
Fermentation properties and potential 
prebiotic activity of Bimuno® galacto
oligosaccharide (65 % galacto
oligosaccharide content) on in vitro gut 
microbiota parameters 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CCBY) 

Open access 

Grimaldi , R., Swann, J. R., Vulevic, J., Gibson, G. R. and 
Costabile, A. (2016) Fermentation properties and potential 
prebiotic activity of Bimuno® galactooligosaccharide (65 % 
galactooligosaccharide content) on in vitro gut microbiota 
parameters. British Journal of Nutrition, 116 (3). pp. 480486. 
ISSN 00071145 doi: 
https://doi.org/10.1017/S0007114516002269 Available at 
http://centaur.reading.ac.uk/66051/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work. 

To link to this article DOI: http://dx.doi.org/10.1017/S0007114516002269 

Publisher: Cambridge University Press 

All outputs in CentAUR are protected by Intellectual Property Rights law, 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Central Archive at the University of Reading

https://core.ac.uk/display/42155329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online

http://centaur.reading.ac.uk/licence
http://www.reading.ac.uk/centaur


Fermentation properties and potential prebiotic activity of Bimuno®

galacto-oligosaccharide (65% galacto-oligosaccharide content) on in vitro
gut microbiota parameters

Roberta Grimaldi1*, Jonathan R. Swann2, Jelena Vulevic3, Glenn R. Gibson1 and Adele Costabile4

1Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AP, UK
2Division of Computational and Systems Medicine, Imperial College, London SW7 2AZ, UK
3Clasado Research Services Ltd, Science & Technology Centre, University of Reading, Reading RG6 6BZ, UK
4Life Sciences Department, Health Sciences Research Centre, Whitelands College, University of Roehampton, London SW15 4JD, UK

(Submitted 26 February 2016 – Final revision received 19 April 2016 – Accepted 7 May 2016 – First published online 8 June 2016)

Abstract
Prebiotic oligosaccharides have the ability to generate important changes in the gut microbiota composition that may confer health benefits to
the host. Reducing the impurities in prebiotic mixtures could expand their applications in food industries and improve their selectivity and
prebiotic effect on the potential beneficial bacteria such as bifidobacteria and lactobacilli. This study aimed to determine the in vitro potential
fermentation properties of a 65% galacto-oligosaccharide (GOS) content Bimuno® GOS (B-GOS) on gut microbiota composition and their
metabolites. Fermentation of 65% B-GOS was compared with 52% B-GOS in pH- and volume-controlled dose–response anaerobic batch
culture experiments. In total, three different doses (1, 0·5 and 0·33 g equivalent to 0·1, 0·05 and 0·033 g/l) were tested. Changes in the gut
microbiota during a time course were identified by fluorescence in situ hybridisation, whereas small molecular weight metabolomics profiles
and SCFA were determined by 1H-NMR analysis and GC, respectively. The 65% B-GOS showed positive modulation of the microbiota
composition during the first 8 h of fermentation with all doses. Administration of the specific doses of B-GOS induced a significant increase in
acetate as the major SCFA synthesised compared with propionate and butyrate concentrations, but there were no significant differences
between substrates. The 65% B-GOS in syrup format seems to have, in all the analysis, an efficient prebiotic effect. However, the applicability
of such changes remains to be shown in an in vivo trial.

Key words: Prebiotic activity: Bimuno® galacto-oligosaccharides: Microbiota composition: Fluorescence in situ hybridisation:
SCFA

