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Abstract 

Hexabromocyclododecane (HBCD) is a widely utilised brominated flame retardant 

(BFR). It has been shown to bio-accumulate within organisms, including man, and 

possibly cause neurological disorders. The acute neurotoxicity of HBCD, and 6 other 

unrelated BFRs, were assessed in SH-SY5Y human neuroblastoma cells by 24 hour 

viability assays and HBCD proved to be the most lethal (LC50, 3µM).  In addition, the 

effects of these BFRs were also assessed for their potency at inhibiting the 

sarcoplasmic-endoplasmic reticulum Ca2+ ATPase (SERCA) derived from the SH-

SY5Y cells and again HBCD was the most potent (IC50, 2.7µM). The data for the 

other BFRs tested showed a direct correlation (coefficient 0.94) between the potencies 

of inducing cell death and inhibiting the Ca2+ ATPase, indicating that SERCA is 

likely to be the molecular target for acute toxicity. Mechanistic studies of HBCD on 

the Ca2+ ATPase suggest that it affects ATP binding, phosphorylation as well as the 

E2 to E1 transition step. 
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1.0 Introduction 

Ca2+ is a commonly employed signal within cells that regulates many different 

cellular processes such as contraction, secretion, neurotransmission, proliferation and 

death by increasing intracellular Ca2+ concentrations ([Ca2+]i) levels [1]. Inadequate or 

prolonged elevation of [Ca2+]i may  lead to deleterious effects [1] and to avoid these 

effects, [Ca2+]i levels must be strictly controlled by a variety of Ca2+ transporters 

including the sarcoplasmic-endoplasmic reticulum Ca2+ ATPase (SERCA) Ca2+ 

pumps [1,2], which help to maintain low cytosolic [Ca2+] levels. Therefore agents 

which have inhibitory affects on these Ca2+ pumps will have harmful consequences to 

cells and tissues [2]. 

 

1,2,5,6,9,10-Hexabromocyclododecane (HBCD) is a cyclic aliphatic brominated 

flame retardant (BFR) and is one of the major BFRs produced and used today. The 

main application of HBCD is in polystyrene foam that is used in thermal insulation of 

building materials, electronics, textiles and upholstered furniture. 

 

A number of brominated flame retardants (BFRs), including 1,2,5,6,9,10-

hexabromocyclododecane (HBCD), have recently been recognized as widespread 

environmental contaminants which are able to bio-accumulate within living 

organisms, including man [3]. In humans, the major intake of HBCD is from food, 

indoor air and dust [4]. High concentrations of up to 19200 ng/g lipid weight (lw) 

were found in the blood of birds of prey (equivalent to 12 µM) and more than 9600 

ng/g Iw in marine mammals (equivalent to 6 µM) [5]. In addition, concentrations of 

850 ng/g lw (equivalent to 0.5 μM) were found in some human blood samples [6] as 

well as also being reported in human milk [7]. A number of BFRs including HBCD 

have been shown to be specifically neurotoxic in nature, causing neuronal cell death 

[3,8] and having detrimental effects on  brain development, leading to adverse effects 

on behaviour,  learning and memory [9]. 

 

It is clear that some of BFRs are able to elicit increases in intracellular [Ca2+], which 

can lead to cellular disfunction and cell death in a variety of cells types including 

neurons [3,8, 11-13]. Recently our group has shown that Tetrabromobisphenol A is 
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able to inhibit the SERCA Ca2+ pumps at low micromolar (µM) concentrations within 

a range of cell types [2,8,11]. Mobilisation of intracellular Ca2+ stores by inhibiting 

SERCA activity is one of the mechanisms by which BFRs (like other hydrophobic 

environmental pollutants) interfere with the Ca2+ signalling pathway and cause cell 

death [8,10,11]. 

 

It is now evident that a number of BFRs are cytotoxic at low µM concentrations 

within cells by altering intracellular [Ca2+] levels [8,11-13]. This has led us to 

investigate the effects of HBCD on SERCA Ca2+ pumps in order to determine the 

likelihood of it being the molecular target for acute toxicity and additionally elucidate 

the molecular mechanism by which this BFR causes its effect upon this Ca2+ 

transporter.  

