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Abstract For the case of approximation of convection–diffusion equations using piecewise affine
continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes
the scheme satisfy a discrete maximum principle. The diffusion operator is shown to be Lipschitz
continuous and linearity preserving. Using these properties we provide a full stability and error
analysis, which, in the diffusion dominated regime, shows existence, uniqueness and optimal con-
vergence. Then the algebraic flux correction method is recalled and we show that the present
method can be interpreted as an algebraic flux correction method for a particular definition of the
flux limiters. The performance of the method is illustrated on some numerical test cases in two
space dimensions.
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1 Introduction

For an open bounded polygonal (polyhedral) domain Ω ⊆ Rd, d = 2, 3, with Lipschitz boundary,
we consider in this work the steady-state convection-diffusion-reaction equation{

−ε∆u+ b · ∇u+ σ u = f in Ω ,

u = g on ∂Ω ,
(1.1)

where ε > 0 is the diffusion coefficient, b ∈ L∞(Ω)2 is a solenoidal convective field, σ > 0 is a

real constant, and f ∈ L2(Ω), g ∈ H 1
2 (∂Ω), are given data. In this work we adopt the standard

notation for Sobolev spaces. In particular, for D ⊂ Rd we denote (·, ·)D the L2(D) (or L2(D)d)
inner product, and by ‖ · ‖l,D (| · |l,D) the norm (seminorm) in H l(D) (with the usual convention
that H0(D) = L2(D)).

The weak form of problem (1.1) is: Find u ∈ H1(Ω) such that u = g on ∂Ω and

a(u, v) = (f, v)Ω ∀ v ∈ H1
0 (Ω) , (1.2)
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where the bilinear form a is given by

a(u, v) := ε (∇u,∇v)Ω + (b · ∇u, v)Ω + σ(u, v)Ω .

The weak problem (1.2) has a unique solution u ∈ H1(Ω) and its solution satisfies the following
maximum principle (see [?]).

Definition 1 (Maximum Principle) Assume that f ≥ 0, g ≥ 0 (resp. ≤ 0) and the solution u
of (1.2) is smooth enough. Then, if σ = 0 and u attains a strict minimum (resp. maximum) at an
interior point x̃ ∈ Ω, then u is constant in Ω. If σ > 0, then the same conclusion remains valid if
we suppose in addition that u(x̃) < 0 (resp. u(x̃) > 0).

This work deals with the development of a method that satisfies the discrete analogous of the
last definition. The quest for such a method has been a constant for the last couple of decades.
Several methods have been proposed over the years, both in the finite element and finite volume
contexts (see [?] for a review). Overall, the common point of all discretisations that satisfy a
discrete maximum principle (DMP) is that they add some diffusion to the equations. This extra
diffusion can lead to a linear method, but it is a well-known fact that such a method will provide
very diffused numerical solutions, which will converge suboptimally. Due to the previous fact,
several methods that add nonlinear diffusion have been proposed.

One approach has been to add a so-called shock-capturing term to the finite element formula-
tion. This typically amounts to a nonlinear diffusion term where the diffusion coefficient depends
nonlinearly on the finite element residual, making it large in the zones where the solution is un-
derresolved, but vanish in smooth regions. An analysis showing that nonlinear shock capturing
methods may lead to a DMP was first proposed in [?], and then developed further for the Laplace
operator in [?], and for the convection-diffusion equation in [?]. For a review of shock capturing
methods, designed to reduce spurious oscillations, without necessarily satisfying a DMP, see [?].
More recent nonlinear discretisations, these ones based on the idea of blending in order to satisfy
the DMP, are the works [?,?], where the emphasis has been given to prove the convergence to an
entropy solution. Most shock capturing techniques suffer from the strong nonlinearity introduced
when the diffusion coefficient is made to depend on the finite element residual (and therefore the
gradient of the approximation function). Because of this the analysis of such methods is incomplete
even when linear model problems with constant coefficients are considered. In particular, in most
cases uniqueness of solutions can not be proved, and the convergence theory is incomplete.

On the other hand, driven initially by the design of explicit time stepping schemes for com-
pressible flows, so called Flux Corrected Transport (FCT) schemes and the related algebraic flux
correction (AFC) schemes were introduced [?,?,?]. These schemes act on the algebraic level by first
modifying the system matrix so that it has suitable properties to make the system monotonous,
while perturbing the method as little as possible. In the most elementary case the system matrix
is simply perturbed to make it an M-matrix, resulting in a linear method. This crude strategy,
however, necessarily results in a first order scheme. Then, AFC schemes introduce a nonlinear
switch, or flux limiter, thus making the low order monotone scheme active only in the zones where
the DMP may be violated. These schemes have also resisted mathematical analysis for a long time,
but a number of results have been proved recently in [?,?]. Indeed, in these references, existence
of solutions and positivity have been proved, and a first error analysis has been performed. Nev-
ertheless, it was shown that the DMP, and even the convergence of the discrete solution to the
continuous one, depend on the geometry of the mesh.

Another approach to combine monotone (low order) finite element methods with linear diffusion
and high order FEM using flux-limiters was proposed very recently in [?]. It then appears that a
cross pollination between the idea of AFC and shock-capturing could be fruitful.

The objective of the present paper is to further bridge the gap between the shock capturing
approach and the algebraic flux correction. Indeed we will consider a generalisation of the shock-
capturing term first introduced in [?] to several dimensions, using an anisotropic diffusion operator
along element edges similar to that introduced in [?]. We show that the resulting scheme satisfies
the DMP and give an analysis of the method. In particular we show that the new shock capturing
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term is Lipschitz continuous, and, if the mesh is sufficiently regular, linearity preserving (see § 2.1),
which allows us to improve greatly on previous results. In § 2.2 we prove existence of solutions,
the discrete maximum principle, and noticeably, uniqueness in the diffusion dominated regime.
We then show error estimates, which, thanks to the combined use of linearity preservation and
Lipschitz continuity, turn out to be optimal in the diffusion dominated regime, for a special class
of meshes (see § 3). In § 4, we revisit the design principles of AFC and show that the proposed
shock-capturing term can be interpreted as an AFC scheme using a special flux, allowing both for
a DMP and Lipschitz continuity. Some numerical results are finally shown in § 5.

