)
g(0)

+
(2j)2

−1

(
w2 − (0 + w2)w

)
g(w1) +

(2j)2

2

(
w2 − (0 + w1)w

)
g(w2)

]
dw

=
2−α(α + 2)

(−α)(−α + 1)(−α + 2)(2j)−α
g(0) +

22−α

(−α + 1)(−α + 2)(2j)−α
g(w1)

+
−2−αα

(−α + 1)(−α + 2)(2j)−α
g(w2).

Similarly, we have, after a simple calculation,

(−α)(−α + 1)(−α + 2)(2j)−α
∫ w2k+2

w2k

g2(w)w−1−α dw

=
1

2
F0(k)g(w2k−2) + (−1)F1(k)g(w2k−1) +

1

2
F2(k)g(w2k),

where Fi(k), i = 0, 1, 2 and k = 2, 3, ..., j are defined as above.

Together these estimates lead to (3.3.8) and the proof of Lemma 3.3.1 is complete.

Next we consider the discretization of (3.3.5). At the node

t2j+1 = 2j+1
2M

, j = 1, 2, . . . ,M − 1. We have

R
0 D

α
t y(t2j+1) =

1

Γ(−α)

∮ t2j+1

0

(t2j+1 − τ)−1−αy(τ) dτ

=
1

Γ(−α)

∫ t1

0

(t2j+1 − τ)−1−αy(τ) dτ +
t−α2j+1

Γ(−α)

∮ 2j
2j+1

0

w−1−αy(t2j+1 − t2j+1w) dw.

(3.3.11)

For j = 1, 2, . . . ,M−1, we replace g(w) = y(t2j+1−t2j+1w) in the integral in (3.3.11) by

a piecewise quadratic interpolation polynomial with equispaced nodes 0, 1
2j+1

, 2
2j+1

, . . . , 2j
2j+1

.

We then have, for a sufficient smooth function g(w),∮ 2j
2j+1

0

w−1−αg(w) dw =

∮ 2j
2j+1

0

w−1−αg2(w) dw +R2j+1(g), (3.3.12)

where g2(w) is the piecewise quadratic interpolation polynomial of g(w) with the nodes

0, 1
2j+1

, 2
2j+1

, . . . , 2j
2j+1

and R2j+1(g) is the remainder term.

Similarly, we can prove the following lemma.
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Lemma 3.3.2. Let 0 < α < 1. We have∮ 2j
2j+1

0

w−1−αg2(w) dw =

2j∑
k=0

αk,2j+1g
( k

2j + 1

)
, (3.3.13)

where αk,2j+1 = αk,2j, k = 0, 1, 2, . . . , 2j and αk,2j are given in Lemma 3.3.1.

Remark 4. By direct calculation, we can show that, with 0 < α < 1,

α0,2j =
2−α(α + 2)

(−α)(−α + 1)(−α + 2)(2j)−α
< 0, (3.3.14)

and αk,2j > 0 for k > 0, k 6= 2. For k = 2, there exists α1 ∈ (0, 1) such that α2,2j ≥ 0 for

0 < α < α1 and α2,2j ≤ 0 for α1 < α < 1.

Now solutions of (3.3.1) satisfy, with j = 1, 2, . . . ,M ,

y(t2j) =
1

α0,2j − tα2jΓ(−α)β

[
tα2jΓ(−α)f(t2j)−

2j∑
k=1

αk,2jy(t2j−k) + y0

2j∑
k=0

αk,2j−R2j(g)
]
,

(3.3.15)

and, with j = 1, 2, . . . ,M − 1,

y(t2j+1) =
1

α0,2j+1 − tα2j+1Γ(−α)β

[
tα2j+1Γ(−α)f(t2j+1)−

2j∑
k=1

αk,2j+1y(t2j+1−k)

+ y0

2j∑
k=0

αk,2j+1 −R2j+1(g)− tα2j+1

∫ t1

0

(t2j+1 − τ)−1−αy(τ) dτ
]
. (3.3.16)

Here α0,l−tαl Γ(−α)β < 0, l = 2j, 2j+1, which follow from (3.3.14) and Γ(−α) < 0, β < 0

and α0,2j+1 = α0,2j.

Let y2j ≈ y(t2j) and y2j+1 ≈ y(t2j+1) denote the approximations of the exact solutions

y(t2j) and y(t2j+1), respectively. Assume that the starting values y0 and y1 are given. We

define the following numerical methods for solving (3.3.1), with j = 1, 2, . . . ,M,

y2j =
1

α0,2j − tα2jΓ(−α)β

[
tα2jΓ(−α)f(t2j)−

2j∑
k=1

αk,2jy2j−k + y0

2j∑
k=0

αk,2j

]
, (3.3.17)

and, with j = 1, 2, . . . ,M − 1,

y2j+1 =
1

α0,2j+1 − tα2j+1Γ(−α)β

[
tα2j+1Γ(−α)f(t2j+1)−

2j∑
k=1

αk,2j+1y2j+1−k

+ y0

2j∑
k=0

αk,2j+1 − tα2j+1

∫ t1

0

(t2j+1 − τ)−1−αy(τ) dτ
]
. (3.3.18)
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Remark 5. In practice, we need to approximate
∫ t1

0
(t2j+1 − τ)−1−αy(τ) dτ . One way

is to divide the integral [0, t1] into small intervals 0 ≤ t11 ≤ t21 ≤ · · · ≤ tN1 = t1 with

stepsize h̃ � h. We first obtain y1p ≈ y(tp1), p = 1, 2, . . . , N by using some numerical

method for solving fractional differential equation. Then we apply a quadrature formula

to approximate the integral.

3.3.1 Error analysis

We have the following asymptotic expansion theorem.

Theorem 3.3.3. Let 0 < α < 1 and M be a positive integer. Let 0 = t0 < t1 <

t2 < · · · < t2j < t2j+1 < · · · < t2M = 1 be a partition of [0, 1] and h the stepsize.

Let y(t2j), y(t2j+1), y2j and y2j+1 be the exact solutions and the approximate solutions of

(3.3.15) - (3.3.18), respectively. Assume that the function y ∈ Cm+2[0, 1], m ≥ 3. Further

assume that we obtain the exact starting values y0 = y(0) and y1 = y(t1). Then there exist

coefficients cµ = cµ(α) and c∗µ = c∗µ(α) such that the sequence {yl}, l = 0, 1, 2, . . . , 2M

possesses an asymptotic expansion of the form

y(t2M)− y2M =
m+1∑
µ=3

cµ(2M)α−µ +

µ∗∑
µ=2

c∗µ(2M)−2µ + o((2M)α−m−1), for M →∞,

that is,

y(t2M)− y2M =
m+1∑
µ=3

cµh
µ−α +

µ∗∑
µ=2

c∗µh
2µ + o(hm+1−α), for h→ 0,

where µ∗ is the integer satisfying 2µ∗ < m+ 1− α < 2(µ∗ + 1), and cµ and c∗µ are certain

coefficients that depend on y.

To prove Theorem 3.3.3, we need the following lemma for the asymptotic expansions

for the remainder terms R2j(g) and R2j+1(g) in (3.3.7) and (3.3.12).

Lemma 3.3.4. Let 0 < α < 1 and g ∈ Cm+2[0, 1], m ≥ 3. Let R2j(g) and R2j+1(g)

be the remainder terms in (3.3.7) and (3.3.12), respectively. Then we have, with l =

2, 3, . . . , 2j, 2j + 1, . . . , 2M,

Rl(g) =
m+1∑
µ=3

dµl
α−µ +

µ∗∑
µ=2

d∗µl
−2µ + o(lα−m−1), (3.3.19)
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where µ∗ is the integer satisfying 2µ∗ < m+ 1−α < 2(µ∗+ 1), and dµ and d∗µ are certain

coefficients that depend on g.

Proof. We follow the proof of Theorem 1.3 in [33] where the piecewise linear Lagrange

interpolation polynomials are used.

We first consider the case l = 2j for j = 1, 2, . . . ,M . Let 0 = w0 < w1 < w2 < · · · <

w2j = 1, wk = k
2j
, k = 0, 1, 2, . . . , 2j be a partition of [0, 1]. Let h1 = 1

2j
be the stepsize.

Let g2(w) denote the piecewise quadratic Lagrange interpolation polynomial defined by

(3.3.9) on [w2l, w2l+2], l = 0, 1, 2, . . . , j − 1. Then we have

R2j(g) =

∮ 1

0

w−1−αg(w) dw −
∮ 1

0

w−1−αg2(w) dw

=

j−1∑
l=0

∫ w2l+2

w2l

w−1−α
(
g(w)− g2(w)

)
dw =

j−1∑
l=0

∫ 1

0

(w2l + 2h1s)
−1−α

[
g(w2l + 2h1s)

−
(1

2
(2s− 1)(2s− 2)g(w2l)− (2s)(2s− 2)g(w2l+1) +

1

2
(2s)(2s− 1)g(w2l+2)

)]
(2h1) ds.

By using the Taylor formula, we have

g(w2l) = g(w2l + 2h1s) +
g′(w2l + 2h1s)

1!
(−2h1s) +

g′′(w2l + 2h1s)

2!
(−2h1s)

2

+
g′′′(w2l + 2h1s)

3!
(−2h1s)

3 + · · ·+ g(M)(w2l + 2h1s)

m!
(−2h1s)

m +R
(1)
m+1,

g(w2l+1) = g(w2l + 2h1s) +
g′(w2l + 2h1s)

1!
(h1 − 2h1s) +

g′′(w2l + 2h1s)

2!
(h1 − 2h1s)

2

+
g′′′(w2l + 2h1s)

3!
(h1 − 2h1s)

3 + · · ·+ g(m)(w2l + 2h1s)

m!
(h1 − 2h1s)

m +R
(2)
m+1,

g(w2l+2) = g(w2l + 2h1s) +
g′(w2l + 2h1s)

1!
(2h1 − 2h1s) +

g′′(w2l + 2h1s)

2!
(2h1 − 2h1s)

2

+
g′′′(w2l + 2h1s)

3!
(2h1 − 2h1s)

3 + · · ·+ g(m)(w2l + 2h1s)

m!
(2h1 − 2h1s)

m +R
(3)
m+1,

(3.3.20)

where R
(i)
m+1, i = 1, 2, 3 denote the remainder terms. Thus we obtain

R2j(g) =(2h1)

j−1∑
l=0

∫ 1

0

(w2l + 2h1s)
−1−α

[m−3∑
r=0

hr+3
1 g(r+3)(w2l + 2h1s)πr(s)

]
ds

+ (2h1)

j−1∑
l=0

∫ 1

0

(w2l + 2h1s)
−1−αεm+1(s) ds = I + II,

where εm+1(s) depends on the remainder terms R
(i)
m+1, i = 1, 2, 3 and πr(s) are some

functions of s.
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For I, we have

I =
m−3∑
r=0

hr+3
1

∫ 1

0

[
2h1

j−1∑
l=0

(w2l + 2h1s)
−1−αg(r+3)(w2l + 2h1s)

]
πr(s) ds.

Applying Theorem 3.2 in [56], we have, with w̄l = w2l, h̄1 = 2h1,

2h1

j−1∑
l=0

(w2l + 2h1s)
−1−αg(r+3)(w2l + 2h1s)

= h̄1

j−1∑
l=0

(w̄l + h̄1s)
−1−αg(r+3)(w̄l + h̄1s)

=
m−r−3∑
j=0

aj(s)h
j
1 +

m−r−2∑
j=0

a0,j(s)h
j−α
1 + o(hm−r−2

1 ),

with some suitable functions aj(s), j = 0, 1, . . . ,m− r − 3 and

a0,j(s), j = 0, 1, . . . ,m− r − 2, with r = 0, 1, 2, . . . ,m− 3, m ≥ 3.

Hence we have, noting that h1 = (2j)−1,

I =
m−3∑
r=0

h3+r
1

[ ∫ 1

0

m−r−3∑
j=0

aj(s)h
j
1πr(s) ds

]
+

m−3∑
r=0

h3+r
1

[ ∫ 1

0

m−r−2∑
j=0

a0,j(s)h
j−α
1 πr(s) ds)

]
+ o(hm+1

1 )

=
m−3∑
r=0

m−r−3∑
j=0

[ ∫ 1

0

aj(s)πr(s) ds
]
h3+r+j

1

+
m−3∑
r=0

m−r−2∑
j=0

[ ∫ 1

0

a0,j(s)πr(s) ds
]
h3+r+j−α

1 + o(hm+1
1 )

=
m+1∑
µ=3

dµ(2j)α−µ +

µ∗∑
µ=2

d∗µ(2j)−2µ + o((2j)−m−1), (3.3.21)

where µ∗ is the integer satisfying 2µ∗ < m+ 1−α < 2(µ∗+ 1), and dµ and d∗µ are certain

coefficients that depend on g. We remark that the expansion does not contain any odd

integer of powers of (2j) which follows from the argument in the proof of Theorem 1.3 in

[33].

For II, we have, following the argument of the proof for Theorem 1.3 in [33],

II = 2h1

j−1∑
l=0

∫ 1

0

(w2l + 2h1s)
−1−αεm+1(s) ds = o((2j)α−m−1).



41

Thus (3.3.19) holds for l = 2j.

Next we consider the case l = 2j + 1. Denote w2l = 2l
2j+1

, w2l+2 = 2l+2
2j+1

and h1 = 1
2j+1

,

we have

R2j+1(g) =

∮ 2j
2j+1

0

w−1−αg(w) dw −
∮ 2j

2j+1

0

w−1−αg2(w) dw

=

j−1∑
l=0

∫ w2l+2

w2l

w−1−α
(
g(w)− g2(w)

)
dw =

j−1∑
l=0

∫ 1

0

(w2l + 2h1s)
−1−α

[
g(w2l + 2h1s)

−
(1

2
(2s− 1)(2s− 2)g(w2l)− (2s)(2s− 2)g(w2l+1) +

1

2
(2s)(2s− 1)g(w2l+2)

)]
(2h1) ds.

Following the same argument as for the case l = 2j, we show that (3.3.19) also holds for

l = 2j + 1. Together these estimates complete the proof of Lemma 3.3.4.

Proof of Theorem 3.3.3. We follow the proof of Theorem 2.1 in [33] where the piecewise

linear Lagrange interpolation polynomials are used to approximate the Hadamard finite-

part integral.

Let us fix tl = c to be a constant for l = 1, 2, . . . , 2M . Let t2M = 1 be fixed. We will

investigate the difference

el = y(tl)− yl, for l→∞, with tl = lh =
l

2M
= c,

where h = 1/(2M) is the stepsize. In other words, there is a constant c, independent of

M , such that

l = c · (2M), or M = l/(2c),

and consequently, we see that if el possesses an asymptotic expansion with respect to l,

then e2M possesses at the same time one with respect to M , and vice versa.

We shall prove

el = y(tl)−yl =
m+1∑
µ=3

cµ(2M)α−µ+

µ∗∑
µ=2

c∗µ(2M)−2µ+o((2M)α−m−1), for l→∞, (3.3.22)

for some suitable constants cµ, c
∗
µ which we will determine later.
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Let us first consider the case l = 2j. Subtracting (3.3.17) from (3.3.15), we have,

noting t2j = (2j)h = 2j
2M

= c,

e2j =
1

α0,2j − ( 2j
2M

)αΓ(−α)β

[
−

2j∑
k=1

αk,2j(y(t2j−k)− y2j−k)−R2j(g)
]

=
1

cαΓ(−α)β − α0,2j

( 2j∑
k=1

αk,2je2j−k +R2j(g)
)
. (3.3.23)

Note that g(·) = y(t2j − t2j·) ∈ Cm+2[0, 1], m ≥ 3, we have, by Lemma 3.3.4,

R2j(g) =
m+1∑
µ=3

dµ(2j)α−µ +

µ∗∑
µ=2

d∗µ(2j)−2µ + o((2j)α−m−1), for j →∞, (3.3.24)

where µ∗ is the integer satisfying 2µ∗ < m+ 1−α < 2(µ∗+ 1), and dµ and d∗µ are certain

coefficients that depend on g.

Note that (2j)/(2M) = c, we can write (3.3.24) into

R2j(g) =
m+1∑
µ=3

d̃µ(2M)α−µ +

µ∗∑
µ=2

d̃∗µ(2M)−2µ + o((2M)α−m−1), for j →∞. (3.3.25)

Choose

cµ =
1

−cαΓ(−α)β − 1/α
d̃µ, µ = 3, 4, . . . ,m+ 1, (3.3.26)

c∗µ =
1

−cαΓ(−α)β − 1/α
d̃∗µ, µ = 1, 2, . . . , µ∗, (3.3.27)

we will prove below that (3.3.22) holds for the coefficents cµ, c
∗
µ defined in (3.3.26) and

(3.3.27).

We shall use mathematical induction to prove (3.3.22). By assumption e0 = 0, e1 = 0,

hence (3.3.22) holds for l = 0, 1 with the coefficients given by (3.3.26) and (3.3.27). Let

us now consider the case for l = 2. We have, noting that α0,l = 2−α(α+2)(2Mc)α

(−α)(−α+1)(−α+2)
and

applying Lemma 3.3.4,

e2 = y(t2)− y2 =
1

cαΓ(−α)β − α0,2

( 2∑
k=1

αk,2e2−k +R2(g)
)

=
1

cαΓ(−α)β − α0,2

[(m+1∑
µ=3

cµ(2M)α−µ +

µ∗∑
µ=2

c∗µ(2M)−2µ + o((2M)α−m−1)
)

·
( 2∑
k=0

αk,2 − α0,2

)
+R2(g)

]
. (3.3.28)
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Thus we get, noting that
∑2

k=0 αk,2 = −1/α and α0,2 = 2−α(α+2)(2Mc)α

(−α)(−α+1)(−α+2)
,[ 2−α(α + 2)(2Mc)α

(−α)(−α + 1)(−α + 2)
− cαΓ(−α)β

]
e2

=
1

α

[m+1∑
µ=3

cµ(2M)α−µ +

µ∗∑
µ=2

c∗µ(2M)−2µ + o((2M)α−m−1)
]

−
m+1∑
µ=3

d̃µ(2M)α−µ −
µ∗∑
µ=2

d̃∗µ(2M)−2µ + o((2M)α−m−1)

+
2−α(α + 2)(2Mc)α

(−α)(−α + 1)(−α + 2)

[m+1∑
µ=3

cµ(2M)α−µ +

µ∗∑
µ=2

c∗µ(2M)−2µ + o((2M)α−m−1)
]
.

(3.3.29)

This shows that the sequence e2 possesses an asymptotic expansion with respect to the

powers of 2M , and it is easy to check that, by comparing with the coefficients of powers

of (2M), see [33],

e2 =
m+1∑
µ=3

cµ(2M)α−µ +

µ∗∑
µ=2

c∗µ(2M)−2µ + o((2M)α−m−1).

Assume that (3.3.22) holds for l = 0, 1, . . . , 2j − 1. Then we have, following the same

argument for (3.3.29), noting
∑2j

k=0 αk,2j = −1/α and applying Lemma 3.3.4,

[ 2−α(α + 2)(2Mc)α

(−α)(−α + 1)(−α + 2)
− cαΓ(−α)β

]
e2j

=
1

α

[m+1∑
µ=3

cµ(2M)α−µ +

µ∗∑
µ=2

c∗µ(2M)−2µ + o((2M)α−m−1)
]

−
m+1∑
µ=3

d̃µ(2M)α−µ −
µ∗∑
µ=2

d̃∗µ(2M)−2µ + o((2M)α−m−1)

+
2−α(α + 2)(2Mc)α

(−α)(−α + 1)(−α + 2)

[m+1∑
µ=3

cµ(2M)α−µ +

µ∗∑
µ=2

c∗µ(2M)−2µ + o((2M)α−m−1)
]
.

(3.3.30)

This shows that the sequence e2j possesses an asymptotic expansion with respect to

the powers of 2M , and it is easy to check that, by comparing with the coefficients of

powers of (2M), see [33],

e2j =
m+1∑
µ=3

cµ(2M)α−µ +

µ∗∑
µ=2

c∗µ(2M)−2µ + o((2M)α−m−1).
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Hence (3.3.22) holds for l = 2j.

Finally we assume that (3.3.22) holds for l = 0, 1, . . . , 2j. Then we have, following the

same argument for (3.3.30), noting
∑2j

k=0 αk,2j+1 =
∑2j

k=0 αk,2j = −1/α, α0,2j+1 = α0,2j

and applying Lemma 3.3.4,

[ 2−α(α + 2)(2Mc)α

(−α)(−α + 1)(−α + 2)
− cαΓ(−α)β

]
e2j+1

=
1

α

[m+1∑
µ=3

cµ(2M)α−µ +

µ∗∑
µ=2

c∗µ(2M)−2µ + o((2M)α−m−1)
]

−
m+1∑
µ=3

d̃µ(2M)α−µ −
µ∗∑
µ=2

d̃∗µ(2M)−2µ + o((2M)α−m−1)

+
2−α(α + 2)(2Mc)α

(−α)(−α + 1)(−α + 2)

[m+1∑
µ=3

cµ(2M)α−µ +

µ∗∑
µ=2

c∗µ(2M)−2µ + o((2M)α−m−1)
]
.

(3.3.31)

This again shows that the sequence e2j+1 possesses an asymptotic expansion with respect

to the powers of 2M , and it is easy to check that, by comparing with the coefficients of

powers of 2M , see [33],

e2j+1 =
m+1∑
µ=3

cµ(2M)α−µ +

µ∗∑
µ=2

c∗µ(2M)−2µ + o((2M)α−m−1).

Hence (3.3.22) holds also for l = 2j + 1. Together these estimates complete the proof of

(3.3.22). Applying l = 2M in (3.3.22), we complete the proof of Theorem 3.3.3.

Remark 6. In Theorem 3.3.3, we assume that y1 = y(t1) exactly. In practice y1 can be

approximated by using the ideas described in Remark 5.

3.4 Numerical examples

Example 7. Consider [26]

C
0 D

α
t y(t) = βy(t) + f(t), t ∈ [0, 1], (3.4.1)

y(0) = y0, (3.4.2)
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where y0 = 0, 0 < α < 1, β = −1 and f(t) = (t2 +2t2−α/Γ(3−α))+(t3 +3!t3−α/Γ(4−α)).

The exact solution is y(t) = t2 + t3.

The main purpose is to check the order of convergence of the numerical method with

respect to the fractional order α. For various choices of α ∈ (0, 1), we computed the errors

at t = 1. We choose the stepsize h = 1/(5× 2l), l = 1, 2, . . . , 7, i.e, we divided the interval

[0, 1] into n = 1/h small intervals with nodes 0 = t0 < t1 < · · · < tn = 1. Then we

compute the error e(tn) = y(tn)− yn. By Theorem 3.3.3, we have

|e(tn)| = |y(tn)− yn| ≤ Ch3−α, (3.4.3)

To observe the order of convergence we shall compute the error |e(tn)| at tn = 1 for

the different values of h. Denote |eh(tn)| the error at tn = 1 for the stepsize h. Let

hl = h = 1/(5× 2l) for a fixed l = 1, 2, . . . , 7. We then have

|ehl(tn)|
|ehl+1

(tn)|
≈ Ch3−α

l

Ch3−α
l+1

= 23−α,

which implies that the order of convergence satisfies 3 − α ≈ log2

(
|ehl (tn)|
|ehl+1

(tn)|

)
. In Tables

3.4.1- 3.4.2, we compute the experimentally determined orders of convergence (EOC) for

the different values of α. The numerical results are consistent with the theoretical results.

n EOC( α = .1 ) EOC( α = .2) EOC( α = .3) EOC ( α = .4) EOC ( α = .5)

10

20 2.8885 2.7870 2.6836 2.5790 2.4732

40 2.8941 2.7935 2.6919 2.5897 2.4871

80 2.8972 2.7963 2.6961 2.5950 2.4937

160 2.8987 2.7985 2.6981 2.5976 2.4969

320 2.8994 2.7993 2.6991 2.5988 2.4985

640 2.9003 2.7998 2.6995 2.5994 2.4992

Table 3.4.1: Numerical results at t = 1 for β = −1

and f(t) = (t2 + 2t(2− α)/Γ(3− α)) + (t3 + 3!t3−α/Γ(4− α))

In Figures 3.4.1 - 3.4.6, we plot the experimentally determined orders of convergence.

We have from (3.4.3)

log2(|e(tn)|) ≤ log2(C) + (3− α)log2(h).
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n EOC( α = .6 ) EOC( α = .7) EOC( α = .8) EOC ( α = .9)

10

20 2.3662 2.2579 2.1476 2.0351

40 2.3840 2.2804 2.1760 2.0709

80 2.3923 2.2905 2.1885 2.0861

160 2.3962 2.2954 2.1944 2.0932

320 2.3981 2.2977 2.1972 2.0967

640 2.3991 2.2989 2.1986 2.0983

Table 3.4.2: Numerical results at t = 1 for β = −1

and f(t) = (t2 + 2t(2− α)/Γ(3− α)) + (t3 + 3!t3−α/Γ(4− α))
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lo
g 2(|

e(
t)

|)

Figure 3.4.1: The experimentally determined orders of convergence (“EOC ”) at t = 1 in

Example 7 with α = 0.1

Let y = log2(|e(tn)|) and x = log2(h). In Figure 3.1, we plot the function y = y(x) for the

different values of x = log2(h) where h = 1/(5×2l), l = 1, 2, . . . , 7. To observe the order of

convergence, we also plot the straight line y = (3−α)x, where α = 0.1, 0.2, 0.4, 0.5, 0.7, 0.8.

We see that these two lines are exactly parallel which means that the order of convergence

of the numerical method is O(h3−α).



47

−10 −9 −8 −7 −6 −5 −4 −3
−30

−25

−20

−15

−10

−5

log
2
(h)

lo
g 2(|

e(
t)

|)

Figure 3.4.2: The experimentally determined orders of convergence (“EOC ”) at t = 1 in

Example 7 with α = 0.2
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Figure 3.4.3: The experimentally determined orders of convergence (“EOC ”) at t = 1 in

Example 7 with α = 0.4
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Figure 3.4.4: The experimentally determined orders of convergence (“EOC ”) at t = 1 in

Example 7 with α = 0.5
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Figure 3.4.5: The experimentally determined orders of convergence (“EOC ”) at t = 1 in

Example 7 with α = 0.7
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Figure 3.4.6: The experimentally determined orders of convergence (“EOC ”) at t = 1 in

Example 7 with α = 0.8



Chapter 4

Higher order numerical method for

fractional ODEs (predictor-corrector

method)

4.1 Introduction

A predictor-corrector approximation method [29] for fractional differential equations has

been developed by the three well-known mathematicians Kai Diethelm, Neville J. Ford

and Alan D. Freed. The popularity of this method is due to its suitability for use both

for linear and for nonlinear problems and the easy implementation of a computational

algorithm.

We consider numerical methods for solving the fractional differential equations

C
0 D

α
t y(t) = f(t, y(t)), 0 < t < T, (4.1.1)

y(k)(0) = yk0 , k = 0, 1, 2, . . . , dαe − 1, (4.1.2)

where the yk0 may be arbitrary real numbers and α > 0. Here C
0 D

α
t denotes the differential

operator in the sense of Caputo denoted by, with n− 1 < α < n

C
0 D

α
t y(t) =

1

Γ(n− α)

∫ t

0

(t− u)n−α−1y(n)(u) du,

where n = dαe is the smallest integer ≥ α.

