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Summary

For certain wave scattering problems embedding formulae can be derived, which
express the solution, or far-field behaviour of the solution, for arbitrary plane wave
incident angle in terms of the corresponding quantities for a finite number of other
related problems. Their scope has so far been limited to scattering in R

2, and to a
lesser extent R3; in this paper we derive embedding formulae for wave scattering in a
class of two-dimensional waveguide. The waveguide is straight and of uniform width
outside a finite length region within which the boundaries are piecewise-linear and
the waveguide can contain polygonal obstacles, a restriction being that all boundaries
of the waveguide and obstacles must be inclined at a rational angle to the axis of
the waveguide. Once solutions are determined for a finite set of incident propagating
modes, the embedding formulae provide expressions for reflection and transmission
coefficients for all remaining incident propagating modes. The precise number of
solutions required is a function of the number and nature of the corners of the
boundaries and obstacles. The formulae are illustrated for a particular waveguide
geometry for which the problem can be formulated as an integral equation and
approximate numerical solutions determined using the Galerkin method.

1. Introduction

To fully characterise the wave scattering properties of an obstacle, solutions of the scattering
problem are typically required for a range of plane wave incident angles. One useful means
of minimising the effort required to achieve this full characterisation is offered by embedding
formulae, which express the solution for any incident plane wave angle in terms of solutions
corresponding to a finite, usually small, number of other solutions.

The range of scattering geometries for which such formulae have been derived is currently
far from extensive. In (1) and (2) it was demonstrated that the classical two-dimensional
problem of a plane wave incident upon a single gap in an otherwise infinite, thin, straight,
sound-hard barrier admits such a formula: the solution for any incident plane angle can be
expressed in terms of just one solution, corresponding to grazing plane wave incidence.
The results of (2 and subsequent extensions to multiple gaps (3), thick barriers (4), a

perforated duct (5) and non-colinear strips (6), all require that the problems be formulated
as an integral equation, and the structure of this equation is then exploited to derive the
required results. In each case, solutions for arbitrary incident wave angle are expressed
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in terms of solutions corresponding to other incident plane wave angles. In contrast, the
papers (7-10) address the initial governing boundary-value problem directly, and express
plane wave solutions in terms of solutions forced by multipole sources positioned at the
vertices of the scatterer. In particular, (8) significantly extends the class of scattering
geometry for which embedding formulae can be derived to include scatterers whose straight
boundaries are inclined at an angle mπ/n, for integer m,n, to the x-axis. Subsequently,
the approach was modified in (11) to allow, for this class of scatterer, embedding formulae
in terms of solutions forced by incident plane waves, rather than by multipoles.
Until now, embedding formulae have only been derived for plane wave scattering in R

2,
and to a lesser extent R

3 (in (9)). In the current paper, the method of (8) as adapted
in (11) is extended to the case of wave scattering in a two-dimensional waveguide, on the
boundaries of which a homogeneous Dirichlet is imposed for simplicity. The restriction on
the alignment of the boundaries is as in (8) and (11): taking the centreline of the waveguide
aligned with the x-axis, its boundaries are allowed to be piecewise linear in profile, and the
waveguide can contain obstacles whose boundaries are piecewise linear, provided that each
linear portion of the waveguide or obstacle boundary makes an angle with the waveguide
axis which is a rational multiple of π.

Only finitely many propagating waves exist within the waveguide, rather than the
continuum of incident plane wave angles for the R

2 scattering problems described above.
Thus in the current context embedding formulae relate reflection and transmission
coefficients of these propagating waves.

The paper proceeds as follows. In section 2 the details of the boundary-value problem to
be considered are laid out. In section 3 a straight waveguide containing a single straight,
thin barrier, aligned with the waveguide axis, is first considered, since this is the simplest
waveguide geometry for which embedding formulae can be derived. The extension to
multiple such barriers is then covered, before the general case is examined in section 4.
The calculation of the number of “overly-singular” terms produced at the corners of the
waveguide and the obstacles by a particular differential operator proves to be the main task.
Some particular waveguide geometries are then discussed, and in section 5 the problem
for one such geometry is formulated as an integral equation, solved approximately using
Galerkin’s method, and the corresponding embedding formulae are implemented. Finally,
section 6 summarises and discusses the findings.

2. The boundary-value problem

Let (x, y) denote Cartesian coordinates, and let L > 0 be a constant. In ∓x > L the
waveguide occupies the regions {∓x > L, a± < y < b±}, for given constants a±, b±. For
−L < x < L the waveguide has piecewise linear boundaries, and can also contain obstacles
whose boundaries are piecewise linear. A sketch of a typical waveguide geometry is displayed
in Fig. 1. More detail on the possible form of the boundaries and the obstacles is given
below.

We consider solutions of the reduced wave equation

uxx + uyy + κ2u = 0, (2.1)

where κ is the prescribed wavenumber, and suppose that u satisfies a homogeneous Dirichlet
condition u = 0 on the waveguide walls; only minor modifications are required if u instead
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y = a−

y = b−
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y = b+

u−
m →

← u+
q

Fig. 1 Example of waveguide geometry.

satisfies a Neumann condition. Near a corner in the waveguide for which, in terms of polar
coordinates (r, θ) centred on the corner, the interval θ1 < θ < θ2 is inside the guide, the
solution must behave as

u = O(rν), ν = π/(θ2 − θ1), (2.2)

the so-called Meixner condition. The solution must also satisfy appropriate radiation
conditions as x→ ±∞, which are specified below.

The general solution as x→ ±∞ is of the form

u(x, y) ∼
N±
∑

n=1

(c±n e
∓iκ±

n x + d±n e
±iκ±

n x)Y ±
n (y)

for constants c±n , d
±
n , where the functions

Y ±
n (y) =

√

2/(b± − a±) sin[α
±
n (y − a±)], α±

n = nπ/(b± − a±) (n ∈ N)

are orthonormal on (a±, b±), and

κ±n =







√

κ2 − α±
n
2

(κ ≥ α±
n ),

i

√

α±
n
2 − κ2 (κ ≤ α±

n ).
(2.3)

HereN± = [κ(b±−a±)/π], in which [.] denotes the integer part; for convenience we introduce
the sets N̄± = {1, . . . , N±}.

We write the potential forced by the m-th incident mode from the left (m ∈ N̄−) as u
−
m;

the radiation condition requires that the remainder after subtracting the incident wave from
u−m must be outgoing and bounded as x→ ±∞. As such, u−m satisfies

u−m(x, y) ∼























A−
me

iκ−
mxY −

m (y) +A−
m

N−
∑

n=1

R−
nme

−iκ−
n xY −

n (y) (x→ −∞)

A−
m

N+
∑

n=1

T−
nme

iκ+
nxY +

n (y) (x→ ∞)

(2.4)
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where A−
m is prescribed and the reflection and transmission coefficients, R−

nm and T−
nm, are

unknown. Similarly, the potential u+q is forced by the q-th incident mode from the right

(q ∈ N̄+), and satisfies

u+q (x, y) ∼























A+
q

N−
∑

n=1

T+
nqe

−iκ−
n xY −

n (y) (x→ −∞)

A+
q e

−iκ+
q xY +

q (y) +A+
q

N+
∑

n=1

R+
nqe

iκ+
nxY +

n (y) (x→ ∞),

(2.5)

where A+
q is prescribed and the reflection and transmission coefficients R+

nq and T+
nq, are

unknown.
A variety of reciprocity relations link the reflection/transmission coefficients R±

nm, T
±
nm.