 

 

 

2.0 Materials and Methods 

 
2.1 Chemicals 
1,2,5,6,9,10-Hexabromocyclododecane (HBCD) (purity > 95%, commercial grade 

which is typically 82% -isomer and 12% -isomer), Dibromobiphenyl (DBBP) (98% 

purity), decabromodiphenyl ether (DBPE) (>99% purity) and tetrabromobisphenol-A 

diallyl ether (TBBPA-DAE) (>99% purity) were purchased from Sigma-Aldrich Co. 

Ltd, UK. Tetrabromobisphenol-A (TBBPA) (97% purity) was purchased from Acros 

Organics, UK. Pentabromodiphenyl ether (PBDE) and Octabromodiphenyl ether 

(OBDE) (both (>98% purity) were purchased from Wellington Laboratories Inc., 

Canada.  MTT (3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide 

thiazole blue) was purchased from Sigma-Aldrich co. Ltd., UK All other reagents 

were of analytical grade. [γ-32P] ATP was obtained from Amersham, UK.  

 

2.2 Cell culture 
The SH-SY5Y human neuroblastoma cell line, were grown in Dulbecco's modified 

Eagle's medium (DMEM) supplemented with 2 mM L-glutamine, 1% penicillin 

(20 units/ml), streptomycin (20 mg/ml), and supplemented with 10% (vol/vol) heat-

inactivated foetal bovine serum (FBS). Cells were maintained at 37 °C in a saturated 

humidity atmosphere containing 95% air and 5% CO2.  

http://www.ncbi.nlm.nih.gov/pubmed/9330852
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2.3 MTT cell viability assays 

SH-SY5Y neuronal cells were seeded in 24-well cell plates (4x104 cells/well) and 

allowed to cell grow at 37 °C until 80-90% confluency was reached. Pre-treatment 

with drug was undertaken in the culture medium with DMEM (high glucose/without 

phenol or FBS). Stock solutions of compounds were prepared by dissolving them in 

DMSO. The cells were exposed to varying concentrations of the compounds for 24h 

and the volume of DMSO did not exceed 1% of the total volume added to cells, which 

had little effect on viability. Cell viability was determined by MTT assay, using 

thiazolyl blue tetrazolium bromide (MTT reagent) as described in [11]. Viable cells 

form an intracellular formazan product when incubated with MTT reagent for 2-3h, 

and this product was then solubilised with 1ml acidic isopropanol and quantified 

spectroscopically by measuring the difference in absorbance (Δ A =A570- A650) and 

compared to cells not exposed to compounds (but with up to 1% DMSO alone).  

 

 
2.4 Membranes preparation  

SR Ca2+-ATPase were prepared from rabbit skeletal muscle as described by 

Michelangeli and Munkonge (1991) [14]. Microsomal membranes were prepared 

from SH-SY5Y cells as described in [8]. Briefly, SH-SY5Y cells (1x106 cells/cm2) 

detached from the tissue flask, harvested by centrifugation at 1,000g for 10 min 4°C 

and washed with PBS. They were homogenized using a Teflon Potter-Elvejem 

homogenizer in 10 vol. of buffer containing 300 mM sucrose and 5 mM Hepes, pH 

7.2, in the presence of 0.1 mM PMSF, 10 µM leupeptin and 100 µM benzamidine, 

and then centrifuged for 10 min at 1000 g. The pellet was resuspended in 5 vol. of the 

same buffer re-homogenized and centrifuged as above. The resulting supernatants 

were pooled and centrifuged for 20 min at 10,000 g. The supernatant from this stage 

was centrifuged for 1 h at 100,000 g and the resulting pellet (microsomal membrane) 

was re-suspended in fresh Hepes / sucrose buffer, snap-frozen in liquid nitrogen and 

stored at -80 °C until use. 
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2.5 Measurement of the Ca2+- ATPase activity    

The ATPase activity of the SR Ca2+ATPase was monitored using the coupled enzyme 

assay where the oxidation of NADH is coupled to hydrolysis of ATP via pyruvate 

kinase and lactate dehydrogenase, as described in [14,15]. All experiments were 

undertaken at 25º C and pH 7.2. In all experiments, excluding those where free [Ca2+] 

was altered, the optimal free [Ca2+] of 6 µM was used. In all experiments, excluding 

those where [ATP] was altered, 2.1mM [ATP] was used, and in all experiments, 

except those were [Mg2+] was altered, 5mM [Mg2+] was used. All three components 

are required in the assay in order to measure detectable levels of activity.  

