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Singular Values of Multiplicative Toeplitz matrices

Titus Hilberdink
Department of Mathematics, University of Reading, Whiteknights,

PO Box 220, Reading RG6 6AX, UK; t.w.hilberdink@reading.ac.uk

Abstract

We study the asymptotic behaviour of the singular values of matrices with entries aij =
f(i/j) if j|i and zero otherwise, with f an arithmetical function. In particular, we study the
case where f is multiplicative and F (x) :=

∑
n≤x |f(n)|2 is regularly varying. Our main re-

sult is that, under quite general conditions, the singular values are, asymptotically,
√
µrF (n),

where {µr : r = 1, 2, 3, . . .} are the eigenvalues of some positive Hilbert-Schmidt operator.

2010 AMS Mathematics Subject Classification: 11C20, 15A18.
Keywords and phrases: multiplicative functions, multiplicative Toeplitz matrices, singular
values.

§0 Introduction – Multiplicative Toeplitz Matrices
In this article, we study the singular values of matrices of the form

Mn(f)
def
=



f(1) 0 0 0 · · · 0
f(2) f(1) 0 0 · · · 0
f(3) 0 f(1) 0 · · · 0
f(4) f(2) 0 f(1) · · · 0

...
...

...
...

. . .
...

f(n) · · · · · · f(1)


, (0.1)

where the (i, j)th-entry is zero if j does not divide i and a function of i
j if j|i. Such matrices

are of number theoretic interest, in particular where the function f(·) has arithmetical proper-
ties. Their connection with multiplicative number theory derives from the simple observation that
Mn(f)Mn(g) = Mn(f ∗ g), where ∗ denotes Dirichlet convolution; i.e. (f ∗ g)(n) =

∑
d|n f(d)g(nd ).

As ∗ is a commutative operation, it follows that such matrices commute. Also Mn(f) is invertible
if and only if f(1) 6= 0, in which case Mn(f)−1 = Mn(f−1) where f−1 is the Dirichlet inverse of f .

As an example, Redheffer’s matrix [14], the determinant of which is related to the Riemann
Hypothesis, involves the above matrix with f ≡ 1 (see also [12]). We are particularly interested in
the behaviour of the singular values of Mn(f) for large n; i.e. the square roots of the eigenvalues
of Mn(f)∗Mn(f), where A∗ denotes the conjugate tranpose of A. Various authors have studied
eigenvalues of arithmetical matrices (see for example [11] and [13] to name just two, where the
asymptotic behaviour of the largest/smallest eigenvalues are considered, and upper and lower
bounds are given for other eigenvalues).

Matrices of the form (0.1) are a special case of matrices of the form
a(1) a( 1

2 ) a( 1
3 ) a( 1

4 ) · · ·
a(2) a(1) a( 2

3 ) a( 1
2 ) · · ·

a(3) a( 3
2 ) a(1) a( 3

4 ) · · ·
a(4) a(2) a( 4

3 ) a(1) · · ·
...

...
...

...
. . .

 , (0.2)
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where the (i, j)th-entry is a function of i/j. These (infinite) matrices (0.2) are characterised by
being constant along lines where i/j is a given positive rational. In this sense they resemble
Toeplitz matrices, which are constant on lines parallel to the diagonal; i.e. where i − j is a given
integer. For this reason these matrices were called multiplicative Toeplitz matrices (see [8]).

Toeplitz matrices are most naturally studied by associating with them a function (or ‘symbol’)
whose Fourier coefficients make up the matrix (see for example, [3]). For matrices of the form
(0.2), one associates by analogy the series ∑

q∈Q+

a(q)qit,

where q ranges over the positive rationals. (In particular, matrices of the form (0.1) are associated
with the Dirichlet series

∑∞
n=1 f(n)nit.) If

∑
q∈Q+ |a(q)| converges, then the matrix (0.2) induces

a bounded operator on l2 (see [10]).
However, to fully exploit the connection between such matrices and their symbols requires that

these functions are bounded and continuous (since almost periodic functions are bounded and
continuous). This is turn requires that the a(q) (hence also f(n)) must be small — indeed they
must be square summable. In this paper we wish to deal with cases where

∑
|f(n)|2 diverges, and

so our methods are quite different from those employed in [4], [9]. More precisely, we deal with
the case where

F (x)
def
=
∑
n≤x

|f(n)|2

is regularly varying of index ρ (see §1.2 for the definition). This notion occurs quite naturally here,
as we show in the appendix.

The eigenvalues of Mn(f) are uninteresting, all of them being f(1). However, instead we
consider its singular values. These are of number theoretic interest. For example, we shall see that

tr(Mn(f)∗Mn(f)) =

n∑
r=1

∑
d|r

|f(d)|2.

But the trace of a matrix is also the sum its eigenvalues, so this gives us new formulas for averages
of arithmetical functions. Thus it is of interest to study these eigenvalues.

