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Abstract 

The Passivhaus standard, although widely appreciated in cold regions, is seldom regarded as a reference in the energy renovation 

of existing buildings in warm countries. This paper evaluates the effectiveness of a series of strategies for the energy 

refurbishment of an existing apartment block in Southern Italy, based on dynamic energy simulations. The paper aims to show 

that, in warm Mediterranean areas, a building refurbishment must not be oriented towards an excessive insulation level. 

Conversely, if aimed to comply with the Passivhaus standard, the renovation must look above all at those strategies that mitigate 

the energy needs for space cooling and improve thermal comfort in summer. 

 
© 2017 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of [KES International.]. 
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1. Introduction 

Since its origin in the late 1980’s, the application of the Passivhaus standard [1] has focused on new constructions  

located in cold climates, such as those of Central and Northern Europe. As a consequence, the key concepts of this 

standard were the envelope superinsulation, the airtightness and the use of ventilation systems with performing heat 

recovery. The standard requires to achieve energy needs for space heating lower than 15 kWh m
-2 

y
-1

,
 
and total 

primary energy needs (heating, domestic hot water and electrical appliances) below 120 kWh m
-2 

y
-1

. All the surface-

averaged energy figures refer to the net liveable area. Moreover, air infiltrations must be less than 0.6 h
-1

 at a 
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pressure difference of 50 Pa. So far, the application of this standard proved to be so successful in achieving the 

proposed goals, as to give raise to the Zero Energy Building concept, introduced in the EU Directive 2010/31 [2] and 

implemented in several new buildings within the EU countries [3]. However, its dissemination overseas and for 

warm climates proved to be questionable, and thus still deserves accurate research. To this aim, the Passive-On 

project resulted in the publication of guidelines for designing Passive Houses in Southern Europe [4]. In this context, 

a further limitation is introduced, i.e. to keep the sensible energy demand for space cooling below 15 kWh m
-2 

y
-1

. 

Furthermore, space cooling has to be included in the calculation of the total primary energy needs, and a lower air 

tightness is allowed (1 h
-1

 at 50 Pa) if the ambient temperature does not drop below 0°C. 

Within this research stream, some authors studied how to cope with potential overheating issues and increased 

cooling energy needs for mild-to-warm climates. As an example, Figueiredo et al. [5] carried out an extensive 

simulation study for optimizing the design of new buildings in terms of both thermal comfort and energy needs 

based on an existing well-performing detached house in Portugal. Sameni et al. [6] and Sassi [7] investigated 

overheating problems in existing UK flats designed to accomplish Passive House standards, finding that it is possible 

to achieve Passive House goals just by naturally ventilating the building. 

Badescu et al. [8] assessed the feasibility of Passive Houses in Southern Hemisphere countries located at reversed 

latitudes and with similar climatic conditions of typical EU countries, by adapting the construction details of a 

prototype passive building built in Romania. Again, they found out that the thickness of thermal insulation may be 

decreased in warm climates like in South America and New Zealand, thus allowing for capital cost savings and 

construction simplifications. On the other hand, Schnieders et al. [9] simulated the performance of a reference two-

floor detached house built in Hannover in very different climates, from the very cold city of Yekaterinburg in Russia 

to the hot-humid city of Abu Dhabi in the Emirates. This work is worth of attention because it highlights that 

specific construction details are needed to meet the Passivhaus requirements, even if in Abu Dhabi it is not possible 

to keep the sensible energy demand for space cooling below 15 kWh m
-2 

y
-1

. Finally, Attia and Zawaydeh [10] 

investigated on passive and active design strategies for an existing apartment in Jordan, with the aim of reaching a 

zero energy retrofit. Their results showed that the NZEB objective is too ambitious, having a 30-year payback time. 

A step forward in this sense is made in this paper, where an existing multi-storey apartment block, located in the 

Mediterranean climate of Catania, is modelled in EnergyPlus. The aim is to provide suggestions about possible 

refurbishing options to comply with the extended Passivhaus requirements for Southern Europe.  