Use of Green’s identity shows that if u, v are any solutions of the Helmholtz equation plus
boundary conditions in the waveguide, then for l > L,

∫ b−

a−

{−u(−l, y)vx(−l, y)+v(−l, y)ux(−l, y)} dy+
∫ b+

a+

{u(l, y)vx(l, y)−v(l, y)ux(l, y)} dy = 0.

(2.6)
In particular, if l is sufficiently large for the far-field behaviours (2.4) and (2.5) to be valid,
then setting u = u±m and v = u±q , for m, q ∈ N̄±, shows that

κ±mR
±
mq = κ±q R

±
qm (m, q ∈ N̄±), (2.7)

whilst setting u = u∓m (m ∈ N̄∓) and v = u±q (q ∈ N̄±) gives

κ∓mT
±
mq = κ±q T

∓
qm (m ∈ N̄∓, q ∈ N̄±). (2.8)

3. Embedding for a straight waveguide containing thin barriers parallel to the
x-axis

3(a) A single barrier

To illustrate the process we first consider the simplest situation for which embedding
formulae exist, and the simplest such embedding formula which can be derived. Suppose
that the waveguide is straight, with a− = a+ and b− = b+, so that in particular κ−n ≡ κ+n ,
Y −
n ≡ Y +

n and N− ≡ N+; the notation κ±n etc. is retained however, to aid understanding,
and assist later extension to cases for which a−, b− 6= a+, b+. Suppose further that the
waveguide contains a single thin barrier occupying the region S = {x1 < x < x2, y = y0},
where a < y0 < b, on which a Dirichlet boundary condition must be satisfied. The Meixner
condition (2.2) takes the form u = O(r1/2) near either corner.

The method follows closely the adaptation of (8) given in (11). We introduce the
differential operator

H−
m = ∂x − iκ−mI, (3.1)

for m ∈ N̄−, in terms of which the combination H−
mu

−
m satisfies the Helmholtz equation in

the guide, the boundary conditions on the waveguide walls and the barrier S, contains no
incident wave because H−

m(eiκ
−
mxY −

m (y)) = 0, and is bounded and outgoing as x → ±∞.
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The Meixner conditions at the corners of S are violated however: near (x1, y0) the solution
is of the form

u−m = B−
1,mr

1/2 sin(θ/2) +O(r3/2), (3.2)

where (r, θ) are polar coordinates centred on (x1, y0), and B
−
1,m is a constant, but then

H−
mu

−
m = −1

2
B−

1,mr
−1/2 sin(θ/2) +O(r1/2), (3.3)

and the O(r−1/2) term is an overly-singular term which contravenes the Meixner condition.
Clearly the combination H−

mu
−
m also includes a term which is singular at the other end,

(x2, y0), of the scatterer, so we introduce the combination

U = H−
mu

−
m − (CH−

j u
−
j +DH−

k u
−
k ), (3.4)

in which m, j, k ∈ N̄− are distinct, and for which we can choose the constants C and D so
that the coefficients of the two overly-singular terms are zero.

This combination U then satisfies a fully homogeneous problem, but, in contrast to
earlier work considering scattering of plane waves by obstacles in R

2 for which we could
at this stage invoke uniqueness to deduce that U ≡ 0, here we cannot necessarily infer
this since one or more trapped modes may exist. These are solutions of the homogeneous
problem which (crucially for our purposes) decay to zero as x → ±∞, and if they exist
for a particular geometry typically do so only at isolated frequencies. Within the class of
waveguide geometries considered in this paper their existence can be caused by either the
presence of obstacles in the guide (see, e.g. (12)), or by variation in the guide width (see,
e.g. (13)).

Thus we can only deduce that U = Û , where here and throughout this paper Û denotes
a linear combination of all trapped modes which exist for the particular geometry and
frequency being considered; thus

H−
mu

−
m = CH−

j u
−
j +DH−

k u
−
k + Û . (3.5)

Now take the limit of (3.5) as x → −∞. Use of the limiting behaviour Û → 0, plus the
far-field form (2.4), shows that

A−
m

N−
∑

n=1

(κ−n + κ−m)R−
nme

−iκ−
n xY −

n (y) = CA−
j

N−
∑

n=1

(κ−n + κ−j )R
−
nje

−iκ−
n xY −

n (y)

+ DA−
k

N−
∑

n=1

(κ−n + κ−k )R
−
nke

−iκ−
n xY −

n (y),

and then equating coefficients of the modes e−iκ−
n xY −

n (y) shows that

A−
m(κ−n + κ−m)R−

nm = CA−
j (κ

−
n + κ−j )R

−
nj +DA−

k (κ
−
n + κ−k )R

−
nk, (3.6)

for n ∈ N̄−.
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To determine the constants C and D we set n = j and n = k in (3.6) in turn, and invoke
the reciprocity relation (2.7), to give

2CA−
j κ

−
j R

−
jj +DA−

k (κ
−
j + κ−k )R

−
jk = A−

m(κ−j + κ−m)R−
jm ≡ A−

m(κ−j + κ−m)(κ−m/κ
−
j )R

−
mj

and

CA−
j (κ

−
k + κ−j )R

−
kj + 2DA−

k κ
−
k R

−
kk = A−

m(κ−k + κ−m)R−
km ≡ A−

m(κ−k + κ−m)(κ−m/κ
−
k )R

−
mk.

These two equations can now be solved to give

C =
A−

m(R̃−
kkR̃

−
mj − R̃−

jkR̃
−
mk)

A−
j (R̃

−
jjR̃

−
kk − R̃−

jkR̃
−
kj)

, D =
A−

m(R̃−
jjR̃

−
mk − R̃−

jkR̃
−
mj)

A−
k (R̃

−
jjR̃

−
kk − R̃−

jkR̃
−
kj)

, (3.7)

in which for convenience we’ve introduced the scaled reflection coefficients

R̃±
mj = κ±m(κ±m + κ±j )R

±
mj (m, j ∈ N̄±), (3.8)

(and in terms of which the reciprocity relation (2.7) is simply R̃±
mj = R̃±

jm). Inserting these
expressions back into (3.6) then results in the equality

(R̃−
jjR̃

−
kk − R̃−

jkR̃
−
kj)R̃

−
nm = (R̃−

kkR̃
−
mj − R̃−

jkR̃
−
mk)R̃

−
nj − (R̃−

kjR̃
−
mj − R̃−

jjR̃
−
mk)R̃

−
nk. (3.9)

Equation (3.9) is an embedding formula, since once the solutions u−j and u−k are determined,

for any distinct j, k ∈ N̄−, and in particular their behaviour as x → −∞ is known, (3.9)
can be used to construct all of the remaining reflection coefficients R−

nm for n,m ∈ N̄−.

