Identifying Criegee intermediates as potential oxidants in the troposphere 1 Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany. 2 University of Helsinki Department of Physics PO Box 64 FIN-00014 Helsinki Finland.

Anna Novelli^{1,*}, K. Hens¹, C. Tatum Ernest¹, A. C. Nölscher^{1,**}, V. Sinha⁴, P. Paasonen², M. Sipilä², T. Petäjä², G. J. Phillips⁵, T. Elste³, C. Plass-Dülmer³, D. Kubistin³, J. Williams¹, Jos Lelieveld¹, Luc Vereecken^{1,*}, Monica Martinez¹, Hartwig Harder¹.

Introduction

Criegee intermediates¹(CI) are formed during the ozonolysis unsaturated compounds and have been intensively studied in the last few years due to their possible role as oxidants in the troposphere. Still, it remains challenging to assess their effective oxidative capacity, as CI chemistry is complex, spans a large range of rate coefficients for SCI different conformers + NO₂ reacting with water dimers and $+0_3$ trace gases, and currently + Organic acids reliable there measurement technique able SCI ambient detect concentrations.

2. Estimate of the SCI steady state concentration

- From the unexplained H₂SO₄ gas concentration² observed $[H_2SO_4] = \frac{(k_{OH+SO_2} \times [OH] + k_{SCI+SO_2} \times [SCI]) \times [SO_2]}{\text{estraining the sources for }}$ phase when restraining the sources for H_2SO_4 in the gas phase to the OH radicals only
- 2. From the measured unsaturated VOC³
- 3. From the measured OH reactivity⁴
- 4. From unexplained OH production rate³ $P^{unexplained} = k_{voc+O_3} \times [VOC_{unidentified}] \times [O_3] \times Y_{OH}$

Boreal Forest (HUMPPA-COPEC 2010)

Acknowledgments:

We are grateful for the support of the Hyytiälä and the Hohenpeißenberg site engineers and staff. Support of the European Community – Research Infrastructure Action under the FP6 "Structuring the European Research Area" Programme, EUSAAR Contract N° RII3-CT-2006-026140 is gratefully acknowledged. The campaign measurements and analyses were supported by the ERC Grant ATMNUCLE (project No 227463), Academy of Finland Center of Excellence program (project No 1118615), The European Integrated project on Aerosol Cloud Climate and Air Quality Interactions EUCAARI (project No 036833-2), the EUSAAR TNA (project No 400586), and the IMECC TA (project No 4006261).

Vinyl h

Primary ozonide (POZ) CH₃CHO + M _ O Bimolecular reactions Dioxirane

 $[SCI] = \frac{(\sum_{i} k_{VOC_{i}+O_{3}} \times [VOC_{i}]) \times [O_{3}] \times Y_{SCI}}{(SCI)}$

 $R_{unexplained} = k_{VOC+OH} \times [VOC_{unidentified}]$

- 4 Department of Earth and Environmental Sciences, Indian Institute of Science Education
- * Now at: Forschungszentrum Jülich, IEK-8: Troposhpere, Jülich, Germany ** Now at: Caltech, Division of Geological and Planetary Sciences, Pasadena, CA, USA

3. Field data

The background OH signal measured with a IPI-LIF-FAGE⁵ when injecting propane to remove ambient OH is proposed to be caused by SCI⁶. During both the HUMPPA-COPEC 2010 and HOPE 2012 campaigns the background OH correlates exponentially with temperature

During the HOPE 2012 campaign the background OH correlates with the product of measured VOC, mainly monoterpenes and isoprene, and ozone. Occasional addition of SO2, a known SCI scavenger, to the air just before sampling led to removal of the background signal during the campaign.

4. SCI fate in a boreal forest

Loss path contribution (fraction) as a function of SCI substituents

	Day
H_2O	0.01
$(H_2O)_2$	0.99
anti-CH ₃ CHOO	
$H_2 O$	0.25
$(H_2O)_2$	0.75
Ester channel	
syn-CH₃CHOO	
H ₂ O	0.01
$(H_2O)_2$	0.11
ydroperoxyde channel	0.42
SO_2	0.01

Carboxylic acids

Hydroxyl compounds

3 German Meteorological Service, Meteorological Observatory Hohenpeissenberg (MOHp), Germany and Research Mohali, Sector 81 S.A.S. Nagar, Manauli PO, Mohali 140 306, Punjab, India 5 Department of Natural Sciences, University of Chester, Thornton Science Park, Chester, UK

5. Conclusions

• Using four different approaches, i.e. unaccounted (i.e. non-OH) H_2SO_4 oxidant, measured VOC concentrations, unexplained OH reactivity and unexplained production rates of OH, we estimated the concentration of SCI to be between ~ 10^3 and ~ 10^6 molecules cm⁻³.

• Ambient background OH measured with IPI-LIF-FAGE correlates with the unexplained production rate of sulfuric acid and with the production rate of SCI and can be scavenged with SO_2 .

• Further studies are necessary to obtain the relationship between the OH background concentration detected within our LIF-FAGE instrument and the ambient abundance of SCI.

Correspondence to: Anna Novelli (a.novelli@fz-juelich.de)

Re	ferences:
1.	Criegee, R., Angew. Chem., Int. Ed. Engl., 1975
2.	3. R. L. Mauldin III, T. Berdnt, M. Sipilä, P. Paas
	2012, 488 , 193-196.
3.	K. Hens, A. Novelli, M. Martinez, J. Auld, R. Axir
	Paasonen, T. Petäjä, E. Regelin, R. Sander, V. S
	Atmos. Chem. Phys.,2014, 14 , 8723-8747.
4.	A. C. Nölscher, J. Williams, V. Sinha, T. Custer, \
	Crowley, P. Rantala, J. Rinne, M. Kulmala, D. G
	Guerau de Arellano and J. Lelieveld, Atmos. Che
5.	A. Novelli, K. Hens, C. Tatum Ernest, D. Kubistin
	Meas. Tech. , 2014, 7 , 3413-3430.
6.	A. Novelli, L. Vereecken, J. Lelieveld, H.Hartwig,
7	O Welz I D Savee D I Oshorn S S Vasu

[Background OH]x[SO₂] [(molecules cm⁻³)²]

During HUMPPA-COPEC 2010 it correlates with the missing H_2SO_4 oxidant⁷ that was hypothesized to be Criegee intermediate due to their fast reaction rate⁴ with SO₂ and the subsequent formation of SO₃ which is rapidly converted in H_2SO_4 with H_2O_1 .

5. 14. 745-752.

onen, T. Petäjä, S. Kim, T. Kürten, F. Stratmann, V. M. Kerminen, M. Kulmala, Nature, nte, B. Bohn, H. Fischer, P. Keronen, D. Kubistin, A. C. Nölscher, R. Oswald, P

Sinha, M. Sipilä, D. Taraborrelli, C. Tatum Ernest, J. Williams, J. Lelieveld and H. Harder, W. Song, A. M. Johnson, R. Axinte, H. Bozem, H. Fischer, N. Pouvelse, G. Phillips, J. N. Gonyales, J. ValveredeßCanossa, A. Vogel, T. Hoffmann, H. G. Ouwersloot, J. Vilá-

nem. Phys., 2014, 12, 8257-8270. n, E. Regelin, T. Elste, C. Plass-Dülmer, M. Martinez, J. Lelieveld, and H. Hartwig, Atmos. PCCP, 2014, 16, 19941-19951

O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, C. A. Taatjes, Science, 2012, 335, 204-207.