 

Nomenclature 

A net surface of the building (m
2
) 

COP Coefficient of Performance (-) 

E electric energy need (kWh year
-1

) 

EER Energy Efficiency Ratio (-) 

ITD Intensity of Thermal Discomfort (°C h) 

n air change rate for natural ventilation or infiltration (h
-1

) 

Q  thermal energy need (kWh year
-1

) 

PE primary energy need (kWh m
-2

 year
-1

) 

PER primary energy ratio (-) 

r solar reflectance (-) 

Top  operative temperature (°C) 

U thermal transmittance (W m
-2

 K
-1

) 

2. Methodology  

2.1. Calculation of final and primary energy needs 

As highlighted in the previous section, one of the requisites for a building to comply with the Passivhaus standard 

is that its overall primary energy consumption does not exceed 120 kWh/year per unit useful surface. The overall 
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primary energy consumption should take into account all energy-consuming services, namely space heating (H), 

space cooling (C), domestic hot water production (W), artificial lighting and other electrical appliances (EL). 

In order to check this condition, in this paper the overall primary energy consumption is assessed through Eq. (1): 

 

C WH EL

H C W EL b

Q QQ E 1
PE

PER PER PER A

 
     

 
   (1) 

 

Here, the thermal energy needs for space heating (QH) and space cooling (QC) are evaluated by means of dynamic 

thermal simulations performed through the software tool Energy Plus. In the dynamic simulations, the thermostat 

control for indoor air temperature is set respectively at 20°C in winter and at 26°C in summer, from 14:00 to 22:00. 

Further details about the model of the building for the dynamic thermal simulations are provided in Section 3.1. 

On the other hand, the thermal energy needed for domestic hot water production (QW) is calculated by Eq. (2): 

 

 W w pw w nQ m C T T       (2) 

 

Here, mw = 40 kg/day per person is the average need of hot water in residential buildings, whereas Tw = 40°C and 

Tn = 15°C are respectively the temperature of the hot water provided to the users and the temperature in the cold 

water main. 

The electricity consumption for artificial lighting and other electrical appliances are detailed in Section 3.1. In 

Eq. (1) it is also necessary to assess the Primary Energy Ratios (PER). They depend on the technology adopted to 

produce or extract thermal energy. As a rule, the PER of a gas-fired heat generator corresponds to its conversion 

efficiency. On the other hand, in electricity-driven reversible heat pumps the PER can be calculated by multiplying 

the average Coefficient of Performance (COP in winter and EER in summer) by the average efficiency for 

electricity production and distribution. In Europe, this can be currently set as ηel = 0.46. 

2.2. Evaluation of summer thermal comfort 

The occurrence of thermal discomfort due to overheating in a living space is usually assessed by measuring how 

frequently the room operative temperature exceeds a threshold value. However, in the authors’ opinion such 

information is only partial, since one should account for both the duration and the intensity of thermal discomfort.  

On this basis, the authors propose to use an indicator called Intensity of Thermal Discomfort (ITD), already 

introduced in a previous work [11]. This indicator is defined as the time integral, over the occupancy period P, of the 

positive difference between the current indoor operative temperature and the upper threshold for comfort (see Eq. 3). 

 

 ( )


    op lim
P

ITD T T d    (3) 

 

In residential buildings, the occupancy period P corresponds to 24 hours per day. As the ITD gets higher, the 

discomfort for overheating gets more important; furthermore, a same value of the ITD obtained by means of two 

different building solutions means that they allow the achievement of the same average thermal comfort, in terms of 

duration and intensity, over the whole period of integration 

As concerns the choice of the threshold temperature Tlim, this depends on the thermal comfort theory that is 

adopted. In this work, the authors refer to the adaptive theory, which is most suitable to assess thermal comfort in 

free-running conditions, as described in EN 15251 [12]. In this case, the threshold value is not constant in time, but 

it should be updated daily as a function of the running mean outdoor air temperature T rm. The formulation of the 

threshold temperature is given in Eq. (4); this corresponds to the fulfilment of Category I introduced by the EN 

Standard (high level of expectation). 

 

20 8 0 33  lim rmT . . T    (4) 
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3. Case study  

3.1. Description of the building 

The building investigated in this paper is a multi-storey apartment block, situated in the city centre of Catania, a 

town on the Eastern coast of Sicily, in Southern Italy. Here, the climate is warm in winter, as witnessed by the low 

Heating Degree Days (HDD = 833 °C day), defined relative to a base outdoor temperature of 12°C. According to 

Italian regulations, Catania belongs to the climatic zone B, and the operation of the space heating systems is allowed 

eight hours per day, from the 1
st
 of December to the 31

th
 of March. On the other hand, in summer the climate is 

relatively hot and humid, with peak outdoor temperatures that may frequently exceed 35°C. The average daily 

profiles for the main climatic data in Catania are shown in Fig. 1.a. 