 

The Ca2+ -dependent ATPase activity of SH-SY5Y cell microsomal membranes was 

performed using the phosphate liberation assay as described in Wootton and 

Michelangeli (2006) [16]. Briefly, microsomal extracts (5 µg) were re-suspended in 

200 µl of buffer containing 45 mM HEPES/KOH (pH 7.0), 6 mM MgCl2, 2 mM 

NaN3, 250 mM sucrose, 12.5 µg/ml A23187 ionophore, and EGTA with CaCl2 added 

to give a free [Ca2+] of 1 µM. Assays were pre-incubated at 37 °C for 10 minutes prior 

to activation with ATP (final concentration 6 mM) to initiate activity. The reaction 

was stopped after 40 minutes by addition of 50 µl 6.5% (w/v) trichloroacetic acid 

(TCA). The samples were put on ice for 10 min before centrifugation for 10 min at 

14,000 g. The supernatant (100 µl) was added to 150 µl buffer containing (11.25% 

(v/v) acetic acid, 0.25% (w/v) copper sulphate, and 0.2 M sodium acetate pH 4.0). 

Ammonium molybdate (25 µl of 5% (w/v)) was then added, followed by the addition 

on 25 µl of p-methyl-aminophenol sulphate solution (2% (w/v) containing 5% (w/v) 

sodium sulphate). The samples were mixed and the blue colouration was allowed to 

develop for 10 min prior to measuring the absorption at 870 nm using a Dynatech 

Laboratories ELISA plate reader. The amount of Pi liberated was determined by 

comparison with known phosphate standards. The activities were also determined in 

the absence of Ca2+ (1mM EGTA) to determine non Ca2+ -dependent ATPase activity. 

 

 

2.6 Phosphorylation studies 

Phosphorylation of SR Ca2+ ATPase by [γ -32P] ATP was carried out at 25 °C as 

described in [2]. The SERCA was diluted to 0.1 mg/ml in 40 mM Hepes/Tris (pH 7.2) 

containing 100 mM KCl, 5 mM MgSO4, 1 mM CaCl2, BSA (final conc. 1 mg/ml) and 
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12.5 μg/ml A23187 in a total volume of 1 ml. The reaction was started by the addition 

of [γ -32P] ATP from a stock (ATP concentration; 0.5 mM and specific radioactivity 

of 10 Ci/ mol) such that the samples contained between 0 and 20 µM ATP. The 

reaction was then stopped by the addition of 250μl ice-cold 40% (w/v) TCA after 15s. 

The samples were placed on ice for 30 min. SR Ca2+-ATPase was separated from the 

solution by filtration through Whatman GF/C filters. The filters were washed with 30 

ml of 12.5 % (w/v) TCA containing 0.2 M H3PO4 and left to dry. The filters were 

placed in scintillant and counted. 

 

 

2.7 FITC-labelling of the Ca2+-ATPase to monitor E2 to E1 step 

SR Ca2+-ATPase was labelled with fluorescein 5'-isothiocyanate (FITC), according to 

the method described by Michelangeli et al. (1990) [17], to monitor the E2  E1 

transition. The Ca2+-ATPase (1.1 mg/ml) was added in equal volume to the starting 

buffer (1 mM KCl 250 mM sucrose and 50 mM potassium phosphate pH 8.0). FITC 

in dimethylformamide was then added at a molar ratio of FITC/ATPase of 0.5: 1). 

The reaction was incubated for 1h at 25 °C and stopped by the addition of 250µl of 

stopping buffer (0.2 M sucrose, 50 mM Tris/HCl pH 7.0), which was left to incubate 

for 30 min at 30 °C prior to being placed on ice until required. Fluorescence 

measurements of FITC-ATPase were made in a buffer containing 50 mM Tris, 50 

mM maleate, 5 mM MgSO4 and 100 mM KCl at pH 6.0. Fluorescence was measured 

in a Perkin Elmer LS50B fluorescence spectrophotometer at 25 °C (excitation 495 

nm, emission 525 nm). Ca2+ (400 µM) was then added to induce changes in 

fluorescence intensity. 