50
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The approach for solving the fractional differential equation (4.1.1)-(4.1.2) is based on

the discretization of the integral in the equivalent form of (4.1.1)-(4.1.2), see [28]. It is

well-known that (4.1.1)-(4.1.2) is equivalent to the Volterra integral equation

y(t) =

dαe−1∑
ν=0

y
(ν)
0

tν

ν!
+

1

Γ(α)

∫ t

0

(t− u)α−1f(u, y(u)) du. (4.1.3)

In [29], the authors approximated the integral in (4.1.3) by using a piecewise linear

interpolation polynomial and introduced a fractional Adams method for solving (4.1.1)-

(4.1.2) and proved that the order of convergence of the numerical method is O(h2) for

1 < α < 2 and O(h1+α) for 0 < α < 1 if C0 D
α
t y(t) ∈ C2[0, T ]

We will use piecewise quadratic interpolation polynomials to approximate the integral

in (4.1.3) and introduce a high order fractional Adams method for solving (4.1.3) and prove

that the order of convergence of the numerical method is min{3, 1 + 2α} for α ∈ (0, 2] if

C
0 D

α
t y(t) ∈ C3[0, T ]. This method has higher convergence order than the method in [29].

It is easier to implement our numerical algorithm compared with the method in [95] where

the Jacobi-Gauss-Lobatto nodes must be calculated at each time level. Our method is

simpler than the method in [9] in the sense that we are using a predictor-corrector method

and therefore we do not need to solve the nonlinear system at each time level.

4.2 Fractional Adams-type algorithm (quadratic inter-

polation polynomial)

In this section we will consider a higher order numerical method for solving (4.1.1)-(4.1.2).

For simplicity we only consider the case where 0 < α ≤ 2 since the case α > 2 does not

seem to be of major practical interest [28].

To make sure that (4.1.1)-(4.1.2) has a unique solution, we assume that f(u, ·) satisfies

a Lipschitz condition, i.e., there exists a constant L such that

|f(u, x)− f(u, y)| ≤ L|x− y|, ∀x, y ∈ R. (4.2.1)

Letm be a positive integer and let 0 = t0 < t1 < t2 < · · · < t2j < t2j+1 < · · · < t2m = T

be a partition of [0, T ] and h the stepsize. Note that the system (4.1.1)-(4.1.2) is equivalent
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to (4.1.3). Let us now consider the discretization of (4.1.3). At node t = t2j, j =

1, 2, . . . ,m, we have

y(t2j) = y0 + y
(1)
0

t2j
1!

+
1

Γ(α)

∫ t2j

0

(t2j − u)α−1f(u, y(u)) du. (4.2.2)

(The second of the initial conditions only for 1 < α < 2 of course). At node t = t2j+1, j =

1, 2, . . . ,m− 1, we have

y(t2j+1) = y0 + y
(1)
0

t2j+1

1!
+

1

Γ(α)

∫ t2j+1

0

(t2j+1 − u)α−1f(u, y(u)) du

= y0 + y
(1)
0

t2j+1

1!
+

1

Γ(α)

∫ t1

0

(t2j+1 − u)α−1f(u, y(u)) du

+
1

Γ(α)

∫ t2j+1

t1

(t2j+1 − u)α−1f(u, y(u)) du

= y0 + y
(1)
0

t2j+1

1!
+

1

Γ(α)

∫ t1

0

(t2j+1 − u)α−1f(u, y(u)) du

+
1

Γ(α)

∫ t2j

0

(t2j − u)α−1f(u+ h, y(u+ h)) du (4.2.3)

We will replace f(u, y(u)) in the integral
∫ t2j

0
(t2j−u)α−1f(u, y(u)) du in (4.2.2) by the

following piecewise quadratic polynomial, for t2l ≤ u ≤ t2l+2, l = 0, 1, 2, . . . , j − 1 with

j = 1, 2, . . . ,m,

f(u, y(u)) ≈ P2(u) =
(u− t2l+1)(u− t2l+2)

(t2l − t2l+1)(t2l − t2l+2)
f(t2l, y(t2l))

+
(u− t2l)(u− t2l+2)

(t2l+1 − t2l)(t2l+1 − t2l+2)
f(t2l+1, y(t2l+1))

+
(u− t2l)(u− t2l+1)

(t2l+2 − t2l)(t2l+2 − t2l+1)
f(t2l+2, y(t2l+2)). (4.2.4)

Similarly, we will replace f(u+h, y(u+h)) in the integral
∫ t2j

0
(t2j−u)α−1f(u+h, y(u+h)) du

in (4.2.3) by the following piecewise quadratic polynomial, for t2l ≤ u ≤ t2l+2, l =

0, 1, 2, . . . , j − 1, j = 1, 2, . . . ,m− 1,

f(u+ h, y(u+ h)) ≈ Q2(u) =
(u− t2l+1)(u− t2l+2)

(t2l − t2l+1)(t2l − t2l+2)
f(t2l+1, y(t2l+1))

+
(u− t2l)(u− t2l+2)

(t2l+1 − t2l)(t2l+1 − t2l+2)
f(t2l+2, y(t2l+2))

+
(u− t2l)(u− t2l+1)

(t2l+2 − t2l)(t2l+2 − t2l+1)
f(t2l+3, y(t2l+3)). (4.2.5)

We then have the following lemma:
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Lemma 4.2.1. Let 0 < α ≤ 2. We have∫ t2j

0

(t2j − u)α−1P2(u) du =

2j∑
k=0

ck,2jf(tk, y(tk)), (4.2.6)

and ∫ t2j

0

(t2j − u)α−1Q2(u) du =

2j∑
k=0

ck,2jf(tk+1, y(tk+1)), (4.2.7)

where

ck,2j =
hα

α(α + 1)(α + 2)



1
2
F0(0), if k = 0,

1
2
F0(l) + 1

2
F2(l − 1), if k = 2l, l = 1, 2, . . . , j − 1,

−F1(l), if k = 2l + 1, l = 0, 1, 2, . . . , j − 1,

1
2
F2(j − 1), if k = 2j,

and

F0(l) = α(α + 1)
(

(2j − 2l)α+2 − (2j − 2l − 2)α+2
)

+ α(α + 2)
(

2(2j)− (2l + 1)− (2l + 2)
)(

(2j − 2l − 2)α+1 − (2j − 2l)α+1
)

+ (α + 1)(α + 2)
(

(2j − 2l − 1)(2j − 2l − 2)
)(

(2j − 2l)α − (2j − 2l − 2)α
)
,

F1(l) = α(α + 1)
(

(2j − 2l)α+2 − (2j − 2l − 2)α+2
)

+ α(α + 2)
(

2(2j)− (2l)− (2l + 2)
)(

(2j − 2l − 2)α+1 − (2j − 2l)α+1
)

+ (α + 1)(α + 2)
(

(2j − 2l)(2j − 2l − 2)
)(

(2j − 2l)α − (2j − 2l − 2)α
)
,

F2(l) = α(α + 1)
(

(2j − 2l)α+2 − (2j − 2l − 2)α+2
)

+ α(α + 2)
(

2(2j)− (2l)− (2l + 1)
)(

(2j − 2l − 2)α+1 − (2j − 2l)α+1
)

+ (α + 1)(α + 2)
(

(2j − 2l)(2j − 2l − 1)
)(

(2j − 2l)α − (2j − 2l − 2)α
)
,
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Proof. We have∫ t2j

0

(t2j − u)α−1P2(u)du =

j−1∑
l=0

∫ t2l+2

t2l

(t2j − u)α−1
( (u− t2l+1)(u− t2l+2)

(t2l − t2l+1)(t2l − t2l+2)
g(t2l)

+
(u− t2l)(u− t2l+2)

(t2l+1 − t2l)(t2l+1 − t2l+2)
g(t2l+1) +

(u− t2l)(u− t2l+1)

(t2l+2 − t2l)(t2l+2 − t2l+1)
g(t2l+2)

)
du

=

j−1∑
l=0

(∫ t2l+2

t2l

(t2j − u)α−1 (u− t2l+1)(u− t2l+2)

(−h)(−2h)
g(t2l)du

+

∫ t2l+2

t2l

(t2j − u)α−1 (u− t2l)(u− t2l+2)

(h)(−h)
g(t2l+1)du

+

∫ t2l+2

t2l

(t2j − u)α−1 (u− t2l)(u− t2l+1)

(2h)(h)
g(t2l+2)du

)
.

Note that,∫ t2l+2

t2l

(t2j − u)α−1(u− t2l+1)(u− t2l+2)du

=

∫ t2l+2

t2l

(t2j − u)α−1[(u− t2j) + (t2j − t2l+1)][(u− t2j) + (t2j − t2l+2)]du

=

∫ t2l+2

t2l

(t2j − u)α+1du−
∫ t2l+2

t2l

(t2j − u)α(t2j − t2l+1 − t2l+2)du

+

∫ t2l+2

t2l

(t2j − u)α−1(t2j − t2l+1)(t2j − t2l+2)du

= hα+2
((2j − 2l)α+2 − (2j − 2l − 2)α+2

α + 2

+
[2.2j − (2l + 1)− (2l + 2)][(2j − 2l)α+1 − (2j − 2l − 2)α+1]

α + 1

+
[2j − (2l + 1)][2j − (2l + 2)][(2j − 2l)α − (2j − 2l − 2)α]

α

)
=

hα+2

α(α + 1)(α + 2)

(
α(α + 1)[(2j − 2l)α+2 − (2j − 2l − 2)α+2]

+ α(α + 2)[2.2j − (2l + 1)− (2l + 2)][(2j − 2l)α+1 − (2j − 2l − 2)α+1]

+ (α + 1)(α + 2)(2j − 2l − 1)(2j − 2l − 2)[(2j − 2l)α − (2j − 2l − 2)α
)

=
hα+2

α(α + 1)(α + 2)
F0(l), l = 0, 1, 2, 3 . . . , j − 1.
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Similarly, we have,∫ t2l+2

t2l

(t2j − u)α−1(u− t2l)(u− t2l+2)du

=

∫ t2l+2

t2l

(t2j − u)α−1[(u− t2j) + (t2j − t2l)][(u− t2j) + (t2j − t2l+2)]du

=

∫ t2l+2

t2l

(t2j − u)α+1du−
∫ t2l+2

t2l

(t2j − u)α(2t2j − t2l − t2l+2)du

+

∫ t2l+2

t2l

(t2j − u)α−1(t2j − t2l)(t2j − t2l+2)du

=
hα+2

α(α + 1)(α + 2)

(
α(α + 1)[(2j − 2l)α+2 − (2j − 2l − 2)α+2]

+ α(α + 2)[2.2j − 2l − (2l + 2)][(2j − 2l − 2)α+1 − (2j − 2l)α+1]

+ (α + 1)(α + 2)(2j − 2l)(2j − 2l − 2)[(2j − 2l)α − (2j − 2l − 2)α
)

=
hα+2

α(α + 1)(α + 2)
F1(l), l = 0, 1, 2, 3 . . . , (j − 1).

and, ∫ t2l+2

t2l

(t2j − u)α−1(u− t2l)(u− t2l+1)du

=

∫ t2l+2

t2l

(t2j − u)α−1[(u− t2j) + (t2j − t2l)][(u− t2j) + (t2j − t2l+1)]du

=

∫ t2l+2

t2l

(t2j − u)α+1du−
∫ t2l+2

t2l

(t2j − u)α(2t2j − t2l − t2l+1)du

+

∫ t2l+2

t2l

(t2j − u)α−1(t2j − t2l)(t2j − t2l+1)du

= hα+2
((2j − 2l)α+2 − (2j − 2l − 1)α+2

α + 2

+
[2.2j − 2l − (2l + 1)][(2j − 2l − 1)α+1 − (2j − 2)α+1]

α + 1

+
(2j − 2l)(2j − 2l − 1)[(2j − 2l)α − (2j − 2l − 1)α]

α

)
=

hα+2

α(α + 1)(α + 2)

(
α(α + 1)[(2j − 2l)α+2 − (2j − 2l − 1)α+2]

+ α(α + 2)[2.2j − 2l − (2l + 1)][(2j − 2l − 1)α+1 − (2j − 2l)α+1]

+ (α + 1)(α + 2)(2j − 2l)(2j − 2l − 1)[(2j − 2l)α − (2j − 2l − 1)α
)

=
hα+2

α(α + 1)(α + 2)
F2(l), l = 0, 1, 2, 3 . . . , j − 1.

Thus we get,
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∫ t2j

0

(t2j − u)α−1P2(u)du

=

j−1∑
l=0

( hα

α(α + 1)(α + 2)

F0(l)

2
g(t2l)

− hα

α(α + 1)(α + 2)

F1(l)

2
g(t2l+1) +

hα

α(α + 1)(α + 2)

F2(l)

2
g(t2l+2)

)
=

hα

α(α + 1)(α + 2)

2j∑
k=0

ck,2jf(tk, y(tk)),

where, ck,2j is given in (4.2.7)

We now define a fractional Adams numerical method for solving (4.1.3). Let yl ≈ y(tl)

denote the approximation of y(tl), l = 0, 1, 2, . . . , 2m. The corrector formula is defined

by

y2j = y0 +y
(1)
0

t2j
1!

+
1

Γ(α)

( 2j−1∑
k=0

ck,2jf(tk, yk)+c2j,2jf(t2j, y
P
2j)
)
, j = 1, 2, . . . ,m, (4.2.8)

and

y2j+1 = y0 + y
(1)
0

t2j+1

1!
+

1

Γ(α)

∫ t1

0

(t2j+1 − u)α−1f(u, y(u)) du

+
1

Γ(α)

( 2j−1∑
k=0

ck,2jf(tk+1, yk+1) + c2j,2jf(t2j+1, y
P
2j+1)

)
, j = 1, 2, . . . ,m− 1.

(4.2.9)

The remaining problem is the determination of the predictor formula required to calcu-

late yP2j and yP2j+1. The idea is the same as the one described above: we replace f(u, y(u))

and f(u + h, y(u + h)) of the integrals on the right-hand sides of equations (4.2.2) and

(4.2.3), respectively, by the piecewise linear interpolation polynomials and obtain

yP2j = y0+y
(1)
0

t2j
1!

+
1

Γ(α)

( 2j−1∑
k=0

ak,2jf(tk, yk)+a2j,2jf(t2j, y
PP
2j )
)
, j = 1, 2, . . . ,m, (4.2.10)

and, with j = 1, 2, . . . ,m− 1,

yP2j+1 = y0 + y
(1)
0

t2j+1

1!
+

1

Γ(α)

( 2j∑
k=0

ak,2j+1f(tk, yk) +a2j+1,2j+1f(t2j+1, y
PP
2j+1)

)
, (4.2.11)
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where the weights are [28]

ak,n+1 =
hα

α(α + 1)


nα+1 − (n− α)(n+ 1)α, if k = 0,

(n− k + 2)α+1 + (n− k)α+1 − 2(n− k + 1)α+1, if 1 ≤ k ≤ n,

1, if k = n+ 1.

Similarly, to calculate yPP2j and yPP2j+1, we replace f(u, y(u)) and f(u + h, y(u + h)) in

the integrals on the right-hand sides of equations (4.2.2) and (4.2.3), respectively, by the

piecewise constants and obtain

yPP2j = y0 + y
(1)
0

t2j
1!

+
1

Γ(α)

2j−1∑
k=0

bk,2jf(tk, yk), j = 1, 2, . . . ,m, (4.2.12)

and

yPP2j+1 = y0 + y
(1)
0

t2j+1

1!
+

1

Γ(α)

2j∑
k=0

bk,2j+1f(tk, yk), j = 1, 2, . . . ,m− 1. (4.2.13)

where the weights are [28]

bk,n+1 =
hα

α

(
(n+ 1− k)α − (n− k)α

)
. (4.2.14)

Our basic fractional Adams method, is completely described now by equations (4.2.8)

- (4.2.13).

Remark 8. In practice, we need to approximate the integral in (4.2.9). We shall use the

same ideas as in Remark 5.

We have thus completed the description of our numerical algorithm. Now we will

discuss the error analysis of the scheme.

4.3 Error analysis

We have the following theorem.

Theorem 4.3.1. Let 0 < α ≤ 2 and assume that C
0 D

α
t y ∈ C3[0, T ] for some suitable

chosen T . Let y(tk) and yk, k = 0, 1, 2, . . . , 2m, t2m = T be the solutions of (4.2.2),
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(4.2.3), (4.2.8), (4.2.9), respectively. Assume that y0 = y(0) and y1 = y(t1) exactly. Then

there exists a positive constant C0 > 0 such that

max
0≤k≤2m

|y(tk)− yk| ≤

 C0h
1+2α, if 0 < α ≤ 1,

C0h
3, if 1 < α ≤ 2.

To prove this theorem, we need some lemmas.

Lemma 4.3.2 ( Theorem 2.4 [28]). Let 0 < α ≤ 2. If z ∈ C1[0, T ], then there is a

constant Cα
1 depending only on α such that

∣∣∣ ∫ t2j

0

(t2j − u)α−1z(u) du−
2j−1∑
k=0

bk,2jz(tk)
∣∣∣ ≤ Cα

1 t
α
2jh.

where bk,2j are the weights defined by,

bk,2j =
hα

α

(
(2j − k)α − (2j − 1− k)α

)
.

Lemma 4.3.3 ( Theorem 2.5 [28]). Let 0 < α ≤ 2. If z ∈ C2[0, T ], then there is a

constant Cα
2 depending only on α such that

∣∣∣ ∫ t2j

0

(t2j − u)α−1z(u) du−
2j∑
k=0

ak,2jz(tk)
∣∣∣ ≤ Cα

2 t
α
2jh

2.

where ak,2j are the weights defined by,

ak,2j =
hα

α(α + 1)


(2j − 1)α+1 − (2j − 1− α)(2j)α, if k = 0,

(2j − k + 1)α+1 + (2j − 1− k)α+1 − 2(2j − k)α+1, if 1 ≤ k ≤ 2j − 1,

1, if k = 2j.

Lemma 4.3.4. Let 0 < α ≤ 2. If z ∈ C3[0, T ], then there is a constant Cα
3 depending

only on α such that

∣∣∣ ∫ t2j

0

(t2j − u)α−1z(u) du−
2j∑
k=0

ck,2jz(tk)
∣∣∣ ≤ Cα

3 t
α
2jh

3. (4.3.1)

and ∣∣∣ ∫ t2j+1

t1

(t2j+1 − u)α−1z(u) du−
2j∑
k=0

ck,2jz(tk+1)
∣∣∣ ≤ Cα

3 t
α
2j+1h

3, (4.3.2)
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where ck,2j are the weights defined in 4.2.7

Proof. We have

I =

∫ t2j

0

(t2j − u)α−1z(u) du−
2j∑
k=0

ck,2jz(tk)

=

∫ t2j

0

(t2j − u)α−1z(u) du−
∫ t2j

0

(t2j − u)α−1P2(u) du, (4.3.3)

where P2(u) is the piecewise quadratic interpolation polynomial of z(u), defined by (4.2.4).

Thus we have

|I| =
∣∣∣ j−1∑
k=0

∫ t2k+2

t2k

(t2j − u)α−1
(
z(u)− P2(u)

)
du
∣∣∣

=
∣∣∣ j−1∑
k=0

∫ t2k+2

t2k

(t2j − u)α−1 z
′′′(ξ)

3!
(u− t2k)(u− t2k+1)(u− t2k+2) du

∣∣∣
≤ ‖f

′′′‖∞
3!

(2h)3

∫ t2j

0

(t2j − u)α−1 du = Cα
3 t
α
2jh

3,

which shows (4.3.1). Similarly, we can show (4.3.2).

Lemma 4.3.5. [28] Let 0 < α ≤ 2 and m be a positive integer. Let ak,2j and bk,2j, k =

0, 1, 2, . . . , 2j, j = 1, 2, . . . ,m be introduced in (4.2.10) and (4.2.12), respectively. Then

we have

ak,2j ≥ 0, bk,2j ≥ 0, k = 0, 1, 2, . . . , 2j,

and

2j∑
k=0

ak,2j ≤
1

α
Tα,

2j∑
k=0

bk,2j ≤
1

α
Tα. j = 1, 2, . . . ,m.

Further, there exist constants Dα
1 and Dα

2 such that

a2j,2j = Dα
2 h

α, b2j,2j = Dα
1 h

α, j = 1, 2, . . . ,m.

Lemma 4.3.6. Let 0 < α ≤ 2. Let ck,2j, k = 0, 1, 2, . . . , 2j, j = 1, 2, . . . ,m be introduced

in (4.2.8). Then we have

ck,2j ≥ 0, k = 0, 1, 2, . . . , 2j, (4.3.4)
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and

2j∑
k=0

ck,2j ≤
1

α
Tα. (4.3.5)

Further there exists a constant Dα
3 such that

c2j,2j = Dα
3 h

α, j = 1, 2, . . . ,m. (4.3.6)

Proof. We first show that

F1(l) ≤ 0, l = 0, 1, 2, . . . , j − 1. (4.3.7)

It is easy to show that

F1(l) = 2
(

(2j − 2l)α+2 − (α + 2)(2j − 2l)α+1 − (2j − 2l − 2)α+2

− (α + 2)(2j − 2l − 2)α+1
)
, l = 0, 1, 2, . . . , j − 1.

Further, after some direct calculations, we can show that

(γ + 1)(n+ 2)γ + (γ + 1)nγ + nγ+1 − (n+ 2)γ+1 ≥ 0, ∀ n ∈ Z+, γ > 0.

By putting n = 2j − 2l − 2 and γ = α + 1, we get (4.3.7).

Next we show

F0(l) + F2(l − 1) ≥ 0, l = 1, 2, . . . , j − 1. (4.3.8)

It is easy to show that

F0(l) + F2(l − 1) = 2(2j − 2l + 2)α+2 − (α + 2)(2j − 2l + 2)α+1 − 6(α + 2)(2j − 2l)α+1

− 2(2j − 2l − 2)α+2 − (α + 2)(2j − 2l − 2)α+1.

Further, after some direct calculations, we can show that

2(n+4)α+2−(α+2)(n+4)α+1−6(α+2)(n+2)α+1−2nα+2−(α+2)nα+1 ≥ 0, ∀ n ∈ Z+.

(4.3.9)

Hence (4.3.8) follows from (4.3.9). Finally we can also show F0(0) ≥ 0 and F2(j− 1) ≥ 0.

Hence we prove (4.3.4).
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Further (4.3.5) follows from

2j∑
k=0

ck,2j =

∫ t2j

0

(t2j − u)α−1 du =
1

α
tα2j ≤

1

α
Tα.

For (4.3.6), we have, by Lemma 4.2.1, c2j,2j = 1
2
F2(j − 1) = Dα

3 h
α, with the suitable

constant Dα
3 . Together these estimates complete the proof of Lemma 4.3.6.

Proof of Theorem 4.3.1. We first consider the case where 1 < α ≤ 2. We will use mathe-

matical induction. Note that, by assumptions, |y(t0)− y0| = 0, |y(t1)− y1| = 0. Assume

that

|y(tk)− yk| ≤ C0h
3, (4.3.10)

is true for k = 0, 1, 2, . . . , 2j − 1, j = 1, 2, . . . ,m. We must prove that this also holds for

k = 2j. In fact, we have, with j = 1, 2, . . . ,m,

Γ(α)
(
y(t2j)− y2j

)
=

∫ t2j

0

(t2j − u)α−1f(u, y(u)) du−
( 2j−1∑
k=0

ck,2jf(tk, yk)− c2j,2jf(t2j, t
P
2j)
)

=

∫ t2j

0

(t2j − u)α−1f(u, y(u)) du−
∫ t2j

0

(t2j − u)α−1P2(u) du

+

∫ t2j

0

(t2j − u)α−1P2(u) du−
( 2j−1∑
k=0

ck,2jf(tk, yk)− c2j,2jf(t2j, t
P
2j)
)

=
(∫ t2j

0

(t2j − u)α−1f(u, y(u)) du−
∫ t2j

0

(t2j − u)α−1P2(u) du
)

+

2j−1∑
k=0

ck,2j

(
f(tk, y(tk))− f(tk, yk)

)
+ c2j,2j

(
f(t2j, y(t2j))− f(t2j, t

P
2j)
)

= I1 + II1 + III1.

For I1, we have, by Lemma 4.3.4,

|I1| =
∣∣∣ ∫ t2j

0

(t2j − u)α−1f(u, y(u)) du−
∫ t2j

0

(t2j − u)α−1P2(u) du
∣∣∣ ≤ Cα

3 T
αh3.

For II1, we have, by Lemma 4.3.6 and the Lipschitz condition (4.2.1),

|II1| ≤
2j−1∑
k=0

ck,2j|f(tk, y(tk))− f(tk, yk)| ≤
2j−1∑
k=0

ck,2jL|y(tk)− yk|

≤ 1

α
TαL max

0≤k≤2j−1
|y(tk)− yk|.
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For III1, we have, by Lemma 4.3.6 and the Lipschitz condition,

|III1| ≤ c2j,2j|f(t2j, y(t2j))− f(t2j, y
P
2j)| ≤ Dα

3 h
αL|y(t2j)− yP2j|.

Now let us consider the bound for |y(t2j)− yP2j|. We have

Γ(α)
(
y(t2j)− yP2j

)
=

∫ t2j

0

(t2j − u)α−1f(u, y(u)) du−
( 2j−1∑
k=0

ak,2jf(tk, yk)− a2j,2jf(t2j, t
PP
2j )
)

=
(∫ t2j

0

(t2j − u)α−1f(u, y(u)) du−
∫ t2j

0

(t2j − u)α−1P1(u) du
)

+

2j−1∑
k=0

ak,2j

(
f(tk, y(tk))− f(tk, yk)

)
+ a2j,2j

(
f(t2j, y(t2j))− f(t2j, t

PP
2j )
)

= I2 + II2 + III2.

For I2, we have, by Lemma 4.3.3,

|I2| =
∣∣∣ ∫ t2j

0

(t2j − u)α−1f(u, y(u)) du−
∫ t2j

0

(t2j − u)α−1P1(u) du
∣∣∣ ≤ Cα

2 T
αh2.

For II2, we have, by Lemma 4.3.5 and the Lipschitz condition (4.2.1),

|II2| ≤
2j−1∑
k=0

ak,2j|f(tk, y(tk))− f(tk, yk)| ≤
2j−1∑
k=0

ak,2j|y(tk)− yk|

≤ 1

α
TαL max

0≤k≤2j−1
|y(tk)− yk|.

For III2, we have, by Lemma 4.3.5 and Lipschitz condition (4.2.1),

|III2| ≤ a2j,2j|f(t2j, y(t2j))− f(t2j, y
PP
2j )| ≤ Dα

2 h
αL|y(t2j)− yPP2j |.

We also need to consider the bound for |y(t2j)− yPP2j |. We have

Γ(α)
(
y(t2j)− yPP2j

)
=

∫ t2j

0

(t2j − u)α−1f(u, y(u)) du−
2j−1∑
k=0

bk,2jf(tk, yk)

=

∫ t2j

0

(t2j − u)α−1f(u, y(u)) du−
2j−1∑
k=0

bk,2jf(tk, y(tk))

+

2j−1∑
k=0

bk,2j

(
f(tk, y(tk))− f(tk, yk)

)
= I3 + II3.
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For I3, we have, by Lemma 4.3.2, |I3| ≤ Cα
1 T

αh.

For II3, we have, by Lemma 4.3.5 and Lipschitz condition (4.2.1),

|II3| ≤
1

α
TαL max

0≤k≤2j−1
|y(tk)− yk|.