The apartments are distributed over seven floors. The ground floor hosts five apartments, whereas all other floors 

contain six apartments. Overall, the building hosts 41 apartments, with an average useful surface of 111.8 m
2
 per 

apartment. The building is C-shaped, with the long side and the short side measuring respectively 47.5 m and 20.9 m 

The main façade is oriented due South-West. However, other tall buildings surround the apartment block; hence, the 

outside walls do not receive much direct solar radiation, irrespective of the orientation. In the simulations, all 

neighbouring buildings have been properly modelled, as shown in Fig. 1.b. Here, it is possible to observe that in the 

simulations only one of the intermediate floors is modelled, that is representative of all other ones; all intermediate 

horizontal slabs are held adiabatic. Other information about the apartment block is reported in Table 1. 

The proposed building has a reinforced concrete structure, which is very widespread in Mediterranean countries 

and especially in Italy. The outside walls are based on a double-leaf construction, with two layers of common 

hollow clay bricks, whose thickness is 120 mm on the outer side and 80 mm on the inner side, respectively. The two 

leaves are divided by a 100-mm cavity without insulation. The overall thickness, including inner and outer plaster, is 

340 mm. The outer plaster has a relatively clear colour; in the simulations, a solar reflectance r = 0.6 is retained. 

As regards the flat roof, it consists of a 200-mm slab, made of reinforced concrete and hollow bricks, overlaid by 

two layers of concrete screed to fall (40 mm plus 40 mm), that are separated by a 0.3-mm polythene vapour barrier. 

The roof is completed by cotto tiles (10 mm), whose solar reflectance is r = 0.3. 

Table 1. General information about the building 

Location Catania, Italy (Lat. 37°31ꞌ N, Long. 15°04ꞌ E) 

Number of floors 7 

Number of flats 41 

Main façade South-west 

Overall net surface 4582.6 m2 (111.7 m2/apartment) 

Opaque envelope surface 4757.6 m2 

Transparent envelope surface 545.3 m2 

Net volume 13837.3 m3 
 

Fig. 1. (a) Average climatic data in Catania – daily profiles, (b) model of the multi-storey apartment block on EnergyPlus. 
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A similar stratigraphy, but just with only 40 mm of screed to fall, pertains to the slab separating the ground floor 

from the underfloor parking area. The windows are provided with aluminium profiles without thermal-break, and a 

single 3-mm glazing with standard thermal emissivity (ε = 0.84). The thermal transmittance of the main envelope 

components is reported in Table 2, which also shows the maximum values allowed from 2021 in Italy in case of 

energy refurbishment of an existing building; these values refer to the climatic zone B. Table 2 also reports the 

thermal mass and the heat capacity of the opaque envelope components. 

Table 2. Properties of the main envelope components  

 U  U limit (2021) Thermal mass Heat capacity 

Outside walls 1.1 W m-2 K-1 0.40 W m-2 K-1 210 kg m-2 190 kJ m-2 K-1 

Flat roof 2.3 W m-2 K-1 0.32 W m-2 K-1 650 kg m-2 600 kJ m-2 K-1 

Slab above the underfloor parking area 2.4 W m-2 K-1 0.42 W m-2 K-1 570 kg m-2 515 kJ m-2 K-1 

Windows (average) 5.9 W m-2 K-1 3.00 W m-2 K-1 not relevant 

 

All windows have no movable shading devices; indeed, the solar irradiance available on the façade is already 

low, due to the shading effect of the surrounding buildings and of the balconies. Further shadings would imply an 

excessive reduction in the daylight availability. 