3(b) Multiple barriers

Suppose now that there are M ′ ≥ 1 thin straight barriers in the straight guide, all parallel
to the x-axis but otherwise in any arrangement. The combination H−

mu
−
m now includes

M = 2M ′ overly-singular terms, one for each barrier tip.
We generalise the method of section 3(a), and derive an embedding formula which

expresses the scattering coefficients for the solution u−m in terms of scattering coefficients
for a combination of M solutions forced by waves incident from both +∞ and −∞. (Note
we are assuming here that the total number of possible incident waves, N+ + N−, is less
than M , so that M distinct integers can be picked from N̄− ∪ N̄+. This condition will be
most restrictive at low frequencies.) Thus we pick distinct integers l−1 , l

−
2 , . . . , l

−
M−

in N̄−

and l+1 , l
+
2 , . . . , l

+
M+

in N̄+, where the integers M± ≥ 0 are such that M− +M+ = M , and

also extend (3.1) to
H±

m = ∂x ± iκ±mI (m ∈ N̄±). (3.10)

The analogue of (3.4) is

U = H−
mu

−
m −

M−
∑

j=1

C−
j H

−

l−
j

u−
l−
j

−
M+
∑

j=1

C+
j H

+

l+
j

u+
l+
j

, (3.11)

in which the coefficients C±
j can be chosen so that the Meixner conditions are satisfied at
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each corner. The combination U satisfies a fully homogeneous problem, from which it is
then immediate that

H−
mu

−
m =

M−
∑

j=1

C−
j H

−

l−
j

u−
l−
j

+

M+
∑

j=1

C+
j H

+

l+
j

u+
l+
j

+ Û . (3.12)

Now take the limit x → −∞ in (3.12), use the far-field form (2.4) and the limiting

behaviour Û → 0, and finally equate coefficients of e−iκ−
n xY −

n (y). The result is

A−
m(κ−n + κ−m)R−

nm =

M−
∑

j=1

C−
j A

−

l−
j

(κ−n + κ−
l−
j

)R−

n,l−
j

+

M+
∑

j=1

C+
j A

+

l+
j

(κ−n − κ+
l+
j

)T+

n,l+
j

(3.13)

for n ∈ N̄−. In particular, setting n = l−k (k = 1, 2, . . . ,M−) in (3.13) gives

M−
∑

j=1

C−
j A

−

l−
j

(κ−
l−
k

+ κ−
l−
j

)R−

l−
k
,l−
j

+

M+
∑

j=1

C+
j A

+

l+
j

(κ−
l−
k

− κ+
l+
j

)T+

l−
k
,l+
j

= A−
m(κ−

l−
k

+ κ−m)R−

l−
k
,m

≡ A−
m(κ−

l−
k

+ κ−m)
κ−m
κ−
l−
k

R−

m,l−
k

(3.14)

in which the final equality follows after use of the reciprocity relation (2.7). In terms of the
notation introduced in (3.8), together with the addition of

T̃±
mj = κ∓m(κ∓m − κ±j )T

±
mj (3.15)

(in terms of which the reciprocity relation (2.8) is T̃±
mj = −T̃∓

jm) equation (3.14) can be
written more succinctly as

M−
∑

j=1

C−
j A

−

l−
j

R̃−

l−
k
,l−
j

+

M+
∑

j=1

C+
j A

+

l+
j

T̃+

l−
k
,l+
j

= A−
mR̃

−

m,l−
k

(k = 1, 2, . . . ,M−). (3.16)

Equation (3.16) constitutes M− equations from which to determine the M− + M+

unknowns C±
j ; the remaining M+ equations are found through taking the limit of (3.12) as

x→ ∞ and equating coefficients of eiκ
+
nxY +

n (y), to yield

A−
m(κ+n − κ−m)T−

nm =

M−
∑

j=1

C−
j A

−

l−
j

(κ+n − κ−
l−
j

)T−

n,l−
j

+

M+
∑

j=1

C+
j A

+

l+
j

(κ+n + κ+
l+
j

)R+

n,l+
j

, (3.17)

for n ∈ N̄+. Now setting n = l+k (k = 1, 2, . . . ,M+) in (3.17) gives

M−
∑

j=1

C−
j A

−

l−
j

(κ+
l+
k

− κ−
l−
j

)T−

l+
k
,l−
j

+

M+
∑

j=1

C+
j A

+

l+
j

(κ+
l+
k

+ κ+
l+
j

)R+

l+
k
,l+
j

= A−
m(κ+

l+
k

− κ−m)T−

l+
k
,m

≡ A−
m(κ+

l+
k

− κ−m)
κ−m
κ+
l+
k

T+

m,l+
k

,

(3.18)
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where the reciprocity relation (2.8) has been used. This can be written in the notation of
(3.8) and (3.15) as

M−
∑

j=1

C−
j A

−

l−
j

T̃−

l+
k
,l−
j

+

M+
∑

j=1

C+
j A

+

l+
j

R̃+

l+
k
,l+
j

= −A−
mT̃

+

m,l+
k

(k = 1, 2, . . . ,M+). (3.19)

Equations (3.16) and (3.19) together constitute M− +M+ = M equations from which
to determine the M unknowns C±

j . Inserting these values for the C±
j into (3.13) yields

an embedding formula which expresses the reflection coefficients R−
nm, for all n,m ∈ N̄−,

in terms of quantities which rely only on the solutions u±
l±
j

, j = 1, 2, . . . ,M±. Similarly,

inserting these expressions for the C±
j into (3.17) yields an embedding formula for the

transmission coefficients T−
nm, for all m ∈ N̄−, n ∈ N̄+.

We note that it is possible to confirm directly that if the constants C±
j in (3.11) can be

chosen to eliminate the overly-singular behaviour at the M barrier corners, i.e. to satisfy

M−
∑

j=1

B−

k,l−
j

C−
j +

M+
∑

j=1

B+

k,l+
j

C+
j = B−

km (k = 1, . . . ,M), (3.20)

in which B±
kj is the coefficient of the leading order term in an expansion of u±j near the

k-th corner (see (3.2)), then the expressions for C±
j which result coincide with those found

from solving (3.16) and (3.19) for the C±
j in terms of reflection/transmission coefficients.

The connection is provided by reciprocity relations similar to (2.7) and (2.8), but in which
the overly-singular behaviour of the integrand at the barrier corners produces extra terms
(similar cases are considered in e.g. (10)). Thus applying Green’s identity to the pairs u−n
and H−

p u
−
p , and u

−
q and Hp

su
p
s , results in the identities

A−
p (κ

−
n + κ−p )R

−
np =

π

4κ−nA
−
n

M
∑

l=1

B−
lnB

−
lp, A+

q (κ
−
n − κ+q )T

+
nq =

π

4κ−nA
−
n

M
∑

l=1

B−
lnB

+
lq , (3.21)

for n, p ∈ N̄−, q ∈ N̄+, with two further identities, for R+
pn and T−

qn, forthcoming upon
combining (3.21) with (2.7) and (2.8) respectively. Use of these identities then allows (3.16)
and (3.19) to be rewritten as































M
∑

l=1

B−

l,l−
k





M−
∑

j=1

B−

l,l−
j

C−
j +

M+
∑

j=1

B+

l,l+
j

C+
j



 =
M
∑

l=1

B−

l,l−
k

B−
lm (k = 1, . . . ,M−),

M
∑

l=1

B+

l,l+
k





M−
∑

j=1

B−

l,l−
j

C−
j +

M+
∑

j=1

B+

l,l+
j

C+
j



 =
M
∑

l=1

B+

l,l+
k

B−
lm (k = 1, . . . ,M+).