Together these estimates, we have

Γ(α)|y(t2j)− y2j| ≤ Cα
3 T

αh3 +
1

α
TαL max

0≤k≤2j−1
|y(tk)− yk|

+Dα
3 h

αL
1

Γ(α)

(
Cα

2 T
αh2 +

1

α
TαL max

0≤k≤2j−1
|y(tk)− yk|

+Dα
2 h

αL
1

Γ(α)

[
Cα

1 T
αh+

1

α
TαL max

0≤k≤2j−1
|y(tk)− yk|

])
≤
[
Cα

3 T
αh3 +

Dα
3LC

α
2 T

αh2+α

Γ(α)
+
Dα

3D
α
2L

2Cα
1 T

αh1+2α

Γ(α)2

]
+
[ 1

α
TαL+

Dα
3L

2( 1
α
Tα)hα

Γ(α)
+
Dα

3D
α
2 ( 1

α
Tα)L3h2α

Γ(α)2

]
max

0≤k≤2j−1
|y(tk)− yk|.

By mathematical induction (4.3.10), we have

|y(t2j)− y2j| ≤
[Cα

3 T
αh3

Γ(α)
+
Dα

3LC
α
2 T

αh2+α

Γ(α)2
+
Dα

3D
α
2L

2Cα
1 T

αh1+2α

Γ(α)3

]
+
[ 1

Γ(α + 1)
TαL+

Dα
3L

2( 1
α
Tα)hα

Γ(α + 1)Γ(α)
+
Dα

3D
α
2 ( 1

α
Tα)L3h2α

Γ(α + 1)Γ(α)2

]
C0h

3.

(4.3.11)

We first choose T sufficiently small, see Lemma 3.1 in [28] such that 1
Γ(α+1)

TαL ≤ 1
2
.

Then we fix this value for T and make the sum of the remaining terms in the right hand

side of (4.3.11) smaller than C0

2
h3 (for sufficiently small h) by choosing C0 sufficiently

large. Hence we obtain, for 1 < α ≤ 2,

|y(t2j)− y2j| ≤
C0

2
h3 +

C0

2
h3 = C0h

3. (4.3.12)

We also need to show that if (4.3.10) is true for k = 0, 1, 2, . . . , 2j with j = 1, 2, . . . ,m−
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1, then it also holds for k = 2j + 1. In fact, we have, with j = 1, 2, . . . ,m− 1,

Γ(α)
(
y(t2j+1)− y2j+1

)
=

∫ t2j+1

0

(t2j+1 − u)α−1f(u, y(u)) du

−
(∫ t1

0

(t2j+1 − u)α−1f(u, y(u)) du+

2j−1∑
k=0

ck,2jf(tk+1, yk+1) + c2j,2jf(t2j+1, y
P
2j+1)

)
=

∫ t2j+1

t1

(t2j+1 − u)α−1f(u, y(u)) du−
( 2j−1∑
k=0

ck,2jf(tk+1, yk+1) + c2j,2jf(t2j+1, y
P
2j+1)

)
=
(∫ t2j+1

t1

(t2j+1 − u)α−1f(u, y(u)) du−
∫ t2j+1

t1

(t2j+1 − u)α−1Q2(u) du
)

+

2j−1∑
k=0

ck,2j

(
f(tk+1, y(tk+1))− f(tk+1, yk+1)

)
+ c2j,2j

(
f(t2j+1, y(t2j+1))− f(t2j+1, y

P
2j+1)

)
.

Using the same arguments as proving (4.3.12), we can show

|y(t2j+1)− y2j+1| ≤ C0h
3, j = 1, 2, . . . ,m− 1.

Hence we complete the proof for the case where 1 < α ≤ 2.

For the case 0 < α ≤ 1. Note that, by the assumptions, |y(t0) − y0| = 0, and

|y(t1)− y1| = 0. Assume that

|y(tk)− yk| ≤ C0h
1+2α, (4.3.13)

for k = 0, 1, 2, . . . , 2j − 1, j = 1, 2, . . . ,m. We must prove that this also holds for k = 2j.

In fact, by using the same arguments as showing (4.3.12), we get

|y(t2j)− y2j| ≤
[Cα

3 T
αh3

Γ(α)
+
Dα

3LC
α
2 T

αh2+α

Γ(α)2
+
Dα

3D
α
2L

2Cα
1 T

αh1+2α

Γ(α)3

]
+
[ 1

Γ(α + 1)
TαL+

Dα
3L

2( 1
α
Tα)hα

Γ(α + 1)Γ(α)
+
Dα

3D
α
2 ( 1

α
Tα)L3h2α

Γ(α + 1)Γ(α)2

]
C0h

1+2α.

(4.3.14)

As in the case for 1 < α ≤ 2, we first choose T sufficiently small such that 1
Γ(α+1)

TαL ≤
1
2
. Then we fix this value for T and make the sum of the remaining terms in the right had

side of (4.3.14) smaller than C0

2
h1+2α (for sufficiently small h) by choosing C0 sufficiently

large.

Hence we obtain, for 0 < α ≤ 1,

|y(t2j)− y2j| ≤
C0

2
h1+2α +

C0

2
h1+2α = C0h

1+2α. (4.3.15)
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Similarly, we can show that if (4.3.13) is true for k = 0, 1, 2, . . . , 2j with j = 1, 2, . . . ,m−

1, then it is also true for k = 2j+ 1. Together these estimates complete the proof of The-

orem 4.3.1.

4.4 Numerical examples

Example 9. [28] This example deals with the nonlinear fractional differential equation

where the unknown solution y has a smooth derivative of order α. Specifically we shall

look at the equation

C
0 D

α
t y(t) =

40320

Γ(9− α)
t8−α− 3

Γ(5 + α/2)

Γ(5− α/2)
t4−α/2 +

9

4
Γ(α+ 1) +

(3

2
tα/2− t4

)3

− [y(t)]3/2.

The initial conditions were chosen to be homogeneous (y(0) = 0, y′(0) = 0; the latter

only in the case 1 < α < 2). This equation has been chosen because it exhibits a difficult

(nonlinear and nonsmooth) right-hand side, and yet we are able to find its exact solution,

thus allowing us to compare the numerical results for this nontrivial case to the exact

results. Indeed, the exact solution of this initial value problem is

y(t) = t8 − 3t4+α/2 +
9

4
tα,

and hence

C
0 D

α
t y(t) =

40320

Γ(9− α)
t8−α − 3

Γ(5 + α/2)

Γ(5− α/2)
t4−α/2 +

9

4
Γ(α + 1),

which implies C
0 D

α
t y ∈ C3[0, T ] for arbitrary T > 0 and 0 < α ≤ 2, and thus the conditions

of Theorem 4.3.1 are fulfilled.

For various choices of α ∈ (0, 2], we compute the errors at tn = 1. We choose the

stepsize h = 1/(5 × 2l), l = 1, 2, . . . , 7, i.e, we divided the interval [0, 1] into n = 1/h

small subintervals with nodes 0 = t0 < t1 < · · · < tn = 1. Then we compute the error

e(tn) = y(tn)− yn. By Theorem 4.3.1, we have

max
0≤k≤2m

|y(tk)− yk| ≤

 C0h
1+2α, if 0 < α ≤ 1,

C0h
3, if 1 < α ≤ 2.
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In Tables 4.4.1-4.4.2, we compute the orders of convergence for different values of α.

We observe that the order of convergence is O(h1+2α) for 0 < α ≤ 1. But the observed

order of convergence is higher than 3 for 1 < α ≤ 2 in this example. For example, when

α = 1.35, the experimentally determined order is 3.5. When α = 1.65, the experimentally

determined order of convergence (EOC) is almost 4.

n EOC ( α = .35) EOC ( α = .40) EOC ( α = .45) EOC ( α = .50)

10

20 1.2475 1.2993 1.2965 1.2037

40 1.5302 1.6834 1.7891 1.8583

80 1.7461 1.8758 1.9787 2.0638

160 1.8293 1.9391 2.0350 2.1232

320 1.8518 1.9482 2.0391 2.1284

640 1.8478 1.9356 2.0233 2.1135

Table 4.4.1: Numerical results at t = 1 in Example 9 with the different fractional order

α < 1

n EOC ( α = 1.35 ) EOC ( α = 1.40) EOC ( α = 1.60) EOC ( α = 1.65)

10

20 3.4810 3.5611 3.7581 3.7921

40 3.6886 3.7438 3.8753 3.8963

80 3.7695 3.8198 3.9268 3.9414

160 3.7977 3.8517 3.9526 3.99637

320 3.7944 3.8588 3.99667 3.9772

640 3.7662 3.8355 3.9810 3.9380

Table 4.4.2: Numerical results at t = 1 in Example 9 with the different fractional order

α > 1

In Figure 4.4.1, we plot the order of convergence. We have

log2(|e(tn)|) ≤ log2(C) + (1 + 2α)log2(h).
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Figure 4.4.1: The experimentally determined orders of convergence (“EOC ”) at t = 1 in

Example 9 with α = 0.35
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Figure 4.4.2: The experimentally determined orders of convergence (“EOC ”) at t = 1 in

Example 9 with α = 1.25

Let y = log2(|e(tn)|) and x = log2(h). We plot the function y = y(x) for the different

values of x = log2(h) where h = 1/(5 × 2l), l = 1, 2, . . . , 7. To observe the order of

convergence, we also plot the straight line y = (1 + 2α)x, where α = 0.35. We see that

these two lines are almost parallel which confirms that the order of convergence of the

numerical method is O(h1+2α).

In Figure 4.4.2, we will plot the order of convergence for α = 1.25. We plot the function

y = y(x) for the different values of x = log2(h) where h = 1/(5 × 2l), l = 1, 2, . . . , 7. To

observe the order of convergence, we also plot the straight line y = 3x. We observe that

the order of convergence is higher than 3 ( almost 1 + 2α).



Chapter 5

Higher order numerical methods for

fractional differential equations by

extrapolation

5.1 Introduction

The aim of this chapter is to discuss convergence acceleration methods for fractional dif-

ferential equation by extrapolation procedure. We will consider Richardson extrapolation

algorithms for solving higher order fractional differential equations. Richardson extrapo-

lation is an idea which can often be used to improve the convergence order of the numerical

method: from a method of order O(hk0) we can get a method of order O(hk1 , k0 < k1).

Suppose that we want to approximate a quantity A, we have available approximation

A(h) for stepsize h > 0.

For example, we want to approximate

A = f ′(x0).

By Taylor formula,

A = f ′(x0) =
f(x0 + h)− f(x0)

h
− f ′′(x0)

2!
h− f ′′′(x0)

3!
h2 − . . .

68
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Denote

A0(h) =
f(x0 + h)− f(x0)

h
,

we have

A = A0(h) + a0h+ a1h
2 + . . . (5.1.1)

we note that A0(h) is a numerical method of order O(h).

We use the stepsize h
t
, t > 0, for example t = 2, we get the approximate A0(h

t
) i.e.,

A = A0(
h

t
) + a0(

h

t
) + a1(

h

t
)2 + . . . (5.1.2)

Multiplying t in both sides of (5.1.2) we get

tA = tA0(
h

t
) + a0h+ a1t(

h

t
)2 + . . . . (5.1.3)

Subtracting (5.1.1) from (5.1.3), we get

(t− 1)A = [tA0(
h

t
)− A0(h)] +O(h2).

i.e.

A =
tA0(h

t
)− A0(h)

t− 1
+O(h2),

Denote

A1(h) =
tA0(h

t
)− A0(h)

t− 1
,

we get

A = A1(h) +O(h2).

Thus we see that A1(h) is a numerical method of O(h2). Let t = 2 , we get the extrapo-

lation formula

A1(h) = 2A0(
h

2
)− A0(h).
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5.2 Richardson extrapolation

Let us now consider the general idea of the Richardson extrapolation. Assume that A(h)

is the approximation of a quantity A, where h is the stepsize . We also assume that

A = A0(h) + a0h
k0 + a1h

k1 + a2h
k2 + . . . (5.2.1)

with 0 < k0 < k1 < k2 < . . . , we use the stepsize h
t
, t > 0. (for example t = 2) to get the

approximation A0(h
t
), i.e.

A = A0(
h

t
) + a0(

h

t
)k0 + a1(

h

t
)k1 + a2(

h

t
)k2 + . . . . (5.2.2)

Multiplying tk0 in both sides, we get

tk0A = tk0A0(
h

t
) + a0(h)k0 + a1t

k0(
h

t
)k1 + a2t

k0(
h

t
)k2 + . . . . (5.2.3)

Subtracting (5.2.1) from (5.2.3), we have

A =
tk0A0(h

t
)− A0(h)

tk0 − 1
+ b1h

k1 + b2h
k2 + . . .

Denote

A1(h) =
tk0A0(h

t
)− A0(h)

tk0 − 1
,

we have

A = A1(h) + b1h
k1 + b2h

k2 + . . .

Thus A1(h) is a numerical method of convergence order O(hk1), we can continue this

process to construct the numerical methods of order O(hk2), O(hk3), . . . . Choose t = 2

we first calculate A0(h), A0(h
2
), A0( h

22
), A0( h

23
) which has convergence order O(hk0).

We next calculate A1(h), A1(h
2
), A1( h

22
), . . . which has convergence order O(hk1). Sim-

ilarly, we can calculate A2(h), A2(h
2
), A2( h

22
), . . . which has convergence order O(hk2).

We proceed by setting up a triangular array ( so-called Romberg tableau) of approxi-

mation value for A of the form

A0(h)

A0(h
2
) A1(h)

A0( h
22

) A1(h
2
) A2(h)

A0( h
23

) A1( h
22

) A2(h
2
)

A0( h
24

) A1( h
23

) A2( h
22

)
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. . .

. . .

. . .

Here

A1(h) =
2k0A0(h

2
)− A0(h)

2k0 − 1
, A1(

h

2
) =

2k0A0( h
22

)− A0(h
2
)

2k0 − 1
,

A2(h) =
2k1A1(h

2
)− A1(h)

2k1 − 1
, A2(

h

2
) =

2k1A1( h
22

)− A1(h
2
)

2k1 − 1

To observe the order O(hk0) from A0(h), A0(h
2
), A0( h

22
), . . . we can use the following

idea.

Note that,

|e0(h)| = |A− A0(h)| ≤ Chk0 .

|e0(
h

2
)| = |A− A0(

h

2
)| ≤ C(

h

2
)k0 .

Thus

|e0(h)|
|e0(h

2
)|
≈ hk0

(h
2
)k0

= 2k0 , k0 = log2

|e0(h)|
|e0(h

2
)|
.

Hence one can calculat all the values

log2

|e0(h)|
|e0(h

2
)|
, log2

|e0(h
2
)|

|e0( h
22

)|
, log2

|e0( h
22

)|
|e0( h

23
)|
, . . .

and observe that the values should be k0 approximately.

Similarly, we can calculate

log2

|e1(h)|
|e1(h

2
)|
, log2

|e1(h
2
)|

|e1( h
22

)|
, log2

|e1( h
22

)|
|e1( h

23
)|
, . . .

and observe that the values should be k1 approximately.

In this chapter we will consider two extrapolation algorithms for solving fractional

differential equations. One algorithm is for solving a linear fractional differential equation

which is based on the direct discretization of the fractional differential operator. Another

algorithm is for solving the nonlinear fractional differential equation which is based on the

discretization of the equivalent integral form of the fractional differential equation. We

also discuss in detail how to determine the starting values and the starting integrals in the
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numerical methods for quadratic interpolation polynomials. Numerical results show that

the approximate solutions of these two numerical methods have the expected asymptotic

expansions.

We consider the Richardson extrapolation algorithms for solving the following frac-

tional order differential equation

C
0 D

α
t y(t) = f(t, y(t)), 0 < t ≤ T, (5.2.4)

y(k)(0) = y
(k)
0 , k = 0, 1, 2, . . . , dαe − 1, (5.2.5)

where the y
(k)
0 may be arbitrary real numbers and α > 0. Here C

0 D
α
t denotes the differential

operator in the sense of Caputo defined by,

C
0 D

α
t y(t) =

1

Γ(n− α)

∫ t

0

(t− u)n−α−1y(n)(u) du,

where n = dαe is the smallest integer ≥ α.

Extrapolation can be used to accelerate the convergence of a given sequence, [6, 7, 92].

Its applicability depends on the fact that a given sequence of the approximate solutions

of the problem possesses an asymptotic expansion. Let us review some extrapolation

algorithms for solving fractional differential equations. For the linear fractional differential

equation, Diethelm [26] introduced an algorithm for solving the following linear differential

equation of fractional order, with 0 < α < 1,

C
0 D

α
t y(t) = βy(t) + f(t), 0 ≤ t ≤ 1, (5.2.6)

y(0) = y0, (5.2.7)

where β < 0 and f is a given function on [0, 1]. Diethelm and Walz [33] proved that

the approximate solution of the numerical algorithm in [26] has an asymptotic expansion.

For the general nonlinear fractional differential equation (5.2.4) -(5.2.5),Diethelm, Ford

and Freed [28] introduced a fractional Adams-type predictor-corrector method for solv-

ing (5.2.4)-(5.2.5) and numerical evidence suggests that the approximate solution of the

numerical method in [28] has also an asymptotic expansion.
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Recently, Yan, Pal and Ford [93] extended the numerical method in [26] and obtained a

high order numerical method for solving (5.2.6) - (5.2.7) and proved that the approximate

solution has an asymptotic expansion.

5.3 The linear fractional differential equation

5.3.1 The numerical method

In this section we will consider a higher order numerical method for solving (5.2.6)-(5.2.7).

It is well-known that (5.2.6)-(5.2.7) is equivalent to, with 0 < α < 1,

R
0 D

α
t [y(t)− y0] = βy(t) + f(t), 0 ≤ t ≤ 1, (5.3.1)

where R
0 D

α
t y(t) denotes the Riemann-Liouville fractional derivative defined by,

with 0 < α < 1,

R
0 D

α
t y(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− u)−αy(u) du. (5.3.2)

By using the Hadamard finite-part integral, R0 D
α
t y(t) can be written as

R
0 D

α
t y(t) =

1

Γ(−α)

∮ t

0

(t− u)−1−αy(u) du. (5.3.3)

Here the integral
∮

denotes a Hadamard finite-part integral [25].

Let M be a positive integer and let 0 = t0 < t1 < · · · < tj < · · · < tM = 1 be a

partition of [0, 1]. At t = tj, we have

R
0 D

α
t [y(tj)− y0] = βy(tj) + f(tj), j = 1, 2, . . . ,M.

Note that

R
0 D

α
t y(tj) =

1

Γ(−α)

∮ tj

0

(tj−u)−1−αy(u) du =
t−αj

Γ(−α)

∮ 1

0

w−1−αy(tj− tjw) dw. (5.3.4)

For every j, we denote g(w) = y(tj − tjw) and approximate
∮ 1

0
w−1−αg(w) dw by∮ 1

0
w−1−αg1(w) dw, where g1(w) is the piecewise linear interpolation polynomial on the
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nodes 0, 1
j
, 2
j
, . . . , j

j
= 1. We then obtain

R
0 D

α
t y(tj) =

t−αj
Γ(−α)

∮ 1

0

w−1−αy(tj − tjw) dw

=
t−αj

Γ(−α)

( j∑
k=1

∮ tk

tk−1

w−1−αg1(w) dw +Rj(g)
)

=
t−αj

Γ(−α)

( j∑
k=0

αk,jy(tj−k) +Rj(g)
)
,

where αk,j, k = 0, 1, 2, . . . , j are weights and Rj(g) is the remainder term. Thus (5.3.1)

satisfies, with j = 1, 2, . . . ,M ,

y(tj) =
1

α0,j − tαj Γ(−α)β

[
tαj Γ(−α)f(tj)

−
j∑

k=1

αk,jy(tj−k) + y0

j∑
k=0

αk,j −Rj(g)
]
. (5.3.5)

Let yj ≈ y(tj) be the approximate solutions of y(tj). We define the following finite

difference method for solving (5.2.6) - (5.2.7), with j = 1, 2, . . . ,M ,

yj =
1

α0,j − tαj Γ(−α)β

[
tαj Γ(−α)f(tj)−

j∑
k=1

αk,jyj−k + y0

j∑
k=0

αk,j

]
. (5.3.6)

Diethelm and Walz [33] proved the following asymptotic expansion theorem.

Theorem 5.3.1 (Theorem 2.1 in [33]). Let 0 < α < 1 and M be a positive integer. Let

0 = t0 < t1 < t2 < · · · < tj < · · · < tM = 1 be a partition of [0, 1] and h the stepsize. Let

y(tj) and yj be the exact and the approximate solutions of (5.3.5) and (5.3.6), respectively.

Assume that the function y ∈ Cm+2[0, 1], m ≥ 2. Then there exist coefficients cµ = cµ(α)

and c∗µ = c∗µ(α) such that the sequence {yl}, l = 0, 1, 2, . . . ,M possesses an asymptotic

expansion of the form

y(tM)− yM =
m+1∑
µ=2

cµ(M)α−µ +

µ∗∑
µ=1

c∗µ(M)−2µ + o((M)α−m−1), for M →∞,

that is,

y(tM)− yM =
m+1∑
µ=2

cµh
µ−α +

µ∗∑
µ=1

c∗µh
2µ + o(hm+1−α), for h→ 0,

where µ∗ is the integer satisfying 2µ∗ < m+ 1− α < 2(µ∗ + 1), and cµ and c∗µ are certain

coefficients that depend on y.
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Yan, Pal and Ford [93] extended the numerical method in Diethelm and Walz [33] and

obtained a high order numerical method for solving (5.2.6)- (5.2.7). Let M be a fixed

positive integer and let 0 = t0 < t1 < t2 < · · · < t2j < t2j+1 < · · · < t2M = 1 be a partition

of [0, 1] and h the stepsize. At the nodes t2j = 2j
2M

, the equations (5.2.6)- (5.2.7) satisfy

R
0 D

α
t [y(t2j)− y0] = βy(t2j) + f(t2j), j = 1, 2, . . . ,M,

and at the nodes t2j+1 = 2j+1
2M

, the equations (5.2.6)- (5.2.7) satisfy

R
0 D

α
t [y(t2j+1)− y0] = βy(t2j+1) + f(t2j+1), j = 0, 1, 2, . . . ,M − 1. (5.3.7)

Note that

R
0 D

α
t y(t2j) =

1

Γ(−α)

∮ t2j

0

(t2j−u)−1−αy(u) du =
t−α2j

Γ(−α)

∮ 1

0

w−1−αy(t2j−t2jw) dw. (5.3.8)

For every j, we denote g(w) = y(t2j − t2jw) and approximate
∮ 1

0
w−1−αg(w) dw by∮ 1

0
w−1−αg2(w) dw, where g2(w) is the piecewise quadratic interpolation polynomials on

the nodes wl = l/2j, l = 0, 1, 2, . . . , 2j. More precisely, we have, for k = 1, 2, . . . , j,

g2(w) =
(w − w2k−1)(w − w2k)

(w2k−2 − w2k−1)(w2k−2 − w2k)
g(w2k−2)

+
(w − w2k−2)(w − w2k)

(w2k−1 − w2k−2)(w2k−1 − w2k)
g(w2k−1)

+
(w − w2k−2)(w − w2k−1)

(w2k − w2k−2)(w2k − w2k−1)
g(w2k), for w ∈ [w2k−2, w2k].

Thus

R
0 D

α
t y(t2j) =

t−α2j

Γ(−α)

∮ 1

0

w−1−αy(t2j − t2jw) dw

=
t−α2j

Γ(−α)

( j∑
k=1

∮ w2k

w2k−2

w−1−αg2(w) dw +R2j(g)
)

=
t−α2j

Γ(−α)

( 2j∑
k=0

αk,2jy(t2j−k) +R2j(g)
)
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where R2j(g) is the remainder term and αk,2j, k = 0, 1, 2, . . . , 2j are weights given by

(−α)(−α + 1)(−α + 2)(2j)−ααl,2j

=



2−α(α + 2), for l = 0,

(−α)22−α, for l = 1,

(−α)(−2−αα) + 1
2
F0(2), for l = 2,

−F1(k), for l = 2k − 1, k = 2, 3, . . . , j,

1
2
(F2(k) + F0(k + 1)), for l = 2k, k = 2, 3, . . . , j − 1,

1
2
F2(j), for l = 2j.

Here

F0(k) =(2k − 1)(2k)
(

(2k)−α − (2k − 2)−α
)

(−α + 1)(−α + 2)

−
(

(2k − 1) + 2k
)(

(2k)−α+1 − (2k − 2)−α+1
)

(−α)(−α + 2)

+
(

(2k)−α+2 − (2k − 2)−α+2
)

(−α)(−α + 1),

F1(k) =(2k − 2)(2k)
(

(2k)−α − (2k − 2)−α
)

(−α + 1)(−α + 2)

−
(

(2k − 2) + 2k
)(

(2k)−α+1 − (2k − 2)−α+1
)

(−α)(−α + 2)

+
(

(2k)−α+2 − (2k − 2)−α+2
)

(−α)(−α + 1),

and

F2(k) =(2k − 2)(2k − 1)
(

(2k)−α − (2k − 2)−α
)

(−α + 1)(−α + 2)

−
(

(2k − 2) + (2k − 1)
)(

(2k)−α+1 − (2k − 2)−α+1
)

(−α)(−α + 2)

+
(

(2k)−α+2 − (2k − 2)−α+2
)

(−α)(−α + 1).

Hence (5.3.1) satisfies, with j = 1, 2, . . . ,M ,

y(t2j) =
1

α0,2j − tα2jΓ(−α)β

[
tα2jΓ(−α)f(t2j)−

2j∑
k=1

αk,2jy(t2j−k) + y0

2j∑
k=0

αk,2j −R2j(g)
]
.

(5.3.9)
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At the nodes t2j+1 = 2j+1
2M

, j = 0, 1, 2, . . . ,M − 1, we have

R
0 D

α
t y(t2j+1) =

1

Γ(−α)

∮ t2j+1

0

(t2j+1 − u)−1−αy(u) du

=
1

Γ(−α)

∮ t1

0

(t2j+1 − u)−1−αy(u) du

+
t−α2j+1

Γ(−α)

∮ 2j
2j+1

0

w−1−αy(t2j+1 − t2j+1w) dw.

For every j, we denote g(w) = y(t2j+1− t2j+1w) and approximate
∮ 2j

2j+1

0 w−1−αg(w) dw

by
∮ 2j

2j+1

0 w−1−αg2(w) dw, where g2(w) is the piecewise quadratic interpolation polynomials

on the nodes wl = l
2j+1

, l = 0, 1, 2, . . . , 2j. We then get

R
0 D

α
t y(t2j+1) =

1

Γ(−α)

∫ t1

0

(t2j+1 − u)−1−αy(u) du

+
t−α2j+1

Γ(−α)

( j∑
k=1

∮ w2k

w2k−2

w−1−αg2(w) dw +R2j+1(g)
)

=
1

Γ(−α)

∫ t1

0

(t2j+1 − u)−1−αy(u) du

+
t−α2j+1

Γ(−α)

( 2j∑
k=0

αk,2j+1y(t2j+1−k) +R2j+1(g)
)

where R2j+1(g) is the remainder term and αk,2j+1 = αk,2j, k = 0, 1, 2, . . . , 2j. Hence

y(t2j+1) =
1

α0,2j+1 − tα2j+1Γ(−α)β

[
tα2j+1Γ(−α)f(t2j+1)−

2j∑
k=1

αk,2j+1y(t2j+1−k)

+ y0

2j∑
k=0

αk,2j+1 −R2j+1(g)− tα2j+1

∫ t1

0

(t2j+1 − u)−1−αy(u) du
]
. (5.3.10)

Here α0,l − tαl Γ(−α)β < 0, l = 2j, 2j + 1, which follow from Γ(−α) < 0, β < 0 and

α0,2j+1 = α0,2j.