 

 

3.0 Results 

 
3.1 Inhibition of Ca2+ - ATPase activity and correlation with cell viability  

Figure 1A shows effect of HBCD on the skeletal muscle SR SERCA 1A isoform of 

Ca2+ -ATPase activity, measured at pH 7.2 at 25°C. HBCD inhibits the Ca2+- ATPase 

with an IC50 values calculated to be 2.7 ± 0.6 µM. Figure 1A also shows the effects of 

HBCD on Ca2+- ATPase activity in SH-SY5Y neuronal cell microsomal membranes 

which expresses mainly SERCA isoform 2B [18].  The  IC50 value for inhibition was 

similar to that of skeletal muscle SERCA 1A, indicating that the inhibition of the Ca2+ 
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ATPase was not isoform-specific. Figure 1B shows the IC50 for Ca2+ ATPase 

inhibition determined in SH-SY5Y cell microsomes for a range of BFRs. It can be 

seen that all the BFRs tested in this study inhibited the Ca2+ATPase activity, although 

to different extents, ranging from IC50 values of 2.7 µM for HBCD (which was the 

most potent BFR at inhibition Ca2+ ATPase) to 460 µM for Dibromobiphenyl 

(DBBP). Of the brominated diphenyl ether BFRs tested, the highly brominated 

decabromodiphenylether (DBDE) was more potent at inhibiting the Ca2+ ATPase than 

the less brominated PBDE or OBDE. Figure 1B also shows the LC50 concentrations 

for the BFRs at inducing cell death in the SH-SY5Y neuronal cells, using the MTT 

cell viability assay. Figure 1B shows a direct relationship (correlation coefficient of 

0.94) between potency of the BFRs at inhibiting the Ca2+ATPase from the SH-SY5Y 

cells and their ability to induce cell death.  

 

 
3.2 The effects of HBCD on SR Ca2+-ATPase (SERCA1A) activity as a function 

of [Ca2+], [ATP] and [Mg2+]  

As there is little difference in the potency of HBCD in inhibiting both the SERCA 1A 

isoform found abundantly in skeletal muscle and the SERCA 2B isoform found in 

neuronal cells, the highly abundant skeletal muscle form was used to further 

determine of the mode of inhibition of HBCD.    

 

Figure 2A shows the effect of free [Ca2+] on SERCA 1A Ca2+ ATPase activity 

measured at pH 7.2 and 25°C, in the absence and presence of 3 µM HBCD. The 

Effects of free [Ca2+] on Ca2+ ATPase activity shows a typical bell-shaped profile. 

The stimulatory phase of the curve, at low Ca2+ concentrations reflects Ca2+ binding to 

the E1 form (denoted by Ks), while the inhibition part at higher Ca2+ concentrations 

reflects, in part, Ca2+ binding to the E2 conformation (denoted by Ki) [2].  In the 

absence of HBCD the ATPase had a Vmax of 5.26 ± 0.41 IU/mg, with the Ks for the 

stimulatory phase of 6.1x10-7 ± 1.3 x10-7 M, and a Ki value of 1.2x10-4 ± 3x10-5 M for 

the inhibitory phase (goodness-of-fit: chi2 was 0.97). In the presence of HBCD (3µM), 

the data fitted to a Vmax of 2.79 ± 0.26 IU/mg, and stimulatory Ks and inhibitory Ki 

values 5.5x10-7 ± 1.5 x10-7 M and 1.8 x10-4 ± 6x10-5 M, respectively (goodness-of-fit: 

chi2 was 0.97).  These results suggest that there is little affect on the Kms for Ca2+ 

binding but rather HBCD greatly affects the Vmax. 
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Figure 2B, shows the activity of ATPase activity at varying ATP concentrations in the 

absences and presence of 3 µM HBCD. The data for the SR Ca2+-ATPase activity in 

the presence and absence of HBCD shows a biphasic profile which can be fitted to a 

bi-Michaelis-Menton Equation [2], assuming two independent ATP binding sites 

designated the high affinity catalytic site and the lower affinity regulatory site. The 

kinetic parameters for best fit; in the absence of HBCD was for the catalytic Km = 