In vitro and in vivo studies involving prebiotic oligosaccharides
have been carried out using inulin and its fructo-
oligosaccharide (FOS) derivatives, as well as various galacto-
oligosaccharides (GOS). It has been shown that these food
ingredients have the ability to improve selectively the growth of
bifidobacteria, and consequently lead to important changes in
the gut microbiota composition that may confer health benefits
to the host. To date, GOS has been associated with numerous
health benefits such as low energy content, insulin-independent
metabolism and stimulation of growth and metabolism of spe-
cific colonic microbiota. The two main mechanisms by which
this is achieved are through the production of SCFA from its
fermentation and the selective enhancement of beneficial gut
organisms(1). GOS can be defined as a mixture of the end
products of lactose breakdown by β-galactosidases, containing
two to eight saccharide units, with a terminal glucose unit(2).
These mixtures can be complex and their structures are often

imperfectly characterised. They tend to be mixtures of β-1,3,
β-1,4 and β-1,6 linkages with degrees of polymerisation ranging
from two to five. A characteristic of GOS is that the set of
structures present depends on the source of the enzyme used to
bring about synthesis. The structural and functional relationship
of GOS plays a role in targeting the Bifidobacterium genus(3).
Another important aspect is the presence of impurities such as
monosaccharaides, disaccharides or metabolic products from
purification steps. Removing these compounds can lead to a
mixture with a GOS content as high as possible that can be
better used to study fermentation and structural properties of
novel prebiotics in in vitro experiments. In addition, purified
Bimuno® GOS (B-GOS) mixture might have significantly
increased interest in production and application in various food
and pharmaceutical processes, especially if the prebiotic is
incorporated directly into food such as diabetic or low-energy
foods. Reducing monosaccharides and disaccharides such as

Abbreviations: B-GOS, Bimuno® galacto-oligosaccharide; GOS, galacto-oligosaccharide.
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glucose, galactose and lactose from the mixture might help
minimise their impact on consumers, particularly by taking into
account lactose intolerance. Several techniques have been
suggested in order to obtain high recovery of GOS, but all of
them have some limitations(4). B-GOS (Bimuno® 52% GOS
content; Clasado Biosciences Ltd) refers to prebiotic GOS
compounds that have multiple biological health activities within
the colonic environment. It is produced from the activity of
galactosidase enzymes isolated from Bifidobacterium bifidum
NCIMB 41171(5). The method for B-GOS purification has been
studied by Goulas et al.(6) in order to reduce the amount of free
glucose and galactose produced during its synthesis, and it led
to the removal of 92% of glucose by fermentation with
Saccharomyces cerevisiae. The bifidogenic properties of B-GOS
have been investigated in vitro and in vivo. Tzortzis et al.(7)

showed in vitro and in a pig trial the prebiotic potential of GOS.
In this study, it was established that B-GOS prebiotic activity
was relevant in terms of increase in bifidobacteria numbers,
SCFA production and decreased pH, compared with other
prebiotics such as inulin and other GOS types(7). B-GOS has
also been tested in healthy volunteers, clinical conditions that
have a purported microbial aetiology such as irritable bowel
syndrome, traveller’s diarrhoea and obesity, and on cognitive
functions(8–13). This study aimed to determine the potential
prebiotic activity of a purified 65% GOS content B-GOS,
compared with 52% GOS content B-GOS, used as positive
control in in vitro dose–response batch cultures.

Methods

Substrates

The two B-GOS products, supplied by Clasado BioSciences Ltd,
used in this study were produced from the activity of galacto-
syltransferases from B. bifidum NCIMB 41171 on lactose(14).
Both were used in syrup form. The B-GOS mixtures consisted
of (w/w) 52% GOS, 8% lactose, 22% glucose, 16·5% galactose
and 65% GOS, 10·1% lactose, 22% glucose, 1·8% galactose,
respectively.