Let y2j ≈ y(t2j) and y2j+1 ≈ y(t2j+1) denote the approximate solutions of y(t2j) and

y(t2j+1), respectively. We define the following numerical methods for solving (5.2.6)-

(5.2.7), with j = 1, 2, . . . ,M ,

y2j =
1

α0,2j − tα2jΓ(−α)β

[
tα2jΓ(−α)f(t2j)−

2j∑
k=1

αk,2jy2j−k + y0

2j∑
k=0

αk,2j

]
, (5.3.11)
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and, with j = 1, 2, . . . ,M − 1,

y2j+1 =
1

α0,2j+1 − tα2j+1Γ(−α)β

[
tα2j+1Γ(−α)f(t2j+1)−

2j∑
k=1

αk,2j+1y2j+1−k

+ y0

2j∑
k=0

αk,2j+1 − tα2j+1

∫ t1

0

(t2j+1 − u)−1−αy(u) du
]
. (5.3.12)

Yan, Pal and Ford [93] proved the following Theorem.

Theorem 5.3.2 (for proof see the Theorem 3.3.3). Let 0 < α < 1 and M be a positive

integer. Let 0 = t0 < t1 < t2 < · · · < t2j < t2j+1 < · · · < t2M = 1 be a partition of

[0, 1] and h the stepsize. Let y(t2j), y(t2j+1), y2j and y2j+1 be the exact and the approx-

imate solutions of (5.3.9) - (5.3.12), respectively. Assume that y ∈ Cm+2[0, 1], m ≥ 3.

Further assume that we can approximate the starting value y1 and the starting integral∫ t1
0

(t2j+1 − τ)−1−αy(τ) dτ in (5.3.12) by using some numerical methods and obtain the

required accuracy. Then there exist coefficients cµ = cµ(α) and c∗µ = c∗µ(α) such that the

sequence {yl}, l = 0, 1, 2, . . . , 2M possesses an asymptotic expansion of the form

y(t2M)− y2M =
m+1∑
µ=3

cµ(2M)α−µ +

µ∗∑
µ=2

c∗µ(2M)−2µ + o((2M)α−m−1), for M →∞,

that is,

y(t2M)− y2M =
m+1∑
µ=3

cµh
µ−α +

µ∗∑
µ=2

c∗µh
2µ + o(hm+1−α), for h→ 0,

where µ∗ is the integer satisfying 2µ∗ < m+ 1− α < 2(µ∗ + 1), and cµ and c∗µ are certain

coefficients that depend on y.

5.3.2 Approximating the starting values and the starting integrals

To obtain the approximate solutions yl, l = 0, 1, 2, . . . , 2M numerically, we need to approx-

imate the starting value y1 and the initial integral
∫ t1

0
(t2j+1 − u)−1−αy(u) du in (5.3.12).

We shall consider these issues in this subsection and follow the idea in Cao and Xu [9].

At t = t1, we have

R
0 D

α
t y(t1) =

1

Γ(−α)

∮ t1

0

(t1 − u)−1−αy(u) du =
t−α1

Γ(−α)

∮ 1

0

w−1−αy(t1 − t1w) dw.
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We denote g(w) = y(t1 − t1w) and approximate
∮ 1

0
w−1−αg(w) dw by

∮ 1

0
w−1−αg2(w) dw,

where g2(w) is the quadratic interpolation polynomial on the nodes 0, 1
2
, 1 defined by

g2(w) =
(w − 1

2
)(w − 1)

(0− 1
2
)(0− 1)

g(0) +
(w − 0)(w − 1)

(1
2
− 0)(1

2
− 1)

g(
1

2
)

+
(w − 0)(w − 1

2
)

(1− 0)(1− 1
2
)
g(1), for w ∈ [0, 1]. (5.3.13)

We then get

R
0 D

α
t y(t1) =

t−α1

Γ(−α)

∮ 1

0

w−1−αg(w) dw =
t−α1

Γ(−α)

(∮ 1

0

w−1−αg2(w) dw +R
(1)
2

)
=

t−α1

Γ(−α)

(
w0

1y(t1) + w1
1y(t 1

2
) + w2

1y(t0) +R
(1)
2

)
, (5.3.14)

where

w0
1 =

∮ 1

0

w−1−α (w − 1
2
)(w − 1)

(0− 1
2
)(0− 1)

dw, w1
1 =

∮ 1

0

w−1−α (w − 0)(w − 1)

(1
2
− 0)(1

2
− 1)

dw,

w2
1 =

∮ 1

0

w−1−α (w − 0)(w − 1
2
)

(1− 0)(1− 1
2
)
dw, (5.3.15)

and the remainder term R
(1)
2 satisfies, [26]

|R(1)
2 | ≤ Ct31|y′′′|∞.

Further we approximate the value y(t 1
2
) by, [9]

y(t 1
2
) =

3

8
y(t0) +

3

4
y(t1)− 1

8
y(t2) +R

(2)
2 ,

where R
(2)
2 = 1

12
h3y′′′(c). Hence we have

R
0 D

α
t y(t1) =

t−α1

Γ(−α)

(
B̂0y(t2) + B̂1y(t1) + B̂2y(t0) +R

(1)
2 +R

(2)
2

)
, (5.3.16)

where

B̂2 = w2
1 +

3

8
w1

1, B̂1 = w0
1 +

3

4
w1

1, B̂0 = −1

8
w1

1.

Therefore we have, at t = t1,

y(t1) =
1

B̂1 − tα1 Γ(−α)β

(
tα1 Γ(−α)f(t1)− B̂0y(t2)− B̂2y(t0)

+ y0

2∑
k=0

B̂k −R(1)
2 −R

(2)
2

)
. (5.3.17)
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At t = t2, we have

R
0 D

α
t y(t2) =

1

Γ(−α)

∮ t2

0

(t2 − u)−1−αy(u) du =
t−α2

Γ(−α)

∮ 1

0

w−1−αy(t2 − t2w) dw.

We denote g(w) = y(t2−t2w) and approximate the integral
∮ 1

0
w−1−αg(w) dw by

∮ 1

0
w−1−αg2(w) dw,

where g2(w) is defined as in (5.3.13). We have

R
0 D

α
t y(t2) =

t−α2

Γ(−α)

∮ 1

0

w−1−αg(w) dw =
t−α2

Γ(−α)

(∮ 1

0

w−1−αg2(w) dw +R
(3)
2

)
=

t−α2

Γ(−α)

(
w0

1y(t2) + w1
1y(t1) + w2

1y(t0) +R
(3)
2

)
, (5.3.18)

where wj1, j = 0, 1, 2 are defined as in (5.3.15) and the remainder term R
(3)
2 satisfies, [26]

|R(3)
2 | ≤ Ct32|y′′′|∞.

Therefore we have, at t = t2,

y(t2) =
1

w0
1 − tα2 Γ(−α)β

(
tα2 Γ(−α)f(t2)−

2∑
k=1

wk1y(t2−k) + y0

2∑
k=0

wk1 −R
(3)
2

)
.

(5.3.19)

Let yl ≈ y(tl), l = 1, 2, be the approximate solutions of y(tl). We define the following

numerical methods for solving yl, l = 1, 2.

y1 =
1

B̂1 − tα1 Γ(−α)β

(
tα1 Γ(−α)f(t1)− B̂0y2 − B̂2y0 + y0

2∑
k=0

B̂k

)
, (5.3.20)

y2 =
1

w0
1 − tα2 Γ(−α)β

(
tα2 Γ(−α)f(t2)−

2∑
k=1

wk1y2−k + y0

2∑
k=0

wk1

)
. (5.3.21)

Let el = y(tl)− yl, l = 1, 2, denote the errors, we then have

e1 =
1

B̂1 − tα1 Γ(−α)β

(
B̂0e2 + B̂2e0 −R(1)

2 −R
(2)
2

)
, (5.3.22)

e2 =
1

w0
1 − tα2 Γ(−α)β

( 2∑
k=1

wk1e2−k −R(3)
2

)
. (5.3.23)

By using Gronwall’s Lemma, we get, [9]

|e2| ≤ C|R(3)
2 | ≤ Ch3,
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and

|e1| ≤ C(|R(1)
2 |+ |R

(2)
2 |) ≤ Ch3.

We next consider how to approximate the starting integral
∫ t1

0
(t2j+1 − u)−1−αy(u) du

in (5.3.12) with j ≥ 1. Note that this integral is the usual integral since j ≥ 1 and∫ t1

0

(t2j+1 − u)−1−αy(u) du = t1

∫ 1

0

(t2j + t1w)−1−αy(t1 − t1w) dw.

Denoting g(w) = y(t1− t1w) and approximating the integral
∫ 1

0
(t2j + t1w)−1−αg(w) dw by∫ 1

0
(t2j + t1w)−1−αg2(w) dw, where g2(w) is defined by (5.3.13), we have∫ t1

0

(t2j+1 − u)−1−αy(u) du = t1

(
w0
jy(t1) + w1

jy(t 1
2
) + w2

jy(t0) +R
(1)
j

)
, (5.3.24)

where

w0
j =

∫ 1

0

(t2j + t1w)−1−α (w − 1
2
)(w − 1)

(0− 1
2
)(0− 1)

dw,

w1
j =

∫ 1

0

(t2j + t1w)−1−α (w − 0)(w − 1)

(1
2
− 0)(1

2
− 1)

dw,

w2
j =

∫ 1

0

(t2j + t1w)−1−α (w − 0)(w − 1
2
)

(1− 0)(1− 1
2
)
dw,

and the remainder term R
(1)
j satisfies, [26]

|R(1)
j | ≤

∫ 1

0

(t2j + t1w)−1−α(Ct31) dw ≤ Ch3t−α2j ≤ Ch3−α.

Further we approximate the value y(t 1
2
) by

y(t 1
2
) =

3

8
y(t0) +

3

4
y(t1)− 1

8
y(t2) +R

(2)
2 ,

where R
(2)
2 = 1

12
h3y′′′(c). Hence we have∫ t1

0

(t2j+1 − u)−1−αy(u) du = t1

(
B̂0,jy(t2) + B̂1,jy(t1) + B̂2,jy(t0) +R

(1)
j +R

(2)
j

)
,

where

B̂2,j = w2
j +

3

8
w1
j , B̂1,j = w0

j +
3

4
w1
j , B̂0,j = −1

8
w1
j .

We shall approximate the integral
∫ t1

0
(t2j+1 − u)−1−αy(u) du by∫ t1

0

(t2j+1 − u)−1−αy(u) du ≈ t1

(
B̂0,jy2 + B̂1,jy1 + B̂2,jy0

)
, (5.3.25)
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and it is easy to show that

∣∣∣ ∫ t1

0

(t2j+1 − u)−1−αy(u) du− t1
(
B̂0,jy2 + B̂1,jy1 + B̂2,jy0

)∣∣∣
=
∣∣∣t1( 2∑

k=0

B̂k,je2−k +R
(1)
j +R

(2)
2

)∣∣∣ ≤ Ct1(Ch3 + Ch3−α) ≤ Ch4−α.

After obtaining y1 and y2 by (5.3.20) and (5.3.21), we then use (5.3.11), (5.3.12) and

(5.3.25) to calculate y3, y4, . . . , y2M .

5.4 The nonlinear fractional differential equation

5.4.1 The numerical method

In this subsection we will introduce the fractional Adams-type predictor-corrector method

for solving (5.2.4)-(5.2.5). Note that (5.2.4)-(5.2.5) is equivalent to the integral form, with

0 < α ≤ 2,

y(t) = y0 + y
(1)
0

t

1!
+

1

Γ(α)

∫ t

0

(t− u)α−1f(u, y(u)) du. (5.4.1)

(The second of the initial conditions is only for 1 < α ≤ 2 of course).

Let M be a positive integer and let 0 = t0 < t1 < t2 < · · · < tj < · · · < tM = T be a

partition of [0, T ] and h the stepsize. At t = tj, we have

y(tj) = y0 + y
(1)
0

tj
1!

+
1

Γ(α)

∫ tj

0

(tj − u)α−1f(u, y(u)) du. (5.4.2)

Approximating f(u, y(u)) in (5.4.2) by the piecewise linear interpolation polynomial P1(u)

on the nodes 0 = t0 < t1 < · · · < tj, we obtain∫ tj

0

(tj − u)α−1f(u, y(u)) du ≈
∫ tj

0

(tj − u)α−1P1(u) du =

j∑
k=0

ak,jf(tk, y(tk)),

where ak,j, k = 0, 1, 2, . . . , j are some weights, see [29].

Let yj ≈ y(tj) denote the approximate solution of y(tj), j = 0, 1, 2, . . . ,M . We define

the corrector formula of (5.4.2) by

yj = y0 + y
(1)
0

tj
1!

+
1

Γ(α)

( j−1∑
k=0

ak,jf(tk, yk) + aj,jf(tj, y
P
j )
)
, j = 1, 2, . . . ,M. (5.4.3)
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To determine the predictor formula for yPj , we approximate f(u, y(u)) in (5.4.2) by the

piecewise constant function P0(u) on the nodes 0 = t0 < t1 < t2, · · · < tj and obtain∫ tj

0

(tj − u)α−1f(u, y(u)) du ≈
∫ tj

0

(tj − u)α−1P0(u) du =

j∑
k=0

bk,jf(tk, y(tk)),

where bk,j, k = 0, 1, 2, . . . , j−1 are some weights, see [29]. The predictor formula is defined

by

yPj = y0 + y
(1)
0

tj
1!

+
1

Γ(α)

j−1∑
k=0

bk,jf(tk, yk), j = 1, 2, . . . ,M. (5.4.4)

The fractional Adams-type predictor-corrector method for solving (5.2.4)-(5.2.5) is com-

pletely described now by (5.4.3) and (5.4.4) with the weights ak,j, k = 0, 1, 2, . . . , j and

bk,j, k = 0, 1, 2, . . . , j. Diethelm, Ford and Freed [29] obtained the error estimates for the

methods (5.4.3) and (5.4.4).

In [93], Yan, Pal and Ford introduced a high order fractional Adams-type predictor-

corrector method for solving (5.2.4)-(5.2.5). Let M be a positive integer and let 0 = t0 <

t1 < t2 < · · · < t2j < t2j+1 < · · · < t2M = T be a partition of [0, T ] and h the stepsize.

Note that the system (5.2.4)-(5.2.5) is equivalent to (5.4.1). Let us now consider the

discretization of (5.4.1). At the nodes t = t2j, j = 1, 2, . . . ,M , we have

y(t2j) = y0 + y
(1)
0

t2j
1!

+
1

Γ(α)

∫ t2j

0

(t2j − u)α−1f(u, y(u)) du. (5.4.5)

At the nodes t = t2j+1, j = 0, 1, 2, . . . ,M − 1, we have

y(t2j+1) = y0 + y
(1)
0

t2j+1

1!
+

1

Γ(α)

∫ t1

0

(t2j+1 − u)α−1f(u, y(u)) du

+
1

Γ(α)

∫ t2j+1

t1

(t2j+1 − u)α−1f(u, y(u)) du

= y0 + y
(1)
0

t2j+1

1!
+

1

Γ(α)

∫ t1

0

(t2j+1 − u)α−1f(u, y(u)) du

+
1

Γ(α)

∫ t2j

0

(t2j − u)α−1f(u+ h, y(u+ h)) du. (5.4.6)

We will replace f(u, f(u)) of the integral
∫ t2j

0
(t2j−u)α−1f(u, y(u)) du in (5.4.5) by the

following piecewise quadratic polynomial P2(u), t2l ≤ u ≤ t2l+2, l = 0, 1, 2, . . . , j − 1 with
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j = 1, 2, . . . ,M , where

P2(u) =
(u− t2l+1)(u− t2l+2)

(t2l − t2l+1)(t2l − t2l+2)
f(t2l, y(t2l))

+
(u− t2l)(u− t2l+2)

(t2l+1 − t2l)(t2l+1 − t2l+2)
f(t2l+1, y(t2l+1))

+
(u− t2l)(u− t2l+1)

(t2l+2 − t2l)(t2l+2 − t2l+1)
f(t2l+2, y(t2l+2)), (5.4.7)

and

f(u, y(u))− P2(u) = R
(1)
l ,

where

R
(1)
l =

f ′′′(cl, y(cl))

3!
(u− t2l)(u− t2l+1)(u− t2l+2), t2l ≤ cl ≤ t2l+2.

Similarly, we will replace f(u + h, f(u + h)) in the integral
∫ t2j

0
(t2j − u)α−1f(u +

h, y(u+ h)) du in (5.4.6) by the following piecewise quadratic polynomial Q2(u), for t2l ≤

u ≤ t2l+2, l = 0, 1, 2, . . . , j − 1, j = 1, 2, . . . ,M − 1, where

Q2(u) =
(u− t2l+1)(u− t2l+2)

(t2l − t2l+1)(t2l − t2l+2)
f(t2l+1, y(t2l+1))

+
(u− t2l)(u− t2l+2)

(t2l+1 − t2l)(t2l+1 − t2l+2)
f(t2l+2, y(t2l+2))

+
(u− t2l)(u− t2l+1)

(t2l+2 − t2l)(t2l+2 − t2l+1)
f(t2l+3, y(t2l+3)), (5.4.8)

and

f(u+ h, y(u+ h))−Q2(u) = R
(2)
l ,

where

R
(2)
l =

f ′′′(dl, y(dl))

3!
(u− t2l)(u− t2l+1)(u− t2l+2), t2l ≤ dl ≤ t2l+2.

We then have, with 0 < α ≤ 2, see [93],∫ t2j

0

(t2j − u)α−1P2(u) du =

2j∑
k=0

ck,2jf(tk, y(tk)),

and ∫ t2j

0

(t2j − u)α−1Q2(u) du =

2j∑
k=0

ck,2jf(tk+1, y(tk+1)),
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where

ck,2j =
hα

α(α + 1)(α + 2)



1
2
F0(0), if k = 0,

1
2
F0(l) + 1

2
F2(l − 1), if k = 2l, l = 1, 2, . . . , j − 1,

−F1(l), if k = 2l + 1, l = 0, 1, 2, . . . , j − 1,

1
2
F2(j − 1), if k = 2j,

and

F0(l) = α(α + 1)
(

(2j − 2l)α+2 − (2j − 2l − 2)α+2
)

+ α(α + 2)
(

2(2j)− (2l + 1)− (2l + 2)
)(

(2j − 2l − 2)α+1 − (2j − 2l)α+1
)

+ (α + 1)(α + 2)
(

(2j − 2l − 1)(2j − 2l − 2)
)(

(2j − 2l)α − (2j − 2l − 2)α
)
,

F1(l) = α(α + 1)
(

(2j − 2l)α+2 − (2j − 2l − 2)α+2
)

+ α(α + 2)
(

2(2j)− (2l)− (2l + 2)
)(

(2j − 2l − 2)α+1 − (2j − 2l)α+1
)

+ (α + 1)(α + 2)
(

(2j − 2l)(2j − 2l − 2)
)(

(2j − 2l)α − (2j − 2l − 2)α
)
,

F2(l) = α(α + 1)
(

(2j − 2l)α+2 − (2j − 2l − 2)α+2
)

+ α(α + 2)
(

2(2j)− (2l)− (2l + 1)
)(

(2j − 2l − 2)α+1 − (2j − 2l)α+1
)

+ (α + 1)(α + 2)
(

(2j − 2l)(2j − 2l − 1)
)(

(2j − 2l)α − (2j − 2l − 2)α
)
.

Let yl ≈ y(tl) denote the approximate solutions of y(tl), l = 0, 1, 2, . . . , 2M . We now

define a fractional Adams numerical method for solving (5.2.4)-(5.2.5). The corrector

formula is defined by, with j = 1, 2, . . . ,M,

y2j = y0 + y
(1)
0

t2j
1!

+
1

Γ(α)

( 2j−1∑
k=0

ck,2jf(tk, yk) + c2j,2jf(t2j, y
P
2j)
)
, (5.4.9)

and, with j = 0, 1, 2, . . . ,M − 1,

y2j+1 = y0 + y
(1)
0

t2j+1

1!
+

1

Γ(α)

∫ t1

0

(t2j+1 − u)α−1f(u, y(u)) du

+
1

Γ(α)

( 2j−1∑
k=0

ck,2jf(tk+1, yk+1) + c2j+1,2j+1f(t2j+1, y
P
2j+1)

)
, (5.4.10)

The remaining problem is the determination of the predictor formula required to calcu-

late yP2j and yP2j+1. The idea is the same as the one described above: we replace f(u, y(u))
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and f(u + h, y(u + h)) of the integrals on the right-hand sides of equations (5.4.5) and

(5.4.6), respectively, by the piecewise linear interpolation polynomials and obtain, with

j = 1, 2, . . . ,M,

yP2j = y0 + y
(1)
0

t2j
1!

+
1

Γ(α)

( 2j−1∑
k=0

ak,2jf(tk, yk) + a2j,2jf(t2j, y
PP
2j )
)
, (5.4.11)

and, with j = 0, 1, 2, . . . ,M − 1,

yP2j+1 = y0 + y
(1)
0

t2j+1

1!
+

1

Γ(α)

( 2j∑
k=0

ak,2j+1f(tk, yk) +a2j+1,2j+1f(t2j+1, y
PP
2j+1)

)
, (5.4.12)

where the weights [28]

ak,n+1 =
hα

α(α + 1)


nα+1 − (n− α)(n+ 1)α, if k = 0,

(n− k + 2)α+1 + (n− k)α+1 − 2(n− k + 1)α+1 if 1 ≤ k ≤ n,

1, if k = n+ 1.

Similarly, to calculate yPPk , we replace f(u, y(u)) and f(u+h, y(u+h)) in the integrals

in (5.4.5) and (5.4.6), respectively by the piecewise constants and obtain

yPP2j = y0 + y
(1)
0

t2j
1!

+
1

Γ(α)

2j−1∑
k=0

bk,2jf(tk, yk), j = 1, 2, . . . ,M, (5.4.13)

and

yPP2j+1 = y0 + y
(1)
0

t2j+1

1!
+

1

Γ(α)

2j∑
k=0

bk,2j+1f(tk, yk), j = 1, 2, . . . ,M − 1, (5.4.14)

where the weights [28]

bk,n+1 =
hα

α

(
(n+ 1− k)α − (n− k)α

)
. (5.4.15)

Our basic fractional Adams method, is completely described now by equations (5.4.9)

- (5.4.14). Assume that the starting value y1 and the starting integral
∫ t1

0
(t2j+1 −

u)−1−αf(u, y(u)) du in (5.4.10) can be approximate by using some numerical methods

and satisfy the required accuracy, Yan, Pal and Ford [93] proved the error estimates for

yl − y(tl), l = 1, 2, . . . , 2M .
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5.4.2 Approximating the starting values and the starting integrals

In this subsection we shall consider how to approximate the starting value y1 and the

initial integral
∫ t1

0
(t2j+1 − u)−1−αy(u) du in (5.4.10). We will follow the idea in Cao and

Xu [9].

At t = t1, we have

y(t1) = y0 + y
(1)
0

t1
1!

+
1

Γ(α)

∫ t1

0

(t1 − u)α−1f(u, y(u)) du.

Approximating g(u) = f(u, y(u)) on [0, t1] by the following quadratic interpolation poly-

nomial

P2(u) =
(u− t 1

2
)(u− t1)

(t0 − t 1
2
)(t0 − t1)

f(0, y(0)) +
(u− t0)(u− t1)

(t 1
2
− t0)(t 1

2
− t1)

f(t 1
2
, y(t 1

2
))

+
(u− t0)(u− t 1

2
)

(t1 − t0)(t1 − t 1
2
)
f(t1, y(t1)) for u ∈ [t0, t1],

where

f(u, y(u))− P2(u) = R
(1)
1 (u) =

f ′′′(c1)

3!
(u− 0)(u− t 1

2
)(u− t1), c1 ∈ (0, t1).

Further we approximate the value f(t 1
2
, y(t 1

2
)) by

f(t 1
2
, y(t 1

2
)) ≈ 3

8
f(t0, y(t0)) +

3

4
f(t1, y(t1))− 1

8
f(t2, y(t2)),

where

f(t 1
2
, y(t 1

2
))−

(3

8
f(t0, y(t0)) +

3

4
f(t1, y(t1))− 1

8
f(t2, y(t2))

)
= R

(2)
1 (u),

and R
(2)
1 (u) = 1

16
f ′′′(c2)h3, c2 ∈ (0, t2).

We then obtain

y(t1) = y0 + y
(1)
0

t1
1!

+
1

Γ(α)

∫ t1

0

(t1 − u)α−1f(u, y(u)) du

= y0 + y
(1)
0

t1
1!

+
1

Γ(α)

( 2∑
i=0

B̂if(ti, y(ti))

+

∫ t1

0

(t1 − u)α−1R
(1)
1 (u) du+

∫ t1

0

(t1 − u)α−1R
(2)
1 (u) du, (5.4.16)
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where

B̂0 =

∫ t1

0

(t1 − u)α−1
(u− t 1

2
)(u− t1)

(t0 − t 1
2
)(t0 − t1)

du+
3

8

∫ t1

0

(t1 − u)α−1 (u− t0)(u− t1)

(t 1
2
− t0)(t 1

2
− t1)

du,

B̂1 =
3

4

∫ t1

0

(t1 − u)α−1 (u− t0)(u− t1)

(t 1
2
− t0)(t 1

2
− t1)

du+

∫ t1

0

(t1 − u)α−1 (u− t0)(u− t1)

(t1 − t0)(t1 − t 1
2
)
du,

B̂2 = −1

8

∫ t1

0

(t1 − u)α−1 (u− t0)(u− t1)

(t 1
2
− t0)(t 1

2
− t1)

du.

Let yl ≈ y(tl), l = 0, 1, 2, denote the approximations of y(tl) and we define the following

numerical method for y1.

y1 = y0 + y
(1)
0

t1
1!

+
1

Γ(α)

2∑
i=0

B̂if(ti, yi). (5.4.17)

At t = t2, we have

y(t2) = y0 + y
(1)
0

t2
1!

+
1

Γ(α)

∫ t2

0

(t2 − u)α−1f(u, y(u)) du.

Approximating g(u) = f(u, y(u)) on [0, t2] by the following quadratic interpolation poly-

nomial

P2(u) =
(u− t1)(u− t2)

(t0 − t1)(t0 − t2)
f(0, y(0)) +

(u− t0)(u− t2)

(t1 − t0)(t1 − t2)
f(t1, y(t1))

+
(u− t0)(u− t1)

(t2 − t0)(t2 − t1)
f(t2, y(t2)), for u ∈ [t0, t2],

where

f(u, y(u))− P2(u) = R
(1)
2 (u) =

f ′′′(c3)

3!
(u− t0)(u− t1)(u− t2), c3 ∈ (t0, t2).

We obtain

y(t2) = y0 + y
(1)
0

t2
1!

+
1

Γ(α)

∫ t2

0

(t2 − u)α−1f(u, y(u)) du

= y0 + y
(1)
0

t2
1!

+
1

Γ(α)

( 2∑
i=0

B̃if(ti, y(ti)) +

∫ t2

0

(t2 − u)α−1R
(1)
2 (u) du

)
, (5.4.18)

where

B̃0 =

∫ t2

0

(t2 − u)α−1 (u− t1)(u− t2)

(t0 − t1)(t0 − t2)
du,

B̃1 =

∫ t2

0

(t2 − u)α−1 (u− t0)(u− t2)

(t1 − t0)(t1 − t2)
du,

B̃2 =

∫ t2

0

(t2 − u)α−1 (u− t0)(u− t1)

(t2 − t0)(t2 − t1)
du.
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We then define the following numerical method for y2.

y2 = y0 + y
(1)
0

t2
1!