Our main result is that for f multiplicative and ρ > 1
2 , the singular values of matrices of the

form (0.1) behave like √
µrF (n)

for large n, where µ1, µ2, . . . are the eigenvalues of some positive Hilbert-Schmidt operator. The
completely multiplicative case is in some ways simpler, so we treat this case first in §2 . The
reason for the difference between the cases is that we need to relate sums like

∑
n≤x f(kn)f(ln)

to
∑
n≤x f(n)2. For f completely multiplicative this is easy, but for f multiplicative we need to

make some extra assumptions to obtain our result (in §3).

§1. Preliminaries

1.1 Slow and regular variation
We shall need the notion of regular variation (see [2]). A measurable function f : (A,∞) → R,
defined on some neighbourhood (A,∞) of ∞, is regularly varying of index ρ if it is eventually
positive and

f(λx) ∼ λρf(x)

as x → ∞ for all λ > 0. The set of regularly varying functions of index ρ is denoted by Rρ. A
slowly varying function is a regularly varying function of index zero.

2



Potter’s bounds. If f ∈ Rρ and f is bounded away from 0 and ∞ on compact subsets of [1,∞),
then for every δ > 0 there exists A such that

f(y)

f(x)
≤ Amax

{(y
x

)ρ−δ
,
(y
x

)ρ+δ}
.

for x, y ≥ 1.

1.2 Singular values; Trace Class and Hilbert-Schmidt operators
Let A be a compact operator on a Hilbert space H. Then A∗A is a self-adjoint compact operator
on H, whose spectrum, σ(A∗A), lies in [0,∞). Furthermore, σ(A∗A) \ {0} = {αn : n ∈ N} for
some decreasing sequence αn. The nth singular value1 of A is sn(A) =

√
αn. Then:

(i) A is trace-class if
∑∞
n=1 sn(A) converges;

(ii) A is Hilbert-Schmidt if
∑∞
n=1 sn(A)2 converges.

Some relevant properties

(a) The space of all trace-class operators is a Banach algebra with norm

‖A‖1 =

∞∑
n=1

sn(A).

For A trace-class, one can define tr(A), the trace of A, and det (I +A).

(b) The Hilbert-Schmidt operators on H form a Hilbert space with inner product

〈A,B〉 = tr(AB∗),

and corresponding norm

‖A‖2 =
√

tr(AA∗) =

√√√√ ∞∑
n=1

sn(A)2.

We have ‖A‖ = s1(A), so ‖A‖ ≤ ‖A‖2 ≤ ‖A‖1.

(c) If A and B are Hilbert-Schmidt, then AB is trace-class, and ‖AB‖1 ≤ ‖A‖2‖B‖2.

(d) Suppose A has matrix representation (aij) w.r.t. some orthonormal basis.

(i) If
∑
i,j≥1 |aij | converges, then A is trace-class. Furthermore, if A is self-adjoint and non-

negative, then A is trace-class if and only if
∑∞
i=1 aii converges ([5], Chapter 1, §6 Theorem

5).

(ii) If A is trace-class, then with λn denoting the eigenvalues of A,
∑
n |λn| ≤

∑
n sn(A) <∞,

and the familiar formulae hold (irrespective of the basis):

trA =

∞∑
i=1

aii =

∞∑
n=1

λn and det(I +A) =

∞∏
n=1

(1 + λn).

1More generally, for a bounded linear operator A on H, one defines

sn(A) = inf{‖A− F‖ : rankF < n}.

Then A is compact if and only if sn(A)→ 0 as n→∞ (see [7]).
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(iii) A is Hilbert-Schmidt if and only if∑
i,j≥1

|aij |2 <∞,

in which case the sum equals ‖A‖22 (again irrespective of the basis).

(e) Let A,An be compact operators and suppose An → A in operator norm. Then sr(An) →
sr(A) for every r ≥ 1.

This follows directly from the inequality |sr(An)− sr(A)| ≤ ‖An − A‖ (see [7], Chapter VI,
Corollary 1.6). In particular, this applies to trace-class and Hilbert-Schmidt operators.

For these and more properties of these types of operators, see for example, [5], [6], [7].

§2 Singular values of Mn(f), f completely multiplicative
The singular values of Mn(f) are the square-roots of the eigenvalues of Mn(f)∗Mn(f). More
generally, consider Mn(f)∗Mn(g). We have (with [i, j] denoting the lcm of i and j)

(Mn(f)∗Mn(g))ij =

n∑
r=1

(Mn(f)∗)ir(Mn(g))rj =
∑

i|r and j|r

f
(r
i

)
g
(r
j

)
=

∑
m≤ n

[i,j]

f
( [i, j]m

i

)
g
( [i, j]m

j

)
,

by putting r = m[i, j]. Using the fact that [i, j](i, j) = ij, we have proved:

Proposition 2.1
Let f, g be arithmetical functions. Then

(Mn(f)∗Mn(g))ij =
∑

m≤ n
[i,j]

f
( jm

(i, j)

)
g
( im

(i, j)

)
.

In particular, (Mn(f)∗Mn(g))ii =
∑
m≤ni

f(m)g(m) , so that

tr(Mn(f)∗Mn(g)) =

n∑
i=1

∑
m≤ni

f(m)g(m) =

n∑
i=1

∑
d|i

f(d)g(d).