As concerns natural ventilation, a constant rate is considered in the simulations. In particular, n = 0.5 h
-1

 in 

summer and n = 0.3 h
-1

 in winter [13], as also suggested by national standards [14]. Such values include air 

infiltration; in fact, the air-tightness of the envelope is not easy to know, if not through a blower door test. However, 

the wind pressure on the envelope is strongly reduced by the surrounding buildings; hence, the effect of infiltration 

is likely to be negligible in this case. The simulations take into account the internal loads due to people, artificial 

lighting and electrical appliances. In particular, each apartment hosts four people, performing sedentary activities 

(60 W sensible load). The peak electric power of the lamps is 7 W/m
2
. As regards the electrical appliances, the 

following peak values are retained: 200 W for computers and TV set, 1300 W for kitchen appliances and 1500 W 

for other appliances. These values correspond to energy efficiency class C according to the labelling scheme 

introduced by EU [15], and have been gathered from a survey carried out by ENEA research institute [16]. Of 

course, suitable occupancy schedules and usage patterns have been introduced, with a peak occupancy occurring 

from 23:00 to 07:00, and no people inside the dwellings from 16:00 to 19:00. Overall, the electricity consumption 

for lighting and appliances is 31.8 kWh/m
2
 per year, which is used in Eq. (1) to calculate the primary energy needs. 

 Finally, space heating is provided by individual gas-fired heat generators. The overall efficiency of the space 

heating system, including the losses due to heat distribution and emission, is H = 0.8. On the other hand, space 

cooling is performed through individual split units, with an average EER = 2.5. The efficiency of the gas-fired 

systems for domestic hot water production is W = 0.7. No mechanical ventilation system is installed. 

3.2. Proposed strategies for energy efficiency  

After assessing the energy performance and the summer thermal comfort for the building in its current 

configuration, an additional series of dynamic simulations is performed to identify the most suitable strategies that 

may approach the Passivhaus requisites in case of energy refurbishment. 

First of all, the thermal transmittance of all the outside envelope components is reduced below the limits imposed 

by national regulations for energy refurbishment, see Table 2. To this aim, a layer of insulating material is applied to 

the outer side of the walls and under the screed to fall in all slabs. In particular, cork has been chosen as the 

insulating material, since it is biocompatible, highly breathable and fully recyclable if not treated with chemical 

agents. The thickness of the cork boards needed to comply with the regulations is reported in Table 3.  

Table 3. Thickness of the insulation and new thermal transmittance (step 1) 

 Cork thickness (mm) U (W m-2 K-1) 

Outside walls 80 0.35 

Flat roof 120 0.30 

Slab above the underfloor parking area 90 0.39 
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In the same time, all existing windows are replaced by double 6-mm sealed glazing filled with argon, with PVC 

frame; the resulting average thermal transmittance is U = 2.9 W m
-2 

K
-1

. 

The proposed energy refurbishment also involves the adoption of rather efficient energy systems. Hence, space 

heating and space cooling are thought to be performed by means of a centralized high-efficiency electricity-driven 

reversible heat pump, with COP = 3.65 in winter and EER = 3.25 in summer. Such values correspond to the average 

performance figures of a real unit, as declared by a well-known manufacturer, and take into account the dependence 

of the performance on the outdoor dry bulb temperature. The results of the simulations for the proposed solution of 

refurbishment are reported in Section 4.1, where they are identified by the label “step 1”. 

However, natural ventilation may have a crucial role for improving the building energy performance in summer, 

especially if exploited during nighttime. For this reason, further simulations were carried out by varying the rate of 

natural ventilation up to n = 2 h
-1

 in summer, i.e. from June to September, but only from 21:00 to 07:00. The results 

of this analysis are shown in Section 4.2. Finally, based on the results of the first series of simulations, a final 

solution for refurbishment is considered. This step aims at investigating whether it is still possible to comply with 

the Passivhaus standard by lowering the level of insulation of the envelope compared with national regulations, 

while also introducing other low-cost passive solutions to improve summer performance, such as cool coatings and 

reflective glazing. The results of this investigation are described in Section 4.3. 

4. Results and discussion 

4.1. Comparison between the current building and the first solution for refurbishment 

The results of the dynamic simulations in terms of final energy needs for space heating and space cooling are 

shown in Fig. 2. When looking at the building in its current state (Fig. 2.a), one can observe that the top floor is by 

far characterized by the highest energy needs, because of the large surface of the roof exposed to the outdoors. In 

summer, this horizontal surface is hit by high solar irradiance, which determines a cooling energy demand more than 

twice as high as for the intermediate floors. On the other hand, in summer the ground floor takes advantage of the 

heat exchange with the underfloor parking area, which is cooler than the outdoor air, and not hit by solar radiation. 

Consequently, its energy demand for space cooling is around 60% lower than for intermediate floors. However, on 

average the building does not respect the threshold (15 kWh m
-2 

y
-1

), neither in the cooling nor in the heating season. 