1.1 Notations

We now introduce some notation that will be needed for the discrete setting. We consider a
family {Th}h>0 of shape-regular triangulations of Ω consisting of disjoint d-simplices K. We
define hK := diam(K), and h = max{hK : K ∈ Th}. We associate with the triangulation Th the
finite element spaces

Vh := {χ ∈ H1(Ω) : χ|K ∈ P1(K)∀K ∈ Th}, and V0
h := Vh ∩H1

0 (Ω), (1.3)

where P`(D) is the space of polynomials of degree at most ` on D. The nodes of Th are denoted
by {xi}Ni=1, and the usual associated basis functions of Vh are denoted by {ψi}Ni=1.

We let Eh be the set of the interior edges of Th. For every edge E ∈ Eh, we define hE := |E|
and ωE := {K ∈ Th : K ∩ E 6= ∅}, and fix one unit tangent vector, denoted by t.

For an interior node xi, we define the associated edges Ei := {E ∈ Eh : xi ∈ E} and the subset
of Rd defined by the union of all elements K sharing the node xi, Ωi := {x ∈ Ω̄ : ∃K ∈ Th : x ∈
K and xi ∈ K}, and the set

Si := {j ∈ {1, . . . , N} \ {i} : xj shares an internal edge with xi} . (1.4)

Finally, we will say that the triangulation Th is symmetric with respect to its internal nodes
if for every internal node xi the following holds: for all j ∈ Si there exists k ∈ Si such that
xj − xi = −(xk − xi) (see Figure 1 for examples in two space dimensions).

(a) (b) (c) (d)

Fig. 1 In two dimensions, meshes (a)-(c) are examples of symmetric meshes. Mesh (d) is a non-symmetric, non-
Delaunay mesh.

2 The nonlinear discretisation

The standard finite element method for the problem (1.2) takes the form: Find uh ∈ Vh such that
uh − ubh ∈ V0

h and

a(uh, vh) = (f, vh)Ω ∀ vh ∈ V0
h . (2.1)
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Here, ubh ∈ Vh is introduced to approximate the boundary condition g. Then, we propose the
following stabilised method to discretise (1.2): Find uh ∈ Vh such that uh − ubh ∈ V0

h and

ah(uh; vh) := a(uh, vh) + dh(uh;uh, vh) = (f, vh)Ω ∀ vh ∈ V0
h . (2.2)

The stabilisation term dh(· ; ·, ·) is defined by

dh(wh;uh, vh) =
∑
E∈Eh

γ0 h
d
E αE(wh)(∂tuh, ∂tvh)E . (2.3)

Here, γ0 > 0, and αE : Vh → [0, 1] is defined as follows. First, for wh ∈ Vh, we define ξwh
as the

unique element in Vh whose nodal values are given by

ξwh
(xi) :=


∣∣∣∑j∈Si

wh(xi)− wh(xj)
∣∣∣∑

j∈Si
|wh(xi)− wh(xj)|

, if
∑
j∈Si

|wh(xi)− wh(xj)| 6= 0 ,

0, otherwise .

(2.4)

Then, on each E, αE is defined by

αE(wh) := max
x∈E

[
ξwh

(x)
]p

, p ∈ [1,+∞) . (2.5)

The value for p will determine the rate of decay of the numerical diffusion with the distance to
the critical points. A value closer to 1 will add more diffusion in the far field, while a larger
value will make the diffusion vanish faster, but on the other hand, increasing p may make the
nonlinear system more difficult to solve. In principle, as p goes to infinity the method will add
the perturbations only in points with local extrema. In our calculations we have tested several
different values for p, and have presented those for p = 1, 4, 8, and 10. The higher values provide
better numerical results, while keeping the nonlinear solver converging within a reasonable number
of iterations. In Section 5 below we present a more detailed study of the behavior of the nonlinear
solver with respect to the value of p. We finally stress the fact that, for any value of p, the function
αE(wh) is equal to 1 if wh has a local extremum in one of the end points of the edge E. This
property is of fundamental importance for the proof of the discrete maximum principle below.

2.1 Properties of dh(·; ·, ·)

We start noticing that ∑
j∈Si

|wh(xi)− wh(xj)| = 0 =⇒ wh|Ωi = c ∈ R .

This prevents the method from adding artificial diffusion to the equations in regions in which the
solution is constant. Moreover, the method is as well linearity preserving if the mesh is symmetric
with respect to its interior nodes. In fact, if E ∈ Eh has endpoints xi and xj , and vh ∈ P1(ωE),
then ∑

l∈Si

vh(xi)− vh(xl) = 0 and
∑
l∈Sj

vh(xj)− vh(xl) = 0 , (2.6)

which gives αE(vh) = 0. Then, the method does not add extra diffusion in smooth regions,
whenever the mesh is sufficiently structured. We now state this in a more precise way. Let us
decompose the stabilisation term dh as the sum of edge contributions as follows:

dh(uh; vh, zh) =
∑
E∈Eh

dE(uh; vh, zh) with dE(uh; vh, zh) := γ0 h
d
E αE(uh)(∂tvh, ∂tzh)E .
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Then, if the mesh is symmetric with respect to its internal nodes and E ∈ Eh, whenever vh ∈
P1(ωE), the edge diffusion vanishes, this is

dE(vh;wh, zh) = 0 ∀wh, zh ∈ Vh .

As a consequence, if, for a given node xi, with associated basis function ψi, we denote the extended
macro element Ω̃i := ∪E∈EiωE , then

dh(vh;wh, ψi) = 0, ∀wh ∈ Vh and ∀vh : vh|Ω̃i
∈ P1(Ω̃i).

The next step is to show that dh(·; ·, ·) is continuous. More precisely, it is Lipschitz continuous,
and the next result is the first step towards this.