Notation For f, g : N→ C, let Ff,g denote the function

Ff,g(x) =
∑
n≤x

f(n)g(n).

In the case f = g, we write Ff (x), or if no confusion is likely, just F (x).
From Proposition 2.1, we see that (Mn(f)∗Mn(g))ii = Ff,g(

n
i ). If Ff,g(x) → ∞ as x → ∞,

then of course each of these entries also tends to infinity. However, if Ff,g is regularly varying, say
of index ρ, then

Ff,g(
n
i )

Ff,g(n)
→ 1

iρ
. (1.1)

The notion of regular variation is natural here, given we want some kind of convergence of the
above form (see the appendix).

What about the behaviour for large n of the other entries? In general this may be difficult to
answer, but in the case that f and g are completely multiplicative, this can be done quite easily.
For in this case, if Ff,g ∈ Rρ, then

1

Ff,g(n)
(Mn(f)∗Mn(g))ij =

f( j
(i,j) )g( i

(i,j) )Ff,g(
n

[i,j] )

Ff,g(n)
→

f( j
(i,j) )g( i

(i,j) )

[i, j]ρ
,
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as n → ∞; i.e. denoting the left-hand and right-hand sides by e
(n)
ij and eij respectively, we have

e
(n)
ij → eij . To be able to say something about the traces and determinants, we need to have a

stronger form of convergence, namely norm convergence.

Let En = (e
(n)
ij )i,j≤n and let E denote the operator induced by the infinite matrix (eij)i,j≥1.

Theorem 2.2
Let f, g be two completely multiplicative functions, such that Ff,g(·) is regularly varying of index ρ
and bounded away from zero. Then

(a) E is a Hilbert-Schmidt operator if and only if ρ > 1
2 and

∑∞
n=1

|f(n)|2+|g(n)|2
n2ρ converges.

(b) E is trace-class if ρ > 1 and
∑∞
n=1

|f(n)|+|g(n)|
nρ converges.

(c) If ρ > 1
2 and

∑∞
n=1

|f(n)|2+|g(n)|2
n2ρ−η converges for some η > 0, then En → E in Hilbert-Schmidt

norm; i.e. ‖En − E‖2 → 0 as n→∞.

(d) If ρ > 1 and
∑∞
n=1

|f(n)|+|g(n)|
nρ−η converges for some η > 0, then En → E in trace-class norm;

i.e. ‖En − E‖1 → 0 as n→∞.

To get information on the singular values of Mn(f), take g = f , in which case Ff,g becomes
F (x) =

∑
n≤x |f(n)|2. Now, if F (·) is regularly varying of index ρ, then

∑∞
n=1 |f(n)|2n−s con-

verges for <s > ρ, so that if ρ > 0, the sum
∑∞
n=1 |f(n)|2nη−2ρ converges for some η > 0. This

gives:

Corollary 2.3
Let f be completely multiplicative, and suppose that F (·) is regularly varying of index ρ. Then

(a) En → E in Hilbert-Schmidt norm if and only if ρ > 1
2 ;

(b) En → E in trace-class norm if and only if ρ > 1.

Denote the singular values of Mn(f) by λr,n (r = 1, . . . , n) such that λ1,n ≥ λ2,n ≥ · · · ≥ λn,n, and
let the eigenvalues of E be {µr}r≥1 where µ1 ≥ µ2 ≥ · · · . Then for ρ > 1

2 and any fixed r,

λ2r,n ∼ µrF (n) as n→∞.

Proof of Theorem 2.2. (a) By (d)(iii) from §1.2, E is Hilbert-Schmidt if and only if∑
i,j≥1

|eij |2 <∞.

But, on writing (i, j) = d, i = md, j = nd (so that (m,n) = 1), this sum is

∑
i,j≥1

∣∣∣∣∣∣f( j
(i,j) )g( i

(i,j) )

[i, j]ρ

∣∣∣∣∣∣
2

=

∞∑
d=1

∑
m,n ≥ 1

(m,n) = 1

∣∣∣∣f(n)g(m)

(nmd)ρ

∣∣∣∣2 = ζ(2ρ)
∑

m,n ≥ 1
(m,n) = 1

|f(n)|2|g(m)|2

(nm)2ρ
.

The RHS is less than ζ(2ρ)
∑∞
n=1

|f(n)|2
n2ρ

∑∞
m=1

|g(m)|2
m2ρ , but greater than both ζ(2ρ)

∑∞
n=1

|f(n)|2
n2ρ

and ζ(2ρ)
∑∞
n=1

|g(n)|2
n2ρ . Hence E is Hilbert-Schmidt if and only if ρ > 1

2 and both these sums are
convergent.