Faecal inoculation

Experiments were carried out using fresh faecal samples from
three healthy donors (one female aged 26 years and two males
aged 25 and 31 years, respectively) who were free of any
metabolic and gastrointestinal diseases, were not taking pro-
biotic or prebiotic supplements and had not taken antibiotics
for 6 months before faecal sample donation. All donors then
provided written informed consent, and filled in a standard
questionnaire to collect information regarding health status,
drug use, clinical anamnesis and lifestyle factors. This study
was approved by The University of Reading Research Ethics
Committee (UREC 15/20). Faecal samples were placed in an
anaerobic jar (AnaeroJar™ 2.5L; Oxoid Ltd) including a gas-
generating kit (AnaeroGen™; Oxoid). Samples were diluted
1/10 w/w in anaerobic PBS (0·1mol/l phosphate buffer solu-
tion, pH 7·4) and homogenised (Stomacher 400; Seward) for

2min at 240 paddle beats/min. Samples were added to
anaerobic fermenters within 15min of voiding.

In vitro batch culture fermentation

This method was previously described by Rycroft et al.(15).
B-GOS were added at concentrations shown in Table 1 before
adding 5ml of faecal slurry (final concentration of 1%). An extra
vessel with no added carbohydrate source was also included as
a negative control. The pH was maintained in the range of
6·7–6·9 via pH controllers (Fermac 260; Electrolab) and auto-
matically adjusted by adding 0·5mM-NaOH and HCl to the
vessels when required. The pH and temperature mimicked the
conditions of the distal region of the human large intestine.
Batch culture fermentations were run for 24 h, and the samples
(3·5ml from each vessel) were collected at 0, 4, 8 and 24 h for
analysis of bacterial populations and metabolite production.
Fermentation experiments were performed in triplicate.

Bacterial enumerations by fluorescence in situ hybridisation

Differences in bacterial populations were assessed by fluores-
cence in situ hybridisation (FISH) with oligonucleotide probes
designed to target specific diagnostic regions of 16S rRNA,
as previously described(16). The probes were commercially
synthesised and labelled at the 5′ end with the fluorescent dye
Cy3 (Sigma-Aldrich) as reported in Table 2(17–22). Numbers of
specific and total bacteria were determined using the following
equation: DF×ACC× 6732·42× 50×DF sample, where DF is
the dilution factor (300/375= 0·8), ACC is the average cell count
of fifteen fields of view and DF sample refers to the dilution of
sample used with a particular probe or stain. The figure 6732·42
refers to the area of the well divided by the area of the field of
view and the factor 50 takes the cell count back to per millilitre
of sample.

SCFA analysis

Production of SCFA was determinate using GC as previously
described(23). Peaks were integrated using Agilent ChemStation
software (Agilent Technologies), and SCFA content was quan-
tified by single-point internal standard method. Peak identity
and internal response factors were determined using a 20-mM

calibration cocktail including acetic, propionic, iso-butyric,
butyric, iso-valeric, valeric, caproic and caprylic acids.

Table 1. Doses of the Bimuno® galacto-oligosaccharide (B-GOS) syrups
tested (equivalent to 0·1, 0·05 and 0·033g/l) in 100ml working volume
vessels during 24h of fermentation in pH- and volume-controlled batch
fermentation experiments

Vessel Treatment Syrup (g) DM GOS in 100ml

1 B-GOS (52% GOS content) 2·66 2 1
2 B-GOS (52% GOS content) 1·33 1 0·5
3 B-GOS (52% GOS content) 0·88 0·66 0·33
4 B-GOS (65% GOS content) 2·05 1·54 1
5 B-GOS (65% GOS content) 1·02 0·77 0·5
6 B-GOS (65% GOS content) 0·68 0·51 0·33
7 Negative control (only faeces)
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Metabolite analysis by 1H-NMR

Fermentation supernatants from all time points were defrosted,
vortexed and centrifuged at 599g for 5min. Supernatants were
filtered using 0·22-µm low protein binding durapore poly-
vinylidene fluoride membrane (Millex; EMD Millipore) and
400 μl was transferred into fresh eppendorf tubes. Filtered
samples were then combined with 200 μl of phosphate buffer
(0·2 M (pH 7·4) in D2O plus 0·001% trimethylsilyl propionate
(TSP)). The mixture was vortexed and centrifuged at 1136 g for
10min and then 550 μl was transferred into 5-mm NMR tubes for
analysis. All NMR spectra were acquired on Bruker Avance DRX
500MHz NMR Spectrometer (Bruker BioSpin) operating at
500MHz. They were acquired using a standard 1-dimensional
(1D) pulse sequence (recycle delay (RD) − 90° − t1 − 90° − tm−