(3.22)

To clarify the relationship between (3.20) and (3.22) we write the former as

B

(

C−

C+

)

= B−
m, (3.23)
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in which B = (B−B+) and B± is M ×M± with (p, q)-th entry B±

p,l±q
, C± is M± × 1 with

j-th entry C±
j , and B−

m is M × 1 with k-th entry B−
km; the latter can then be identified as

BTB

(

C−

C+

)

= BTB−
m. (3.24)

Thus if C± can be determined from (3.23) then in particular det(B) is non-zero so that
(3.24) can be reduced to precisely (3.23), and the solutions of the two systems coincide.

Two particular cases of the embedding formulae are worth writing out in full. IfM− =M
and M+ = 0 then the C+

j and equations of (3.19) are omitted, and equations (3.13) and
(3.17) become

A−
m(κ−n + κ−m)R−

nm =

M
∑

j=1

C−
j A

−

l−
j

(κ−n + κ−
l−
j

)R−

n,l−
j

(n ∈ N̄−) (3.25)

and

A−
m(κ+n − κ−m)T−

nm =
M
∑

j=1

C−
j A

−

l−
j

(κ+n − κ−
l−
j

)T−

n,l−
j

(n ∈ N̄+), (3.26)

where the C−
j are determined from (3.16) reduced to

M
∑

j=1

C−
j A

−

l−
j

R̃−

l−
k
,l−
j

= A−
mR̃

−

m,l−
k

(k = 1, 2, . . . ,M). (3.27)

Here the embedding formulae (3.25) and (3.26) give the reflection/transmission coefficients
R−

nm and T−
nm in terms of solely solutions forced by waves incident from −∞. If instead

M− = 0 and M+ = M then the C−
j and equations of (3.16) are omitted, and equations

(3.13) and (3.17) become

A−
m(κ−n + κ−m)R−

nm =

M
∑

j=1

C+
j A

−

l+
j

(κ−n − κ+
l+
j

)T+

n,l+
j

(n ∈ N̄−) (3.28)

and

A−
m(κ+n − κ−m)T−

nm =

M
∑

j=1

C+
j A

−

l+
j

(κ+n + κ+
l+
j

)R+

n,l+
j

(n ∈ N̄+), (3.29)

where the C+
j are now determined from (3.19) reduced to

M
∑

j=1

C+
j A

+

l+
j

R̃+

l+
k
,l+
j

= −A−
mT̃

+

m,l+
k

(k = 1, 2, . . . ,M). (3.30)

Now the embedding formulae (3.28) and (3.29) give the reflection/transmission coefficients
R−

nm and T−
nm in terms of solely solutions forced by waves incident from +∞.

An obvious variation follows upon replacing H−
mu

−
m in (3.11) by H+

mu
+
m, i.e., by instead

seeking formulae for reflection/transmission coefficients for the solution forced by the m-th
mode from +∞, rather than −∞. The appropriate adjustment to be made to equations
(3.13), (3.17), (3.16) and (3.19) is simply that all superscripts + and − are interchanged.



10 n. r. t. biggs

3(c) Symmetry

If the boundaries of the waveguide and the obstacles within it are arranged symmetrically
about the line x = 0 then N̄+ = N̄− ≡ N̄ (say), plus it is clear that u±m(x, y) = u∓m(−x, y)
and so

R−
nm = R+

nm, T
−
nm = T+

nm (n,m ∈ N̄). (3.31)

In this case it is maybe not surprising to find that the number of solutions required for
the embedding formulae can be reduced from M to M/2 =M ′. First choose M+ =M− =
M/2 = M ′, and then also l±1 , l

±
2 , . . . , l

±
M±

equal to l1, l2, . . . , lM ′ . Then the embedding

formulae (3.13) and (3.17) take the form

A−
m(κn + κm)R−

nm =
M ′

∑

j=1

C−
j A

−
lj
(κn + κlj )R

−
n,lj

+
M ′

∑

j=1

C+
j A

+
lj
(κn − κlj )T

−
n,lj

(3.32)

and

A−
m(κn − κm)T−

nm =
M ′

∑

j=1

C−
j A

−
lj
(κn − κlj )T

−
n,lj

+
M ′

∑

j=1

C+
j A

+
lj
(κn + κlj )R

−
n,lj

, (3.33)

where the constants C±
j are determined from (3.16) and (3.19) written as

M ′

∑

j=1

C−
j A

−
lj
R̃−

lk,lj
+

M ′

∑

j=1

C+
j A

+
lj
T̃−
lk,lj

= A−
mR̃

−
m,lk

(k = 1, 2, . . . ,M ′) (3.34)

and

M ′

∑

j=1

C−
j A

−
lj
T̃−
lk,lj

+

M ′

∑

j=1

C+
j A

+
lj
R̃−

lk,lj
= −A−

mT̃
−
m,lk

(k = 1, 2, . . . ,M ′). (3.35)

Here the symmetry relations (3.31) have been used to ensure that all reflection and
transmission coefficients rely only on the M ′ solutions u−lj (j = 1, 2, . . . ,M ′) for their
calculation.

4. Polygonal boundaries and obstacles

In this section we consider the general case. Suppose that for x ≤ −L the waveguide
occupies the region a− < y < b−, and for x ≥ L the waveguide occupies a+ < y < b+, with
(a−, b−) not necessarily equal to (a+, b+). (A minor modification, which goes unpursued
here, would see the boundaries for x ≥ L, say, aligned at a rational angle to the x-axis).

For −L < x < L the waveguide has boundaries which are piecewise linear and also
contains polygonal obstacles. The parameter M ≥ 2 counts the total number of corners
present in the walls and obstacles. The precise position of the walls and obstacles is not
needed for what follows, but what is required is that there exists a single positive integer p
for which the region in the waveguide exterior to the j-th corner (so inside the waveguide),
for each j = 1, 2, . . . ,M , is of the form r > 0, sjπ/p < θ < qjπ/p, in which sj , qj ∈ Z

with qj > sj and qj − sj ≤ 2p, and where (r, θ) are local polar coordinates centred on the
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j-th corner with θ = 0 aligned in the positive x-direction. For example, the single strip
scatterer example considered in section 3(a) corresponds to the values M = 2 and p = 1,
with s1 = −1, q1 = 1 and s2 = 0, q2 = 2.