+
1

Γ(α)

(
B̃0f(t0, y0) + B̃1f(t1, y1) + B̃2f(t2, y2)

)
, (5.4.19)

Similarly, we can approximate the starting integral
∫ t1

0
(t2j+1 − u)α−1f(u, y(u)) du in

(5.4.10) by using the same idea as in (5.4.16) and obtain

∫ t1

0

(t2j+1 − u)α−1f(u, y(u)) du

=
(
B̂0,jf(t0, y0) + B̂1,jf(t1, y1) + B̂2,jf(t2, y2)

)
+

∫ t1

0

(t2j+1 − u)α−1R
(1)
1 (u) du+

∫ t1

0

(t2j+1 − u)α−1R
(2)
1 (u) du,

(5.4.20)

where

B̂0,j =

∫ t1

0

(t2j+1 − u)α−1
(u− t 1

2
)(u− t1)

(t0 − t 1
2
)(t0 − t1)

du+
3

8

∫ t1

0

(t2j+1 − u)α−1 (u− t0)(u− t1)

(t 1
2
− t0)(t 1

2
− t1)

du,

B̂1,j =
3

4

∫ t1

0

(t2j+1 − u)α−1 (u− t0)(u− t1)

(t 1
2
− t0)(t 1

2
− t1)

du+

∫ t1

0

(t2j+1 − u)α−1 (u− t0)(u− t1)

(t1 − t0)(t1 − t 1
2
)
du,

B̂2,j = −1

8

∫ t1

0

(t2j+1 − u)α−1 (u− t0)(u− t1)

(t 1
2
− t0)(t 1

2
− t1)

du.

We now introduce the following corrector fractional Adams method.

y1 = y0 + y
(1)
0

t1
1!

+
1

Γ(α)

(
B̂0f(t0, y0) + B̂1f(t1, y1) + B̂2f(t2, y2)

)
, (5.4.21)

y2 = y0 + y
(1)
0

t2
1!

+
1

Γ(α)

(
B̃0f(t0, y0) + B̃1f(t1, y1) + B̃2f(t2, y2)

)
, (5.4.22)

and, with j = 1, 2, . . . ,M ,

y2j = y0 + y
(1)
0

t2j
1!

+
1

Γ(α)

( 2j−1∑
k=0

ck,2jf(tk, yk) + c2j,2jf(t2j, y
P
2j)
)
, (5.4.23)

and, with j = 0, 1, 2, . . . ,M − 1,

y2j+1 = y0 + y
(1)
0

t2j+1

1!
+

1

Γ(α)

(
B̂0,jf(t0, y0) + B̂1,jf(t1, y1) + B̂2,jf(t2, y2)

)
+

1

Γ(α)

( 2j−1∑
k=0

ck,2jf(tk+1, yk+1) + c2j,2jf(t2j+1, y
P
2j+1)

)
, (5.4.24)
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where the predictor terms yP2j and yP2j+1 can be obtained by (5.4.11) and (5.4.12). We

then have the following error estimates.

Theorem 5.4.1. Let 0 < α ≤ 2 and assume that C
0 D

α
t y ∈ C3[0, T ] for some suitable T .

Let y(tk) and yk, k = 0, 1, 2, . . . , 2M, t2M = T be the solutions of (5.4.1) and (5.4.21) -

(5.4.24). Then, for sufficiently small h, there exists a positive constant C0 > 0 such that

max
0≤k≤2M

|y(tk)− yk| ≤

 C0h
1+2α, if 0 < α ≤ 1,

C0h
3, if 1 < α ≤ 2.

5.5 Numerical simulations

5.5.1 The linear fractional differential equation

In this section we will consider two examples for solving the linear differential equation

(5.2.6)-(5.2.7) by using the algorithm (5.3.11)-(5.3.12). Theorem 5.3.2 shows that the

approximate solution y2M has the asymptotic expansion

y(t2M)− y2M =
m+1∑
µ=3

cµh
µ−α +

µ∗∑
µ=2

c∗µh
2µ + o(hm+1−α), as h→ 0,

where µ∗ is the integer satisfying 2µ∗ < m+ 1− α < 2(µ∗ + 1), and cµ and c∗µ are certain

coefficients that depend on y.

Let A = y(t2M), t2M = 1 and assume that A0(h) = y2M is the approximate solution of

A with stepsize h. We then have by Theorem 5.3.2, with 0 < α < 1,

A = A0(h) + a1h
λ1 + a2h

λ2 + a3h
λ3 + . . . , (5.5.1)

where λ1 = 3− α, λ2 = 4− α, λ3 = 4, λ4 = 5− α, . . . . It is obvious that the convergence

order of A0(h) is λ1, that is

|A− A0(h)| = O(hλ1).

Let A0(h/2) denote the approximate solution of A with stepsize h/2. Then we have

A = A0(h/2) + a1(h/2)λ1 + a2(h/2)λ2 + a3(h/2)λ3 + . . . . (5.5.2)

Multiplying 2λ1 in both sides of (5.5.2), we have

2λ1A = 2λ1A0(h/2) + 2λ1a1(h/2)λ1 + 2λ1a2(h/2)λ2 + 2λ1a3(h/2)λ3 + . . . . (5.5.3)
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Subtracting (5.5.3) from (5.5.2), we get

A = A1(h) + b1h
λ2 + b2h

λ3 + b3h
λ4 + . . . ,

where

A1(h) =
2λ1A0(h/2)− A0(h/2)

2λ1 − 1
,

which implies that A1(h) is an approximation of A with the convergence order O(hλ2),

that is

|A− A1(h)| = O(hλ2).

Continuing these processes, we obtain the high order approximations A2(h), A3(h), . . .

of A. In Table 5.5.1, we proceed by setting up a triangle array ( a so-called Romberg

tableau) of approximate values for A.

A0(h)

A0(h/2) A1(h)

A0(h/22) A1(h/2) A2(h)

A0(h/23) A1(h/22) A2(h/2) A3(h)
...

...
...

... . . .

Table 5.5.1: Romberg tableau of approximate solutions

The convergence order of the approximate solution Ak(h) is λk+1, k = 1, 2, . . . . To

obtain the experimentally determined order of convergence (“EOC”) we will calculate the

following ratios

|A− Ak(h/2l)|
|A− Ak(h/2l+1)|

=
O((h/2l)λk+1)

O((h/2l+1)λk+1)
≈ 2λk+1 , k = 0, 1, 2, . . . , l = 0, 1, 2, . . . ,

which implies that

λk+1 ≈ log2

( |A− Ak(h/2l)|
|A− Ak(h/2l+1)|

)
, k = 0, 1, 2, . . . . (5.5.4)

Example 10. Consider, [26]

C
0 D

α
t y(t) + y(t) = t3 +

3!

Γ(4− α)
t3−α, t ∈ [0, 1], (5.5.5)

y(0) = 0, (5.5.6)
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whose exact solution is given by y(t) = t3.

Choose the stepsize h = 1/10. In Table 5.5.2, we display the errors of the algorithms

(5.3.11)-(5.3.12) at t = 1 and of the first two extrapolation steps in the Romberg tableau

with α = 0.3. In Table 5.5.3, we display the experimentally determined orders of con-

vergence (“EOC ”) at t = 1. We observe that the first column (the errors of the basic

algorithm without extrapolation) converges as h3−α. The second column (errors using

one extrapolation step)converges as h4−α, and the last column (two extrapolation steps)

converges as h4. In Tables 5.5.4-5.5.5, we display the errors and the experimentally deter-

mined order of convergence (“EOC ”) with α = 0.5. In Tables 5.5.6-5.5.7, we display the

errors and the experimentally determined order of convergence (“EOC ”) with α = 0.9.

In all cases of α under consideration, we observe that the first column converges as h3−α.

The second column converges as h4−α and the last column converges as h4.

Step size Error of the method 1st extra. error 2nd extra. error

1/10 3.3237e-004

1/20 5.1939e-005 9.3242e-007

1/40 8.0506e-006 6.8029e-008 4.0268e-009

1/80 1.2432e-006 5.0402e-009 2.1066e-010

1/160 1.9164e-007 3.7765e-010 1.1023e-011

1/320 2.9516e-008 2.8511e-011 5.9381e-013

Table 5.5.2: Errors for equations (5.5.5)-(5.5.6) with α = 0.3, taken at t = 1.

Step size The method 1st extrapolation 2nd extrapolation

1/10

1/20 2.68

1/40 2.69 3.78

1/80 2.70 3.75 4.26

1/160 2.70 3.74 4.26

1/320 2.70 3.73 4.21

Table 5.5.3: Orders (“EOC ”) for equations (5.5.5)-(5.5.6) with α = 0.3, taken at t = 1.
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Step size Error of the method 1st extra. error 2nd extra. error

1/10 1.1296e-003

1/20 2.0412e-004 5.3779e-006

1/40 3.6454e-005 4.5025e-007 2.7527e-008

1/80 6.4759e-006 3.8539e-008 1.3800e-009

1/160 1.1475e-006 3.3431e-009 6.9354e-011

1/320 2.0310e-007 2.9225e-010 3.5604e-012

Table 5.5.4: Errors for equations (5.5.5)-(5.5.6) with α = 0.5, taken at t = 1.

Step size The method 1st extrapolation 2nd extrapolation

1/10

1/20 2.46

1/40 2.49 3.58

1/80 2.49 3.55 4.32

1/160 2.5 3.53 4.31

1/320 2.5 3.52 4.28

Table 5.5.5: Orders (“EOC ”) for equations (5.5.5)-(5.5.6) with α = 0.5, taken at t = 1.

Step size Error of the method 1st extra. error 2nd extra. error

1/10 7.6048e-003

1/20 1.8568e-003 1.0809e-004

1/40 4.4205e-004 1.1665e-005 1.0659e-006

1/80 1.0412e-004 1.3139e-006 5.2739e-008

1/160 2.4402e-005 1.5070e-007 2.8748e-009

1/320 5.7054e-006 1.7432e-008 1.6257e-010

Table 5.5.6: Errors for equations (5.5.5)-(5.5.6) with α = 0.9, taken at t = 1.

Example 11. Consider, [33]

C
0 D

α
t y(t) + y(t) = t4 − 1

2
t3 − 3!

Γ(4− α)
t3−α +

24

Γ(5− α)
t4−α, t ∈ [0, 1], (5.5.7)

y(0) = 0, (5.5.8)
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Step size The method 1st extrapolation 2nd extrapolation

1/10

1/20 2.03

1/40 2.07 3.21

1/80 2.09 3.15 4.34

1/160 2.09 3.12 4.20

1/320 2.10 3.11 4.14

Table 5.5.7: Orders (“EOC ”) for equations (5.5.5)-(5.5.6) with α = 0.9, taken at t = 1.

whose exact solution is given by y(t) = t4 − 1
2
t3.

Choose the stepsize h = 1/10. In Tables 5.5.8 - 5.5.13, we display the errors of the

algorithms (5.3.11)-(5.3.12) at t = 1 and of the first two extrapolation steps in the Romberg

tableau with α = 0.3, 0.5, 0.9. In all cases of α under consideration, we observe that the

first column converges as h3−α. The second column converges as h4−α and the last column

converges as h4. We observe that when α is close to 1, the convergence seems to be even

a bit faster. But when α is close to 0, the convergence is a bit slower than expected.

Step size Error of the method 1st extra. error 2nd extra. error

1/10 1.4571e-004

1/20 2.3118e-005 8.2097e-007

1/40 3.6127e-006 6.5021e-008 2.0039e-009

1/80 5.6030e-007 5.1186e-009 1.2514e-010

1/160 8.6565e-008 4.0106e-010 7.8051e-012

1/320 1.3348e-008 3.1315e-011 4.9268e-013

Table 5.5.8: Errors for equations (5.5.7)-(5.5.8) with α = 0.3, taken at t = 1.



95

Step size The method 1st extrapolation 2nd extrapolation

1/10

1/20 2.66

1/40 2.68 3.66

1/80 2.69 3.67 4.00

1/160 2.70 3.67 4.00

1/320 2.70 3.68 3.98

Table 5.5.9: Orders (“EOC ”) for equations (5.5.7)-(5.5.8) with α = 0.3, taken at t = 1.

Step size Error of the method 1st extra. error 2nd extra. error

1/10 5.0921e-004

1/20 9.2881e-005 3.4801e-006

1/40 1.6676e-005 3.1186e-007 4.6709e-009

1/80 2.9708e-006 2.7831e-008 2.9143e-010

1/160 5.2721e-007 2.4764e-009 1.8053e-011

1/320 9.3380e-008 2.1991e-010 1.1328e-012

Table 5.5.10: Errors for equations (5.5.7)-(5.5.8) with α = 0.5, taken at t = 1.

Step size The method 1st extrapolation 2nd extrapolation

1/10

1/20 2.45

1/40 2.48 3.48

1/80 2.49 3.49 4.00

1/160 2.50 3.49 4.01

1/320 2.50 3.50 3.99

Table 5.5.11: Orders (“EOC ”) for equations (5.5.7)-(5.5.8) with α = 0.5, taken at t = 1.

5.5.2 The nonlinear fractional differential equation

In this subsection we will consider one example for solving (5.2.4)-(5.2.5) by using the

algorithm (5.4.9)-(5.4.14). We will numerically check that, with 1 < α ≤ 2,

y(t2M)− y2M = a1h
λ1 + a2h

λ2 + a3h
λ3 + . . . ,
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Step size Error of the method 1st extra. error 2nd extra. error

1/10 3.5534e-003

1/20 8.5873e-004 3.8951e-005

1/40 2.0381e-004 4.5703e-006 3.1078e-008

1/80 4.7950e-005 5.3459e-007 1.7728e-009

1/160 1.1233e-005 6.2442e-008 1.0563e-010

1/320 2.6257e-006 7.2882e-009 6.3909e-012

Table 5.5.12: Errors for equations (5.5.7)-(5.5.8) with α = 0.9, taken at t = 1.

Step size The method 1st extrapolation 2nd extrapolation

1/10

1/20 2.05

1/40 2.08 3.09

1/80 2.09 3.10 4.13

1/160 2.10 3.10 4.07

1/320 2.10 3.10 4.05

Table 5.5.13: Orders (“EOC ”) for equations (5.5.7)-(5.5.8) with α = 0.9, taken at t = 1.

where λ1 = 2 + α, λ2 = 4, λ3 = 3 + α, . . . .

Example 12. Consider, with 1 < α ≤ 2, [28]

C
0 D

α
t y(t) =

40320

Γ(9− α)
t8−α−3

Γ(5 + α/2)

Γ(5− α/2)
t4−α/2+

9

4
Γ(α+1)+

(3

2
tα/2−t4

)3

−[y(t)]3/2. (5.5.9)

The initial conditions were chosen to be homogeneous, i.e., y(0) = 0, y′(0) = 0. This

equation has been chosen because it exhibits a difficult (nonlinear and nonsmooth) right-

hand side, and yet we are able to find its exact solution, thus allowing us to compare the

numerical results for this nontrivial case to the exact results. Indeed, the exact solution

of this initial value problem is

y(t) = t8 − 3t4+α/2 +
9

4
tα,

Choose the stepsize h = 1/10. In Tables 5.5.14-5.5.19, we display the errors of the

algorithms (5.4.9) -(5.4.14) at t = 1 and of the first two extrapolation steps in the Romberg
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tableau with α = 1.3, 1.5, 1.9. In all cases of α under consideration, we observe that the

first column converges as h2+α. The second column converges as h4 and the last column

converges as h3+α. We also observe that when α is close to 2, the convergence seems to be

even a bit faster. But when α is close to 1, the convergence is a bit slower than expected.

Step size Error of the method 1st extra. error 2nd extra. error 3rd extra error

1/10 7.1066e-004

1/20 6.8623e-005 3.9303e-006

1/40 5.6000e-006 1.5219e-006 1.3613e-006

1/80 4.3070e-007 1.5346e-007 6.2236e-008 7.2391e-009

1/160 3.2640e-008 1.2343e-008 2.9345e-009 2.3700e-010

1/320 2.5021e-009 9.0367e-010 1.4107e-010 8.3232e-012

Table 5.5.14: Errors for equation (5.5.9) with α = 1.3, taken at t = 1.

Step size The method 1st extrapolation 2nd extrapolation 3rd extrapolation

1/10

1/20 3.37

1/40 3.62 1.39

1/80 3.70 3.31 4.45

1/160 3.72 3.64 4.41 4.93

1/320 3.71 3.77 4.38 4.83

Table 5.5.15: Orders (“EOC ”) for equation (5.5.9) with α = 1.3, taken at t = 1.
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Step size Error of the method 1st extra. error 2nd extra. error 3rd extra error

1/10 1.3107e-003

1/20 1.0256e-004 1.4581e-005

1/40 7.2525e-006 1.9886e-006 1.1491e-006

1/80 4.9046e-007 1.6518e-007 4.3614e-008 7.5021e-009

1/160 3.2450e-008 1.1957e-008 1.7426e-009 1.9344e-010

1/320 2.1236e-009 8.1682e-010 7.4128e-011 3.0170e-012

Table 5.5.16: Errors for equation (5.5.9) with α = 1.5, taken at t = 1.

Step size The method 1st extrapolation 2nd extrapolation 3rd extrapolation

1/10

1/20 3.68

1/40 3.82 2.87

1/80 3.89 3.59 4.72

1/160 3.92 3.79 4.65 5.28

1/320 3.93 3.87 4.56 6.00

Table 5.5.17: Orders (“EOC ”) for equation (5.5.9) with α = 1.5, taken at t = 1.

Step size Error of the method 1st extra. error 2nd extra. error 3rd extra error

1/10 1.9057e-003

1/20 1.2585e-004 1.9355e-006

1/40 8.0391e-006 4.1927e-007 3.1819e-007

1/80 5.0764e-007 3.3082e-008 7.3362e-009 3.4360e-009

1/160 3.1910e-008 2.2452e-009 1.8944e-010 5.8225e-011

1/320 2.0046e-009 1.4248e-010 2.2910e-012 4.1943e-012

Table 5.5.18: Errors for equation (5.5.9) with α = 1.9, taken at t = 1.
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Step size The method 1st extrapolation 2nd extrapolation 3rd extrapolation

1/10

1/20 3.92

1/40 3.97 2.21

1/80 3.99 3.66 5.44

1/160 3.99 3.88 5.28 5.88

1/320 3.99 3.98 6.36 3.80

Table 5.5.19: Orders (“EOC ”) for equation (5.5.9) with α = 1.9, taken at t = 1.



Chapter 6

Finite difference method (FDM) for

space-fractional PDEs

6.1 Introduction

Space fractional derivatives are used to model anomalous diffusion or dispersion, a phe-

nomenon observed in many problems, where particles spread faster than the classical

models predict. When a fractional derivative replaces the second derivative in a diffusion

or dispersion model, it leads to enhanced diffusion (also called superdiffusion), see Meer-

schaert and Tadjeran [66]. Space-fractional diffusion equations have been investigated

by West and Seshadri [91] and Gorenflo and Mainardi [48] and Gorenflo [47] . A linear

interpolation polynomial was used to approximate the Hadamard integral generated by

fractional derivative and the rate of the convergence of the proposed numerical method

is O(h2−α) [26].

In this chapter we will discuss a finite difference method for solving space-fractional

partial differential equation. The space-fractional derivatives are the left-handed and

right-handed Riemann-Liouville fractional derivatives which can be expressed by using

the Hadamard finite-part integrals.

We will examine the stability, consistency and convergence of the proposed finite dif-

ference method. The Hadamard finite-part integrals are approximated by using piecewise

quadratic interpolation polynomials and a numerical approximation scheme of the space-

fractional derivative with convergence order O(∆x3−α) (1 < α < 2) is obtained. A shifted

100
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implicit finite difference method is introduced for solving two-sided space-fractional partial

differential equations and we prove that the order of convergence of the finite difference

method is O(∆t + ∆xmin(3−α,β)), 1 < α < 2, β > 0, where ∆t,∆x denote the time and

space stepsizes, respectively, and β is related to the smoothness of the exact solution u.

6.2 Brief reviews of FDM for solving space-fractional

PDEs

Consider the following two-sided space-fractional partial differential equation, with 1 <

α < 2, t > 0,

ut(t, x) = C+(t, x) R0 D
α
xu(t, x),+C−(t, x) RxD

α
1 u(t, x) + f(t, x), 0 < x < 1, (6.2.1)

u(t, 0) = ϕ1(t), u(t, 1) = ϕ2(t), (6.2.2)

u(0, x) = u0(x), 0 < x < 1. (6.2.3)

Here the function f(t, x) is a source/sink term. The functions C+(t, x) ≥ 0 and C−(t, x) ≥

0 may be interpreted as transport related coefficients. The addition of a classical advective

term −ν(t, x)∂u(t,x)
∂x

in (6.2.1) does not impact the analysis performed in this chapter,

and has been omitted to simplify the notation. The left-handed fractional derivative

R
0 D

α
xf(x) and right-handed fractional derivative R

xD
α
1 f(x) in (6.2.1) are Riemann-Liouville

fractional derivatives of order α defined by, with 1 < α < 2,

R
0 D

α
xf(x) =

1

Γ(2− α)

d2

dx2

∫ x

0

(x− ξ)1−αf(ξ) dξ, (6.2.4)

and

R
xD

α
1 f(x) =

1

Γ(2− α)

d2

dx2

∫ 1

x

(ξ − x)1−αf(ξ) dξ. (6.2.5)

There are several ways to approximate the Riemann- Liouville fractional derivative.

Let 0 = x0 < x1 < · · · < xj < · · · < xM = 1 be a partition of [0, 1] and ∆x the stepsize.

Based on the definition of the Grünwald-Letnikov derivative, one can approximate the

left-handed and right-handed Riemann-Liouville fractional derivatives by see [66])

R
0 D

α
xf(xj) = ∆x−α

j∑
k=0

w
(α)
k f(xj−k) +O(∆x), (6.2.6)
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and

R
xD

α
1 f(xj) = ∆x−α

M−j∑
k=0

w
(α)
k f(xj+k) +O(∆x), (6.2.7)

where w
(α)
k are some weights and the order of convergence in (6.2.6) or (6.2.7) is O(∆x)

for any α > 0. Meerschaert and Tadjeran [64] proposed finite difference approximations

for fractional advection-dispersion flow equations. They used the Grünwald method to

approximate the space-fractional derivative and proved that the standard finite difference

method is unconditionally unstable, but the shifted finite difference method is uncondi-

tionally stable.

Lubich [53] obtained approximations of order 2 - 6 in the form of (6.2.6), where the

coefficients w
(α)
k are just the coefficients of the Taylor series expansions of some generating

functions w
(α)
l (z), l = 2, 3, 4, 5, 6. The L2 scheme and its modification L2C scheme are

introduced in Oldham and Spanier [72], Lynch, et al. [62] as follows. Note that, with

1 < α < 2,

R
0 D

α
xf(xj) =

f(x0)(xj − x0)−α

Γ(1− α)
+
f ′(x0)(xj − x0)1−α

Γ(2− α)

+
1

2− α

j−1∑
l=0

∫ xl+1

xl

s1−αf ′′(xj − s) ds.

On each interval [xl, xl+1], f ′′(xj − s) is approximated by
f(xj−xl)−2f(xj−xl+1)+f(xj−xl+2)

∆x2
,

then the so-called L2 scheme is obtained and the convergence order is O(∆x). Similarly,

one can obtain L2C scheme. Diethelm [25, 26] expressed the Riemann-Liouville fractional

derivative into the equivalent Hadamard finite-part integral and then approximated the

Hadamard finite-part integral by piecewise linear interpolation polynomials to obtain an

approximation scheme to the fractional derivative for 0 < α < 1. More precisely, Diethelm

[26] obtained, with 0 < α < 1,

R
0 D

α
xf(xj) =

1

Γ(1− α)

d

dx

∫ xj

0

(xj − ξ)−α dξ =
1

Γ(−α)

∮ xj

0

(xj − ξ)−α−1f(ξ) dξ

= ∆x−α
j∑

k=0

wk,jf(xj−k) +O(∆x2−α),

where
∮ xj

0
denotes the Hadamard finite-part integral and wk,j are some weights.

Odibat [70, 71] introduced a computational algorithm for approximating the Caputo

fractional derivative and the convergence order is O(∆x2), see also Sousa [84]. The idea
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is as follows. Note that, with 1 < α < 2,

C
0 D

α
xf(xj) =

1

Γ(2− α)

∫ xj

0

(xj − ξ)1−αf ′′(ξ) dξ

=
1

Γ(2− α)

j−1∑
l=0

∫ xl+1

xl

(xj − ξ)1−αf ′′(ξ) dξ.

On each subinterval [xl, xl+1], one approximates the integral by using the linear interpo-

lation polynomial P1(ξ) = ξ−xl+1

xl−xl+1
f ′′(xl) + ξ−xl

xl+1−xl
f ′′(xl+1) and obtains, with some weights

w̄k,j, k = 0, 1, 2, . . . , j,

C
0 D

α
xf(xj) ≈

1

Γ(2− α)

j−1∑
l=0

∫ xl+1

xl

(xj − ξ)1−αP1(ξ) dξ = ∆x2−α
j∑

k=0

w̄k,jf
′′(xk).

Further, Odibat [70] approximated f ′′(xk) by f(xk+1)−2f(xk)+f(xk−1)

∆x2
and obtained a second

order approximation scheme to C
0 D

α
xf(xj). More recently, Dimitrov [34] obtained a second

and third order approximations for the Grünwald and shifted Grünwald formulae with

weighted averages of Caputo derivatives.

Let us review some numerical methods for solving space-fractional partial differen-

tial equations. There are many different numerical methods for solving space-fractional

partial differential equations in literature: Choi at al. [12] applied the backward Euler fi-

nite difference method with the right-shifted Grünward formula for the Riemann-Liouville

space fractional derivative term and proved the existence using Leray-Schauder fixed point

theorem and finally the convergence order O(∆x + ∆t) are considered. By using shifted

Grünwald-Letnikov formulae (6.2.6) and (6.2.7), Meerschaert and Tadjeran [66] intro-

duced a finite difference method for solving two-sided space-fractional partial differential

equations (6.2.1)- (6.2.3) and proved that the convergence order of spatial discretization is

O(∆x). Meerschaert and Tadjeran (2004) [64] also considered the finite difference method

for solving the 1D fractional advection-dispersion equation, with 1 < α < 2,

∂u(t, x)

∂t
= −ν(x)

∂u(t, x)

∂x
+ d(x)

∂αu(t, x)

∂xα
+ f(t, x),

by using the shifted Grünwald-Letnikov formula on a finite domain and they proved that

the convergence order of spatial discretization is O(∆x). Tadjeran, Meerschaert and

Scheffler [88] and Tadjeran and Meerschaert [89] applied the shifted Grünwald-Letnikov

formula and extrapolation techniques to fractional diffusion equations in 1D and 2D and
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obtained a second-order accurate finite difference method. Liu et al. [61] transformed

the fractional advection-dispersion equation into a system of ordinary differential equa-

tions, which was then solved using backward difference formulae. Chen and Liu [11]

used a technique combining the alternating direction implicit-Euler method with Richard-

son extrapolation to establish an unconditionally stable second-order accuracy difference

method to approximate a 2D fractional advection-dispersion equation with variable co-

efficients on a finite domain. Podlubny et al. [77] developed a matrix approach to dis-

cretize fractional diffusion equations with various combinations of time-space-fractional

derivatives. Shen et al. [79, 80] presented explicit and implicit difference approxima-

tions for the Riesz fractional advection-dispersion equations and the space-time Riesz-

Caputo fractional advection-dispersion equations. Shen et al. [81] considered a novel

numerical approximation for the space fractional advection-dispersion equation. See also

[2, 13, 60, 65, 82, 83, 85, 94, 86].

There are other numerical methods for solving space-fractional partial differential

equations: the finite element methods, see [20, 21, 38, 39, 37, 40] and the spectral methods

[57, 58].