90° − acquire free induction decay (FID)) with water suppres-
sion applied during RD of 2 s, a mixing time tm of 100ms and a
90 pulse set at 7·70 μs. For each spectrum, a total of 128 scans
were accumulated into 64 k data points with a spectral width of
12·001 parts per million. The FID were multiplied by an
exponential function corresponding to 0·3Hz line broadening.
All spectra were manually phased, baseline corrected and
calibrated to the chemical shift of TSP (δ 0·00). Spectra were
digitised using an in-house MATLAB (version R2014a; The
Mathworks Inc.) script. The spectral region containing the water
resonance was removed to minimise distortions in the baseline
arising from imperfect water saturation. Principal component
analysis (PCA) was performed with Pareto scaling using scripts
provided by Korrigan Sciences Ltd.

Statistical analysis

All statistical tests were performed using GraphPad Prism
(version 5.0; Graph-Pad Software). A two-way ANOVA test was

used to compare dose, substrates and time-dependent effects.
When there was no significant effect, one-way ANOVA tests
and paired t tests, including post hoc tests appropriate for the
individual data sets (Bonferroni post-test with significance set at
P< 0·05), were used for bacterial counts and organic acid
concentrations.

Results

SCFA analysis

Our results showed acetate as the dominant SCFA produced for
both substrates with significant differences between 4 and 8 h of
fermentation using 65% B-GOS at 0·033 g/l (P< 0·01) (Table 3).
In particular, there was a clear dose–response effect during the
first 4 h of fermentation. However, no significant differences
were observed between the two substrates at the same dose.
The dose–response effect was also confirmed by 1H-NMR data.
PCA revealed a clear trajectory over time, showing a clear
separation between 0 and 4 h with acetate as main component
influencing variation through time (Fig. 1). Significant decreases
in propionate concentration throughout fermentation were
observed, mainly between 8 and 24 h of fermentation
(P< 0·01). None of the substrates generated major changes in
butyrate production (Table 3). Two-way ANOVA data analyses
did not show significant differences on SCFA production
between the two substrates.

Changes in bacterial populations

A significant increase in bifidobacteria was observed with 52%
B-GOS 0·5 and 0·33 g (equivalent to 0·05 and 0·033 g/l)
between time 0 and 24 h and with 65% B-GOS (P< 0·05)
at same doses at all time points tested (P< 0·05) (Table 4).

Table 2. Oligonucleotide probes used in the study for fluorescence in situ hybridisation analysis of bacterial populations

Probe name and sequence (5′–3′) Target species
Hybridisation-washing

temperature (°C) References

Bif164 CATCCGGCATTACCACCC Most Bifidobacterium spp. and Parascardovia denticolens 50–50 (20)

Bac303 CCAATGTGGGGGACCTT Most Bacteroides sensu stricto and Prevotella spp.;
all Parabacteroides; Barnesiella viscericola
and Odoribacter splanchnicus

46–48 (21)

Lab158 GGTATTAGCAYCTGTTTCCA Most Lactobacillus, Leuconostoc andWeissella spp.; Lactococcus
lactis; all Vagococcus, Enterococcus, Melissococcus,
Tetragenococcus, Catellicoccus, Pediococcus and
Paralactobacillus spp.