6.3x10-7 ± 2.5x10-7 M with a Vmax 1.42 ± 0.13 of IU/mg and a regulatory Km and Vmax 

of 0.00162 ± 0.009 M and 4.52 ± 1.34 IU/mg, respectively. In presence of 3µM 

HBCD, the data could be fitted assuming, the Km’s for both catalytic and regulatory 

sites were 1.9x10-6 ± 6x10-7 M and 4.0 x 10-4 ± 3.6 x10-4 M, respectively. The Vmax 

values, however, were 5.76 ± 0.31 IU/mg for the regulatory and catalytic Vmax value 

were 1.63 ± 0.13 IU/mg, respectively (goodness-of-fit for the data sets; Chi2 were 

0.98). These results indicate that HBCD causes a 3-fold decrease for the high affinity 

for catalytic ATP binding and an increase in affinity for the regulatory ATP binding 

site.  

 
Figure 2C shows the effects of 3 µM HBCD on SR Ca2+ ATPase activity as a function 

of [Mg2+]. The ATPase activity decreases with increasing concentrations of Mg2+ both 

in the absence and presence of HBCD. The IC50 of [Mg2+] upon Ca2+-ATPase activity 

in the absence and presence of HBCD was 3.3 ± 0.5 mM and 4.3 ± 0.8 mM, 

respectively, whereas the Vmax  decreased from 6.3 ± 0.7 IU/mg to 3.4 ± 0.4 IU/mg 

(goodness-of-fit: chi2 were 0.99 and 0.98, respectively). As Mg2+ inhibits the luminal 

dissociation of Ca2+ from the E2 phosphorylated state of the Ca2+-ATPase  [19], the 

data therefore suggests that HBCD causes little affect upon the E2 phosphorylated 

state. 

 

3.3 The effects of HBCD on the phosphorylation of ATPase by ATP 

In order to further assess the possible effect of HBCD on the ATP binding and the 

phosphorylation step of Ca2+-ATPase, 32P-ATP phosphorylation experiments were 

performed with range ATP concentrations (0, 2.5, 5, 10 and 20µM) in the absence and 

presence of 10 µM HBCD. As shown in figure 3, HBCD caused a decrease in the 

phosphorylation level of the Ca2+ ATPase as a function of [ATP]. The data could be 

fitted to a single-site binding curve, with an E-Pmax and Kd for the control data of 6.3 ± 
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1.7 nmol/mg and 0.2 ± 0.02 µM, respectively. Whereas in the presence 10 µM 

HBCD, the data gave an E-Pmax and Kd values of 6.5 ± 1.4 nmol/mg and 3.2 ± 0.8 

µM, respectively. This result indicates that HBCD causes a decrease in the ATP 

binding affinity to the Ca2+-ATPase rather than on the maximal phosphorylation level.  

 

3.4 The effects of HBCD on the E2 / E1 transition step 

To determine whether HBCD affects the E2 / E1 step of the Ca2+ ATPase, the 

conformational changes of this step was determined by monitoring the Ca2+-induced 

changes in fluorescence of Ca2+-ATPase labelled with FITC [17]. This was measured 

upon the addition of 400 µM Ca2+ at pH 6, 25 °C where the enzyme is predominately 

in the E2 form [17]. Figure 4 shows the effects of HBCD on FITC-labelled Ca2+-

ATPase when Ca2+ is added. The addition of Ca2+ leads to a decrease in fluorescence 

of 7% in the absence of HBCD corresponding to the ATPase shifting from an E2 state 

to the Ca2+ bound E1 state. In the presences of 2 and 10µM HBCD, the fluorescence 

change was reduced to 4.6% and 0.8%, respectively. Also the rate of change in the 

presence 2 µM HBCD was considerably reduced compared to control. These results 

indicate that HBCD binds to Ca2+-ATPase, stabilizing it in the E2 conformational 

state and dramatically slowing down its transition from the E2 to E1 states. 