We introduce the differential operator H = iκ−1∂x and, in terms of which,

H±
p,m = (−iκ)p[Tp(H)− Tp(±κ±m/κ)I], (4.1)

in which Tp is the p-th Chebychev polynomial of the first kind. The operator H±
p,m is a

straightforward modification of an operator introduced in (8) for use for scattering problems
in R

2, and an extension of the operator H±
m in (3.10) (since H±

1,m = H±
m). It clearly

commutes with the Helmholtz operator, preserves the radiation conditions as x → ±∞,
and when applied to the solution u±m annihilates the incident wave component e∓iκ±

mxY ±
m (y)

(since for any γ, Tp(H)eiγx = Tp(−γ/κ)eiγx). It is also designed to preserve boundary
conditions (of Dirichlet, Neumann or constant impedance type) on surfaces inclined at
angles lπ/p for l ∈ Z. The details of the verification of this property are in (8), but,
in brief, when applied to solutions of the Helmholtz equation (2.1) the operators H =
iκ−1∂x and Ĥ = iκ−1∂y obey the same algebraic rules as cosine and sine, respectively,

since H2u + Ĥ2u = −κ−2(uxx + uyy) = −κ−2(−κ2u) = u. So if we write H ≡ cos θ̃ and

Ĥ ≡ sin θ̃, and also introduce H ′ = iκ−1∂x′ , in which coordinates (x′, y′) are oriented along
and perpendicular to a boundary inclined at an angle lπ/p to the x-axis, respectively, we
have

Tp(H
′) = Tp(iκ

−1[cos(lπ/p)∂x + sin(lπ/p)∂y]) = Tp(cos(lπ/p− θ̃))

= cos[p(lπ/p− θ̃)] = (−1)l cos(pθ̃) = (−1)lTp(H).

Thus the operator Tp(H) preserves Dirichlet, Neumann or constant impedance boundary
conditions on any such boundary, since it can be written in terms of derivatives directed
along that boundary. (An alternative proof in (11), for the Dirichlet case only but readily
extendable to other boundary conditions, instead confirms that the operator Tp(H) maps
solutions of the Helmholtz equation for the appropriate local wedge problem to other such
solutions, so that in particular the boundary conditions are preserved.) Finally, if Tp(H)
preserves the boundary conditions of interest then from (4.1) so too clearly does H±

p,m.
Now we determine the effect, in terms of overly-singular terms produced at the corners of

the domain, of applying the operator H−
p,m to the solution u−m (the case of H+

p,mu
+
m is very

similar). Sufficiently close to the j-th corner, for which sjπ/p < θ < qjπ/p, the solution u
−
m

behaves like the solution of the corresponding Laplace equation, so has the form

u−m =

Q
∑

n=1

A(m,j)
n rνn,j sin[νn,j(θ − sjπ/p)] +O(rνQ+1,j ), νn,j = np/(qj − sj), (4.2)

in terms of local polar coordinates (r, θ) centred on the apex of the j-th corner, and for

some constants A
(m,j)
n and Q ∈ N. Writing

ψk = rνn,j+k sin[νn,j(θ − sjπ/p) + kθ],

in terms of which the n-th term in (4.2) is A
(m,j)
n ψ0, it is straightforward to show that

H lψk = (iκ−1)l(νn,j + k)(νn,j + k − 1) . . . (νn,j + k − l + 1)ψk−l (l ∈ N0).
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Then using this and a standard representation of Tp(H) (e.g. equation (22.3.6) in (14)) we
have

Tp(H)ψ0 =
p

2

[p/2]
∑

l=0

(−1)l(p− l − 1)!

l!(p− 2l)!
2p−2lHp−2lψ0 ≡

[p/2]
∑

l=0

∆j,n,lψ−p+2l,

where

∆j,n,l =
p(−1)l(p− l − 1)!

2l!(p− 2l)!
2p−2l(iκ−1)p−2lνn,j(νn,j − 1) . . . (νn,j − p+ 2l + 1).

Here ψ−p+2l = rνn,j−p+2l sin[νn,j(θ − sjπ/p) + (−p + 2l)θ], and the overly-singular terms
correspond to cases when the exponent of r is negative, i.e. when νn,j − p + 2l < 0, or
equivalently l < (p− νn,j)/2. Thus near the j-th corner

Tp(H)u−m ∼
〈qj−sj〉
∑

n=1

A(m,j)
n

〈(p−νn,j)/2〉
∑

l=0

∆j,n,l r
νn,j−p+2l sin[νn,j(θ − sjπ/p) + (−p+ 2l)θ],

where now only the overly-singular terms are included in the summations. Here 〈z〉 =
max{n ∈ N0 : n < z} denotes the largest integer strictly smaller than z. Thus the total
number of overly-singular terms, for all corners, is

M̂ =

M
∑

j=1

〈qj−sj〉
∑

n=1

〈(p−νn,j)/2〉
∑

l=0

1 =

M
∑

j=1

〈qj−sj〉
∑

n=1

(1 + 〈(p− νn,j)/2〉) . (4.3)

Furthermore, because the differences between Tp(H) and the operator H−
p,m in (4.1) do not

introduce additional overly-singular terms, the total number of overly-singular terms which
arise after application of H−

p,m to u−m is precisely M̂ .
The process described in section 3(b) can now be followed closely, the main changes being

that the operator H±
m is replaced by H±

p,m, and M,M+,M− are replaced by M̂, M̂+, M̂−

respectively. Equations (3.16) and (3.19) become

(−1)p+1

M̂−
∑

j=1

C−
j A

−

l−
j

R̃−

l−
k
,l−
j

+

M̂+
∑

j=1

C+
j A

+

l+
j

T̃+

l−
k
,l+
j

= A−
mR̃

−

m,l−
k

(k = 1, 2, . . . , M̂−) (4.4)

and

M̂−
∑

j=1

C−
j A

−

l−
j

T̃−

l+
k
,l−
j

+

M̂+
∑

j=1

C+
j A

+

l+
j

R̃+

l+
k
,l+
j

= (−1)pA−
mT̃

+

m,l+
k

(k = 1, 2, . . . , M̂+) (4.5)

in which the definition of the scaled reflection and transmission coefficients in (3.8) and
(3.15) is extended to

R̃±
mj = κκ±m[Tp(κ

±
j /κ)− Tp(−κ±m/κ)]R±

mj , T̃±
mj = ±κκ∓m[Tp(±κ∓m/κ)− Tp(±κ±j /κ)]T±

mj .
(4.6)
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Here use has been made of the reciprocity relations

R̃±
mj = (−1)p+1R̃±

jm, T̃±
mj = (−1)pT̃∓

jm. (4.7)

If p = 1, equations (4.4)-(4.7) reduce to their analogues in section 3(b). With the C±
j

determined from (4.4) and (4.5), the embedding formulae themselves are

A−
mR̃

−
nm =

M̂−
∑

j=1

C−
j A

−

l−
j

R̃−

n,l−
j

+ (−1)p+1

M̂+
∑

j=1

C+
j A

+

l+
j

T̃+

n,l+
j

(4.8)

for n ∈ N̄−, and

A−
mT̃

−
nm =

M̂−
∑

j=1

C−
j A

−

l−
j

T̃−

n,l−
j

+

M̂+
∑

j=1

C+
j A

+

l+
j

R̃+

n,l+
j

(4.9)

for n ∈ N̄+. These formulae express R̃−
nm and T̃−

nm in terms of quantities which rely only
on the solutions u±

l±
j

for j = 1, 2, . . . , M̂±.