50–50 (22)

Chris150 TTATGCGGTATTAATCTYCCTTT Most members of Clostridium cluster I; all members
of Clostridium cluster II; Clostridium tyrobutyricum;
Adhaeribacter aquaticus and Flexibacter canadensis
(family Flexibacteriaceae); (Eubacterium) combesii
(family Propionibacteriaceae)

50–50 (23)

Erec 482 GCTTCTTAGTCARGTACCG Most members of Clostridium cluster XIVa; Syntrophococcus
sucromutans, (Bacteroides) galacturonicus and (Bacteroides)
xylanolyticus, Lachnospira pectinschiza and Clostridium
saccharolyticum

50–50 (23)

EUB338 I GCTGCCTCCCGTAGGAGT Total bacteria 46–48 (24)

EUB338 II GCAGCCACCCGTAGGTGT Total bacteria 46–48 (24)

EUB338 III GCTGCCACCCGTAGGTGT Total bacteria 46–48 (24)

Rrec584 TCAGACTTGCCGYACCGC Roseburia – Eubacterium rectale (a component of cluster XIVa) 50–50 (25)

Prop853 ATTGCGTTAACTCCGGCAC Clostridium cluster IX 50–50 (25)

482 R. Grimaldi et al.



Table 3. SCFA production by GC in the pH-controlled and volume-controlled batch cultures at 0, 4, 8 and 24 h of fermentation†
(Mean of the data of three experiments and standard deviations)

Acetate (mM) Propionate (mM) Butyrate (mM) Branched (mM) Total (mM)

Substrates Time (h) Mean SD Mean SD Mean SD Mean SD Mean SD

0 26·77 22·13 6·50 7·25 4·63 5·11 15·60 17·26 53·49 51·53
52% B-GOS (1 g) 4 30·96 18·64 6·43 8·32 4·44 6·92 16·08 11·36 57·92 56·63

8 28·39 6·91 2·59 0·76 0·95 0·47 3·13 1·42 35·06 6·89
24 17·14 0·1 1·06 0·1 0·55 0·1 0·22 0·1 18·98 0·1
0 17·27 8·37 3·63 3·42 2·57 2·61 8·81 9·28 32·28 23·49

52% B-GOS (0·5 g) 4 28·33 19·27 4·67 6·09 2·29 3·41 7·71 11·36 43·01 40·13
8 31·25 15·30 2·11 1·65 0·80 0·51 1·37 0·98 35·52 18·34

24 20·3 0·1 0·91 0·1 0·39 0·1 0·23 0·1 21·84 0·1
0 11·41 8·94 2·26 1·92 1·63 1·52 5·74 5·89 21·04 16·22

52% B-GOS (0·33 g) 4 17·43 19·16 4·56 6·62 1·75 2·63 4·62 7·01 28·36 35·33
8 26·54 26·11 4·47 5·63 1·24 1·57 1·13 0·92 33·37 35·22

24 26·24 0·1 0·75 0·1 0·24 0·1 0·17 0·1 27·39 0·1
0 18·29 10·59 2·33 2·31 1·32 1·39 4·69 4·87 26·63 19·12

65% B-GOS (1 g) 4 38·42 22·17 4·65 4·45 1·42 1·91 4·47 5·65 48·97 34·11
8 43·37 28·55 6·81 5·19 1·21 0·99 1·47 1·15 52·82 33·81

24 6·78 0·1 0·73** 0·1 0·4 0·1 0·39 0·1 8·31 0·1
0 17·94 7·95 2·01 1·94 0·92 0·97 3·42 3·61 24·29 14·33

65% B-GOS (0·5 g) 4 30·61 20·92 3·97 3·69 1·27 1·59 3·19 3·95 39·03 30·10
8 24·43 11·06 3·32 2·47 0·72 0·56 1·18 0·81 29·65 13·96

24 21·51 0·1 0·61** 0·1 0·50 0·1 0·28 0·1 22·89 0·1
0 12·29 5·37 1·33 1·14 0·58 0·6 2·1 2·31 16·3 9·21

65% B-GOS (0·33 g) 4 24·68 15·65 3·39 3·19 0·84 1·03 2·14 2·65 31·05 22·49
8 27·18** 12·41 3·98 2·72 0·71 0·48 1·25 1·02 33·12 15·48