(b) The proof that E is trace-class if ρ > 1 and both
∑∞
n=1

|f(n)|
nρ ,

∑∞
n=1

|g(n)|
nρ converge is

identical to the above. In this case, we use the fact that E is trace-class if
∑
i,j≥1 |eij | converges.
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(c) By the same methods as in (a) (with ρ replaced by ρ − δ), it follows from the extra
assumptions that ∑

i,j≥1

|eij |2[i, j]δ

converges for all δ > 0 sufficiently small.
We must show that ∑

i,j≥1

|e(n)ij − eij |
2 → 0

as n→∞. Now e
(n)
ij = 0 for [i, j] > n, and

∑
[i,j]>n |eij |2 → 0 with n on account of the convergence

of
∑
i,j≥1 |eij |2. Furthermore, for each A,∑

i,j≤A

|e(n)ij − eij |
2 → 0

as n→∞, since e
(n)
ij → eij . There remains the range [i, j] ≤ n such that max{i, j} > A.

Write Ff,g(x) = xρl(x) where l(·) is slowly-varying. Then e
(n)
ij = eij l(

n
[i,j] )/l(n). By Potter’s

bounds, given δ > 0, there exists K > 1 such that∣∣∣∣l( n

[i, j]

)
/l(n)

∣∣∣∣ ≤ K[i, j]δ

whenever [i, j] ≤ n. (For this we required to condition that Ff,g(·)) be bounded away from 0.)
Hence, taking i, j over the remaining range, we have

∑
max{i,j}>A

|e(n)ij − eij |
2 =

∑
max{i,j}>A

|eij |2
∣∣∣∣1− l( n

[i, j]

)
/l(n)

∣∣∣∣2

≤ 2
∑

max{i,j}>A

|eij |2
(

1 +

∣∣∣∣l( n

[i, j]

)
/l(n)

∣∣∣∣2)
≤ 4K2

∑
max{i,j}>A

|eij |2[i, j]2δ.

But for all δ sufficiently small, the above sum converges. Hence we can choose A so large that the
RHS is less than any given ε > 0. The result follows.

The proof for (d) is analogous, this time requiring
∑
i,j≥1 |e

(n)
ij − eij | → 0.

�

Proof of Corollary 2.3. Parts (a) and (b) follow immediately from Theorem 2.2 and, for (b) the
reverse implication comes from 1.2(d)(i). For the final part, if ρ > 1

2 , then En → E in Hilbert-

Schmidt norm. But the eigenvalues of En are
λ2
r,n

F (n) so by 1.2(e),
λ2
r,n

F (n) → µr as n→∞.
�

§3. The multiplicative case
In the above we considered the case where f (and g) is completely multiplicative. For our applica-
tions, we wish to generalize this to multiplicative functions. To obtain convergence of the entries
as in Theorem 2.2 and Corollary 2.3, we require estimates for sums of the form∑

n≤x

f(kn)g(ln),
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for f, g multiplicative functions and k, l coprime integers, given that we know the behaviour of the
case k = l = 1. As we are interested in the singular values of Mn(f) we shall consider the special
case when g = f . The more general case can be treated similarly. Let

F (x) =
∑
n≤x

|f(n)|2 and Fk,l(x) =
∑
n≤x

f(kn)f(ln).

Theorem 3.1
Let f be multiplicative, and suppose that F (x) is regularly varying of index ρ. Let k, l be coprime
integers. Suppose that for every prime p|kl, the series

∑∞
m=0 |f(pm)|2p−ms converges for <s > ρ−δ

(some δ > 0) and is non-zero on the line <s = ρ. Then

Fk,l(x)

F (x)
→ λ(k)λ(l)

as x→∞ where, for k =
∏
p|k p

α,

λ(k)
def
=
∏
p|k

{∑
m≥0 f(pm+α)f(pm)p−ρm∑

m≥0 |f(pm)|2p−ρm

}
.

Proof. For p|kl, let

hp(z) =

∞∑
m=0

|f(pm)|2zm.

The assumptions imply that this power series has a radius of convergence larger than p−ρ and that
hp(z) 6= 0 for |z| = p−ρ. This in turn implies there exists η > 0 such that hp(z) 6= 0 in the annulus

A = {z ∈ C : p−ρ − η < |z| < p−ρ + η}.

The power series
∞∑
m=0

f(pm+r)f(pm)zm

has a radius of convergence at least as large as that for hp(z), and hence converges for |z| < p−ρ+η.

Thus (1/hp(z))
∑∞
m=0 f(pm+r)f(pm)zm is analytic in A and has a Laurent series:

1

hp(z)

∞∑
m=0

f(pm+r)f(pm)zm =

∞∑
n=−∞

αnz
n.

Replacing z by p−s, this implies that there exists η′ > 0 such that

1

hp(p−s)

∞∑
m=0

f(pm+r)f(pm)

pms
=

∞∑
n=−∞

αn
pns

for ρ− η′ < <s < ρ+ η′. (3.1)

Similarly for 1
hp(p−s)

∑∞
m=0 f(pm)f(pm+r)p−ms. Let

F(s) =

∞∑
n=1

|f(n)|2

ns
and Fk,l(s) =

∞∑
n=1

f(kn)f(ln)

ns
.

These series are absolutely convergent for <s > ρ since

|Fk,l(x)| ≤
(∑
n≤x

|f(kn)|2
∑
n≤x

|f(ln)|2
)1/2

≤
√
F (kx)F (lx) ∼ (kl)ρ/2F (x).
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As f(n) is multiplicative, we have the Euler products

F(s) =
∏
p

∞∑
m=0

|f(pm)|2

pms
and Fk,l(s) =

∏
p

∞∑
m=0

f(pm+α)f(pm+β)

pms
.