The corresponding embedding formulae for R̂+
nm and T̂+

nm are very similar, and given by

A+
mR̃

+
nm =

M̂−
∑

j=1

C−
j A

−

l−
j

T̃−

n,l−
j

+

M̂+
∑

j=1

C+
j A

+

l+
j

R̃+

n,l+
j

(4.10)

for n ∈ N̄+, and

A+
mT̃

+
nm = (−1)p+1

M̂−
∑

j=1

C−
j A

−

l−
j

R̃−

n,l−
j

+

M̂+
∑

j=1

C+
j A

+

l+
j

T̃+

n,l+
j

(4.11)

for n ∈ N̄−. The coefficients C±
j are now determined by setting n = l+k in (4.10) and

n = l−k in (4.11), using (4.7) to rewrite the left-hand sides in terms of quantities which do

not depend on u+m, and solving the resulting equations. These formulae express R̃+
nm and

T̃+
nm in terms of quantities which rely only on the solutions u±

l±
j

for j = 1, 2, . . . , M̂±.

Note that if p is even and j = m then the coefficient multiplying R±
mj in (4.6) is zero, and

so R±
mm cannot be recovered from R̃±

mm. Similarly, T±
mm cannot be recovered from T̃±

mm

if κ+m = κ−m, for any p. In such cases we divide the right-hand side of (4.8) (say) by the
coefficient of R−

nm in R̃−
nm and then take the limit n→ m; use of L’Hôpital’s rule yields an

expression for R−
mm in terms of the derivatives

∂R−

n,l−
j

∂n

∣

∣

∣

∣

∣

∣

n=m

,
∂T+

n,l+
j

∂n

∣

∣

∣

∣

∣

∣

n=m

,

quantities which again depend on u±
l±
j

for j = 1, 2, . . . , M̂±. A similar limiting process has

been used to recover scattering coefficients in special cases in other embedding problems
(e.g. (15)). The details are not pursued here.
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Finally, if the waveguide and obstacles are symmetric about x = 0 then the symmetry
relations (3.31) become R̃±

nm = R̃∓
nm, T̃

±
nm = (−1)p+1T̃∓

nm. If M̂ is even then we set M̂− =
M̂+ = M̂/2 = M̂ ′, say, and l±j = lj for j = 1, . . . , M̂ ′; the embedding formulae (4.8),(4.9)
become

A−
mR̃

−
nm =

M̂ ′

∑

j=1

C−
j A

−
lj
R̃−

n,lj
+(−1)p+1C+

j A
+
lj
T̃+
n,lj

, A−
mT̃

−
nm =

M̂ ′

∑

j=1

C−
j A

−
lj
T̃−
n,lj

+C+
j A

+
lj
R̃+

n,lj
,

(4.12)
where the C±

j are determined from (4.4), (4.5) modified to

M̂ ′

∑

j=1

(−1)p+1C−
j A

−
lj
R̃−

lk,lj
+C+

j A
+
lj
T̃+
lk,lj

= A−
mR̃

−
m,lk

,

M̂ ′

∑

j=1

C−
j A

−
lj
T̃−
lk,lj

+C+
j A

+
lj
R̃+

lk,lj
= (−1)pA−

mT̃
−
m,lk

,

(4.13)
for k = 1, . . . , M̂ ′. If instead M̂ is odd then minor adjustments yield formulae which rely
only on (1 + M̂)/2 solutions.

4(a) Examples

To illustrate the formulae, we consider some examples. In each case once the value of M̂
is determined the embedding formulae are equations (4.8)-(4.11), or equation (4.12) if the
waveguide is symmetric.

4(a).1 A step-change in waveguide width

Consider a waveguide with a step-change in width at x = 0. The upper boundary is
positioned at y = 0; for x < 0 the lower boundary is at y = −b < 0, but for x > 0 the lower
boundary is at y = −(b+ a) < −b. Thus the waveguide widens from width b to width a+ b
as the line x = 0 is crossed left-to-right. Here p = 2 and there areM = 2 corners: at (0,−b)
with s1 = −1, q1 = 2, and at (0,−b− a) with s2 = 0, q2 = 1. The second corner is concave,
with 〈q2 − s2〉 = 0, so does not contribute overly-singular terms. For the first, 〈q1 − s1〉 = 2
and νn,1 = 2n/3, so 〈(p− νn,1)/2〉 = 〈(2− 2n/3)/2〉 = 〈1− n/3〉 = 0 for n = 1, 2, so that

from (4.3), M̂ = 2.

4(a).2 A step-change in waveguide width, with a screen

Consider the waveguide geometry of example 4(a).1, but with an additional thin straight
screen extending from the corner of the step at (0,−b) across the waveguide to (0,−c),
where 0 < c < b (see fig. 2). Again p = 2 but now there are M = 3 corners: at (0,−b) with
s1 = 1, q1 = 2, at (0,−b− a) with s2 = 0, q2 = 1, and at (0,−c) with s3 = −1, q3 = 3. The
first and second corners are both concave; for the third, 〈q3 − s3〉 = 3 and νn,3 = n/2, so

from (4.3), M̂ =
∑3

n=1 1 + 〈1− n/4〉 = 3. The embedding formulae for this example are
implemented in section 5, below.

4(a).3 A single barrier inclined at an angle sπ/p to the x-axis

Here there are again M = 2 corners in the domain, with s1 = s − p and q1 = s + p, and
s2 = s− 2p and q2 = s, so that qj − sj = 2p for j = 1, 2. Thus νn,j = n/2 for j = 1, 2, and
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x = 0

y = 0

y = −(a+ b)

y = −b

y = −c

Fig. 2 Waveguide geometry for example 4(a).2.

so from (4.3)

M̂ =

2
∑

j=1

〈2p〉
∑

n=1

(1 + 〈(p− n/2)/2〉) = 2(2p− 1) + 2

2p−1
∑

n=1

〈p/2− n/4〉 .

If the barrier is aligned with the x-axis, as in section 3(a), then p = 1 (and s = 0) and
M̂ = 2, as expected.

4(a).4 A single rectangular obstacle aligned with the x-axis

In this case there M = 4 corners, with p = 2 and (s1, q1) = (−1, 2), (s2, q2) = (0, 3),
(s3, q3) = (1, 4) and (s4, q4) = (−2, 1). Then qj − sj = 3 and νn,j = 2n/3 for j = 1, 2, 3, 4,
giving

M̂ =

4
∑

j=1

2
∑

n=1

(1 + 〈(2− 2n/3)/2〉) = 4

2
∑

n=1

(1 + 〈1− n/3〉) = 4

2
∑

n=1

1 = 8.

If the obstacle is positioned symmetric about x = 0 then use of the symmetry properties
reduces this figure to M̂/2 = 4.

5. Numerical approximation for example 4(a).2

For the case described in section 4(a).2 we provide an approximate numerical solution
against which the embedding formula can be checked.