24 20·88 0·1 1·18* 0·1 0·97 0·1 0·77 0·1 23·79 0·1
0 5·28 5·69 0·71 0·51 0·36 0·32 1·15 1·25 7·5 5·34

Negative control 4 8·68 5·25 1·68 0·97 0·61 0·47 1·3 1·66 12·31 8·28
8 18·82 8·74 2·71 1·47 0·67 0·12 0·97 0·84 23·17 10·64

24 18·43 0·1 2·37 0·1 1·47 0·1 0·49 0·1 22·76 0·1

B-GOS, Bimuno® galacto-oligosaccharide.
* Significantly different from 0h with P<0·05.
** Significantly different from 0h with P<0·01 (one-way ANOVA).
† 52% B-GOS and 65% B-GOS at doses 1, 0·5 and 0·33g (equivalent to 0·1, 0·05 and 0·033g/l).
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Fig. 1. 1H-NMR data analysis. (a–c) Principal component (PC) analysis (PCA) score plot B-GOS 65% – T4 and PCA score plot B-GOS 52% – T4, respectively, show
a clear separation during the first 4 h of fermentation due to dose–response effect. (b–d) PCA score plot B-GOS 65% – T8 and PCA score plot B-GOS 52% – T8,
respectively, show how the dose effect is lost after 4 h of fermentation. (e) The colour plot illustrates the main compound, acetate, influencing the separation. The 65%
B-GOS and 52% B-GOS were tested at 1, 0·5 and 0·33 g equivalent to 0·1, 0·05 and 0·033 g/l. a, b: , 65% B-GOS 0·33 g; , 65% B-GOS 0·5 g; , 65% B-GOS 1g;
c, d: , 52% B-GOS 0·33g; , 52% B-GOS 0·5g; , 52% B-GOS 1g.
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Lactobacilli significantly increased after addition of 52% B-GOS
and 65% B-GOS 1 and 0·33 g (equivalent to 0·1 and 0·033 g/l)
(P< 0·01) and 52% B-GOS 0·5 g (equivalent to 0·05 g/l)
(P< 0·05) between 8 and 24 h. An overall decrease in the
Bacteroides–Provotella group with 52% B-GOS at doses of 1
and 0·33 g (equivalent to 0·1 and 0·033 g/l) was observed
between 0 and 24 h (P< 0·05). With 65% B-GOS at 1 and 0·5 g
(equivalent to 0·1 and 0·05 g/l), there was a significant decrease
between 4 and 24 and 0 and 4 h, respectively (P< 0·05). Two-
way ANOVA data analyses did not show significant differences
in microbiota composition between the two substrates.

Discussion

The present study was carried out in order to evaluate the in vitro
fermentation properties of B-GOS (65% GOS content) in pH- and
volume-controlled batch culture fermentation. The fermentability
and the selectivity of GOS have been previously evaluated in vitro

by several comparative studies. Rycroft et al.(15) compared
the efficacy of different prebiotics including FOS and GOS in
24-h batch culture experiments, and the results show how
GOS induced the largest significant increases in bifidobacteria,
lactobacilli and total bacterial numbers during fermentation(15).
In our study, the administration of B-GOS showed the same
trend, especially considering the bifidobacteria and lactobacilli
population. There was also a significant decrease in Bacteroidetes
numbers, except for 52% B-GOS at 0·05g/l and 65% B-GOS at
0·033g/l. The 65% B-GOS also has a strong influence in the
production of SCFA, compared with B-GOS that is commercially
available (52% GOS content). Our results showed a double
increase in acetate production at all doses using 65% B-GOS, but
were not significant, except for 65% B-GOS at 0·033g/l, probably
due to the high standard deviation.