(Recall k =
∏
p|k p

α and l =
∏
p|l p

β .) If p 6 | kl then α = β = 0, and f(pm+α)f(pm+β) becomes

|f(pm)|2. Splitting the product for Fk,l(s) into those primes for which p divides kl and those that
do not, and cancelling the p6 |kl terms with those in the denominator gives

Fk,l(s) =
∏
p|kl

∞∑
m=0

f(pm+α)f(pm+β)p−ms ·
∏
p 6 |kl

∞∑
m=0

|f(pm)|2p−ms.

But if p|k then β = 0, while if p|l then α = 0, since (k, l) = 1. Hence

Fk,l(s) =
∏
p|k

∑∞
m=0 f(pm+α)f(pm)p−ms∑∞

m=0 |f(pm)|2p−ms
∏
p|l

∑∞
m=0 f(pm)f(pm+β)p−ms∑∞

m=0 |f(pm)|2p−ms
F(s),

for ρ < <s < ρ+ η′. But each term in the product (with p|k and p|l respectively) is a series of the
form

∑∞
−∞ βnp

−ns as in (3.1). Now for n = pa11 . . . pamm (with ai ≥ 1) let

Sn = {pk11 . . . pkmm : k1, . . . , km ∈ Z}.

Thus ∏
p|k

∑∞
m=0 f(pm+α)f(pm)p−ms∑∞

m=0 |f(pm)|2p−ms
∏
p|l

∑∞
m=0 f(pm)f(pm+β)p−ms∑∞

m=0 |f(pm)|2p−ms
=
∑
q∈Skl

γq
qs
, (3.2)

for some coefficients γq, where the series converges absolutely for ρ − η′′ < <s < ρ + η′′, some
η′′ > 0. Note that from (3.2) we have ∑

q∈Skl

γq
qρ

= λ(k)λ(l).

Let
A(x) =

∑
q ∈ Skl
q ≤ x

γq.

From (3.2) it follows that for s ∈ (ρ − η′′, ρ + η′′), we have |A(x)| ≤ xs
∑
q≤x |γq|q−s = O(xs).

Hence for some δ′ > 0,

A(x) =

{
O(xρ+δ

′
) for x ≤ 1

O(xρ−δ
′
) for x ≥ 1

.

From above

Fk,l(s) =

( ∑
q∈Skl

γq
qs

)
F(s),

for ρ < <s < ρ+ η′′. Fix c ∈ (ρ, ρ+ η′). If we ignore questions of convergence we should have

1

2πi

∫
(c)

Fk,l(s)
s

xs ds =
1

2πi

∫
(c)

( ∑
q∈Skl

γq
qs

)
F(s)

s
xs ds =

∑
q∈Skl

γq

(
1

2πi

∫
(c)

F(s)

s

(x
q

)s
ds

)
.

However, interchanging the sum and integral cannot be justified (at least easily) since, although
the series converges uniformly and boundedly, the integral does not converge absolutely. To get
round this let

G(x) =

∫ x

0

F (t) dt and Gk,l(x) =

∫ x

0

Fk,l(t) dt.
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Note that since F (x) = F ([x]) and Fk,l(x) = Fk,l([x]), we have

G(x+ δ)−G(x)

δ
= F (x) and

Gk,l(x+ δ)−Gk,l(x)

δ
= Fk,l(x)

for all δ > 0 sufficiently small. Also we have the Mellin transforms

G(x) =
1

2πi

∫
(c)

F(s)

s(s+ 1)
xs+1 ds and Gk,l(x) =

1

2πi

∫
(c)

Fk,l(s)
s(s+ 1)

xs+1 ds

for every c > 1 and x > 0. These integrals have the advantage that they converge absolutely. Thus
by uniform and absolute convergence we can interchange sum and integral to give

Gk,l(x) =
1

2πi

∫
(c)

Fk,l(s)
s(s+ 1)

xs+1 ds =
1

2πi

∫
(c)

( ∑
q∈Skl

γq
qs

)
F(s)

s(s+ 1)
xs+1 ds =

∑
q∈Skl

qγqG
(x
q

)
.

Writing F ∗(x) for
∑′
n≤x f(n) where the ′ indicates the last term is to be halved if x ∈ N and

F ∗k,l(x) analogously, this gives

F ∗k,l(x) =
∑
q∈Skl

γqF
∗
(x
q

)
.

From this we can deduce that
Fk,l(x) =

∑
q∈Skl

γqF
(x
q

)
. (3.3)

To see this, first note that the righthand side of (3.3) converges absolutely: by Potter’s bounds,

F (x/q)

F (x)
≤ Amax{q−ρ−δ, q−ρ+δ},

for x, q ≥ 1 and any given δ > 0 and some A = A(δ), while
∑
q |γq|/qρ−η converges for |η|

sufficiently small.
Now for q = m

n with m,n coprime, write ‖q‖ = max{m,n}. Let δ ∈ (0, 1). We have

Gk,l(x+ δ)−Gk,l(x)

δ
=
∑
q∈Skl

γq

(
G((x+ δ)/q)−G(x/q)

δ/q

)
.