Lemma 1 For any vh, wh ∈ Vh, and any given internal node xi, the following holds

|ξvh(xi)− ξwh
(xi)| ≤ 4

∑
E∈Ei

hE |∂t(vh − wh)|∑
E∈Ei

hE
(
|∂tvh|+ |∂twh|

) . (2.7)

Proof It is enough to suppose that
∑
j∈Si
|vh(xi)− vh(xj)| > 0 and

∑
j∈Si
|wh(xi)−wh(xj)| > 0,

otherwise the claim is obvious. A quick calculation gives

|ξvh(xi)− ξwh
(xi)| =

∣∣∣∣∣∣
∣∣∣∑j∈Si

vh(xi)− vh(xj)
∣∣∣∑

E∈Ei
hE |∂tvh|

−

∣∣∣∑j∈Si
wh(xi)− wh(xj)

∣∣∣∑
E∈Ei

hE |∂twh|

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∣∣∣∑j∈Si

vh(xi)− vh(xj)
∣∣∣− ∣∣∣∑j∈Si

wh(xi)− wh(xj)
∣∣∣∑

E∈Ei
hE |∂tvh|

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈Si

wh(xi)− wh(xj)

∣∣∣∣∣∣
∣∣∣∣∣ 1∑

E∈Ei
hE |∂tvh|

− 1∑
E∈Ei

hE |∂twh|

∣∣∣∣∣
≤
∑
E∈Ei

hE |∂t(vh − wh)|∑
E∈Ei

hE |∂tvh|
+

∣∣∣∑j∈Si
wh(xi)− wh(xj)

∣∣∣ ∣∣∑E∈Ei
hE (|∂twh| − |∂tvh|)

∣∣∑
E∈Ei

hE |∂tvh|
∑
E∈Ei

hE |∂twh|

≤ 2

∑
E∈Ei

hE |∂t(vh − wh)|∑
E∈Ei

hE |∂tvh|
.

The following estimate can be proved in an analogous way

|ξvh(xi)− ξwh
(xi)| ≤ 2

∑
E∈Ei

hE |∂t(vh − wh)|∑
E∈Ei

hE |∂twh|
.

Then,

|ξvh(xi)− ξwh
(xi)| ≤ 2 min

{
1∑

E∈Ei
hE |∂tvh|

,
1∑

E∈Ei
hE |∂twh|

} ∑
E∈Ei

hE |∂t(vh − wh)| , (2.8)

which gives the desired result upon applying the estimate min{a−1, b−1} ≤ 2
a+b , for two positive

numbers a and b. ut

The Lipschitz continuity of dh(·; ·, ·) appears then as a consequence of the previous result.

Lemma 2 The nonlinear form dh(·; ·, ·) is Lipschitz continuous. More precisely, there exists Clip >
0, independent of h, such that, for all vh, wh, zh ∈ Vh, the following holds

|dh(vh; vh, zh)− dh(wh;wh, zh)| ≤ Clipγ0h |vh − wh|1,Ω |zh|1,Ω . (2.9)
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Proof We have

dh(vh; vh, zh)− dh(wh;wh, zh) =
∑
E∈Eh

γ0h
d
E

(
αE(vh)∂tvh − αE(wh)∂twh, ∂tzh

)
E

=
∑
E∈Eh

γ0h
d
EαE(vh)(∂tvh − ∂twh, ∂tzh)E + γ0h

d
E(αE(vh)− αE(wh))(∂twh, ∂tzh)E . (2.10)

The first term in the above estimate is bounded using the fact that |αE(vh)| ≤ 1, the Cauchy-
Schwarz inequality, a local trace inequality, and the shape regularity of the mesh sequence, to
give ∑

E∈Eh

γ0h
d
EαE(vh)(∂tvh − ∂twh, ∂tzh)E ≤ Cγ0h |vh − wh|1,Ω |zh|1,Ω . (2.11)

The second term is bounded next. For this, a general edge E ∈ Eh will be considered as having
xi and xj as endpoints, where xi is chosen to be the vertex such that αE(vh) = ξpvh(xi). We then
divide Eh = E1 ∪ E2, where

E1 := {E ∈ Eh : αE(vh) = ξpvh(xi), αE(wh) = ξpwh
(xi)} ,

E2 := {E ∈ Eh : αE(vh) = ξpvh(xi), αE(wh) = ξpwh
(xj)} ,

and the second term in (2.10) reduces to∑
E∈E1

γ0h
d
E

(
(ξpvh(xi)− ξpwh

(xi))∂twh, ∂tzh
)
E

+
∑
E∈E2

γ0h
d
E

(
(ξpvh(xi)− ξpwh

(xj))∂twh, ∂tzh
)
E
.

We now remark that for two numbers a, b ∈ [0, 1] we have

|ap − bp| = |a− b|
p−1∑
l=0

albp−1−l ≤ p |a− b| ,

and the term in E1 is bounded using Lemma 1. In fact, from the shape regularity of the mesh
sequence there exists C > 0, independent of h, such that for all E,F ∈ Ei, hF ≤ ChE . Moreover,
the number of edges in Ei is uniformly bounded, independently of h. Then, using Cauchy-Schwarz’s
inequality and a local trace inequality we arrive at∑

E∈E1

γ0h
d
E

(
(ξpvh(xi)− ξpwh

(xi))∂twh, ∂tzh
)
E

≤ p
∑
E∈E1

γ0h
d
E

(
|ξvh(xi)− ξwh

(xi)|∂twh, ∂tzh
)
E

≤ p
∑
E∈E1

γ0h
d
E

(
4

∑
F∈Ei

hF |∂t(vh − wh)|F |∑
F∈Ei

hF (|∂tvh|F |+ |∂twh|F |)
|∂twh|, |∂tzh|

)
E

≤ 4p γ0
∑
E∈E1

hdE

(∑
F∈Ei

∣∣∂t(vh − wh)|F
∣∣, |∂tzh|)

E

≤ Cγ0h |vh − wh|1,Ω |zh|1,Ω . (2.12)

The sum over E2 is bounded next. First, using (2.12) we get∑
E∈E2

γ0h
d
E

(
(ξpvh(xi)− ξpwh

(xj))∂twh, ∂tzh
)
E

=
∑
E∈E2

γ0h
d
E

(
(ξpvh(xi)− ξpwh

(xi))∂twh, ∂tzh
)
E

+
∑
E∈E2

γ0h
d
E

(
(ξpwh

(xi)− ξpwh
(xj))∂twh, ∂tzh

)
E

≤ Cγ0h |vh − wh|1,Ω |zh|1,Ω +
∑
E∈E2

γ0h
d
E

(
(ξpwh

(xi)− ξpwh
(xj))∂twh, ∂tzh

)
E
.
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In an analogous way we obtain∑
E∈E2

γ0h
d
E

(
(ξpvh(xi)− ξpwh

(xj))∂twh, ∂tzh
)
E
≤ Cγ0 h |vh − wh|1,Ω |zh|1,Ω

+
∑
E∈E2

γ0h
d
E

(
(ξpvh(xi)− ξpvh(xj))∂twh, ∂tzh

)
E
.