 

4.0 Discussion 

In previous studies by our group we have shown that HBCD and TBBPA are able to 

induce cell death in a number of cell types via apoptosis through the intrinsic 

pathway, as determined by mitochondrial membrane depolarization, mitochondrial 

release of cytochrome c,  and activation of caspase 9 [8, 11]. All of these processes 

occur at similar concentration ranges, which also cause transient increases in 

intracellular [Ca2+] (in the presence or absence of external Ca2+), as well as inhibition 

of SR /ER Ca2+ ATPase activity, which are factors known to induce intrinsic 

apoptosis through the processes highlighted above [2,8,11,20]. These observations 

therefore lead us to conclude that acute exposure of cells to HBCD and TBBPA, 

causes cell death through inhibiting the SERCA Ca2+ pumps. Here we have extended 

the range of BFRs studied and again show a direct correlation between potency at 

inducing cell death and potency at inhibition SERCA, suggesting that SERCA 
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inhibition is a major molecular mechanism by which acute exposure to a diverse range 

of BFRs causes cell death. 

 

 HBCD is shown to be a potent inhibitor of both the SERCA 1A and SERCA 2B 

isoforms of Ca2+ ATPase, with very similar IC50 values, indicating that this inhibition 

is isoform-independent.  Furthermore, of all the BFRs tested within this study, HBCD 

proved to be the most potent inhibitor of the SERCA so far reported. Although the 

SERCA Ca2+ pump is the most abundant type of Ca2+ ATPase found in mammalian 

cells, it cannot be ruled out that HBCD and other BFRs also inhibit other 

Ca2+ATPases within cells, as we have recently shown that TBBPA can inhibit the 

Golgi Ca2+ ATPase (SPCA1) [21]. 

 

In order to elucidate the molecular mechanism by which HBCD inhibits the Ca2+ 

ATPase a detailed enzymological study was undertaken using the highly abundant and 

easily purified skeletal muscle Ca2+ ATPase (SERCA 1A) isoform, which shows the 

same mechanism and has similar inhibitor properties to that of SERCA 2B [16,20]. 

The catalysis and transport mechanism of SERCA is complex and involves alternation 

between two major conformational states, known as E1(which is a high affinity Ca2+ 

binding state) and E2 (which is a low affinity Ca2+ binding state) [22] driven by  

transient auto-phosphorylation steps (see fig. 5) .  

 

From the activity versus [ATP] data in fig. 2B, it was inferred that HBCD could 

potentially be affecting the affinity for ATP binding. This is further supported in fig. 3 

by 32P-ATP phosphorylation studies which also showed a reduction in ATP-

dependent phosphorylation consistent with a decrease in ATP affinity of the Ca2+ 

ATPase (step A in fig. 5). One possibility to explain this is that HBCD binds at or 

close to the nucleotide binding domain of the Ca2+ ATPase, occluding ATP from 

binding.  However, HBCD is unlikely to have any effect on the affinity for Ca2+ 

binding to the E1 form and E2 form of the Ca2+-ATPase (fig. 2A) or on the affinity 

for Mg2+ binding (fig. 2C) as no major changes in the kinetic constants was observed 

with these ions in the presence or absence of HBCD.   

 

In previous studies investigating the effects of hydrophobic inhibitors on the activity 

of the Ca2+ ATPase such as nonylphenol, BHQ and TBBPA, we demonstrated that 
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one of the key steps affected was the E2-E1 transition [2,17,20]. In this study we also 

showed similar results, indicating that HBCD also stabilizes the Ca2+ ATPase in an E2 

conformation by affecting both the E1 / E2 equilibrium position and rate at which the 

ATPase proceeds from the E2 state back to the E1 (step B in fig. 5). It has been 

previously shown that small inhibitors like BHQ, which also stabilizes the E2 state 

[20], bind within a hydrophobic cavity within the transmembrane domain formed by 

helices 1, 3 and 4 [2,20], which may also be where HBCD could bind. 