We focus on the solution of the problem for u−m; the approximation of u+m is very similar.
In an extension of (2.4), u−m can be written as

u−m(x, y) =



















A−
me

iκ−
mxY −

m (y) +

∞
∑

n=1

R−
nme

−iκ−
n xY −

n (y) (x < 0)

A−
m

∞
∑

n=1

T−
nme

iκ+
nxY +

n (y) (x > 0)

(5.1)

in which the R−
nm and T−

nm are coefficients to be determined. The solution is continuous
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above the step but equal to zero on the face of the step, so evaluating (5.1) at x = 0 and
using the orthogonality of the Y ±

n yields the relations

(û−m, Y
−
n ) = A−

m(δnm +R−
nm), (û−m, Y

+
n ) = A−

mT
−
nm (n ∈ N), (5.2)

where û−m(y) = u−m(0±, y) for −c < y < 0, δnm is the Kronecker delta, and the inner

product notation (u, v) =
∫ 0

−c
u(y)v̄(y) dy has been used. The derivative u−mx is also

continuous across the step, so matching derivatives of u−m from (5.1), and using (5.2) to
replace coefficients of evanescent modes, results in

∞
∑

n=N−+1

κ−n (û
−
m, Y

−
n )Y −

n (y) +

∞
∑

n=N++1

κ+n (û
−
m, Y

+
n )Y +

n (y)

= A−
m

N−
∑

n=1

κ−n (δnm −R−
nm)Y −

n (y)−A−
m

N+
∑

n=1

κ+nT
−
nmY

+
n (y) (5.3)

for −c < y < 0. The solution of (5.3) is decomposed as

û−m(y) = A−
m

N−
∑

n=1

κ−n (δnm −R−
nm)v−n (y)−A−

m

N+
∑

n=1

κ+nT
−
nmv

+
n (y) (5.4)

where
∞
∑

n=N−+1

κ−n (v
±
p , Y

−
n )Y −

n (y) +
∞
∑

n=N++1

κ+n (v
±
p , Y

+
n )Y +

n (y) = Y ±
p (y) (5.5)

for p ∈ N̄±, so that from (5.2) and (5.4),



























N−
∑

p=1

κ−p (δpm −R−
pm)(v−p , Y

−
n )−

N+
∑

p=1

κ+p T
−
pm(v+p , Y

−
n ) = δnm +R−

nm (n,m ∈ N̄−)

N−
∑

p=1

κ−p (δpm −R−
pm)(v−p , Y

+
n )−

N+
∑

p=1

κ+p T
−
pm(v+p , Y

+
n ) = T−

nm (n ∈ N̄+,m ∈ N̄−).

(5.6)
These can be written as

F−−κ−(I− −R−)−F+−κ+T− = I− +R−, F−+κ−(I− −R−)−F++κ+T− = T− (5.7)

in which I± is the N± ×N± identity matrix (I+ is used below), κ± = diag{κ±1 , . . . , κ±N±
},

R− = {R−
nm}n,m∈N̄−

, T− = {T−
nm}n∈N̄+,m∈N̄−

,

and
{

F−− = {(v−p , Y −
n )}n,p∈N̄−

, F+− = {(v+p , Y −
n )}n∈N̄−,p∈N̄+

F−+ = {(v−p , Y +
n )}n∈N̄+,p∈N̄−

, F++ = {(v+p , Y +
n )}n,p∈N̄+

.
(5.8)
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A very similar procedure applied to the problem for u+q shows that (5.7) is complemented
by

−F−−κ−T++F+−κ+(I+−R−) = T+, −F−+κ−T++F++κ+(I+−R+) = I++R
+ (5.9)

in which
R+ = {R+

nm}n,m∈N̄+
, T+ = {T−

nm}n∈N̄−,m∈N̄+
.

Once approximations to the matrices in (5.8) are determined, (5.7) and (5.9) can be solved
for R± and T± .

To numerically approximate the solutions to (5.5), we use the Galerkin method in
conjunction with the Rayleigh-Ritz approximation

v±p (y) ≈
Q
∑

j=0

λ±pjϕj(y) (5.10)

in which the λ±pj are coefficients to be determined, the ϕj are trial functions, and Q ∈ N0. If

ρ denotes the distance from the corner at (0,−c) then we know that u−m ∝ ρ1/2 near ρ = 0;
also, u−m = 0 at y = 0. These conditions together motivate the choice

ϕj(y) =
(c2 − y2)1/2U2j+1(y/c)

c
√
2b(−1)j(j + 1)

(j = 0, . . . , Q) (5.11)

in which Uj is a Chebychev polynomial of the second kind, and the denominator in (5.11)
is chosen to simplify later results. Note that U2j+1(−y) = −U2j+1(y). Inserting (5.10)
into (5.5) and then multiplying the result by ϕk and integrating, results in the Galerkin
equations

P
∑

j=0

Lkjλ
±
pj = (Y ±

p , ϕk) (k = 0, . . . , Q) (5.12)

where

Lkj =
∞
∑

n=N−+1

κ−n (ϕj , Y
−
n )(Y −

n , ϕk) +
∞
∑

n=N++1

κ+n (ϕj , Y
+
n )(Y +

n , ϕk) (k, j = 0, . . . , Q).

(5.13)
Standard properties of Chebychev polynomials of the second kind show that

(ϕj , Y
−
n ) = (−1)nn−1J2j+2(nπc/b), (ϕj , Y

+
n ) =

√

1 + a/b (−1)nn−1J2j+2

(

nπc

a+ b

)

(5.14)
in which J2j+2 is a Bessel function of the first kind.

The terms in each series in (5.13) behave like n−2 as n→ ∞. In detail,

κ−n (ϕj , Y
−
n )(Y −

n , ϕk) = a1n
−2[1 + sin(2nπc/b)] + a2n

−3 cos(2nπc/b) +O(n−4) (5.15)

and

κ−n (ϕj , Y
+
n )(Y +

n , ϕk) = a3n
−2[1 + sin(2nπc/(a+ b))] + a4n

−3 cos(2nπc/(a+ b)) +O(n−4)
(5.16)
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where

a1 =
i(−1)j+k

cπ
, a2 =

i(−1)j+kb

c2π2

(

15

4
+ 4(j + k) + 2(j2 + k2)

)

,

and a3 = (1 + a/b)a1, a4 = (1 + a/b)2a2. Denote the terms in n−2 and n−3 on the right-
hand sides of (5.15) and (5.16) by A−

n and A+
n respectively. Then we can accelerate the

convergence of the series in (5.13) by writing them as

∞
∑

n=N−+1

[κ−n (ϕj , Y
−
n )(Y −

n , ϕk)−A−
n ]+a1ζ(2)+

a1
2i

(µ12−µ̄12)+
a2
2
(µ13+µ̄13)−

N−
∑

n=1

A−
n (5.17)

and

∞
∑

n=N++1

[κ+n (ϕj , Y
+
n )(Y +

n , ϕk)−A+
n ]+a3ζ(2)+

a1
2i

(µ22−µ̄22)+
a4
2
(µ23+µ̄23)−

N+
∑

n=1

A+
n (5.18)

respectively, in which ζ(2) = π2/6, and µ1l = Lil(e
2iπc/b) and µ2l = Lil(e

2iπc/(a+b)) for
l = 2, 3, where

Lil(z) =
∞
∑

n=1

zn

nl
=

(−1)l−1

(l − 2)!

∫ 1

0

t−1 lnl−2 t ln(1− zt) dt

is the polylogarithm function (see (16), section 25.12), which can be evaluated accurately
using standard quadrature techniques applied to its integral form. The terms in the
remaining infinite series in (5.17) and (5.18) now each decay like n−4, and in practice
truncating each series at n = 103 ensures that for all results displayed below values of Lkj

are accurate to at least 6 decimal places.
The right-hand side of (5.12) can be evaluated using (5.14); once the λ±pj are determined

from (5.12) approximations to the entries of the matrices in (5.8) follow using (5.10) and
(5.14).