Hence ∑
E∈E2

γ0h
d
E

(
(ξpvh(xi)− ξpwh

(xj))∂twh, ∂tzh
)
E
≤ Cγ0h |vh − wh|1,Ω |zh|1,Ω +

∑
E∈E2

γ0h
d
E min{(ξpvh(xi)− ξpvh(xj))

(
∂twh, ∂tzh

)
E
, (ξpwh

(xi)− ξpwh
(xj))

(
∂twh, ∂tzh

)
E
}

≤ Cγ0h |vh − wh|1,Ω |zh|1,Ω , (2.13)

since the last term in the middle inequality is always non-positive, since by construction, for
E ∈ E2, ξpvh(xi) − ξpvh(xj) ≥ 0 and ξpwh

(xi) − ξpwh
(xj) ≤ 0. The result then follows collecting

(2.10)-(2.13). ut
Remark 1 It is worth remarking that a modification of the method can be introduced in such a
way that the method becomes linearity preserving on general meshes. This modification is based
on the introduction of appropriate weights in the definition of ξwh

. More precisely, instead of its
original definition (2.4), we can introduce the following modified one: for wh ∈ Vh and any internal
node xi

ξwh
(xi) :=



∣∣∣∣∣∣
∑
j∈Si

βij(wh(xj)− wh(xi))

∣∣∣∣∣∣∑
j∈Si

βij |wh(xi)− wh(xj)|
if
∑
j∈Si

βij |wh(xj)− wh(xi)| 6= 0,

0 otherwise .

The coefficients βij are designed in such a way that they satisfy the linearirty preservation property.
Denoting τ ij = xj − xi, this condition reads

∀v ∈ P1(Ωi)
∑
j∈Si

βij
(
v(xj)− v(xi)

)
=
∑
j∈Si

βij∇v · τ ij = ∇v ·

∑
j∈Si

βijτ ij

 = 0 ,

which is equivalent to imposing ∑
j∈Si

βijτ ij = 0 . (2.14)

The equation (2.14) is a first restriction that the coefficients have to satisfy. A further restriction
on βij is their strict positivity. Then, we impose

βij ≥ C0 > 0 , (2.15)

where the value of C0 is of no great importance. Finally, in case the mesh is symetric with respect
to its interior nodes, then βij = 1 for all i, j should be an acceptable (and preferred) solution.
Then, we find βij as the solution of the following problem: For all internal node xi, find

(
βij
)
j∈Si

= argmin

∑
j∈Si

|δij − 1|2 : {δij} satisfies the restrictions (2.14), (2.15)

 . (2.16)

The same results that are presented for the original definition of ξ in (2.4) can be obtained for
the present modification. For simplicity of the presentation, and also to avoid the computational
complexity of solving the constrained optimisation problem (2.16), we have preferred to use in the
rest of the paper the original definition (2.4).



8

2.2 Solvability of the discrete problem

This section is devoted to analyse the existence of solutions for (2.2). It is interesting to remark
that, thanks to the Lipschitz continuity of dh(·; ·, ·), the solution can be proved to be unique in
the diffusion-dominated regime.

Lemma 3 Let Th : V0
h → [V0

h]′ be the operator defined by

[Thzh, vh] = ah(zh + ubh; vh)− (f, vh)Ω , zh, vh ∈ V0
h , (2.17)

where [·, ·] denotes the duality pairing between V0
h and its dual. Then,

[Thzh, zh] ≥ c1|zh|21,Ω − c2(‖ubh‖21,Ω + ‖f‖20,Ω), (2.18)

where c1, c2 are positive constants independent of zh, f , and g.

Proof For this proof only, we will consider constants C > 0 that may depend on the physical
coefficients. From the definition of a it follows that

a(zh, zh) = ε |zh|21,Ω + (σzh, zh) ≥ ε |zh|21,Ω . (2.19)

Moreover, the definition of dh(·; ·, ·) and the fact that 0 ≤ αE(zh + ubh) give

dh(zh + ubh; zh, zh) =
∑
E∈Eh

γ0 h
d
E αE(zh + ubh)‖∂tzh‖20,E ≥ 0. (2.20)

Then, the definition of the operator Th gives

[Thzh, zh] ≥ ε|zh|21,Ω + a(ubh, zh) + dh(zh + ubh;ubh, zh)− (f, zh)Ω . (2.21)

Next, the Cauchy-Schwarz and Poincaré inequalities lead to the following bound

|a(ubh, zh)| = |ε(∇ubh,∇zh)Ω + (b · ∇ubh, zh)Ω + (σubh, zh)|
≤ ε |ubh|1,Ω |zh|1,Ω + ‖b‖∞,Ω‖ubh‖1,Ω‖zh‖0,Ω + Cσ ‖ubh‖0,Ω‖zh‖0,Ω
≤ C‖ubh‖1,Ω |zh|1,Ω . (2.22)

In addition, using the shape regularity of the mesh sequence, αE(·) ≤ 1, and the local trace
inequality, we arrive at

|dh(zh + ubh;ubh, zh)| =
∑
E∈Eh

γ0 h
d
E αE(zh + ubh)(∂tubh, ∂tzh)E

≤
∑
E∈Eh

γ0 h
d
E ‖∂tubh‖0,E‖∂tzh‖0,E

≤ C h |ubh|1,Ω |zh|1,Ω . (2.23)

We can thus conclude that

[Thzh, zh] ≥ ε|zh|21,Ω − C ‖ubh‖1,Ω |zh|1,Ω − ‖f‖0,Ω‖zh‖0,Ω .

The claimed result arises by applying the Poincaré and Young inequalities to the last relation. ut

The solvability of the nonlinear problem (2.2) appears as a consequence of the above result
and Brower’s fixed point Theorem.