In this chapter, we will use the idea in Diethelm [26] to define a finite difference

method for solving (6.2.1)- (6.2.3), see recent works for this method [93, 43, 45, 46]. We

first express the fractional derivative by using the Hadamard finite-part integral, i.e., with

1 < α < 2,

R
0 D

α
xf(x) =

1

Γ(2− α)

d2

dx2

∫ x

0

(x− ξ)1−αf(ξ) dξ =
1

Γ(−α)

∮ x

0

(x− ξ)−α−1f(ξ) dξ.

Then we approximate f(ξ) by using piecewise quadratic interpolation polynomials and

obtain an approximation scheme of Riemann-Liouville fractional derivative. Similarly,

we can approximate the right-handed Riemann-Liouville fractional derivative R
xD

α
1 f(x).

Based on these approximation schemes, we define a shifted finite difference method for

solving (6.2.1)-(6.2.3). We proved that the convergence order of the numerical method is

O(∆t+ ∆xmin(3−α,β)), 1 < α < 2, β > 0.
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6.3 FDM based on linear interpolation

In this section, we will introduce a finite difference method for solving (6.2.1)-(6.2.3) by

using the idea in Diethelm [25]. For simplicity, we assume C+(t, x) = C−(t, x) = 1 and

ϕ1(t) = ϕ2(t) = 0. Recall that the Riemann-Liouville fractional derivative has the form,

with 1 < α < 2,

R
0 D

α
xf(x) =

1

Γ(−α)

∮ x

0

(x− ξ)−1−αf(ξ) dξ, (6.3.1)

where
∮ x

0
(x− ξ)−1−αf(ξ) dξ denotes the Hadamard finite-part integral [25].

Let 0 = x0 < x1 < x2 < · · · < xj < · · · < xM = 1 be a partition of [0, 1] and ∆x the

stepsize. We then have, at x = xj, j = 1, 2, . . . ,M ,

R
0 D

α
xf(xj) =

1

Γ(−α)

∮ xj

0

(xj − ξ)−1−αf(ξ) dξ =
x−αj

Γ(−α)

∮ 1

0

w−1−αf(xj − xjw) dw

=
x−αj

Γ(−α)

j∑
l=1

∮ l
j

l−1
j

w−1−αf(xj − xjw) dw. (6.3.2)

Denoting g(w) = f(xj − xjw) and substituting g(w) in (6.3.2) by the following linear

interpolation polynomial P1(w) on [ l−1
j
, l
j
], l = 1, 2, . . . , j,

P1(w) =
w − l

j

l−1
j
− l

j

g
( l − 1

j

)
+
w − l−1

j

l
j
− l−1

j

g
( l
j

)
,

we obtain an approximation to R
0 D

α
xf(xj), 1 < α < 2,

R
0 D

α
xf(xj) = ∆x−α

j∑
k=0

wk,jf(xj−k) +O(∆x2−α), (6.3.3)

where

Γ(2− α)wk,j =



1, for k = 0,

21−α − 2, for k = 1,

(k + 1)1−α − 2k1−α + (k − 1)1−α, for k = 2, 3, . . . , j − 1,

−j1−α + (j − 1)1−α − (α− 1)j−α, for k = j.
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Remark 13. The coefficients wk,j in (6.3.3) can also be written

Γ(2− α)wk,j =



b0, for k = 0,

b1 − b0, for k = 1,

bk − bk−1, for k = 2, 3, . . . , j − 1,

b̄j − bj−1, for k = j,

where bk = (k + 1)1−α − k1−α, 0 ≤ k ≤ j − 1, b̄j = (1 − α)j−α. These are the same

coefficients as in the L2 scheme defined in [72, 61].

Lemma 6.3.1. Let 1 < α < 2. The coefficients wk,j in (6.3.3) satisfy

w1,j < 0, and wk,j > 0, k 6= 1, k = 0, 2, 3, . . . , j,

Γ(2− α)

j∑
k=0

wk,j = b̄j = (1− α)j1−α < 0.

Proof. From the properties of wkj it is obvious that w1,j < 0 and wk,j > 0 We can show

that the sum of coefficients wkj are always negative. For example, Let, j=3 we have,

Γ(2− α)wk3 =



b0, k = 0,

b0 − b1, k = 1,

b2 − b1, k = 2,

b3 − b2, k = 3,

Therefore,

3∑
k=0

wk3 = b0 + (b1 − b0) + (b2 − b1) + (b3 − b2)

= b3 = (1− α)3−α < 0. (6.3.4)

In general, we have

j∑
k=0

wkj = b0 + (b1 − b0) + (b2 − b1) + · · ·+ (bj − bj−1) + (bj+1 − bj)

= bj+1 = (1− α)(j + 1)−α < 0. (6.3.5)

Further, we have, when j →∞
j∑

k=0

wkj = 0.
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Similarly, we can obtain an approximation scheme for the right-handed Riemann-

Liouville fractional derivative R
xD

α
1 f(x). We have

R
xD

α
1 f(xj) = ∆x−α

M−j∑
k=0

wk,M−jf(xj+k) +O(∆x2−α), j = 0, 1, 2, . . . ,M − 1, (6.3.6)

where wk,M−j, k = 0, 1, 2, . . . ,M − j, j = 0, 1, 2, . . . ,M − 1 are defined as in (6.3.3).

Discretizing ut(tn, xj) by using forward Euler method at tn and discretizing R
0 D

α
xu(tn, xj)

and R
xD

α
1 u(tn, xj) by using (6.3.3) and (6.3.6) at xj respectively, we get, with unj =

u(tn, xj), f
n
j = f(tn, xj),

∆t−1(un+1
j − unj )− (∆x)−α

( j∑
k=0

wk,ju
n
j−k +

M−j∑
k=0

wk,M−ju
n
j+k

)
= fnj + τnj , (6.3.7)

where the truncation error τnj = O(∆t+ ∆x2−α) [25], [26].

Let Un
j ≈ u(tn, xj) be the approximate solution of u(tn, xj) at the node (tn, xj).

We define an explicit finite difference method for solving (6.2.1) - (6.2.3), with j =

1, 2, . . . ,M − 1,

∆t−1
(
Un+1
j − Un

j

)
= ∆x−α

( j∑
k=0

wk,jU
n
j−k +

M−j∑
k=0

wk,M−jU
n
j+k

)
+ fnj , (6.3.8)

with Un
0 = Un

M = 0, and U0
j = u0(xj), j = 0, 1, 2, . . . ,M − 1. Here the weights wk,j and

wk,M−j, are given in (6.3.3).

Lemma 6.3.2. The explicit finite difference method (6.3.8) is unconditionally unstable

Proof. Let n = 0. With λ = ∆t/∆xα, (6.3.8) can be written as, j = 1, 2, . . . ,M − 1,

U1
j =

(
1 +w0jλ+w0,(M−j)λ

)
U0
j +λ

j∑
k=1

wkjU
0
j−k +λ

M−j∑
k=1

wk,(M−j)U
0
j+k + ∆tf 0

j . (6.3.9)

Assume that we have some errors in the starting values U0
j , i.e.,

Ū0
j = U0

j + ε0j , j = 0, 1, 2, . . . ,M.
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To consider the stability, we assume that only the term U0
i , for some fixed i, has the error,

and other terms have no errors, i.e.,

ε0j = 0, j 6= i.

Then we have

Ū1
i =

(
1 +w0iλ+w0,(M−j)λ

)
Ū0
i + λ

i∑
k=1

wkiŪ
0
i−k + λ

M−i∑
k=1

wk,M−iŪ
0
i+k + ∆tf 0

i . (6.3.10)

Subtracting (6.3.9) from (6.3.10) , we obtain

ε1i =
(
1 + w0iλ+ w0,(M−i)

)
ε0i .

That is, the error is amplified by the factor µi = 1 + w0iλ + w0,(M−i) when the finite

difference equation is advanced by one time step. After n time steps, one may write

εni =
(
1 + w0iλ+ w0,(M−i)

)n
ε0i .

Note that, by Lemma 6.3.1, w0i = 1/Γ(2 − α) > 0, and w0,(M−i) = 1/Γ(2 − α) > 0 we

have 1 + w0iλ+ w0,(M−i) > 1. Thus |εni | → ∞ as n→∞, which implies that the method

is unstable.

Next we consider an implicit Euler method for solving (6.2.1)-(6.2.3), we define an

implicit finite difference method for solving (6.2.1) - (6.2.3), with j = 1, 2, . . . ,M − 1,

∆t−1
(
Un+1
j − Un

j

)
= ∆x−α

( j∑
k=0

wk,jU
n+1
j−k +

M−j∑
k=0

wk,M−jU
n+1
j+k

)
+ fn+1

j , (6.3.11)

with Un
0 = Un

M = 0, and U0
j = u0(xj), j = 0, 1, 2, . . . ,M − 1. Here the weights wk,j and

wk,M−j, are given in (6.3.3).

Lemma 6.3.3. The implicit finite difference method (6.3.11) is unconditionally unstable

Proof. We have, with λ = ∆t/∆xα,

(1−w0jλ−w0,M−jλ)Un+1
j = Un

j +λ

j∑
k=1

wkjU
n+1
j−k +λ

M−j∑
k=1

wk,M−jU
n+1
j+k +∆tfn+1

j . (6.3.12)
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Although this is an implicit Euler method, the problem can be solved explicitly by a

left-to -right sweep across the x domain due to the Dirichlet boundary condition at the

left boundary. For example, the value U1
3 can be explicitly determined by U1

0 , U
1
1 , U

1
2 and

U0
3 . Now let us consider the stability. Let ε0j = Ū0

j − U0
j , j = 0, 1, 2, . . . ,M be the error

generated by U0
j . Assume that ε0j = 0, j 6= i, that is U0

i is the only term that has an error

for fixed i. Let n = 0, we have

U1
i =

1

1− w0iλ− w0,M−iλ
U0
i +

1

1− w0iλ− w0,M−iλ

(
λ

i∑
k=1

wkiU
1
i−k+λ

M−i∑
k=1

wk,M−iU
1
i+k+∆tf 1

i

)
,

(6.3.13)

and

Ū1
i =

1

1− w0iλ− w0,M−iλ
Ū0
i +

1

1− w0iλ− w0,M−iλ

(
λ

i∑
k=1

wkiŪ
1
i−k+λ

M−i∑
k=1

wk,M+iŪ
1
i+k+∆f 1

i

)
.

(6.3.14)

Denote ε1i = Ū1
i − U1

i , we get, subtracting (6.3.13) from (6.3.14),

ε1i =
1

1− w0iλ− w0,M−iλ
ε0i .

After n time steps, we may write

εni =
( 1

1− w0iλ− w0,M−iλ

)n
ε0i .

Note that, by Lemma 6.3.1, w0i > 0, and w0,M−i > 0 which implies that 1−w0iλ−w0,M−i <

1 and therefore∣∣∣ 1

1− w0iλ− w0,M−i

∣∣∣ > 1.

Thus |εni | → ∞ as n→∞, which means that the method is unconditionally unstable.

We now introduce the shifted Diethelm’s FDM for space-fractional PDEs. At the node

(tn+1, xj), we may write the equation (6.2.1) into the shifted form, with j = 1, 2, . . . ,M−1,

ut(tn+1, xj)−
(
R
0 D

α
xu(tn+1, xj+1) + R

xD
α
1 u(tn+1, xj−1)

)
= fn+1

j + σn+1
j , (6.3.15)
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where fn+1
j = f(tn+1, xj) and

σn+1
j = −

(
R
0 D

α
xu(tn+1, xj+1)− R

0 D
α
xu(tn+1, xj)

)
−
(
R
xD

α
1 u(tn+1, xj−1)− R

xD
α
1 u(tn+1, xj)

)
.

Discretizing ut(tn+1, xj) at tn+1 by using the backward Euler method and discretizing

R
0 D

α
xu(tn+1, xj+1) and R

xD
α
1 u(tn+1, xj−1) by using (6.3.3) and (6.3.6) at xj+1 and xj−1

respectively, we get, with unj = u(tn, xj), f
n
j = f(tn, xj),

∆t−1(un+1
j − unj )− (∆x)−α

( j+1∑
k=0

wk,j+1u
n+1
j+1−k +

M−(j−1)∑
k=0

wk,M−(j−1)u
n+1
j−1+k

)
= fn+1

j + σn+1
j + τn+1

j , (6.3.16)

where the truncation error τn+1
j = O(∆t+ ∆x2−α) [25, 26].

Let Un
j ≈ u(tn, xj) be the approximate solution of u(tn, xj) at the node (tn, xj). We

define an implicit shifted finite difference method for solving (6.2.1) - (6.2.3), with j =

1, 2, . . . ,M − 1,

∆t−1
(
Un+1
j −Un

j

)
= ∆x−α

( j+1∑
k=0

wk,j+1U
n+1
j+1−k+

M−(j−1)∑
k=0

wk,M−(j−1)U
n+1
j−1+k

)
+fn+1

j , (6.3.17)

with Un+1
0 = Un+1

M = 0, and U0
j = u0(xj), j = 0, 1, 2, . . . ,M − 1. Here the weights wk,j+1

and wk,M−(j−1), are given in (6.3.3).

Theorem 6.3.4. The shifted implicit method (6.3.17) is unconditionally stable.

Proof. With λ = ∆t/∆xα, (6.3.17) can be written as, j = 1, 2, . . . ,M − 1,(
− λw0,j+1 − λw2,M−(j−1)

)
Un+1
j+1 +

(
1− λw1,j+1 − λw1,M−(j−1)

)
Un+1
j

− λ
( j+1∑
k=2

wk,j+1U
n+1
j+1−k +

M−(j−1)∑
k=2

wk,M−(j−1)U
n+1
j−1+k

)
= Un

j + ∆tfn+1
j , (6.3.18)

Un+1
0 = Un+1

M = 0, (6.3.19)

or in the matrix form,

AUn+1 = Un + ∆tF n+1,
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where

A =



1− λw12 − λw1M −λw02 − λw2M . . . −λwM−1,M

−λw23 − λw0,M−1 1− λw13 − λw1,M−1 . . . −λwM−2,M−1

−λw34 −λw24 − λw0,M−2 . . . −λwM−3,M−2

...
...

...
...

−λwM−1,M −λwM−2,M −λw2,M − λw0,2 1− λw1,M − λw12


,

and

Un+1 =


Un+1

1

Un+1
2

...

Un+1
M−1

 , Un =


Un

1

Un
2

...

Un
M−1

 , F n+1 =


fn+1

1

fn+1
2

...

fn+1
M−1

 .

Let µ denote an eigenvalue of A and ξ =


x1

x2

...

xM−1

 6= 0 the corresponding eigenvector,

that is,

Aξ = µξ.

Denote

|xi| = max
j
{|xj|, j = 1, 2, . . . ,M − 1},

we have, for fixed i,

M−1∑
j=1

aijxj = µxi,

or

µ = aii +
M−1∑
j=1,j 6=i

aij
xj
xi
.
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Note that

ai,1 = −λwi,i+1, . . . , ai,i−2 = −λw3,i+1,

ai,i−1 = −λw2,i+1 − λw0,M−(i−1), aii = 1− λw1,i+1 − λw1,M−(i−1),

ai,i+1 = −λw0,i+1 − λw2,M−(i−1),

ai,i+2 = −λw3,M−(i−1), . . . , ai,M−1 = −λwM−(i−1)−1,M−(i−1),

we have

µ = 1− λ
(
w0,i+1

xi+1

xi
+ w1,i+1 + w2,i+1

xi−1

xi
+ · · ·+ wi,i+1

x1

xi

)
− λ
(
w0,M−(i−1)

xi−1

xi
+ w1,M−(i−1) + w2,M−(i−1)

xi+1

xi
+ · · ·+ wi,M−(i−1)

xM−1

xi

)
.

Since
xj
xi

< 1, j 6= i and, by Lemma 6.3.1, wk,i+1 > 0, k 6= 1 and
∑i

k=0 wk,i+1 <∑i+1
k=0 wk,i+1 = (1− α)(i+ 1)−α < 0, and

∑M−(i−1)−1
k=0 wk,M−(i−1) <

∑M−(i−1)
k=0 wk,M−(i−1) =

(1− α)(M − (i− 1))−α < 0, we have

w0,i+1
xi+1

xi
+ w1,i+1 + w2,i+1

xi−1

xi
+ · · ·+ wi,i+1

x1

xi

+ w0,M−(i−1)
xi−1

xi
+ w1,M−(i−1) + w2,M−(i−1)

xi+1

xi
+ · · ·+ wi,M−(i−1)

xM−1

xi

<
(
w0,i+1 + w1,i+1 + w2,i+1 + · · ·+ wi,i+1

)
+
(
w0,M−(i−1) + w1,M−(i−1) + w2,M−(i−1) + · · ·+ wi,M−(i−1)

)
< 0,

which implies that µ > 1.

Since all the eigenvalues µ of matrix A satisfy |µ| ≥ 1, the matrix A is invertible and

all eigenvalues of A−1 are less than 1. Hence there exists a matrix norm ‖ · ‖ such that

‖A−1‖ ≤ 1 and

‖Un+1‖ = ‖A−1(Un + kF n+1)‖ ≤ ‖Un‖+ k‖F n+1‖

≤ · · · ≤ ‖U0‖+ k

n+1∑
j=1

‖F j‖

≤ ‖U0‖+ tn+1 max
t≥0
‖f(t)‖ ≤ C,

which implies that the numerical method is stable.
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We may use the Gershgorin lemma to simplify the proof above. In fact, we have,

noting that w1,j < 0, wk,j > 0, k 6= 1, k = 0, 2, 3, . . . , j,

ri =
M−1∑

k=1,k 6=i

|aik| = λ(w0,i+1 + w2,i+1 + w3,i+1 + · · ·+ wi,i+1)

+ λ(w0,M−(i−1) + w2,M−(i−1) + w3,M−(i−1) + · · ·+ wM−i,M−(i−1)),

for i = 1, 2, . . . ,M − 1.

Since aii = 1− λw1,i+1 − λw1,M−i+1, i = 1, 2, . . . ,M − 1, we have

aii − ri =1− λ(w0,i+1 + w1,i+1 + w2,i+1 + · · ·+ wi,i+1)

− λ(w0,M−(i−1) + w1,M−(i−1) + w2,M−(i−1) + · · ·+ wM−i,M−(i−1)),

which implies that, by Lemma 6.3.1,

aii − ri > 1, i = 1, 2, . . . ,M − 1.

By Gershgorin lemma, all the eigenvalues µ of A satisfy

1 < aii − ri < µ < aii + ri.

Thus all the eigenvalues of A are larger than or equal to 1, which implies that the matrix

A is invertible and there exists a matrix norm ‖ · ‖ such that ‖A−1‖ ≤ 1. Hence the

numerical method (6.3.17) is unconditionally stable.

The proof of the Theorem 6.3.4 is complete.

We now consider the error estimates of the shifted finite difference method (6.3.17).

Theorem 6.3.5. Let u(tn+1, xj) and Un+1
j be the solutions of (6.3.15) and (6.3.17), re-

spectively. Assume that u(t, x) satisfies the Lipschitz conditions, with some β > 0,∣∣∣ R0 Dα
xu(t, x)− R

0 D
α
xu(t, y)

∣∣∣ ≤ Cα|x− y|β, (6.3.20)∣∣∣ RxDα
1 u(t, x)− R

xD
α
1 u(t, y)

∣∣∣ ≤ Cα|x− y|β. (6.3.21)

Then we have

max
j
|u(tn+1, xj)− Un+1

j | ≤ C(∆t+ ∆xmin(β,2−α)).
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Proof. Let en+1
j = u(tn+1, xj) − Un+1

j . Subtracting (6.3.17) from (6.3.16), we obtain the

following error equation,

∆t−1
(
en+1
j − enj

)
−∆x−α

( j+1∑
k=0

wk,j+1e
n+1
j+1−k +

M−(j−1)∑
k=0

wk,M−(j−1)e
n+1
j−1+k

)
= σn+1

j + τn+1
j .

With λ = ∆t/∆xα, we have

(1− λw1,j+1 − λw1,M−(j−1))e
n+1
j

− λ
(
w0,j+1e

n+1
j+1 + w2,j+1e

n+1
j−1 + · · ·+ wj,j+1e

n+1
1 + wj+1,j+1e

n+1
0

)
− λ
(
w0,M−(j−1)e

n+1
j−1 + w2,M−(j−1)e

n+1
j+1 + · · ·+ wM−(j−1),M−(j−1)e

n+1
M

)
= enj + ∆tσn+1

j + ∆tτn+1
j .

Using Lemma 6.3.1 and assumptions (6.3.20)- (6.3.21), we have, withR = (∆t+∆xmin(2−α,β),

|e1|∞ = sup
j
|e1
j | = |e1

l | ≤ |e1
l |
(

1− λ(w0,l+1 + w1,l+1 + · · ·+ wl+1,l+1)

− λ(w0,M−(l−1) + w1,M−(l−1) + · · ·+ wM−(l−1),M−(l−1))
)

= |e1
l | − λw0,l+1|e1

l | − λw1,l+1|e1
l | − · · · − λwl+1,l+1|e1

l |

− λw0,M−(l−1)|e1
l | − λw1,M−(l−1)|e1

l | − · · · − λwM−(l−1),M−(l−1)|e1
l |

≤ |e1
l | − λw0,l+1|e1

l+1| − λw1,l+1|e1
l | − · · · − λwl+1,l+1|e1

0|

− λw0,M−(l−1)|e1
l−1| − λw1,M−(l−1)|e1

l | − · · · − λwM−(l−1),M−(l−1)|e1
M |

≤ |e1
l − λw0,l+1e

1
l+1 − λw1,l+1e

1
l − · · · − λwl+1,l+1e

1
0

− λw0,M−(l−1)e
1
l−1 − λw1,M−(l−1)e

1
l − · · · − λwM−(l−1),M−(l−1)e

1
M |

= |e0
l + ∆tσ1

l + ∆tτ 1
l |

≤ |e0
l |+ ∆tR.

Further, for simplicity, we assume that e0
l = 0. Then we have

|e1|∞ ≤ ∆tR.

Similarly, we can show that

|e2|∞ ≤ |e1
l |+ ∆tR ≤ t2R,
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and in general, with 0 ≤ tn ≤ T ,

|en|∞ ≤ tnR ≤ C(∆t+ ∆xmin(2−α,β)).

The proof of Theorem 6.3.5 is now complete.

6.4 FDM based on quadratic interpolation

In this section, we will introduce a new finite difference method for solving (6.2.1)- (6.2.3).

For simplicity, we assume C+(t, x) = C−(t, x) = 1 and ϕ1(t) = ϕ2(t) = 0.

The Riemann-Liouville fractional derivative R
0 D

α
xf(x) can be written as [26]

R
0 D

α
xf(x) =

1

Γ(−α)

∮ x

0

(x− ξ)−1−αf(ξ) dξ. (6.4.1)

Here the integral
∮

denotes the Hadamard finite-part integral.

Let m be a fixed positive integer and M = 2m. Let 0 = x0 < x1 < x2 < · · · < x2j <

x2j+1 < · · · < x2m = 1 be a partition of [0, 1] and ∆x the stepsize.

At the nodes x2j = 2j
2m
, j = 1, 2, . . . ,m, we have

R
0 D

α
xf(x2j) =

1

Γ(−α)

∮ x2j

0

(x2j − ξ)−1−αf(ξ) dξ =
x−α2j

Γ(−α)

∮ 1

0

w−1−αf(x2j − x2jw) dw.

(6.4.2)

For every j, we replace g(w) = f(x2j − x2jw) in the integral in (6.4.2) by piecewise

quadratic interpolation polynomials with the equispaced nodes 0, 1
2j
, 2

2j
, . . . , 2j

2j
. We then

have ∮ 1

0

w−1−αg(w) dw =

∮ 1

0

w−1−αP2(w) dw +R2j(g), (6.4.3)

where P2(w) is the piecewise quadratic interpolation polynomial of g(w) defined on the

equispaced nodes 0, 1
2j
, 2

2j
, . . . , 2j

2j
and R2j(g) is the remainder term.

At the node x2j+1 = 2j+1
2m

, j = 1, 2, . . . ,m− 1 we have

R
0 D

α
xf(x2j+1) =

1

Γ(−α)

∮ x2j+1

0

(x2j+1 − ξ)−1−αf(ξ) dξ

=
1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αf(ξ) dξ

+
x−α2j+1

Γ(−α)

∮ 2j
2j+1

0

w−1−αf(x2j+1 − x2j+1w) dw. (6.4.4)
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For every j, j = 1, 2, . . . ,m − 1, we replace g(w) = f(x2j+1 − x2j+1w) by a piecewise

quadratic interpolation polynomial with the equispaced nodes 0, 1
2j+1

, 2
2j+1

, . . . , 2j
2j+1

and

obtain∮ 2j
2j+1

0

w−1−αg(w) dw =

∮ 2j
2j+1

0

w−1−αQ2(w) dw +R2j+1(g), (6.4.5)

where Q2(w) is the piecewise quadratic interpolation polynomial of g(w) defined on the

nodes 0, 1
2j+1

, 2
2j+1

, . . . , 2j
2j+1

and R2j+1(g) is the remainder term.

We have,

Lemma 6.4.1. [93]. Let 1 < α < 2 and let M = 2m where m is a fixed positive integer.

Let 0 = x0 < x1 < x2 < · · · < x2j < x2j+1 < · · · < xM = 1 be a partition of [0, 1]. Assume

that f(x) is a sufficiently smooth function. Then we have, with j = 1, 2, . . . ,m,

R
0 D

α
xf(x)

∣∣∣
x=x2j

=
x−α2j

Γ(−α)

( 2j∑
l=0

αl,2jf(x2j−l) +R2j(f)
)

= ∆x−α
2j∑
l=0

wl,2jf(x2j−l) +
x−α2j

Γ(−α)
R2j(f), (6.4.6)

and, with j = 1, 2, . . . ,m− 1,

R
0 D

α
xf(x)

∣∣∣
x=x2j+1

=
1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αf(ξ) dξ

+
x−α2j+1

Γ(−α)

( 2j∑
l=0

αl,2j+1f(x2j+1−l) +R2j+1(f)
)

=
1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αf(ξ) dξ + ∆x−α
2j∑
l=0

wl,2j+1f(x2j+1−l) +
x−α2j+1

Γ(−α)
R2j+1(f),

(6.4.7)



117

where

(−α)(−α + 1)(−α + 2)(2j)−ααl,2j

=



2−α(α + 2), for l = 0,

(−α)22−α, for l = 1,

(−α)(−2−αα) + 1
2
F0(2), for l = 2,

−F1(k), for l = 2k − 1, k = 2, 3, . . . , j,

1
2
(F2(k) + F0(k + 1)), for l = 2k, k = 2, 3, . . . , j − 1,

1
2
F2(j), for l = 2j,

F0(k) =(2k − 1)(2k)
(
(2k)−α − (2(k − 1))−α

)
(−α + 1)(−α + 2)

−
(
(2k − 1) + 2k

)(
(2k)−α+1 − (2(k − 1))−α+1

)
(−α)(−α + 2)

+
(
(2k)−α+2 − (2(k − 1))−α+2

)
(−α)(−α + 1),

F1(k) =(2k − 2)(2k)
(
(2k)−α − (2k − 2)−α

)
(−α + 1)(−α + 2)

−
(
(2k − 2) + 2k

)(
(2k)−α+1 − (2k − 2)−α+1

)
(−α)(−α + 2)

+
(
(2k)−α+2 − (2k − 2)−α+2

)
(−α)(−α + 1),

F2(k) =(2k − 2)(2k − 1)
(
(2k)−α − (2k − 2)−α

)
(−α + 1)(−α + 2)

−
(
(2k − 2) + (2k − 1)

)(
(2k)−α+1 − (2k − 2)−α+1

)
(−α)(−α + 2)

+
(
(2k)−α+2 − (2k − 2)−α+2

)
(−α)(−α + 1).