The solution of refurbishment based on the envelope insulation, up to the limits imposed by national regulations, 

is not entirely satisfying. In fact, on the one hand the energy needs for space heating are drastically reduced in all 

floors; on average, for the whole building they are cut down from 17.5 kWh m
-2 

y
-1

 to 5.1 kWh m
-2 

y
-1

, that is to say 

by around 71% (Fig. 2.b). Hence, this solution of refurbishment would imply the compliance with the requisite of 

the Passivhaus standard, at least for space heating. But on the other hand, the insulation of the envelope prevents 

heat from being effectively dissipated outdoors in summer, especially at night; thus, the energy needs for space 

cooling increase by 13% in the intermediate floors and by 2% for the entire building, if compared to the current 

situation. The only exception is the top floor, where a good insulation effectively counteracts the overheating of the 

horizontal roofs; here, the proposed refurbishment yields a reduction by 33% in the space cooling needs. 
 

Fig. 2. Energy needs for space heating and space cooling. (a) Existing building, (b) After refurbishment (step 1). 
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As a result, the final average cooling energy demand (19.7 kWh m
-2 

y
-1

) is slightly higher than for the building in 

its current state (19.3 kWh m
-2 

y
-1

), and this does not allow the compliance with the Passivhaus standard. 

Moreover, Fig. 3 reports the results in terms of primary energy demand, calculated through Eq. (1). Here, one can 

observe that the highest contribution comes from artificial lighting and electrical appliances (from 67 to 70 kWh m
-2 

y
-1

). The intermediate floors show an overall primary energy demand PE slightly lower than the threshold value (120 

kWh m
-2 

y
-1

), but on average PE = 130.5 kWh m
-2 

y
-1

 for the whole building (Fig. 3.a).  

On the other hand, the solution of refurbishment does not modify the primary energy demand for artificial 

lighting, electrical appliances and hot domestic water, but it allows a consistent reduction in the primary energy 

needs for space heating and cooling. In this sense, an essential contribution also comes from the adoption of high-

efficiency reversible heat pumps. In all floors the threshold set by the Passivhaus standard is met (Fig. 3.b); on 

average, PE = 107.5 kWh m
-2 

y
-1

 for the building. 

Finally, Fig. 4 shows the results of the simulations in terms of Intensity of Thermal Discomfort. Here, the range 

of the ITD values has been arbitrarily split into five intervals, ranging from green to red according to the increasing 

degree of summer discomfort. What is interesting to underline is that, after refurbishment, the building would show, 

for all thermal zones, higher ITD values than in its current configuration. As explained in Section 2.2, this means 

that the discomfort for overheating would increase after the proposed refurbishment. This confirms that the envelope 

insulation, even if limited to the level imposed by national regulations, may have negative effects in summer, both in 

terms of energy needs and – above all – in terms of thermal comfort for the occupants. 

 

Fig. 3. Overall Primary Energy consumption. (a) Existing building, (b) After refurbishment (step 1). 

Fig. 4. Intensity of Thermal Discomfort for summer overheating. (a) Existing building, (b) After refurbishment (step 1). 
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4.2. The role of natural ventilation in summer 

Natural ventilation at night is usually regarded as an effective solution to improve the energy performance of 

buildings in summer, especially in hot climates. Hence, this section is devoted to investigate the sensitivity of the 

energy needs for space cooling to the rate of natural ventilation. To this aim, starting from the configuration of the 

building after refurbishment, the simulations are repeated by allowing a variation of n from 0.5 h
-1

 to 2 h
-1

, just in 

the period between 21.00 and 07:00. During the rest of the day, the rate of ventilation is set as n = 0.5 h
-1

. 

The results, reported in Fig. 5, show that doubling the rate of natural ventilation at night from n = 0.5 h
-1

 to n = 1 

h
-1

 yields a 10% reduction in the cooling energy needs. A further 20% can be saved when moving from n = 1 h
-1

 to n 

= 2 h
-1

.
 
In this case, the average energy needs of the entire building fall below the threshold of 15 kWh m

-2 
y

-1
, but 

this is not true for just the top floor.  