Theorem 1 The discrete problem (2.2) has at least one solution. Moreover, if Clipγ0 h < ε, where
Clip is the constant from Lemma 2, then the solution is unique.
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Proof First, since the bilinear form a(·, ·) is continuous, and dh(·; ·, ·) is Lipschitz continuous, then
the operator Th is Lipschitz continuous. Next, in view of (2.18), for any zh ∈ V0

h such that

|zh|21,Ω = 2
c2(‖ubh‖21,Ω + ‖f‖20,Ω)

c1
,

Lemma 3 gives
[Thzh, zh] = c2(‖ubh‖20,Ω + ‖f‖20,Ω) > 0. (2.24)

Then, using a consequence of Brower’s fixed point Theorem (see [?, Corollary 1.1, Ch. IV]), there
exists ṽh ∈ V0

h such that Th(ṽh) = 0. Hence, uh := ṽh + ubh solves (2.2).
In order to prove uniqueness, let u1h, u

2
h be two solutions of (2.2). Then, using (2.2) for both

solutions, denoting ẽh := u1h − u2h, and using the Lipschitz continuity of dh(·; ·, ·), we obtain

ε |ẽh|21,Ω ≤ a(ẽh, ẽh) = −dh(u1h;u1h, ẽh) + dh(u2h;u2h, ẽh)

≤ Clipγ0h |ẽh|21,Ω . (2.25)

This leads to (
ε− Clipγ0h

)
|ẽh|21,Ω ≤ 0 , (2.26)

which, using that ẽh ∈ H1
0 (Ω), finishes the proof. ut

2.3 The discrete maximum principle

This section is devoted to prove that Method (2.2) preserves positivity. For this, we will impose
the following geometric hypothesis on the mesh. This hypothesis can be tracked back to [?], and
in two space dimensions it reduces to impose that the mesh is Delaunay.

Assumption 1 [Hypothesis of Xu and Zikatanov, cf. [?]] For every internal edge E ∈ Eh with
end points xi and xj the following inequality holds

1

d(d− 1)

∑
K∈ωE

|ωKij | cot(θKij ) ≥ 0 , (2.27)

where θKij is the angle between the two facets in K opposite to xi and xj (denoted by Fi,K and

Fj,K , respectively), and ωKij is the (d− 2)-dimensional simplex Fi,K ∩Fj,K opposite to the edge E.

We now introduce the discrete analogue of the maximum principle. This definition is related
to the one from [?], and it leads to results which are, essentially, identical to those from that
reference.

Definition 2 (DMP) The semilinear form ah(·; ·) is said to satisfy the strong DMP property if
the following holds: For all uh ∈ Vh and for all interior vertices xi, if uh is locally minimal (resp.
maximal) on the vertex xi over the macro-element Ωi, then there exist negative quantites (cE)E∈Ei

such that
ah(uh;ψi) ≤

∑
E∈Ei

cE
∣∣∂tuh|E∣∣ , (2.28)

(resp. ah(uh;ψi) ≥ −
∑
E∈Ei

cE
∣∣∂tuh|E∣∣). Furthermore, we will say that the semilinear form sat-

isfies the weak DMP property, related to local minima, if (2.28) holds only under the additional
assumption that the local minimum above is supposed to be negative.

A direct consequence of this definition is the following result analoguous to that of [?, Propo-
sition 2.5]. We reproduce the proof here for the readers convenience.

Lemma 4 Assume that the semilinear form ah(·; ·) satisfies the DMP property. Assume that uh ∈
Vh solves (2.2) and that f ≥ 0. Then uh reaches its minimum on the boundary ∂Ω and for the
weak DMP-property, if g ≥ 0, then uh ≥ 0 in Ω.
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Proof Assume that the DMP is satisfied and uh reaches its minimum in an interior vertex xi.
Since ah(·; ·) satisfies (2.28), uh is constant over Ωi, implying that the minimum is taken in all
vertices xj ∈ Ωi. Repeating the argument we eventually deduce that the minimum is reached on
the boundary. ut

The following result states the DMP for (2.2).

Theorem 2 Let us suppose that the mesh Th satisfies Assumption 1, and that the parameter γ0
is large enough. Then, the semilinear form ah(·; ·) satisfies the weak DMP property for σ > 0 and
the strong DMP-property for σ = 0.

Proof Let us suppose that uh has a negative local minimum at an interior node xi. Then, αE(uh) =
1 for all E ∈ Ei, which gives

ah(uh;ψi) = (σuh, ψi)Ω + ε(∇uh,∇ψi)Ω + (b · ∇uh, ψi)Ω +
∑
E∈Ei

γ0h
d
E(∂tuh, ∂tψi)E . (2.29)

We will analyse the expression above term-by-term. First, if uh ≤ 0 in the support of ψi, then
(σuh, ψi)Ω ≤ 0. Let us suppose now that uh changes sign in the support of ψi, and let K ∈ Ωi be
an element in which uh changes sign. Let xk be a node in K such that uh(xk) ≥ 0, and let Eik
be the edge connecting these two nodes. Then, using the Cauchy-Schwarz inequality, a Poincaré
inequality in K, and the shape regularity of the mesh sequence, we arrive at

(σuh, ψi)K ≤ σ ‖uh‖0,K‖ψi‖0,K

≤ Cσ h
d
2

K‖uh‖0,K
≤ Cσ hdK hEik

∣∣∂tuh|Eik

∣∣ .
Then, adding up over all K ∈ Ωi and using the shape regularity of the mesh sequence we obtain

(σuh, ψi)Ω ≤ C0σ
∑
E∈Ei

hd+1
E |∂tuh|E | . (2.30)

Also, as in [?] (see also [?]), Assumption 1 on the mesh leads to

ε(∇uh,∇ψi)Ω ≤ 0 . (2.31)

Moreover
∑N
j=1 ψj = 1 gives

∑
j∈Si

(b · ∇ψj , ψi)Ω = 0, and then

(b · ∇uh, ψi)Ω =
∑
j∈Si

(b · ∇ψj , ψi)Ωuh(xj) + (b · ∇ψi, ψi)Ωuh(xi)

=
∑
j∈Si

(b · ∇ψj , ψi)Ω
(
uh(xj)− uh(xi)

)
=
∑
E∈Ei

(b · ∇ψj , ψi)ΩhE
∣∣∂tuh|E∣∣ , (2.32)

which, using the shape regularity of the mesh sequence gives

(b · ∇uh, ψi)Ω ≤
∑
E∈Ei

C1‖b‖∞,EhdE |∂tuh|E | . (2.33)

Finally, since uh(xi) is a local minimum, then in every E ∈ Ei, ∂tuh and ∂tψi have different signs
(independently of the orientation of the tangential vector in E), which gives∑

E∈Ei

γ0h
d
E(∂tuh, ∂tψi)E = −

∑
E∈Ei

γ0h
d
E

∣∣∂tuh|E∣∣ . (2.34)
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Hence, gathering all the above computations, we arrive at

ah(uh;ψi) ≤ −
∑
E∈Ei

(γ0 − C0σhE − C1‖b‖∞,E)hdE
∣∣∂tuh|E∣∣ , (2.35)

and the result follows assuming that γ0 > C0σhE + C1‖b‖∞,E . Finally, we notice that if σ = 0
then the sign of the strict minimum is irrelevant, which proves the strong DMP property. ut

Remark 2 It is interesting to remark that the hypothesis on the meshes of the triangulation can
be avoided if the problem is supposed to be strongly convection-dominated. In fact, following
analogous steps to those used to prove (2.32) we can arrive at

ε(∇uh,∇ψi)Ω = ε
∑
E∈Ei

(∇ψj ,∇ψi)ΩhE |∂tuh| ≤
∑
E∈Ei

C2εh
d−1
E |∂tuh| . (2.36)

Replacing this into the steps leading to (2.35) gives

ah(uh;ψi) ≤ −
∑
E∈Ei

(γ0 − C0σhE − C1‖b‖∞,E − C2εh
−1
E )hdE |∂tuh| , (2.37)

and the proof follows by assuming that γ0 > C0σhE + C1‖b‖∞,E + C2εh
−1
E .