Let δ → 0. For every N ,∑
q ∈ Skl
‖q‖ ≤ N

γq

(
G((x+ δ)/q)−G(x/q)

δ/q

)
→

∑
q ∈ Skl
‖q‖ ≤ N

γqF
(x
q

)
.

For ‖q‖ > N , using G(a+ b)−G(a) ≤ bF (a+ b) for a > 0, we have∣∣∣∣∣∣∣
∑
q ∈ Skl
‖q‖ > N

γq

(
G((x+ δ)/q)−G(x/q)

δ/q

)∣∣∣∣∣∣∣ ≤
∑
q ∈ Skl
‖q‖ > N

|γq|F
(x+ 1

q

)
.

This is independent of δ. By the absolute convergence of the series it tends to 0 as N →∞. Hence
(3.3) follows. But ∑

q∈Skl

γqF
(x
q

)
=
∑
q∈Skl

γq
∑
n≤x/q

f(n) =
∑

n ∈ N, q ∈ Skl
nq ≤ x

γqf(n)

=

∞∑
n=1

f(n)
∑
q ∈ Skl
q ≤ x/n

γq =

∞∑
n=1

f(n)A
(x
n

)
. (3.4)
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The right-hand side of (3.4) is just a Mellin-Stieltjes transform; i.e. Fk,l(x) =
∫∞
0
A(x/t)dF (t).

The conditions of Theorem 4.4.2 from [2] (with U = F and k = A) are satisfied and can be applied
to give

Fk,l(x) ∼
(
ρ

∫ ∞
0

A(t)

tρ+1
dt
)
F (x).

But

ρ

∫ ∞
0

A(t)

tρ+1
dt = lim

x→∞,y→0+

(
A(y)

yρ
− A(x)

xρ
+

∫ x

y

1

tρ
dA(t)

)
=

=

∫ ∞
0

1

tρ
dA(t) =

∑
q∈Skl

γq
qρ

= λ(k)λ(l).

�

Remarks. (i) The condition that
∑∞
m=0 |f(pm)|2p−ms be non-zero on the line <s = ρ is sufficient

for the limit to exist, but not necessary. For example, let f be the multiplicative function

f(n) =


1 if n is odd√
2 if n = 2m with m odd

0 if 4|n
.

Then F (x) =
∑
n≤x |f(n)|2 = x+O(1) which is regularly varying of index 1, and an easy calculation

shows that Fk,l(x)/F (x)→ µk,l where

µk,l =


1 if k, l both odd
1√
2

if k = 2m with m odd and l odd, or vice versa

1 if k, l = 2m, 2n with m,n odd
0 if 4|k or 4|l

.

But
∑∞
m=0 |f(2m)|22−ms = 1 + 21−s which has zeros on the line <s = 1.

(ii) The condition that
∑∞
m=0 |f(pm)|2p−m(ρ−δ) converges for some δ > 0 is also not necessary,

even with δ = 0. For example, let f be the (non-completely) multiplicative function

f(n) = f(2mr) = 2m/2(m+ 1)

if n = 2mr with m ≥ 0 and r odd. Then (with m ≥ 0 and r odd)

F (x) =
∑

2mr≤x

|f(2mr)|2 =
∑
2m≤x

2m(m+ 1)2
( x

2m+1
+O(1)

)
∼ x(log x)3

6(log 2)3
,

which is regularly varying of index 1. An easy calculation shows that

Fk,l(x)

F (x)
→ 2

1
2 (m+n)

for k = 2mr and l = 2ns with r, s odd. But
∑∞
m=0 |f(2m)|22−m diverges.

It is conceivable that no extra condition is required as in the completely multiplicative case,
but this is apparently not easy to prove — if indeed it is true.

(iii) It would be nice to use a Tauberian theorem directly, say Theorem 4.9.1 from [2], but this
requires a continuous kernel k.
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Now we apply this to generalize Corollary 2.3 to multiplicative f . Let En = (e
(n)
ij )i,j≤n and

E = (eij)i,j≥1 where

e
(n)
ij =

(Mn(f)∗Mn(f))ij
F (n)

and eij = λ
( i

(i, j)

)
λ
( j

(i, j)

)
[i, j]−ρ,

and λ(·) is as in Theorem 3.1. Note that with k = i
(i,j) and l = j

(i,j) (so (k, l) = 1), we have

e
(n)
ij =

Fk,l(
n

[i,j] )

F (n)
→ eij ,

for every i, j ≥ 1, under the conditions of Theorem 3.1.

Theorem 3.2
Let f be multiplicative, and suppose that F (x) is regularly varying of index ρ. Suppose further that
for every prime p, the series

∑∞
m=0 |f(pm)|2p−ms, converges for <s > ρ− δ (some δ > 0, possibly

depending on p), and is non-zero for <s = ρ. Then

(a) E is trace-class if and only if ρ > 1;

(b) E is Hilbert-Schmidt if and only if ρ > 1
2 and

∑
p
|λ(p)|2
p2ρ converges.