5(a) Results

To illustrate the efficiency of the solution technique and the use of the embedding formulae
we set a/b = 2 and c/b = 1/2, so that the waveguide width in x > 0 is double that in
x < 0, and the screen at x = 0 extends halfway across the waveguide at x = 0−. We choose
κb = 13π/2, for which N− = 6 and N+ = 19.
The left-hand half of Table 1 (the columns labelled ‘direct’) displays values of a selection

of reflection and transmission coefficients as Q is increased, calculated directly using the
approximation method described above. The convergence with increasing Q is evidently
very rapid; the convergence rate of other R±

nm and T±
nm is comparable. For smaller (larger)

κb, smaller (larger) Q is required in order to achieve the same accuracy. If the screen is
small (c/b ≈ 1), larger values of Q are required.

To implement the embedding formulae (4.8)-(4.11) we choose M̂− = M̂ = 3, M̂+ = 0, and
for simplicity set l−j = j for j = 1, 2, 3, so that the embedding formulae express reflection and
transmission coefficients in terms of solutions forced by the first three incident modes from
the left. The numerical scheme described above is used to determine approximations to these
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direct embedding formula
Q |R−

54| |T−
10,6| |R+

11,12| |T+
4,16| |R−

54| |T−
10,6| |R+

11,12| |T+
4,16|

2 0.26063 0.03824 0.16697 0.06309 9× 109 2× 108 1× 109 3× 109

3 0.31012 0.06376 0.16347 0.08833 4× 107 1× 106 5× 106 2× 107

4 0.29684 0.06878 0.16405 0.08269 6× 103 3× 102 5× 102 3× 103

5 0.29532 0.06920 0.16419 0.08188 0.29702 0.05134 0.18014 0.24485
6 0.29527 0.06922 0.16420 0.08185 0.29524 0.06922 0.16420 0.08186
7 0.29527 0.06922 0.16420 0.08185 0.29527 0.06922 0.16420 0.08185

Table 1 Values of a selection of reflection and transmission coefficients, calculated directly
and via the embedding formulae (4.8)-(4.11). Here a/b = 2, c/b = 1/2, and κb = 13π/2,
so that N− = 6 and N+ = 19. Details related to the implementation of the embedding
formulae are described in the text.

three solutions; these are then inserted into equations (4.8)-(4.11) to yield approximations
to all other reflection and transmission coefficients. The columns of Table 1 labelled
‘embedding formula’ display approximate |R±

nm| and |T±
nm| calculated in this way, for which

the generating three solutions are calculated using the specified value of Q.
What is evident is that the embedding formulae can reproduce the values of |R±

nm|
and |T±

nm| which have been calculated directly, as they should, but the accuracy of
the approximations calculated in this way depends critically on the accuracy of the
approximation to the three generating solutions: inserting even only slightly (by ∼ 1%)
inaccurate approximations to the three generating solutions into the embedding formulae
results in approximations to the other |R±

nm| and |T±
nm| which are many orders of magnitude

in error. However, given the rapid convergence of the numerical scheme this requirement
of sufficient accuracy in the approximations to the generating solutions is not prohibitive,
and the change in magnitude of the values of coefficients calculated via the embedding
formulae as the approximations to the generating solutions become more accurate is so
marked that convergence could not be wrongly assumed too early. Conversely, it is clear
that the satisfaction of the embedding formulae can be used to gauge the accuracy of the
numerical results.

Interestingly, this behaviour is in contrast to that of identities linking |R±
nm| and |T±

nm|
representing conservation of energy, namely

κ−m =

N−
∑

n=1

κ−n |R−
nm|2 +

N+
∑

n=1

κ+n |T−
nm|2, κ+q =

N−
∑

n=1

κ−n |T+
nq|2 +

N+
∑

n=1

κ+n |R+
nq|2,

for n ∈ N̄−, q ∈ N̄+, which follow from setting u = u−m, v = ū−m, and u = u+q , v = ū+q in
(2.6). These identities are satisfied to machine accuracy by approximate |R±

nm| and |T±
nm|

for all Q ≥ 0, even when the approximations themselves are evidently inaccurate. Thus the
numerical scheme automatically preserves the identities expressing conservation of energy,
but does not preserve the embedding formulae.
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6. Conclusions

In this paper we extended the methods of (11), which itself built upon (8), to derive
embedding formulae for wave propagation problems in two-dimensional waveguides whose
boundaries are piecewise linear, and which contain obstacles whose boundaries are also
piecewise linear. Within this class of waveguide geometry the only further restriction is
that each linear portion of the waveguide or obstacle boundary must make an angle with
the waveguide axis which is a rational multiple of π (in radians).

Embedding formulae were constructed which expressed the reflection/transmission
coefficients for all possible incoming modes in terms of reflection/transmission coefficients for
any particular M̂ solutions, with M̂ is given in (4.3), and corresponds to the total number of
overly-singular terms which arise by application of the particular differential operator H±

p,m

defined in (4.1). This operator is designed to both commute with the Helmholtz operator
∇2 + κ2I, and also preserve boundary conditions on all boundaries.

In section 5, the boundary-value problem for a particular example was formulated
as an integral equation and solved approximately using Galerkin’s method, and in
particular approximations to the corresponding reflection and transmission coefficients were
determined. The appropriate embedding formulae were then implemented, which gave
accurate values for a range of reflection and transmission coefficients in terms of just (for this
particular example) 3 particular solutions, provided the approximations to these particular
solutions were sufficiently accurate.

The embedding formulae are evidently of most use in high-frequency problems for which
the number of propagating modes to either side of the non-uniform waveguide region, N±,
is large, and in particular when N± ≫ M̂ . For low-frequency problems in complicated
waveguides M̂ may exceed N±, prohibiting use of the embedding formulae; equally, for high-
frequency problems in relatively simple waveguides the relative benefit of the embedding
formulae is high. If M̂ > N± an alternative route is to use generating solutions which are
forced by evanescent waves rather than propagating waves, at least in the case of a uniform
width waveguide containing polygonal obstacles. This extension is not pursued here.

Embedding formulae can be derived for a range of other similar situations with only
minor modifications, the most obvious such example being the case for which the Dirichlet
boundary condition is replaced by a Neumann condition throughout. Slightly more involved,
though still perfectly tractable, is the case for which the boundary condition on each linear
boundary section (of the waveguide or an obstacle) is either Neumann or Dirichlet or of
constant impedance type, though the appropriate modification of the value of M̂ for the
latter case requires care. The boundary condition could also switch between these three
types at a point where the boundary is straight, so long as the possibility of overly-singular
terms arising at these points is considered.

Finally, only straightforward modifications of the method are required for waveguides
which are bifurcated or trifurcated etc., or for the radiation problem in which a waveguide
opens out into R

2, provided all boundaries remain inclined at a rational multiple of π to
the x-axis. This final case would provide a link between the results presented in this paper
and those of (11) related to scattering by polygons.
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