The last result is only interesting if εh−1E stays bounded, which means this is applicable only in
the case the problem is highly convection-dominated. In this sense, the method proposed in this
work can be applied to scalar conservation laws, regardless of the geometrical impositions on the
mesh. Similar results have been obtained recently in [?,?].

3 Convergence

The error will be analysed using the following norm:

‖vh‖2h := σ‖vh‖20,Ω + ε |vh|21,Ω + dh(uh; vh, vh) . (3.1)

This norm is not only mesh-dependent, but also depends on the discrete solution. The inclusion of
the last term in it is made mostly for convenience, but the fact that it controls the usual H1(Ω)-
norm (weighted by physical coefficients) guarantees that the convergence of the method is valid
with respect to the standard norm as well. As usual, the error e := u− uh is split as follows

e = u− uh = (u− ihu) + (ihu− uh) := ρh + eh, (3.2)

where ih : C0(Ω) ∩H1
0 (Ω) → V0

h stands for the Clément interpolation operator. Using standard
interpolation estimates (see [?]), the fact that αE(·) ≤ 1, and the shape regularity of the mesh
sequence, the following bound for ρh follows:

‖ρh‖h ≤ C(ε
1
2 + σ

1
2h+ γ0h

1
2 )h ‖u‖2,Ω . (3.3)

The next result states a bound for eh.

Lemma 5 Let us suppose u ∈ H2(Ω) ∩H1
0 (Ω). Then, there exists C > 0, independent of h and

ε, such that

‖eh‖h ≤ C
(
ε+ σ−1{‖b‖2∞,Ω + σ2}

) 1
2h‖u‖2,Ω + Ch

1
2 ‖u‖1,Ω . (3.4)
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Proof First, from the definition of a and dh we get

‖eh‖2h = a(eh, eh) + dh(uh; eh, eh)

= a(ihu, eh)−
{
a(uh, eh) + dh(uh;uh, eh)

}
+ dh(uh; ihu, eh)

= − a(ρh, eh) + dh(uh; ihu, eh) . (3.5)

Next, the continuity of a gives

a(ρh, eh) ≤ (σ‖ρh‖20,Ω + [ε+ σ−1‖b‖2∞,Ω ] |ρh|21,Ω)
1
2 ‖eh‖h

≤ C(ε
1
2 + σ−1/2‖b‖∞,Ω + σ

1
2h)h ‖u‖2,Ω‖eh‖h . (3.6)

Moreover, since dh(uh; ·, ·) is a symmetric positive semi-definite bilinear form it satisfies Cauchy-
Schwarz’s inequality, which gives

dh(uh; ihu, eh) ≤ dh(uh; ihu, ihu)
1
2 dh(uh; eh, eh)

1
2 ≤ dh(uh; ihu, ihu)

1
2 ‖eh‖h . (3.7)

Then, inserting (3.6) and (3.7) into (3.5), and using Young’s inequality, we arrive at

‖eh‖2h ≤ C(ε
1
2 + σ−1/2‖b‖∞,Ω + σ

1
2h)2 h2 ‖u‖22,Ω + C dh(uh; ihu, ihu) . (3.8)

It only remains to bound the consistency error dh(uh; ihu, ihu) in (3.8). The definition of dh(·; ·, ·),
αE(uh) ≤ 1, a local trace inequality, the shape regularity of the mesh sequence, and the H1(Ω)-
stability of ih, give

dh(uh; ihu, ihu) =
∑
E∈Eh

γ0h
d
EαE(uh)‖∂tihu‖20,E ≤ γ0h

∑
E∈Eh

hd−1E ‖∂tihu‖20,E ≤ Ch ‖u‖21,Ω . (3.9)

Then, the result arises inserting (3.9) into (3.8). ut

Collecting (3.3) and Lemma 5 we then obtain the following error estimate for (2.2).

Theorem 3 Let us suppose u ∈ H2(Ω)∩H1
0 (Ω). Then, there exists C > 0, independent of h and

ε, such that

‖e‖h ≤ C
(
ε+ σ−1{‖b‖2∞,Ω + σ2}

) 1
2h‖u‖2,Ω + Ch

1
2 ‖u‖1,Ω . (3.10)

The following result states that for meshes which are symmetric with respect to their interior
nodes, the method converges with a higher order. This result’s main interest lies in the diffusion
dominated regime, due to the factor ε−

1
2 present in the estimate. The combination of Lipschitz

continuity and linearity preservation seems to be novel, and that is why we do detail it now.

Theorem 4 Let us suppose u ∈ H2(Ω) ∩H1
0 (Ω) and that the mesh is symmetric with respect to

its internal nodes. Then, there exists C > 0, independent of h and ε, such that

‖e‖h ≤ C
(
ε+ σ−1{‖b‖2∞,Ω + σ2}

) 1
2h‖u‖2,Ω + C

h√
ε
‖u‖1,Ω . (3.11)

Proof It is enough to bound the consistency error d(uh; ihu, ihu). We have

dh(uh; ihu, ihu) =
{
dh(uh; ihu, ihu)− dh(ihu; ihu, ihu)

}
+ dh(ihu; ihu, ihu)

=: I + II . (3.12)

The first term is bounded as in the proof of Lemma 2. In fact, in that proof, the bound for the
second term in (2.10) leads to the following

I =
∑
E∈Eh

(αE(uh)− αE(ihu))γ0h
d
E(∂tihu, ∂tihu)E

≤ Ch|uh − ihu|1,Ω |ihu|1,Ω

≤ ε

2
|uh − ihu|21,Ω + C

h2

ε
‖u‖21,Ω , (3.13)
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where we have also used the H1(Ω)-stability of ih. To bound II we use the linearity preservation
and the Lipschitz continuity of dh(·; ·, ·). More precisely, for a given E ∈ Eh we introduce the
function iEu ∈ P1(ωE) as the unique solution of the problem

(∇iEu,∇ψ)ωE
= (∇u,∇ψ)ωE

∀ψ ∈ P1(ωE) , (3.14)

(iEu, 1)ωE
= (u, 1)ωE

.