Furthermore, suppose ρ > 1
2 ,
∑∞
n=1

|λ(n)|2
n2ρ−η converges for some η > 0, and for all ε > 0,

Fk,l(x)�ε (kl)ε|λ(kl)|F (x) whenever (k, l) = 1. Then En → E in Hilbert-Schmidt norm.

Consequently, with λr,n denoting the rth singular value of Mn(f) and µr the rth eigenvalue
of E, we have

λ2r,n ∼ µrF (n).

Proof. (a) As E is self-adjoint, it is trace class if and only if
∑
i eii converges, by 1.2d(i). But

eii = i−ρ, so the condition holds if and only if ρ > 1.
(b) E is Hilbert-Schmidt if and only if

∑
i,j≥1 |eij |2 converges. But this sum is

∑
i,j≥1

∣∣∣∣λ( i

(i, j)

)
λ
( j

(i, j)

)
[i, j]−ρ

∣∣∣∣2 =

∞∑
d=1

∑
m,n ≥ 1

(m,n) = 1

∣∣∣∣∣λ(n)λ(m)

(nmd)ρ

∣∣∣∣∣
2

= ζ(2ρ)
∑

m,n ≥ 1
(m,n) = 1

|λ(n)|2|λ(m)|2

(nm)2ρ
.

The RHS is less than ζ(2ρ)
(∑∞

n=1
|λ(n)|2
n2ρ

)2
but greater than ζ(2ρ)

∑∞
n=1

|λ(n)|2
n2ρ . Hence E is

Hilbert-Schmidt if and only if ρ > 1
2 and

∑∞
n=1

|λ(n)|2
n2ρ converges. But λ(·) is multiplicative, so this

is equivalent to the convergence of ∑
p

∞∑
k=1

|λ(pk)|2

p2kρ
.

However,

|λ(pk)|2 =
|
∑∞
m=0 f(pm+k)f(pm)p−ρm|2

|
∑∞
m=0 |f(pm)|2p−ρm|2

≤
∑∞
m=0 |f(pm+k)|2p−ρm∑∞
m=0 |f(pm)|2p−ρm

≤ pρk,

and therefore
∑
p,k≥2 |λ(pk)|2p−2kρ converges. It follows that E is Hilbert-Schmidt if and only if

ρ > 1
2 and

∑
p |λ(p)|2p−2ρ converges.
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For the final part, if ρ > 1
2 and

∑∞
n=1

|λ(n)|2
n2ρ−η converges for some η > 0 then, as in the proof of

Theorem 2.2, ∑
i,j≥1

|eij |2[i, j]η converges for some (possibly different) η > 0.

We must show that
∑
i,j≥1 |e

(n)
ij − eij |2 → 0 as n→∞. Again, for each A,

∑
i,j≤A |e

(n)
ij − eij |2 → 0

as n→∞, since e
(n)
ij → eij . Further, the convergence of

∑
i,j≥1 |eij |2 implies∑

max{i,j}>A

|eij |2 < ε(A)

where ε(A)→ 0 as A→∞. There remains the sum∑
max{i,j}>A

|e(n)ij |
2.

But, with k = i
(i,j) and l = j

(i,j) , we have

|e(n)ij | =
|Fk,l( n

[i,j] )|
F (n)

=
|Fk,l( n

[i,j] )|
F ( n

[i,j] )
·
F ( n

[i,j] )

F (n)

(i)

≤ Aδ,ε
(kl)ε|λ(kl)|

[i, j]ρ−δ

(ii)

≤ Aδ,ε[i, j]
δ+ε|eij |

for all δ, ε > 0 and some constant Aδ,ε (i) by the assumption and Potter’s bounds and (ii) since

kl ≤ [i, j]. Choosing δ and ε sufficiently small so that δ+ε < η/2, we see that
∑

max{i,j}>A |e
(n)
ij |2 <

ε(A)→ 0 as A→∞. The result follows.
�

§4. Some examples

(a) In [10], the largest singular value of Mn(f) was discussed and its close connection to the
largest eigenvalue of the n× n matrix (f( ij

(i,j)2 ))i,j≤n in case f is completely multiplicative.

The particular case f(n) = n−α was dealt with in [9] with estimates obtained for the various
ranges of α. Denoting the largest singular value of Mn(f) by λ1,n (denoted by Bα(n) in [9]),
it was shown that for α < 1

2 one has

λ1,n � n
1
2−α.

Note that in this case, F (x) =
∑
n≤x |f(n)|2 ∼ x1−2α

1−2α which is regularly varying of index

ρ = 1− 2α. Observe that ρ > 1
2 when α < 1

4 . As such, we can apply Corollary 2.3. Thus

λ1,n ∼
√

µ1(α)

1− 2α
n

1
2−α (α < 1

4 ), (4.1)

where µ1(α) is the largest eigenvalue of the Hilbert-Schmidt operator Eα = ((ij)α/[i, j])i,j≥1.
Furthermore, the rth singular value of Mn(f), say λr,n satisfies

λr,n ∼
√

µr(α)

1− 2α
n

1
2−α as n→∞,

where µr(α) is the rth eigenvalue of Eα.