The fermentation of all different doses induced the produc-
tion of acetate, which correlated with an increase in
Bifidobacterium populations(24). Palframan et al.(25) in a study
comparing the effect of the pH and dose on batch culture

Table 4. Bacterial groups detected by fluorescence in situ hybridisation in the pH-controlled and volume-controlled batch cultures at 0, 4, 8 and 24h of
fermentation*
(Mean of the data of three experiments and standard deviations; n 3)

Bacterial population (log10 cells/ml)

52% B-GOS
1g

52% B-GOS
0·5 g

52% B-GOS
0·33g

65% B-GOS
1g

65% B-GOS
0·5 g

65% B-GOS
0·33 g NC

Probes Time point (h) Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Eub338 I-II-III 0 9·24 0·09 9·13 0·11 9·22 0·11 9·24 0·11 9·27 0·12 9·23 0·1 9·19 0·08
4 9·11 0·17 9·15 0·18 9·14 0·44 9·39 0·14 8·9 0·14 9·35 0·07 9·04 0·31
8 9·16 0·13 9·49 0·23 9·05 0·41 9·52 0·1 8·92 0·1 9·46 0·04 9·2 0·59

24 9·14 0·01 9·33 0·03 9·1 0·05 8·94a,c 0·07 9·21 0·01 9·56a 0·04 8·95a 0·02
Lab158 0 7·63 0·09 7·48 0·11 7·55 0·05 7·52 0·07 7·54 0·15 7·47 0·06 7·48 0·06

4 7·57 0·05 7·64 0·16 7·77 0·27 7·78 0·14 7·73 0·12 7·31 0·29 7·54 0·2
8 7·74 0·1 8·05 0·11 7·6 0·36 7·98 0·27 8·21 0·56 7·66 0·12 7·55 0·4

24 8·39a,b,c 0·02 7·70c 0·01 7·94a 0·07 7·94a 0·09 7·68 0·06 7·85a 0·05 7·29a 0·08
Bif164 0 8·61 0·28 8·7 0·17 8·58 0·26 8·45 0·35 8·63 0·21 8·47 0·3 8·68 0·21

4 8·73 0·33 9·1 0·22 8·79 0·67 8·86b 0·2 8·75 0·19 8·47 0·4 8·45 0·31
8 8·93 0·29 8·87 0·61 8·95 0·63 9·12 0·21 9·25a,b 0·04 9·31a,b 0·1 8·53 0·13

24 9·2 0·06 9·31a 0·03 9·19a 0·08 9·12 0·21 9·2a,b 0·07 9·24a 0·04 8·25 0·07
Bac303 0 8·26 0·16 8·23 0·35 8·27 0·33 8·33 0·25 8·33 0·3 8·2 0·19 8·26 0·29

4 8·07 0·55 8·41 0·53 8·09 0·86 8·49 0·15 7·94a 0·26 8·39 0·12 7·75 0·83
8 7·33 0·64 7·83 0·82 8·11 0·66 8·31 0·46 7·88 0·32 8·63 0·19 6·71a 0·37

24 7·78a 0·05 8·39 0·15 7·06a 0·2 7·94b 0·03 8·41 0·06 8·29 0·04 8·39a,c 0·2
Erec482 0 8·35 0·16 8·34 0·13 8·42 0·03 8·34 0·06 8·38 0·09 8·3 0·04 8·32 0·05

4 8·29 0·12 8·39 0·15 8·17 0·31 8·4 0·21 8·36 0·2 8·24 0·34 8·08 0·43
8 7·85 1·21 7·92 1·42 7·88 1·22 7·91 1·36 8·45 0·08 8·38 0·38 7·98 0·76

24 8·85a,b 0·37 8·65a 0·06 7·94a 0·04 8·58a 0·01 8·59a 0·01 8·56a 0·04 8·06a 0·05
Rrec584 0 8·34 0·25 8·24 0·08 8·06 0·54 8·15 0·3 8·17 0·17 8·28 0·09 8·34 0·04