Using standard finite element approximation results (see [?]), iEu satisfies

|u− iEu|1,ωE
≤ ChE |u|2,ωE

. (3.15)

Since the mesh is symmetric with respect to its internal nodes, αE(iEu) = 0. Then, proceeding as
in the bound for I we obtain

II =
∑
E∈Eh

(αE(ihu)− αE(iEu))γ0h
d
E (∂tihu, ∂tihu)E

≤ Ch

{∑
E∈Eh

|ihu− iEu|21,ωE

} 1
2

|ihu|1,Ω

≤ Ch2|u|2,Ω‖u‖1,Ω . (3.16)

Then, inserting (3.13) and (3.16) into (3.12) we obtain

dh(uh; ihu, ihu) ≤ ε

2
|uh − ihu|21,Ω + C

h2

ε
‖u‖21,Ω + Ch2|u|2,Ω‖u‖1,Ω , (3.17)

and the result follows by rearranging terms. ut

4 A link to algebraic flux correction schemes

Method (2.2) has been presented having as motivation the study of the effect of adding edge-based
diffusion into the equations to impose the discrete maximum principle. Another family of methods
that are built with the same purpose is the AFC schemes. This section is devoted to study the
relationship between the two approaches, and that is why we now summarise the main building
principles of AFC schemes.

The starting point of an algebraic flux-correction scheme is a discretisation of the convection-
diffusion-reaction equation which leads to the linear system

AU = G , (4.1)

where A = (aij)
N
i,j=1, U = {uh(xi)}Ni=1 and G = {gi}Ni=1. The first step of these schemes is

to identify which parts of the system matrix A are responsible for the violation of the discrete
maximum principle. To achieve this, the diffusion matrix D = (dij)

N
i,j=1 is built, where

dij = dji = −max{aij , 0, aji} ∀i 6= j dii = −
∑
j 6=i

dij .

Adding DU both sides of (4.1) we obtain

ÃU = G + DU , (4.2)

where Ã := A + D. Since the matrix Ã fullfils the hypothesis to guarantee the discrete maximum
principle, then the oscillations that appear in a non-stabilised discretisation (4.1) are due to the
right-hand side. This is why the right-hand side is now rewritten. Using that the row-sums of D
are zero, then

(DU)i =
∑
j 6=i

fij where fij = dij(uh(xj)− uh(xi)) .
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The quantities fij are called fluxes. Then, the AFC schemes are based on introducing limiters
αij(uh) such that αij ∈ [0, 1], αij = αji, and αij = 1 if xi and xj are both Dirichlet nodes. Then,
after introducing these limiters, the method reads as follows:

AU +

N∑
i,j=1

(1− αij(uh))dij (uh(xj)− uh(xi)) = gi . (4.3)

The most popular limiters in practice are Zalesak’s limiters (see, [?,?,?,?], and the recent
review [?] for examples). The analysis of these methods for a class of limiters that includes the

Zalesak one has been carried out recently in [?,?]. In particular, in [?] an O(h
1
2 ) convergence rate

was proved for the case in which the mesh used satisfies Assumption 1. In the case of meshes
that do not satisfy this assumption, then no convergence can be proved, unless some appropriate
modifications are done to the algorithm. This result is optimal, as the numerical results in [?]
show.

Following [?], (4.3) can be written as the following weak problem: Find uh ∈ Vh such that
uh − ubh ∈ V0

h, and

a(uh, vh) + d̃h(uh;uh, vh) = (f, vh)Ω ∀ vh ∈ V0
h , (4.4)

where the nonlinear form d̃h(·; ·, ·) is given by

d̃h(uh;uh, vh) =

N∑
i,j=1

(1− αij(uh))dij (uh(xj)− uh(xi))vh(xi) . (4.5)

Next, to link this to the method analysed in the last sections, we use the symmetry of D, and of
the limiters αij = αji, and a simple calculation gives:

d̃h(uh;uh, vh) =
∑
i>j

(1− αij(uh))dij (uh(xj)− uh(xi))vh(xi)

+
∑
i<j

(1− αij(uh))dij (uh(xj)− uh(xi))vh(xi)

=
∑
i>j

(1− αij(uh))dij (uh(xj)− uh(xi))vh(xi)

+
∑
i>j

(1− αji(uh))dji (uh(xi)− uh(xj))vh(xj)

=
∑
i>j

(1− αij(uh))dij (uh(xj)− uh(xi))(vh(xi)− vh(xj)) . (4.6)

Then, since dij = 0 for j 6∈ Si, d̃h(·; ·, ·) can be rewritten as

d̃h(uh;uh, vh) =
∑
E∈Eh

(1− αij(uh))|dij |hE (∂tuh, ∂tvh)E , (4.7)

where we have adopted the convention that an edge E ∈ Eh has endpoints xi and xj , and used
that αij = 1 for edges included in the Dirichlet boundary.

Method (2.2) then appears as an algebraic flux-correction scheme, with a different definition
of the limiters. Indeed comparing (2.2) with (4.7) we get the equivalent AFC scheme if we choose
αij(uh) such that

(1− αij(uh))|dij |hE = γ0 h
d
E αE(uh).

The new definition of the limiters made it possible to write some convergence and existence results,
also present in [?], in a more precise way, and improve in some of them. In particular, the new
limiters make it possible to prove convergence for general meshes, as well as to prove uniqueness
of solutions and optimal convergence in the diffusion dominated regime.