However, in the authors’ opinion n = 2 h
-1

 is not realistic in natural ventilation, especially for a building located 

in the city center and surrounded by other tall buildings. Such a high ventilation rate might be obtained only by 

opening all windows in the dwelling, which may cause noise and loss of privacy. For this reason, in the following  

n = 1 h
-1 

is kept, which is a reasonable value. In the next section, further strategies to approach the requisites of the 

Passivhaus standard will be investigated. 

Fig. 5. Sensitivity of the energy needs for space cooling to the natural ventilation rate 
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On the contrary, the proposed strategies drastically cut the energy needs for space cooling. In relation to the 

entire building, they fall from 19.3 kWh m
-2

 y
-1

 to 13.6 kWh m
-2

 y
-1

, which is to say by around 30%. Indeed, the 

slightly lower insulation level helps the building to reject heat, while all the other strategies described above are 

helpful to reduce the solar gains through the envelope. Now, both the energy needs for space heating and for space 

cooling keep below 15 kWh/m
2
 per year. Moreover, in terms of primary energy demand the situation has also 

slightly improved with respect to Fig. 3.b. In relation to the entire building, it is around 3% less than before. 

Finally, the proposed strategies determine a substantial improvement in the thermal comfort perceived in summer 

by the occupants. Indeed, the ITD values shown in Fig. 7.a are far lower than what observed in Fig. 4.b for the basic 

refurbishment strategy. As an example, in the apartment placed at the center of the intermediate floor (main façade) 

the ITD has decreased from 5727 (Fig. 4.b) to 1268 (Fig. 7.a). Based on the definition provided in Section 2.2, this 

77% reduction means that people would suffer from a less intensive overheating, and a for a shorter time.  

The overall comparison amongst the three building configurations is reported in Fig. 7.b. Here, each floor is 

described by the mean of the ITD values pertaining to all apartments. It is interesting to observe that the use of a 

cool paint for the roof has remarkable positive effects on the thermal comfort perceived at the top floor, where the 

average ITD decreases by 70% if compared to the basic refurbishment. However, a moderately intense thermal 

discomfort still occurs, since ITD >> 0. Hence, the use of the air-conditioning system is still required.  

On the other hand, in the ground floor the ITD is very low and close to zero in most of the apartments, which 

means that thermal discomfort occurs seldom and, in any case, with very low overheating.  

Fig. 6. Performance of the building in the final configuration. (a) Energy needs, (b) Primary energy consumption 

Fig. 7. (a) ITD for summer overheating: final solution, (b) Comparison between average values 
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5. Conclusions 

The results presented in this paper suggest that refurbishing an existing apartment block in the city centre of a 

Mediterranean country, under the constraint of the Passivhaus standard, is nowadays an achievable task. However, 

to this aim a different strategy must be followed if compared to cold climates. In fact, in warm Mediterranean 

climates it is neither necessary to adopt mechanical ventilation systems with high-efficiency heat recovery, nor to 

provide excessive insulation to the envelope. Indeed, even a level of insulation corresponding to what prescribed by 

national regulations on energy savings might lead to overheating and significant thermal discomfort in summer.  

On the contrary, in warm climates one should loosen the level of insulation, in order to facilitate heat dissipation 

in summer, while also accepting a moderate increase in the energy needs for space heating in winter. As an example, 

for the building considered in this paper the insulation of the bottom slab and the outside walls (with the exception 

of the ground floor and the top floor) has been reduced by 20 mm and 30 mm, respectively, if compared to the 

thickness needed to comply with national regulations. Moreover, all strategies aimed at passively cooling the 

building must be followed, such as an increased natural ventilation rate at night, the use of highly reflective outer 

glazing and the adoption of cool colours for the outer envelope. An adequate tuning of the performance parameters 

(air changes per hour, solar reflectance) has allowed the achievement of a final energy demand for heating and 

cooling lower than 15 kWh m
-2

 y
-1

, as suggested by the Passivhaus standard in its formulation for warm climates. 

Finally, in order to meet the criterion that sets a limit to 120 kWh m
-2

 y
-1

 for the primary energy consumption, the 

adoption of high-efficiency reversible heat pumps is suggested (COP = 3.65 in winter and EER = 3.25 in summer). 

However, the calculations took into account the use of electrical appliances belonging to the energy efficiency class 

C, according to the labelling introduced by EU. In case of more efficient appliances, which is nowadays achievable, 

one might accomplish further energy savings, provided that the same level of comfort is assured to the occupants. 
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