4 7·54 1·04 8·13 0·3 7·85 0·59 8·2 0·41 7·29 0·86 7·77 0·62 7·78 0·69
8 7·06 0·87 7·47 0·74 7·37a 0·78 7·71 0·98 7·21 0·78 7·6 0·56 7·66a 0·21

24 7·2 0·02 7·14a,b 0·05 6·92 0·01 7·78 0·14 7·23a 0·06 8·51a 0·03 7·54a 0·2
Chis150 0 5·83 0·2 5·73 1·1 5·83 0·2 5·73 1·1 5·93 0·3 5·73 1·1 5·73 1·1

4 5·86 0·04 6·34 0·5 5·79 0·1 6·56 0·6 6·11 0·2 6·2 0·3 5·9 0·1
8 6·03 0·1 6·74 1 6·53 1 6·80 1·1 6·92 1·3 7·24 0·8 5·87 0·2

24 5·73 0·02 5·73 0·05 7·45 0·01 5·73 0·2 6·43 0·03 5·73 0·01 5·73 0·01
Prop853 0 7·98 0·18 7·97 0·27 8·05 0·22 8·18 0·26 8·16 0·22 8·08 0·22 8·04 0·06

4 8·04 0·28 7·97 0·02 7·81 0·47 8·02 0·09 8·02 0·05 8·11 0·09 7·99 0·19
8 7·84 0·37 7·74 0·48 7·83 0·37 7·85a 0·68 7·67a 1·03 8·16a 0·3 7·76a 0·08

24 8·19b,c 0·01 7·99 0·01 7·95a,b 0·04 6·53b 0·02 6·15b 0·06 8·72b,c 0·01 8·1c 0·07

B-GOS, Bimuno® galacto-oligosaccharide.
a Significantly different from 0h with P<0·05; b significantly different from 4h with P< 0·05; c significantly different from 8h with P<0·05; italicised superscript letters were

significantly different with P< 0·01; bold superscript letters were significantly different with P< 0·001 (t test).
* The 65% B-GOS and 52% B-GOS were tested at 1, 0·5 and 0·33g (equivalent to 0·1, 0·05 and 0·033g/l).
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fermentation of five commercial prebiotics have shown similar
results. FISH analysis showed how the highest bacterial num-
bers were obtained with GOS at pH 6 and 1% (w/v)(25). The
global effect on the bacterial population of 52% B-GOS has
been tested in a previous fermentation study where the com-
mercial B-GOS mixture was compared with different purified
GOS. Using the Selectivity Index (SI) as a value for the growth
of beneficial bacteria, Rodriguez-Colinas et al.(26) have shown
that 52% B-GOS had the highest SI, and consequently a strong
degree of selectivity for Bifidobacterium population.
Our results highlighted that 65% GOS had an effective pre-

biotic activity, in terms of increasing the number of bifido-
bacteria and metabolite production. This was especially seen
for acetate, probably due to the lower content of mono-
saccharides and disaccharides in the mixture that might have
affected in vitro fermentation experiments overall. However,
a previous study of Costabile et al.(27) has demonstrated that the
carbohydrates that remained after the in vitro pre-digestion
process did not have any selective properties to invoke a bifi-
dogenic effect, which perhaps would not persist in vivo(28).
In our study, major changes in other bacterial populations

were seen, which might be due to the presence of these sugars.
Different concentrations of SCFA have been identified at time 0, but
it may be explained by the high inter-individual variability among
each individual. Significant differences were observed between
the time points in all analyses but not between the two substrates.
The effects of B-GOS 52% as a potential modulator of the gut

microflora and the immune system have been extensively
investigated in several human intervention studies. The 65%
B-GOS has shown a significant modulation of health-promoting
beneficial bacteria, and our findings proved that reducing
impurities in the prebiotic mixture might improve the selectivity
of prebiotics in in vitro experiments. However, the comparison
between the effect of 65% B-GOS and 52% B-GOS has shown
similar bifidogenic effects (data not published). The applic-
ability of such changes remains to be investigated in in vivo
human intervention studies.
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