Further we have, with l = 0, 1, 2, . . . , 2j,

Γ(3− α)wl,2j = (−α)(−α + 1)(−α + 2)(2j)−α

and

αl,2j+1 = αl,2j, wl,2j+1 = wl,2j.

The remainder term Rl(f) satisfies, for every f ∈ C3(0, 1),

|Rl(f)| ≤ C∆x3−α‖f ′′′‖∞, l = 2, 3, 4, . . . ,M, withM = 2m.
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Proof. By the relationship between Riemann-Liouville and Hadamard finite-part integral,

for fixed 2j, let 0 < 1
2j
< 2

2j
< · · · < 2j

2j
= 1 be a partition of [0,1]. We then have∮ 1

0

ω−1−αg(ω)dω = [

∮ 2
2j

0

+

∫ 4
2j

2
2j

+ · · ·+
∫ 2j

2j

2j−2
2j

]ω−1−αg(ω)dω.

Here the integral denotes the Hadamard finite-part integral [3]. We approximate g(ω) on

[0,1] by the quadratic interpolation polynomials g2(ω), where

g2(ω) =
(ω − 2k−1

2j
)(ω − 2k

2j
)

(2k−2
2j
− 2k−1

2j
)(2k−2

2j
− 2k

2j
)
g(

2k − 2

2j
) (6.4.8)

+
(ω − 2k−2

2j
)(ω − 2k

2j
)

(2k−1
2j
− 2k−2

2j
)(2k−1

2j
− 2k

2j
)
g(

2k − 1

2j
)

+
(ω − 2k−2

2j
)(ω − 2k−1

2j
)

(2k
2j
− 2k−2

2j
)(2k

2j
− 2k−1

2j
)
g(

2k

2j
), for ω ∈ [

2k − 2

2j
,
2k

2j
], k = 1, 2, . . . , j.

Let us now find the values of∮ 1

0

ω−1−αg2(ω)dω = [

∮ 2
2j

0

+

∫ 4
2j

2
2j

+ · · ·+
∫ 2j

2j

2j−2
2j

]ω−1−αg2(ω)dω,

where the integral
∮ 2

2j

0 g2(ω)ω−1−αdω is a Hadamard finite-part integral. By the definition

of the Hadamard finite-part integral, we get∮ 2
2j

0

g2(ω)ω−1−αdω =
g2(0)( 2

2j
)−α

−α
+

∫ 2
2j

0

ω−1−α[

∫ ω

0

g′2(y)dy]dω (6.4.9)

=
2−α

(−α)(2j)−α
g2(0) +

∫ 2
2j

0

ω−1−α(g2(ω)− g2(0))dω

=
2−α

(−α)(2j)−α
g(0) +

∫ 2
2j

0

ω−1−α
[(2j)2

2
(ω2 − (

1

2j
+

2

2j
)ω)g(0)

+
(2j)2

−1
(ω2 − (0 +

2

2j
)ω)g(

1

2j
) +

(2j)2

2
(ω2 − (0 +

1

2j
)ω)g(

2

2j
)
]
dω

=
2−α(α + 2)

(−α)(−α + 1)(−α + 2)(2j)−α
g(0)

+
22−α

(−α + 1)(−α + 2)(2j)−α
g(

1

2j
)

+
−2−αα

(−α + 1)(−α + 2)(2j)−α
g(

2

2j
)
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Similarly, we have

(−α)(−α + 1)(−α + 2)(2j)−α
∫ 2k−2

2j

2k
2j

g2(ω)ω−1−αdω

=
1

2
F0(k)g(

2k − 2

2j
) + (−1)F1(k)g(

2k − 1

2j
) +

1

2
F2(k)g(

2k

2j
),

where Fi(k), i = 0, 1, 2 and k = 1, 2, 3, . . . , j are defined as above.

Together these estimates complete the proof of Lemma 6.4.1.

The weights wl,2j have some special properties which are summarized in the following

Lemma 6.4.2 .

Lemma 6.4.2. Let 1 < α < 2. The coefficients wl,2j in (6.4.6) satisfy

w1,2j < 0, (6.4.10)

wl,2j > 0, l 6= 1, l = 0, 2, 3, . . . , 2j, (6.4.11)

Γ(3− α)

2j∑
l=0

wl,2j < 0. (6.4.12)

Proof. It is easy to show that w0,2j > 0 and w1,2j < 0. We now prove that wk,2j > 0, k =

2, 3, . . . , 2j. We first show that

w2l−1,2j > 0, l = 2, 3, . . . , j.

Note that

Γ(3−α)w2l−1,2j = 2
(

(2l− 2)−α+2− (2l)−α+2
)

+ 2(−α+ 2)
(

(2l− 2)−α+1 + (2l)−α+1
)
.

Let m = 2l. It is sufficient to show that, with m = 4, 6, . . . ,

I(m) = (m− 2)−α+2 −m−α+2 + (−α + 2)(m− 2)−α+1 + (−α + 2)m−α+1 > 0.

In fact, we have, by using binomial expansion,

I(m) =m−α+2
(
− 1 + (−α + 2)

1

m
+ (1− 2

m
)−α+2 + (−α + 2)(1− 2

m
)−α+1 1

m

)
= m−α+2

((−α + 2)(−α + 1)(−α)

m3

(
− 23

3!
+

22

2!

)
+

(−α + 2)(−α + 1)(−α)(−α− 1)

m4

(24

4!
− 23

3!

)
+

(−α + 2)(−α + 1)(−α)(−α− 1)

m5

(−25

5!
+

24

4!

)
+ . . .

)
.
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Note that the sequence an = 2n

n!
is decreasing. Hence we see that, with 1 < α < 2,

I(m) > 0.

We next prove that

w2l,2j > 0, l = 1, 2, . . . , j − 1.

Note that, with l = 2, 3, . . . , j − 1,

Γ(3− α)w2l,2j = −3(−α + 2)(2l)−α+1 +
(

(2l + 2)−α+2 − (2l − 2)−α+2
)

− 1

2
(−α + 2)

(
(2l + 2)−α+1 + (2l − 2)−α+1

)
.

Let m = 2l. It is sufficient to show that, with m = 4, 6, . . . ,

I(m) = −6(−α + 2)m−α+1 + (−2)(m− 2)−α+2

+ (−1)(−α + 2)(m− 2)−α+1 + 2(m+ 2)−α+2 + (−1)(−α + 2)(m+ 2)−α+1 > 0.

In fact, we have, by using binomial expansion,

I(m) =m−α+2
(

+ (−2)(1− 2

m
)−α+2 + (−1)(−α + 2)(1− 2

m
)−α+1 1

m

+ 2(1 +
2

m
)−α+2 + (−1)(−α + 2)(1 +

2

m
)−α+1 1

m

)
= m−α+2

(2(−α + 2)(−α + 1)(−α)(−α− 1)(−α− 2)

m3

(
− 23 · 2

3!
+

22

2!

)
+

2(−α + 2)(−α + 1)(−α)(−α− 1)(−α− 2)

m5

(25 · 2
5!
− 24

4!

)
+

2(−α + 2)(−α + 1)(−α)(−α− 1)(−α− 2)

m7

(27 · 2
7!
− 26

6!

)
+ . . .

)
=

1

m1+α

(2(−α + 2)(−α + 1)(−α)

m0

(23 · 2
3!
− 22

2!

)
+

2(−α + 2)(−α + 1)(−α)(−α− 1)(−α− 2)

m2

(25 · 2
5!
− 24

4!

)
+

2(−α + 2)(−α + 1)(−α)(−α− 1)(−α− 2)(−α− 3)(−α− 4)

m4(27 · 2
7!
− 26

6!

)
+ . . .

)
.

Note that

2n · 2
n!
− 2n−1

(n− 1)!
=

2n−1

(n− 1)!

(2 · 2
n
− 1
)
≤ 0, n ≥ 4.
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Hence we get

I(m) ≥ 21+α

m1+α

1

21+α

[2(−α + 2)(−α + 1)(−α)

m0

(23 · 2
3!
− 22

2!

)
+

2(−α + 2)(−α + 1)(−α)(−α− 1)(−α− 2)

22

(25 · 2
5!
− 24

4!

)
+

2(−α + 2)(−α + 1)(−α)(−α− 1)(−α− 2)(−α− 3)(−α− 4)

24

(27 · 2
7!
− 26

6!

)
+ . . .

]
=

21+α

m1+α
I(2), m = 2, 3, 4, . . . .

It is easy to show that, with 1 < α < 2,

I(2) = 2−α+2
(

3α− 6 + 2−α(6 + α)
)
> 0.

Thus we get

I(m) > 0, m = 2, 3, 4, . . . .

Similarly, we can show that w2j,2j > 0.

Finally we shall prove Γ(3− α)
∑2j

l=0wl,2j < 0. We have

Γ(3−α)

2j∑
l=0

wl,2j =
−3(−α + 2)

2
(2j)−α+1−(2j)−α+2 +

α− 2

2
(2j+2)−α+1 +(2j+2)−α+2.

Let m = 2j + 2, it is sufficient to show that, with m = 4, 6, 8, . . . ,

I(m) = −3(−α + 2)(m− 2)−α+1 − 2(m− 2)−α+2 + (α− 2)m−α+1 + 2 ·m−α+2 < 0.

In fact, by using binomial expansion, we have

I(m) =m−α+2
(

(3α− 6)(1− 2

m
)−α+1 1

m
− 2(1− 2

m
)−α+2 + (α− 2)

1

m
+ 2
)

=
(−α + 2)(−α + 1)

m2

(
(−3)

(−2)

1!
+ (−2)

(−2)2

2!

)
+

(−α + 2)(−α + 1)(−α)

m3

(
(−3)

(−2)2

2!
+ (−2)

(−2)3

3!

)
+

(−α + 2)(−α + 1)(−α)(−α− 1)

m4

(
(−3)

(−2)3

3!
+ (−2)

(−2)4

4!

)
+ . . . .

Note that

(−3)
(−2)n

n!
+ (−2)

(−2)(n+ 1)

(n+ 1)!
=

(−2)n

n!

(
(−3) + (−2)

−2

n+ 1

)
=

(−2)n

n!

(
(−3) +

4

n+ 1

)
=
−3n+ 1

(n+ 1)!
(−2)n,
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which implies that

I(m) < 0,m = 4, 6, 8, . . . .

Together these estimates complete the proof of Lemma 6.4.2.

Similarly, we can consider the approximation of right-handed fractional derivative

R
xD

α
1 f(x) at x = xl, l = 0, 1, 2, . . . , 2m − 2. Using the same argument as for the approxi-

mation of R
0 D

α
xf(x) at x = xl, we can show that, with j = 0, 1, 2, . . . ,m− 1,

R
xD

α
1 f(x)

∣∣∣
x=x2j

= ∆x−α
M−2j∑
l=0

wl,M−2jf(x2j+l) +
x−α2j

Γ(−α)
R2j(f), (6.4.13)

and, with j = 0, 1, 2, . . . ,m− 2,

R
xD

α
1 f(x)

∣∣∣
x=x2j+1

=
1

Γ(−α)

∫ xM

xM−1

(ξ − x2j+1)−1−αf(ξ) dξ

+ ∆x−α
M−(2j+1)−1∑

l=0

wl,M−(2j+1)f(x2j+1+l) +
x−α2j+1

Γ(−α)
R2j+1(f). (6.4.14)

Let Un
2j ≈ u(tn, x2j) and Un

2j+1 ≈ u(tn, x2j+1) denote the approximate solutions of

u(tn, x2j) and u(tn, x2j+1), respectively. We define the following explicit numerical method

for solving (6.2.1) - (6.2.3).

∆t−1
(
Un+1

2j − Un
2j

)
= ∆x−α

( 2j∑
k=0

wk,2jU
n
2j−k +

M−2j∑
k=0

wk,M−2ju
n
2j+k

)
+ fn2j, j = 1, 2, . . . ,m− 1, (6.4.15)

∆t−1
(
Un+1

2j+1 − Un
2j+1

)
= ∆x−α

( 2j+1∑
k=0

wk,2j+1U
n
2j+1−k +

M−2j−1∑
k=0

wk,M−2j−1U
n
2j+1+k

)
+ f̄n2j+1 +Qn

2j, j = 0, 1, 2, . . . ,m− 1, (6.4.16)

where Qn
2j is defined as in (6.4.24) below.

Lemma 6.4.3. The standard explicit numerical method (6.4.15) - (6.4.16) is uncondi-

tionally unstable.
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Proof. Let n = 0. We have, with λ = ∆t/∆xα,

U1
2j =

(
1 + w0,2jλ+ +w0,M−2jλ

)
U0

2j + λ

2j∑
k=1

wk,2jU
0
2j−k

+ λ

M−2j∑
k=1

wk,M−2jU
0
2j+k + ∆tf 0

2j + ∆tQ0
2j, (6.4.17)

U1
2j+1 =

(
1 + w0,2j+1λ+ w0,M−2j−1λ

)
U0

2j+1 + λ

2j∑
k=1

wk,2j+1U
0
2j+1−k

+ λ

M−2j−1∑
k=1

wk,M−2j−1U
0
2j+1+k + ∆tf̄ 0

2j+1, (6.4.18)

where

f̄ 0
2j+1 = f 0

2j+1 +
1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αu(ξ, tn+1) dξ.

Assume that we have some errors in the starting values U0
l , i.e.,

Ū0
l = U0

l + ε0l , l = 0, 1, 2, . . . , 2j, 2j + 1, . . . , 2m.

To consider the stability, we assume that only the term U0
2j0

, for some fixed j0, has the

error, and other terms have no errors. That is

ε0l = 0, l 6= 2j0.

Then we have

Ū1
2j0

=
(
1+w0,2j0λ+w0,M−2j0λ

)
Ū0

2j0
+λ

2j0∑
k=1

wk,2j0Ū
0
2j0−k+λ

M−2j0∑
k=1

wk,M−2j0Ū
0
2j0−k+∆tf 0

2j0
.

(6.4.19)

Subtracting (6.4.17) from (6.4.19), we obtain

ε12j0 =
(
1 + w0,2j0λ+ w0,M−2j0λ

)
ε02j0 .

That is, the error is amplified by the factor µ2j0 = 1 +w0,2j0λ+w0,M−2j0λ when the finite

difference equation is advanced by one time step. After n time steps, one may write

εn2j0 =
(
1 + w0,2j0λ+ w0,M−2j0λ

)n
ε02j0 .

Note that w0,2j0 = 1/Γ(3 − α) > 0, and +w0,M−2j0 = 1/Γ(3 − α) > 0 we have 1 +

w0,2j0λ + w0,M−2j0λ > 1. Thus |εn2j0| → ∞ as n → ∞, which implies that the method is

unstable.
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Similarly, we can introduce the standard implicit numerical method and show that the

standard implicit numerical method is also unconditionally unstable.

We now introduce the shifted Diethelm FDM for space-fractional PDEs. Let 0 = t0 <

t1 < t2 < · · · < tn < . . . be the time partition and ∆t the time stepsize. At the nodes

x2j = 2j
2m
, j = 1, 2, . . . ,m− 1, we have, by (6.2.1),

ut(tn+1, x2j)−
(
R
0 D

α
xu(tn+1, x2j+1) + R

xD
α
1 u(tn+1, x2j−1)

)
= fn+1

2j + σn+1
2j , (6.4.20)

and at the nodes x2j+1 = 2j+1
2m

, j = 1, 2, . . . ,m− 1,

ut(tn+1, x2j+1)−
(
R
0 D

α
xu(tn+1, x2j+2) + R

xD
α
1 u(tn+1, x2j)

)
= fn+1

2j+1 + σn+1
2j+1, (6.4.21)

where

σn+1
2j = −

(
R
0 D

α
xu(tn+1, x2j+1)− R

0 D
α
xu(tn+1, x2j)

)
−
(
R
xD

α
1 u(tn+1, x2j−1)− R

xD
α
1 u(tn+1, x2j)

)
,

σn+1
2j+1 = −

(
R
0 D

α
xu(tn+1, x2j+2)− R

0 D
α
xu(tn+1, x2j+1)

)
−
(
R
xD

α
1 u(tn+1, x2j)− R

xD
α
1 u(tn+1, x2j+1)

)
.

Discretizing ut(tn+1, xl) by using the backward Euler method and discretizing R
0 D

α
xu(tn+1, xl)

and R
xD

α
1 u(tn+1, xl) by using (6.4.6) - (6.4.7) and (6.4.13) - (6.4.14), respectively, we get,

with unj = u(tn, xj), f
n
j = f(tn, xj)

∆t−1
(
un+1

2j − un2j
)

= ∆x−α
( 2j∑
k=0

wk,2j+1u
n+1
2j+1−k +

M−(2j−1)−1∑
k=0

wk,M−(2j−1)u
n+1
2j−1+k

)
+ fn+1

2j +Qn+1
2j + σn+1

2j + τn+1
2j , j = 1, 2, . . . ,m− 1, (6.4.22)

∆t−1
(
un+1

2j+1 − un2j+1

)
= ∆x−α

( 2j+2∑
k=0

wk,2j+2u
n+1
2j+2−k +

M−2j∑
k=0

wk,M−2ju
n+1
2j+k

)
+ fn+1

2j+1 + σn+1
2j+1 + τn+1

2j+1, j = 0, 1, 2, . . . ,m− 1, (6.4.23)

where the truncation errors τn+1
l = O(∆t+ ∆x3−α), l = 1, 2, . . . , Ṁ − 1 [25], [26] and

Qn+1
2j =

1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αu(ξ, tn+1) dξ +
1

Γ(−α)

∫ xM

xM−1

(ξ − x2j+1)−1−αu(ξ, tn+1) dξ.

(6.4.24)
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Let Un
2j ≈ u(tn, x2j) and Un

2j+1 ≈ u(tn, x2j+1) denote the approximate solutions of

u(tn, x2j) and u(tn, x2j+1), respectively. We define the following implicit shifted numerical

method for solving (6.2.1) - (6.2.3).

∆t−1
(
Un+1

2j − Un
2j

)
= ∆x−α

( 2j∑
k=0

wk,2j+1U
n+1
2j+1−k +

M−(2j−1)−1∑
k=0

wk,M−(2j−1)u
n+1
2j−1+k

)
+ fn+1

2j +Qn+1
2j , j = 1, 2, . . . ,m− 1, (6.4.25)

∆t−1
(
Un+1

2j+1 − Un
2j+1

)
= ∆x−α

( 2j+2∑
k=0

wk,2j+2U
n+1
2j+2−k +

M−2j∑
k=0

wk,M−2jU
n+1
2j+k

)
+ fn+1

2j+1, j = 0, 1, 2, . . . ,m− 1, (6.4.26)

where Qn+1
2j is defined below in (6.4.24).

Lemma 6.4.4. The shifted implicit method (6.4.25)- (6.4.26) is unconditionally stable.

Proof. For simplicity, we only consider the left-hand Riemman-Liouville fractional deriva-

tive for stability analysis. With λ = ∆t/∆xα we write (6.4.25)-(6.4.26) into one equation,

with l = 1, 2, . . . , 2j, 2j + 1, . . . , 2m− 1,

−λw0,l+1U
n+1
l+1 + (1− λw1,l+1)Un+1

l − λ
l+1∑
k=2

wk,l+1U
n+1
l+1−k = Un

l + kF n+1
l , (6.4.27)

with the boundary conditions Un+1
0 = Un+1

2m = 0, where

F n+1
l =

 f̄n+1
l , l = 2j, j = 1, 2, . . . ,m,

fn+1
l , l = 2j + 1, j = 1, 2, . . . ,m− 1,

and f̄n+1
l is defined as follows:

f̄n+1
2j =

1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αu(ξ, tn+1) dξ + fn+1
2j .

Further we write (6.4.27) into the following linear system with 2m− 1 equations and

2m− 1 unknowns.

AUn+1 = Un + kF n+1,
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where

A =



1− λw12 −λw02

−λw23 1− λw13 −λw03

...
...

. . .

−λw2m−1,2m −λw2m−2,2m . . . 1− λw1,2m


,

and

Un+1 =


Un+1

1

Un+1
2

...

Un+1
2m−1

 , Un =


Un

1

Un
2

...

Un
2m−1

 , F n+1 =


F n+1

1

F n+1
2

...

F n+1
2m−1

 .

Let µ be an eigenvalue of A. Let ξ =


x1

x2

...

x2m−1

 6= 0 be the corresponding eigenvector.

Then we have

Aξ = µξ.

Denote

|xi| = max
j
{|xj|, j = 1, 2, . . . , 2m− 1}.

We have, for fixed i,

2m−1∑
j=1

aijxj = µxi,

i.e.,

µ = aii +
2m−1∑
j=1,j 6=i

xj
xi
.

Note that aii = 1− λw1,i+1, ai,i+1 = −λw0,i+1, ai,i−1 = −λw2,i+1, . . . , ai,1 = −λwi,i+1. We

have

µ = (1− λw1,i+1)− λw0,i+1
xi+1

xi
− λ

i−1∑
j=1

wi−j+1,i+1
xj
xi

= 1− λ
(
w0,i+1

xi+1

xi
+ w1,i+1 + w2,i+1

xi−1

xi
+ · · ·+ wi,i+1

x1

xi

)
.
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Note that
xj
xi
< 1, j 6= i and wk,i+1 > 0, k 6= 1 and, by Lemma 6.3.1,

∑i+1
k=0 wk,i+1 < 0, we

have

w0,i+1
xi+1

xi
+ w1,i+1 + w2,i+1

xi−1

xi
+ · · ·+ wi,i+1

x1

xi

< w0,i+1 + w1,i+1 + w2,i+1 + . . . wi,i+1 < 0.

Hence

µ = 1− λ
(
w0,i+1

xi+1

xi
+ w1,i+1 + w2,i+1

xi−1

xi
+ · · ·+ wi,i+1

x1

xi

)
> 1.

Since all the eigenvalues µ of matrix A satisfy |µ| ≥ 1, the matrix A is invertible and all

eigenvalues of A−1 are less than 1, which implies that there exists a matrix norm ‖ · ‖

such that ‖A−1‖ ≤ 1 and

‖Un+1‖ = ‖A−1(Un + kF n+1)‖ ≤ ‖Un‖+ k‖F n+1‖

≤ · · · ≤ ‖U0‖+ k
n+1∑
j=1

‖F j‖ ≤ ‖U0‖+ tn+1 max
0≤t≤T

‖f(t)‖ ≤ C,

which means that the numerical method is stable.

We may also use the following lemma to prove the stability.

Lemma 6.4.5. The eigenvalues of the matrix A lie in the disks centered at aii with radius

ri =
∑

k 6=i |aik|.

By using Lemma 6.4.5, we shall prove all the eigenvalues of A are larger than or equal

to 1. In fact, we have

ri =
2m−1∑
k=1,k 6=i

|aik| = λ(w0,i+1 + w2,i+1 + w3,i+1 + · · ·+ wi,i+1).

We have, with aii = 1− λw1,i+1,

aii − ri = 1− λ(w0,i+1 + w1,i+1 + w2,i+1 + · · ·+ wi,i+1).

By Lemma 3.4.2 we have w0,i+1 + w1,i+1 + w2,i+1 + · · · + wi,i+1 < 0, which implies that

aii − ri > 1 and therefore all the eigenvalues µ of A satisfy

1 < aii − ri < µ < aii + ri.
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6.4.1 Initial integral approximation

To approximate the integral 1
Γ(−α)

∫ x1
0

(x2j+1 − ξ)−1−αu(tn+1, ξ) dξ in (6.4.24), we denote

g(ξ) = u(tn+1, ξ) and approximate g(ξ) on [0, x1] by the following quadratic interpolation

polynomials, [9],

P2(ξ) =
(ξ − x 1

2
)(ξ − x1)

(x0 − x 1
2
)(x0 − x1)

u(tn+1, x0) +
(ξ − x0)(ξ − x1)

(x 1
2
− x0)(x 1

2
− x1)

u(tn+1, x 1
2
)

+
(ξ − x0)(ξ − x 1

2
)

(x1 − x0)(x1 − x 1
2
)
u(tn+1, x1), for ξ ∈ [x0, x1],

where

u(tn+1, ξ)− P2(ξ) = R
(1)
1 (ξ) =

u′′′(tn+1, c1)

3!
(ξ − x0)(ξ − x 1

2
)(ξ − x1), c1 ∈ (0, x1).

Further we approximate the value u(tn+1, x 1
2
) by

u(tn+1, x 1
2
) ≈ 3

8
u(tn+1, x0) +

3

4
u(tn+1, x1)− 1

8
u(tn+1, x2),

where

u(tn+1, x 1
2
)−

(3

8
u(tn+1, x0) +

3

4
u(tn+1, x1)− 1

8
u(tn+1, x2)

)
= R

(2)
1 (ξ),

and R
(2)
1 (ξ) = 1

16
u′′′(tn+1, c2)h3, c2 ∈ (0, x2).

We then have

1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αu(tn+1, ξ) dξ =
2∑
i=0

B̂iu(tn+1, xi) +R1,

where

B̂0 =

∫ x1

0

(x1 − ξ)α−1
(ξ − x 1

2
)(ξ − x1)

(x0 − x 1
2
)(x0 − x1)

dξ +
3

8

∫ x1

0

(x1 − ξ)α−1 (ξ − x0)(ξ − x1)

(x 1
2
− x0)(x 1

2
− x1)

dξ,

B̂1 =
3

4

∫ x1

0

(x1 − ξ)α−1 (ξ − x0)(ξ − x1)

(x 1
2
− x0)(x 1

2
− x1)

dξ +

∫ x1

0

(x1 − ξ)α−1 (ξ − x0)(ξ − x1)

(x1 − x0)(x1 − x 1
2
)
dξ,

B̂2 = −1

8

∫ x1

0

(x1 − ξ)α−1 (ξ − x0)(ξ − x1)

(x 1
2
− x0)(x 1

2
− x1)

dξ,

and

R1 =

∫ x1

0

(x2j+1 − ξ)−1−αR
(1)
1 (ξ) dξ +

∫ x1

0

(x2j+1 − ξ)−1−αR
(2)
1 (ξ) dξ.
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It is easy to show that

|R1| ≤
∫ x1

0

(x2j+1 − ξ)−1−α|R(1)
1 (ξ)| dξ +

∫ x1

0

(x2j+1 − ξ)−1−α|R(2)
1 (ξ)| dξ

≤
∫ x1

0

(x2j+1 − ξ)−1−αC∆x3 dξ ≤ C∆x3∆x−α = C∆x3−α.

Hence, we have∫ x1

0

(x2j+1 − ξ)−1−αu(tn+1, ξ) dξ −
2∑
i=0

B̂iu
n+1
i = O(∆x3−α).

Similarly, we have, for some suitable weights B̃i, i = 0, 1, 2,∫ xM

xM−1

(ξ − x2j+1)−1−αu(tn+1, ξ) dξ −
M∑

i=M−2

B̃iU
n+1
i = O(∆x3−α).

Based on the analysis above, we approximate Qn+1
2j in (6.4.25) by

Sn+1
2j =

1

Γ(−α)

2∑
i=0

B̂iU
n+1
i +

1

Γ(−α)

M∑
i=M−2

B̃iU
n+1
i . (6.4.28)

It is easy to say that

Qn+1
2j −

1

Γ(−α)

( 2∑
i=0

B̂iu
n+1
i +

M∑
i=M−2

B̃iu
n+1
i

)
= O(∆x3−α).