15

5 Numerical Results

In this section we present three sets of numerical results for bi-dimensional problems. All three
cases are set in Ω = (0, 1)2. The nonlinear system (2.2) has been solved using the following fixed-
point algorithm with damping: Starting with the Galerkin solution u0h, then compute a sequence
{ukh} defined by

uk+1
h = ukh + ω (ũk+1

h − ukh) k = 0, 1, 2, . . . , (5.1)

where ω ∈ (0, 1) is a damping parameter, and ũk+1
h solves: ũk+1

h − ubh ∈ V0
h, and

a(ũk+1
h , vh) + dh(ukh; ũk+1

h , vh) = (f, vh) ∀ vh ∈ V0
h . (5.2)

In all our calculations we have used ω = 0.1, and stopped the iterations when the residual Rk :=(
ah(uk+1

h ;ψi)− (f, ψi)Ω
)
i=1,...,dim(V0

h)
has an euclidean norm smaller than, or equal to, 10−8.

5.1 Convergence for a smooth solution

We take b = (2, 1), σ = 1, and different values for ε. We have selected the right-hand-side and
boundary conditions in such a way that the solution is given by u(x, y) = sin(2πx) sin(2πy). The
meshes used were the three-directional mesh (c) and the non-Delaunay mesh (d) in Figure 1. In
these calculations we have used γ0 = 3 and p = 4.

The results in Tables 1-4 match the theoretical results. In particular we observe a first order
convergence in the diffusion-dominated regime for the Mesh (c), as predicted by Theorem 4, and
a second order convergence in the L2 norm of the error for both the convection and diffusion-
dominated regimes. The latter is in accordance with the empirical observations that linearity
preservation implies such a convergence. For Mesh (d), which is non-symmetric, and hence the
method is no longer linearity preserving, we can observe a first order convergence in both regimes.
This convergence is not affected by the non-Delaunay character of the mesh.

We finish this example by a deeper study of the behavior of the nonlinear fixed-point iteration
with respect to the value of p. The results are reported in Table 5. For these results, we have
used the three-directional Mesh (c), with l = 5. We can observe that, for the values of p ranging
from 1 to 10 the iterations needed to reach convergence are essentially independent of the value
of p. This behavior is kept until a value around 20, and then some non-convergence is observed in
the scheme. Here, by non-convergence we mean that the desired residual reduction has not been
achieved after 5000 iterations. The same qualitative behavior has been observed for other meshes,
and the two other settings presented later. In those cases, non-convergence has been observed
starting at values of about 10 or 15, depending on the case. Then, we believe that it is safe to
use this scheme for values of p not much higher than 10. Of course, further work could be used
to find the right damping parameters for each case, but this would come at the price of having to
perform much more iterations.

Table 1 ε = 10−6, numerical results for Grid (c).

l ‖u− uh‖0,Ω ord. |u− uh|1,Ω ord. ‖u− uh‖h ord.
3 0.49391 – 4.38896 – 3.62380 –
4 0.47965 0.04 4.26871 0.04 3.08479 0.23
5 0.19110 1.33 2.71665 0.65 1.08371 1.51
6 0.04080 2.23 1.55469 0.81 0.22671 2.26
7 0.00683 2.58 0.64692 1.27 0.03904 2.54
8 0.00119 2.52 0.27480 1.24 0.00689 2.50
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Table 2 ε = 1, numerical results for Grid (c).

l ‖u− uh‖0,Ω ord. |u− uh|1,Ω ord. ‖u− uh‖h ord.
3 0.38594 – 3.48242 – 5.44504 –
4 0.16557 1.22 1.90920 0.87 2.26966 1.26
5 0.03268 2.34 0.89029 1.10 0.92785 1.29
6 0.00612 2.42 0.43637 1.03 0.43912 1.08
7 0.00141 2.12 0.21800 1.00 0.21818 1.01
8 0.00035 2.02 0.10903 1.00 0.10904 1.00

Table 3 ε = 10−6, numerical results for Grid (d).

l ‖u− uh‖0,Ω ord. |u− uh|1,Ω ord. ‖u− uh‖h ord.
3 0.48754 – 4.33607 – 5.06989 –
4 0.45680 0.09 4.11426 0.08 2.93242 0.79
5 0.17080 1.42 3.15455 0.38 1.05213 1.48
6 0.04330 1.98 2.23948 0.49 0.26065 2.01
7 0.01165 1.89 1.72410 0.38 0.05482 2.25
8 0.00474 1.30 1.63424 0.08 0.02087 1.39

Table 4 ε = 1, numerical results for Grid (d).

l ‖u− uh‖0,Ω ord. |u− uh|1,Ω ord. ‖u− uh‖h ord.
3 0.38351 – 3.52996 – 5.57464 –
4 0.16616 1.21 2.00539 0.82 2.41681 1.21
5 0.04513 1.88 0.98086 1.03 1.03172 1.23
6 0.01277 1.82 0.48118 1.03 0.48720 1.08
7 0.00423 1.59 0.23973 1.01 0.24059 1.02
8 0.00163 1.38 0.11982 1.00 0.11998 1.00

Table 5 Iterations needed to reach convergence.

p 1 2 3 4 5 6 7 8 9 10 15 20
Iter. 224 218 261 262 278 286 211 227 197 197 218 206

5.2 A problem with one inner layer, and a rotating convective field

We use ε = 10−5, f = 0, σ = 0, b = (−y, x), homogeneous Neumann boundary conditions on exit,
and

g(x, y) =

{
1 if x ≤ 0.5 ,
0 else ,

as Dirichlet condition at entry. We have solved this problem on a uniform refinement of the three-
directional from Mesh (c) in Figure 1. The parameter γ0 has been set to 1, and the results show
no violation of the DMP. The results for this case are depicted in Figure 2. We can observe that
the increase in the value of p provides a solution whose inner layer is much sharper than the choice
p = 1. For both higher values for p, a similar behaviour to the one in Table 5 was observed in
terms of number of iterations needed for convergence.

5.3 Advection skew to the mesh

We use ε = 10−5, f = 0, σ = 0 b =
(
cos
(
π
3

)
, sin

(
π
3

))
, and

g(x, y) =

{
1 if x = 0 or y = 1 ,
0 else ,

as Dirichlet condition. We have solved this problem on a criss-cross mesh as shown in Mesh (a)
in Figure 1. We have used the parameter γ0 = 0.75, and, again, no violations of the DMP have
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Fig. 2 Discrete solution for p = 1 (top left) and p = 4 (top right), and p = 8 (bottom).

been observed. The results are depicted in Figure 3, where we can observe much sharper layers
(especially the internal one) when higher values for p have been used. Again, for both higher values
for p, a similar behaviour to the one in Table 5 was observed in terms of number of iterations
needed for convergence.
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Fig. 3 Discrete solution for p = 1 (top left) and p = 4 (tp right), and p = 10 (bottom).