The special case α = 0 was discussed recently in [13] and [1]. Mattila and Haukkanen [13]
conjectured and Altinişik and Büyükköse [1] proved that λ1,n increases with n, and further
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proved that λ21,n ≥ n. The above tells us that λ21,n ∼ µ1n and more generally that λ2r,n ∼ µrn
where µr is the rth eigenvalue of the Hilbert-Schmidt operator ( 1

[i,j] )i,j≥1.

It is natural to ask what happens for 1
4 ≤ α < 1

2 . As µ1(α) = ‖Eα‖ – the operator norm of
Eα – could (4.1) remain true for all α < 1

2? This follows if we can show Eα is bounded in
this range and ‖(Eα)n − Eα‖ → 0 as n→∞.

(b) Take f(n) = µ(n)
nα , which is multiplicative, but not completely. Then F (x) ∼ x1−2α

ζ(2)(1−2α) for

α < 1
2 , which is regularly varying of index ρ = 1− 2α. Again ρ > 1

2 if and only if α < 1
4 . In

this case one finds that

λ(k) =
µ(k)

σ−1(k)kα
,

where σ−1(n) =
∑
d|n

1
d . The series

∑∞
n=1

|λ(n)|2
n2ρ−δ therefore converges for α < 1−δ

2 . Also for

(k, l) = 1 and, using |µ(mn)| ≤ |µ(m)||µ(n)|, we have

|Fk,l(x)| ≤
∑
n≤x

|µ(kn)µ(ln)|
(kn)α(ln)α

≤ |µ(kl)|
(kl)α

∑
n≤x

|µ(n)|2

n2α
= σ−1(kl)|λ(kl)|F (x)�ε (kl)ε|λ(kl)|F (x)

for all ε > 0, so the conditions of Theorem 3.2 are satisfied. Hence, for α < 1
4 , the rth

singular value of Mn(f) is asymptotic to
√

νr
ζ(2)(1−2α)n

1
2−α, where νr is the rth eigenvalue of

the Hilbert-Schmidt operator

Gα =
( µ( [i,j]

(i,j) )(ij)
α

σ−1( [i,j]
(i,j) )[i, j]

)
i,j≥1

.

Again for α = 0, this was discussed in [13] and [1]. Note that Mn(µ) = Mn(1)−1, so Mn(u)
has singular values 1

λn,n
, · · · , 1

λ1,n
(in decreasing order) where λ1,n, · · · , λn,n are the singular

values of Mn(1). Mattila and Haukkanen [13] conjectured and Altinişik and Büyükköse

[1] proved that λn,n decreases with n, and further proved that λ2n,n ≤ 1
Q(n) ∼

ζ(2)
n , where

Q(n) =
∑n
r=1 µ(r)2. The above (with α = 0) shows that in fact

1

λ2n−r+1,n

∼ νr
ζ(2)

n as n→∞ (r = 1, 2, 3, . . .)

where νr is the rth eigenvalue of G0.
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Appendix

Proposition A1
Let (an)n∈N be a non-negative sequence of reals, not identically zero, and let A(x) =

∑
n≤x an.

Then the limit

lim
n→∞

A(n/k)

A(n)
(∗)

exists for every k ∈ N and is non-zero if and only if A(·) is regularly varying.

Proof. If A(·) is regularly varying, then the limit in (∗) exists and is of the form k−ρ for some
ρ ≥ 0.

For the converse, we first show that the limit in (∗) must be of the form k−ρ for some ρ ≥ 0.
For, denoting the limit by h(k), we find that h(·) is completely multiplicative, non-negative, and
decreasing.

Let p be a prime number. For each k ∈ N, 2m ≤ pk < 2m+1 for some m ∈ N. Indeed,
m = [k log p

log 2 ]. Since h is decreasing and completely multiplicative, we have

h(2)m ≥ h(p)k ≥ h(2)m+1.

It follows that m = [k log h(p)
log h(2) ] + 0 or 1, and hence

log h(p)

log h(2)
=

log p

log 2
+O

(1

k

)
.

Letting k →∞ gives h(p) = p−ρ, where ρ = − log h(2)
log 2 . Hence h(n) = n−ρ for all n ∈ N.

Next we show that A(·) is regularly varying of index ρ. For m ∈ N, we have A(x) = A(mxm ) ∼
m−ρA(mx), so that A(mx) ∼ mρA(x). Hence, for rationals q = m

n (m,n ∈ N), we have

A(qx) = A
(m
n
x
)
∼ mρA

(x
n

)
∼
(m
n

)ρ
A(x) = qρA(x).

Finally, for λ > 0, there exist sequences (pn), (qn) of rationals such that pn ↗ λ and qn ↘ λ. As
A(·) is increasing, we have

A(λx)

A(x)
≥ A(pnx)

A(x)
→ pρn,
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and
A(λx)

A(x)
≤ A(qnx)

A(x)
→ qρn.

These are true for all n, so that A(λx) ∼ λρA(x) follows, and A(·) is regularly varying.
�
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