6.4.2 Error estimates of the shifted Diethelm FDMs

Theorem 6.4.6. Let 1 < α < 2 and let u(tn+1, xl) and Un+1
l , l = 1, 2, . . . ,M − 1 be

the solutions of (6.4.22)- (6.4.23) and (6.4.25)-(6.4.26), respectively. Assume that u(t, x)

satisfies the Lipschitz conditions, with some β > 0,∣∣∣ R0 Dα
xu(t, x)− R

0 D
α
xu(t, y)

∣∣∣ ≤ Cα|x− y|β, (6.4.29)∣∣∣ RxDα
1 u(t, x)− R

xD
α
1 u(t, y)

∣∣∣ ≤ Cα|x− y|β. (6.4.30)

We have

max
1≤l≤M−1

|u(tn+1, xl)− Un+1
l | ≤ C(∆t+ ∆xmin(β,3−α)).
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Proof of Theorem 6.4.6. Let en+1
l = u(tn+1, xl) − Un+1

l , l = 1, 2, . . . ,M − 1. Subtracting

(6.4.22) - (6.4.23) from (6.4.25)-(6.4.26), We obtain the following error equation, for l =

2j, j = 1, 2 . . . ,m− 1, with R = (∆t+ ∆xmin(3−α,β)),

∆t−1
(
en+1

2j − en2j
)
−∆x−α

( 2j∑
k=0

wk,2j+1e
n+1
2j+1−k +

M−(2j−1)−1∑
k=0

wk,M−(2j−1)e
n+1
2j−1+k

)
+R,

and, for l = 2j + 1, j = 0, 1, 2 . . . ,m− 1,

∆t−1
(
en+1

2j+1 − en2j+1

)
−∆x−α

( 2j+2∑
k=0

wk,M−(2j+2)e
n+1
2j+2+k +

M−2j∑
k=0

wk,M−2je
n+1
2j+k

)
+R.

With λ = ∆t/∆xα, we have, for l = 2j, j = 1, 2 . . . ,m− 1,

(1− λw1,2j+1 − λw1,M−(2j−1))e
n+1
2j

− λ
(
w0,2j+1e

n+1
2j+1 + w2,2j+1e

n+1
2j−1 + · · ·+ w2j,2j+1e

n+1
1

)
− λ
(
w0,M−(2j−1)e

n+1
2j−1 + w2,M−(2j−1)e

n+1
2j+1 + · · ·+ wM−(2j−1)−1,M−(2j−1)e

n+1
M−1

)
= en2j + ∆tR,

and, for l = 2j + 1, j = 0, 1, 2 . . . ,m− 1,

(1− λw1,2j+2 − λw1,M−2j)e
n+1
2j+1

− λ
(
w0,2j+2e

n+1
2j+2 + w2,2j+2e

n+1
2j + · · ·+ w2j+2,2j+2e

n+1
0

)
− λ
(
w0,M−2je

n+1
2j + w2,M−2je

n+1
2j+2 + · · ·+ wM−2j,M−2je

n+1
M

)
= en2j+1 + ∆tR.

Assume that |e1|∞ = supl |e1
l | = |e2k| for some k, we get, by Lemma 6.4.2, with

R = (∆t+ ∆xmin(3−α,β)),

|e1|∞ = sup
l
|e1
l | = |e1

2k| ≤ |e1
2k|
(

1− λ(w0,2k+1 + w1,2k+1 + . . . w2k,2k+1)

− λ(w0,M−(2k−1) + w1,M−(2k−1) + · · ·+ wM−(2k−1)−1,M−(2k−1))
)

≤ |e1
2k| − λw0,2k+1|e1

2k+1| − λw1,2k+1|e1
2k| − · · · − λw2k,2k+1|e1

1|

− λw0,M−(2k−1)|e1
2k−1| − λw1,M−(2k−1)|e1

2k| − · · · − λwM−(2k−1)−1,M−(2k−1))|e1
M−1|

≤ |e1
2k| − λw0,2k+1|e1

2k+1| − λw1,2k+1|e1
2k| − · · · − λw2k,2k+1|e1

1|

− λw0,M−(2k−1)|e1
2k−1| − λw1,M−(2k−1)|e1

2k| − · · · − λwM−(2k−1)−1,M−(2k−1)|e1
M−1|

≤ |e0
2k|+ ∆tR.
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Assume that |e1|∞ = supl |e1
l | = |e2k+1| for some k, we get, by Lemma 6.4.2, with

R = (∆t+ ∆xmin(3−α,β)),

|e1|∞ = sup
l
|e1
l | = |e1

2k+1| ≤ |e1
2k+1|

(
1− λ(w0,2k+2 + w1,2k+2 + . . . w2k+2,2k+2)

− λ(w0,M−2k + w1,M−2k + · · ·+ wM−2k,M−2k)
)

= |e1
2k+1| − λw0,2k+2|e1

2k+2| − λw1,2k+2|e1
2k+1| − · · · − λw2k+2,2k+2|e1

0|

− λw0,M−2k|e1
2k| − λw1,M−2k|e1

2k+1|+ · · · − λwM−2k,M−2k)|e1
M |

≤ |e1
2k+1| − λw0,2k+2|e1

2k+1| − λw1,2k+2|e1
2k+1| − · · · − λw2k+2,2k+2|e1

0|

− λw0,M−2k|e1
2k| − λw1,M−2k|e1

2k+1| − · · · − λwM−2k,M−2k|e1
M |

≤ |e0
2k+1|+ ∆tR.

Hence we obtain

sup
l
|e1
l | ≤ sup

l
|e0
l |+ ∆tR.

Further, for simplicity, we assume that e0
l = 0. Then we have

|e1|∞ ≤ ∆tR.

Similarly, we can show that

|e2|∞ ≤ |e1|∞ + ∆tR ≤ t2R,

and in general, with 0 ≤ tn ≤ T ,

|en|∞ ≤ tnR ≤ C(∆t+ ∆xmin(3−α,β)).

The proof of Theorem 6.4.6 is now complete.

6.5 Numerical simulations

In this section, we will give some numerical examples. Let us consider the following

space-fractional partial differential equation with nonhomogeneous Dirichlet boundary
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conditions, with 1 < α < 2,

∂u(t, x)

∂t
− R

0 D
α
xu(t, x) = f(t, x), 0 < x < 1, t > 0, (6.5.1)

u(t, 0) = ϕ1(t), u(t, 1) = ϕ2(t), (6.5.2)

u(0, x) = u0(x), (6.5.3)

where ϕ1(t), ϕ2(t) are some suitable functions of t and u0(x) is the initial condition.

Let us recall the numerical method introduced in the previous section. Let m be a

positive integer and let 0 = x0 < x1 < x2 < · · · < x2m = 1 be a space partition of [0, 1]

and ∆x the space stepsize. Let 0 = t0 < t1 < t2 < · · · < xN = 1 be a time partition of

[0, 1] and ∆t the time stepsize.

At x = xl, t = tn, we have, with l = 1, 2, . . . , 2m− 1, and n = 1, 2, . . . , N ,

∂u(t, x)

∂t

∣∣∣
x=xl,t=tn

− R
0 D

α
xu(t, x)

∣∣∣
x=xl,t=tn

= f(t, x)
∣∣∣
x=xl,t=tn

, (6.5.4)

u(tn, 0) = ϕ1(tn), u(tn, 1) = ϕ2(tn), (6.5.5)

u(0, xl) = u0(xl), (6.5.6)

To get a stable finite difference scheme for this time-dependent problem, we need to

consider the following shifted equation, that is,

∂u(t, x)

∂t

∣∣∣
x=xl,t=tn

− R
0 D

α
xu(t, x)

∣∣∣
x=xl+1,t=tn

= f(t, x)
∣∣∣
x=xl,t=tn

+ ρl(tn), (6.5.7)

u(tn, 0) = ϕ1(tn), u(tn, 1) = ϕ2(tn), (6.5.8)

u(0, xl) = u0(xl), (6.5.9)

where

ρl(tn) = −
(
R
0 D

α
xu(t, x)

∣∣∣
x=xl+1,t=tn

−R0 Dα
xu(t, x)

∣∣∣
x=xl,t=tn

)
.

Note that,

∂u(t, x)

∂t

∣∣∣
x=xl,t=tn

=
u(tn, xl)− u(tn−1, xl)

∆t
+O(∆t),
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and, with l = 2j, j = 1, 2, . . . ,m− 1,

R
0 D

α
xu(t, x)

∣∣∣
x=xl+1,t=tn

=
1

Γ(−α)

∮
x
x2j+1
0

(x2j+1 − ξ)−1−αu(tn, ξ) dξ

=
1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αu(tn, ξ) dξ

+ ∆x−α
2j∑
k=0

wk,2j+1u(tn, x2j+1−k) +O(∆x3−α),

and, with l = 2j + 1, j = 0, 1, 2, . . . ,m− 1,

R
0 D

α
xu(t, x)

∣∣∣
x=xl+1,t=tn

=
1

Γ(−α)

∫ x2j+2

0

(x2j+2 − ξ)−1−αu(tn, ξ) dξ

= ∆x−α
2j+2∑
k=0

wk,2j+2u(tn, x2j+2−k) +O(∆x3−α),

where wk,2j+1, wk,2j+2 are defined as in (6.4.6) and (6.4.7).

Denote Un
j ≈ u(tn, xj). We define the following backward Euler method for solving

(6.5.1)-(6.5.3),

Un
2j − Un−1

2j

∆t
−∆x−α

2j∑
k=0

wk,2j+1U
n
2j+1−k = f(x2j, tn) + ρn2j

+
1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αu(ξ, tn) dξ, j = 1, 2, . . . ,m− 1,

Un
2j+1 − Un−1

2j+1

∆t
−∆x−α

2j+2∑
k=0

wk,2j+2U
n
2j+2−k = f(x2j+1, tn) + ρn2j+1

+
1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αu(ξ, tn) dξ, j = 0, 1, 2, . . . ,m− 1,

or, with λ = ∆t
∆xα

,

Un
2j − λ

2j∑
k=0

wk,2j+1U
n
2j+1−k = Un−1

2j + ∆tf(x2j, tn) + ∆tρn2j

+ ∆t
1

Γ(−α)

∫ x1

0

(x2j+1 − ξ)−1−αu(ξ, tn) dξ, j = 1, 2, . . . ,m− 1,

(6.5.10)

Un
2j+1 − λ

2j+2∑
k=0

wk,2j+2U
n
2j+2−k = Un−1

2j+1 + ∆tf(x2j+1, tn) + ∆tρn2j+1, j = 0, 1, 2, . . . ,M − 1.

(6.5.11)
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The numerical methods (6.5.10) - (6.5.11) can be written into the following matrix

form

AUn = Un−1 + ∆tF n + ∆tρn + ∆tIn +Bn
l +Bn

r ,

where

Un =



Un
1

Un
2

Un
3

...

Un
2m−1


, F n =



f(x1, tn)

f(x2, tn)

f(x3, tn)
...

f(x2m−1, tn)


, ρn =



−
(
R
0 D

α
xu(x2, tn)− R

0 D
α
xu(x1, tn)

)
−
(
R
0 D

α
xu(x3, tn)− R

0 D
α
xu(x2, tn)

)
−
(
R
0 D

α
xu(x4, tn)− R

0 D
α
xu(x3, tn)

)
...

−
(
R
0 D

α
xu(x2m, tn)− R

0 D
α
xu(x2m−1, tn)

)


,

and

In =



0

1
Γ(−α)

∫ x1
0

(x3 − ξ)−1−αu(tn, ξ) dξ

0
...

1
Γ(−α)

∫ x1
0

(x2m−1 − ξ)−1−αu(tn, ξ) dξ

0


,

Bn
l =



λw2,2u(tn, x0)

0

λw4,4u(tn, x0)

0
...

0

λw2m,2mu(tn, x0)


, Bn

r =



0

0
...

0

λw0,2mu(tn, x2m)


,

and

A =



1− λw1,2 −λw0,2 0 0 . . . 0

−λw2,3 1− λw1,3 −λw0,3 0 . . . 0
...

...
...

...
...

...

−λw2m−2,2m−1 −λw2m−3,2m−1 . . . . . . 1− λw1,2m−1 −λw0,2m−1

−λw2m−1,2m −λw2m−2,2m . . . . . . −λw2,2m 1− λw1,2m


.
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Here Bn
l and Bn

r are determined by the Dirichlet boundary conditions u(tn, x0) and

u(tn, x2m). We then use MATLAB to obtain all the approximate solutions Un, n =

1, 2, . . . , N .

Example 14. Consider [12]

ut(t, x) = R
0 D

α
xu(t, x) + f(t, x), 0 < x < 2, t > 0 (6.5.12)

u(t, 0) = 0, u(t, 2) = 0, (6.5.13)

u(0, x) = 4x2(2− x)2, 0 < x < 1, (6.5.14)

where

f(t, x) = −4e−tx2(2− x)2 − 4e−t
(

4
Γ(2 + 1)

Γ(2− α + 1)
x2−α

− 4
Γ(3 + 1)

Γ(3− α + 1)
x3−α +

Γ(4 + 1)

Γ(4− α + 1)
x4−α

)
,

The exact solution is u(t, x) = 4e−tx2(2− x)2.

By Theorem 6.4.6, we have

|eN |∞ = |UN − u(tN)|∞ ≤ C(∆t+ ∆xγ), with γ = min(3− α, β),

where |eN |∞ denotes the L∞-norm of the error at time tN = 1. In our numerical example,

we know the exact solution u, so we can exactly calculate ρn. In general, we may need

to approximate ρn by using the computed solutions Un with some higher order numerical

methods.

To observe the convergence order with respect to ∆x, we choose ∆t = 2−10 sufficiently

small and the different space stepsizes hl = ∆x = 2−l, l = 3, 4, 5, 6, 7. Hence the error

will be dominated by ∆xγ. Now let |eNl |∞ = |UN − u(tN)|∞ denote the L∞-norm at

tN = 1 obtained by using the space stepsize hl. For the fixed space stepsize hl = 2−l, l =

3, 4, 5, 6, 7, we have

|eNl |∞ ≈ Chγl , (6.5.15)

which implies that

|eNl |∞
|eNl+1|∞

≈ hγl
hγl+1

= 2γ.
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Hence the convergence order satisfies

γ ≈ log2

( |eNl |∞
|eNl+1|∞

)
. (6.5.16)

In Table 6.5.1, we obtain the experimentally determined orders of convergence (EOC) for

the different α = 1.2, 1.4, 1.6, 1.8. We see that the convergence order is almost 3−α which

is consistent with our theoretical convergence order γ = min(3 − α, β). The order 3 − α

term dominates the convergence order in this example. Here and below we will call our

numerical method “the Shifted Diethelm method ”.

In Figures 6.5.1- 6.5.2, we plot the convergence orders with α = 1.20 and α = 1.80,

respectively. The convergence order is O(∆x3−α) as produced in the Table 6.5.1.

∆t ∆x α = 1.2 α = 1.4 α = 1.6 α = 1.8

2−10 2−3

2−10 2−4 1.5009 1.5203 1.4714 1.5419

2−10 2−5 1.5813 1.4978 1.3432 1.3221

2−10 2−6 1.7058 1.5597 1.3262 1.2168

2−10 2−7 1.8136 1.6285 1.3504 1.1905

Table 6.5.1: The experimentally determined orders of convergence (EOC) at t = 1 in

Example 14 by using the shifted Diethelm method

In [66], the shifted Grünwald difference operator

Aαh,pu(x) = ∆x−α
∞∑
k=0

g
(α)
k u(x− (k − p)∆x)

approximates the Riemann-Liouville fractional derivative uniformly with first order accu-

racy, i.e.,

Aαh,pu(x) = R
−∞D

α
xu(x) +O(∆x),

where p is a positive integer and g
(α)
k = (−1)k( αk ). Considering a well defined function

u(x) on a bounded interval [a, b] if u(a) = 0 or u(b) = 0, the function u(x) can be

zero extended for x < a or x > b. And then the α order left and right Riemann-

Liouville fractional derivatives of u(x) at each point x can be approximated by the shifted
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Figure 6.5.1: The experimentally determined orders of convergence (“EOC ”) at t = 1 in

Example 14 with α = 1.20
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Figure 6.5.2: The experimentally determined orders of convergence (“EOC ”) at t = 1 in

Example 14 with α = 1.80
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Grünwald difference operator Aαh,pu(x). In [90], the authors introduced a weighted and

shifted Grünwald difference operator which has second order accuracy to approximate

the Riemann-Liouville fractional derivative. However the approximation of the left or

right Riemann-Liouville fractional derivatives in [66, 90] by using the shifted Grünwald

difference operator on finite interval [a, b] requires that u(a) = 0 or u(b) = 0 respectively.

In Table 6.5.2, we obtain the experimentally determined orders of convergence (EOC) for

the different α = 1.2, 1.4, 1.6, 1.8 by using the Grünwand difference method in [66]. We

only observe the first order convergence.

∆t ∆x α = 1.2 α = 1.4 α = 1.6 α = 1.8

2−10 2−3

2−10 2−4 0.8970 0.9660 1.1971 1.7665

2−10 2−5 0.9304 0.9997 1.0878 1.4690

2−10 2−6 0.9571 1.0004 1.0340 1.1946

2−10 2−7 0.9792 1.0033 1.0166 1.0674

Table 6.5.2: The experimentally determined orders of convergence (EOC) at t = 1 in

Example 14 by using the shifted Grünwald method

Example 15. We consider the same equation as in Example 14, but with the nonhomo-

geneous Dirichlet boundary condition,

ut(t, x) = R
0 D

α
xu(t, x) + f(t, x), 0 < x < 2, t > 0 (6.5.17)

u(t, 0) = 5, u(t, 2) = 5, (6.5.18)

u(0, x) = 4x2(2− x)2 + 5, 0 < x < 1, (6.5.19)

where

f(t, x) = −4e−tx2(2− x)2 − 4e−t
(

4
Γ(2 + 1)

Γ(2− α + 1)
x2−α − 4

Γ(3 + 1)

Γ(3− α + 1)
x3−α

+
Γ(4 + 1)

Γ(4− α + 1)
x4−α + 5

Γ(1)

Γ(1− α)
x−α

)
.

The exact solution is u(t, x) = 4e−tx2(2− x)2 + 5.
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We use the same notations as in Example 14. In Table 6.5.3, we obtain the experimen-

tally determined orders of convergence (EOC) for the different α = 1.2, 1.4, 1.6, 1.8. We

see that the convergence order is less than 3−α. This is because of the nonhomogeneous

boundary conditions.

The approximation of the Riemann-Liouville fractional derivative by using the Grünwald

difference operator on [a, b] in Meerschaert and Tadjeran [66] requires that the function

has the zero extension for x < a and x > b. Hence we require that the function should have

zero boundary conditions on the finite interval in order to get good approximation of the

fractional derivative of such function by using the Grünwald difference operator. In this

example, since the Dirichlet boundary conditions are not homogeneous, we observe that

in Table 6.5.4 the convergence order of the algorithm by using the Grünwald difference

method is rather low. However the shifted Diethelm method works well for the nonhomo-

geneous Dirichlet boundary conditions and the convergence order is approximately equal

to 1 in this example. This is another advantage of using the shifted Diethelm’s method

compared with the Grünwald difference method in Meerschaert and Tadjeran [66].

∆t ∆x α = 1.2 α = 1.4 α = 1.6 α = 1.8

2−10 2−3

2−10 2−4 1.4510 1.4687 1.5479 1.6511

2−10 2−5 1.4388 1.2905 1.2426 1.2030

2−10 2−6 1.3686 1.1039 0.9791 1.0037

2−10 2−7 1.0667 0.8199 0.7011 0.7089

Table 6.5.3: The experimentally determined orders of convergence (EOC) at t = 1 in

Example 15 by using the shifted Diethelm method

Example 16. Consider [12]

ut(t, x) = R
0 D

α
xu(t, x) + f(t, x), 0 < x < 1, t > 0 (6.5.20)

u(t, 0) = 0, u(t, 1) = e−t, (6.5.21)

u(0, x) = xα1 , 0 < x < 1, (6.5.22)
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∆t ∆x α = 1.2 α = 1.4 α = 1.6 α = 1.8

2−10 2−3

2−10 2−4 0.7821 0.3548 0.6070 1.1859

2−10 2−5 0.5424 0.2148 0.2738 0.5377

2−10 2−6 0.4045 0.2604 0.2348 0.2664

2−10 2−7 0.3801 0.3191 0.2580 0.1939

Table 6.5.4: The experimentally determined orders of convergence (EOC) at t = 1 in

Example 15 by using the shifted Grünwald method

where

f(t, x) = −e−txα1 − e−t Γ(α1 + 1)

Γ(α1 + 1− α)
xα1−α.

The exact solution is u(t, x) = e−txα1. In our numerical simulations, we first consider

the nonsmooth solutions with α1 = α. we then consider the smooth solutions with α1 = 3.

For the case α1 = α, we have

R
0 D

α
x (xα1) = D2

(
R
0 D

α−2
x

)
(xα1) = D2 1

Γ(2− α)

∫ x

0

(x− τ)1−ατα1 dτ = CD2(x2) = C,

for some constant C, which implies that the following Lipschitz condition holds for any

β > 0,∣∣∣ R0 Dα
xu(t, x)− R

0 D
α
y u(t, y)

∣∣∣ = 0 ≤ C|x− y|β.

In Table 6.5.5, we obtain the experimentally determined orders of convergence (EOC)

for the different α = 1.2, 1.4, 1.6, 1.8. We see that the convergence order is less than 3−α.

This is because the exact solution u is not sufficiently smooth in this case.

For the case α1 = 3, we obtain, in Table 6.5.6, the experimentally determined orders

of convergence (EOC) for the different α = 1.2, 1.4, 1.6, 1.8. We see that the convergence

order is almost 3− α.
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∆t ∆x α = 1.2, α1 = 1.2 α = 1.4, α1 = 1.4 α = 1.6, α1 = 1.6 α = 1.8, α1 = 1.8

2−10 2−3

2−10 2−4 1.2981 1.1479 1.0375 0.9583

2−10 2−5 1.4639 1.3352 1.1884 1.0637

2−10 2−6 1.4405 1.4178 1.2836 1.1379

2−10 2−7 1.2192 1.4118 1.3292 1.1831

Table 6.5.5: The experimentally determined orders of convergence (EOC) at t = 1 in

Example 16 for α1 = α

∆t ∆x α = 1.2, α1 = 3 α = 1.4, α1 = 3 α = 1.6, α1 = 3 α = 1.8, α1 = 3

2−10 2−3

2−10 2−4 1.3625 1.2416 1.1532 1.0745

2−10 2−5 1.5740 1.3951 1.2398 1.1111

2−10 2−6 1.7143 1.5008 1.3099 1.1440

2−10 2−7 1.8557 1.5754 1.3585 1.1690

Table 6.5.6: The experimentally determined orders of convergence (EOC) at t = 1 in

Example 16 for α1 = 3

Example 17. Consider the same equation as in Example 16, but with nonhomogeneous

boundary conditions.

ut(t, x) = R
0 D

α
xu(t, x) + f(t, x), 0 < x < 1, t > 0 (6.5.23)

u(t, 0) = 1, u(t, 1) = e−t + 1, (6.5.24)

u(0, x) = xα1 + 1, 0 < x < 1, (6.5.25)

where

f(t, x) = −e−txα1 − e−t Γ(α1 + 1)

Γ(α1 + 1− α)
xα1−α.
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The exact solution is u(t, x) = e−txα1 + 1. In our numerical simulations, we consider

the smooth solution with α1 = 3.

In Table 6.5.7, we obtain the experimentally determined orders of convergence (EOC)

for the different α = 1.2, 1.4, 1.6, 1.8. We see that the convergence order is almost 3 − α

even under the nonhomogeneous boundary conditions.

∆t ∆x α = 1.2, α1 = 3 α = 1.4, α1 = 3 α = 1.6, α1 = 3 α = 1.8, α1 = 3

2−10 2−3

2−10 2−4 1.3961 1.2732 1.1686 1.0791

2−10 2−5 1.5847 1.4090 1.2514 1.1165

2−10 2−6 1.7003 1.5015 1.3149 1.1474

2−10 2−7 1.7823 1.5581 1.3562 1.1698

Table 6.5.7: The experimentally determined orders of convergence (EOC) at t = 1 in

Example 17 for α1 = 3

Example 18. Consider the following two-sided space-fractional partial differential equa-

tion, [66]

ut(t, x) = c+(t, x) R0 D
α
xu(t, x) + c−(t, x) RxD

α
1 u(t, x) + f(t, x), 0 < x < 2, t > 0

(6.5.26)

u(t, 0) = u(t, 2) = 0, (6.5.27)

u(0, x) = 4x2(2− x)2, 0 < x < 2, (6.5.28)

where

c+(t, x) = Γ(1.2)x1.8 and c−(t, x) = Γ(1.2)(2− x)1.8

f(t, x) = −32e−t
(
x2 + (2− x)2 − 2.5(x3 + (2− x)3) +

25

22
(x4 + (2− x)4)

)
.

The exact solution is u(t, x) = 4e−tx2(2− x)2.
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We use the same notations as in Example 14. In Table 6.5.8, we obtain the experi-

mentally determined orders of convergence (EOC) for the different α = 1.2, 1.4, 1.6, 1.8.

We see that the convergence order is almost 3− α. The order 3− α term dominates the

convergence order in this example.

∆t ∆x α = 1.2 α = 1.4 α = 1.6 α = 1.8

2−10 2−3

2−10 2−4 1.3872 1.2531 1.1841 1.1424

2−10 2−5 1.5540 1.2676 1.1884 1.1425

2−10 2−6 1.6878 1.4151 1.2607 1.1280

2−10 2−7 1.7892 1.4580 1.1861 1.1961

Table 6.5.8: The experimentally determined orders of convergence (EOC) at t = 1 in

Example 18 by using the shifted Diethelm method



Chapter 7

Conclusions and possibilities for

further work

This thesis has extended the existing numerical methods (Diethelm’s numerical method

and Fractional Adams-type method) to obtain higher orders convergence in the solution

to fractional order differential equations.

Applying quadratic interpolation polynomial to discretize Hadamard finite-part inte-

gral in Diethelm’s method the convergence order is O(h3−α) when, 0 < α < 1, whereas,

the existing order of convergence is O(h2−α) when, 0 < α < 1. And in the Adams-type

approximation method we have found the convergence order is O(h1+2α) for 0 < α < 1

and O(h3) for 1 < α < 2 which are higher than the existing results. The advantage of

the method is we can solve non-linear fractional differential equations as well as linear

fractional differential equations and we can avoid non-linear calculations in the Newton

iteration process.

In Chapter 5 the Richardson extrapolation algorithm was discussed as a tool to accel-

erate the order of convergence for our considered numerical methods. The extrapolation

algorithm is applicable if the sequence of the approximate solutions of the problem pos-

sesses an asymptotic expansion and it was proved that the two approximate methods that

we considered possess an asymptotic expansion. We also discussed how to approximate

the initial value and the initial integrals of the proposed numerical methods.

Finally, we consider the finite difference method for solving space-fractional partial

differential equations. We proved that both the standard explicit finite difference method
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and implicit finite difference methods are unconditionally unstable. To find a stable

finite difference method we introduce implicit shifted Diethelm finite difference method

for solving two-sided space-fractional partial differential equations. We proved that, the

method is unconditionally stable and the order of convergence of the finite difference

method is O(∆t + ∆xmin(3−α,β)), 1 < α < 2, β > 0, where ∆t,∆x denote the time and

space stepsizes, respectively.

The importance of research into fractional order differential equations and their signif-

icance to future applications warrant continued study. We propose some possible research

topics in this active research area:

• Higher order numerical methods for solving fractional differential equation with

variable steps.

• Higher order numerical methods for solving time-fractional PDEs.

• Higher order numerical methods for solving time-space-fractional PDEs.
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