 

In this study we have used commercial grade HBCD which consists of 3 main isomers 

(α, β and γ) [23], with the most abundant of these isomers being γ (~82%) followed by 

α (~12%). Recent studies have shown that the α isomer seems to be preferentially 

absorbed within the brains of mice, while juvenile mice can accumulate detectable 

levels of both α and γ [24, 25]. Therefore future studies would need to determine 

whether these different isomers have different potencies at inhibiting SERCA and 

causing cell death.  

 

5.0 Conclusion 

In summary, there appears to be a good direct correlation for a number of unrelated 

BFRs including HBCD, between their potency at inducing cell death in SH-SY5Y 

neuronal cells and their ability to inhibit the activity of their SERCA Ca2+- ATPase. 

This correlation is likely to indicate that, at least for some BFRs, acute toxicity is 

likely to be through inhibition of SERCA and disturbance of intracellular Ca2+ 

homeostasis. The molecular mechanism by which HBCD inhibits the Ca2+ ATPase is 

by altering ATP binding / phosphorylation and affecting the E2 to E1 transition step. 
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Figure Captions  

 

Figure 1:  Inhibition of the Ca2+ ATPase by HBCD and other BFRs and their 

correlation with cell viability. 

(A)  Shows the inhibition of HBCD on the Ca2+ ATPase activity, measured as a % of 

control, in microsomal membranes isolated from SH-SY5Y cells (▲) and skeletal 

muscle SR Ca2+ ATPase (■).  The data points represent the mean ± S.D. of 3 to 5 

determinations. (B) Shows the correlation for a number of BFRs between the potency 

of inhibition of the Ca2+ ATPase activity from SH-SY5Y cells (IC50), with their 

potency at causing SH-SY5Y cell death (LC50). The data points and error bars were 

determined from Ca2+ ATPase inhibition and cell viability profiles versus [BFR], with 

each data point representing the mean ± S.D. of 3 to 5 determinations. The BFRs used 

in this study were: Hexabromocyclododecane (HBCD), Tetrabromobisphenol-A 



16 

 

 16 

(TBBPA), Decabromodiphenyl ether (DBPE), Tetrabromobisphenol-A-diallyl ether 

(TBBPA-DAE), Dibromobiphenyl (DBBP), Pentabromodiphenyl ether (PBDE) and 

Octabromodiphenyl ether (OBDE). 

 

Figures 2: The effects of HBCD on the SR (SERCA 1A) Ca2+ ATPase activity as 

a function of free [Ca2+], [ATP] and [Mg2+]. 

All experiments were undertaken at pH 7.2 and 25°C in the absence (■) or presence 

(▲) of 3 µM HBCD. Each data point is the mean ± S.D. of 3 - 5 determinations. 

(A)  Shows the effect of free [Ca2+] on the ATPase activity in the presence or absence 

of 3 µM HBCD.  (B) Shows the effect of a range of [ATP] on the ATPase activity in 

the presence and absence of 3 µM HBCD. (C) Shows the effects of [Mg2+] on the 

ATPase activity in the presence or absence of 3 µM HBCD.  

 

Figure 3: The effects of HBCD on [32P] ATP-dependent phosphorylation of the 

Ca2+ ATPase. 

All phosphorylation experiments were undertaken at pH 7.2 and 25°C and each data 

point represents the mean ± S.D. of 3 determinations. The level of ATP-dependent 

phosphorylation was measured in the absence (■) or presence (▲) of 10 µM HBCD, 

over a range of ATP concentrations (0-20 µM).   

 

 

Figure 4: The effects of HBCD on the E2 to E1 step of the Ca2+ ATPase.  

The traces represent changes in fluorescence of FITC-labelled Ca2+ ATPase upon 

addition of 400 µM Ca2+, when undertaken in a buffer at pH 6.0. The experiments 

were undertaken either in the absence of HBCD (con), or in the presence of 2 µM and 

10 µM HBCD. The traces shown are individual experiments which are representative 

of 3 separate experiments. 

 

Figure 5: The Ca2+ ATPase mechanism. 

The figure shows the mechanism by which the Ca2+ ATPase transports Ca2+ and 

hydrolyses ATP, and highlights the steps (ATP binding; A, and the E2 to E1 

transition; step B) that are proposed to be altered in the presence HBCD.   
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