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Abstract

We provide a survey of recent advances in biomedical image analysis and classification from emergent imaging modalities such
as terahertz (THz) pulse imaging (TPI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and identify
their underlining commonalities. Both time and frequency domain signal pre-processing techniques are considered: noise removal,
spectral analysis, principal component analysis and wavelet transforms. Feature extraction and classification methods based on
features vectors derived using the above processing techniques are also discussed. These include Mahalanobis distance, support
vector machine (SVM) and extreme learning machine (ELM) classifiers. Examples where the proposed methodologies have been
successful in classifying TPIs and DCE-MRIs are discussed. Identifying commonalities in the structure of such heterogeneous
datasets can lead to a unified multi-channel signal processing framework for biomedical image analysis. The proposed complex
valued classification methodology enables to unify entire datasets from a sequence of spatial images taken at different time stamps;
this is of interest from the viewpoint of inferring disease proliferation. The approach is also topical to other emergent multi-channel
biomedical imaging and of relevance across the biomedical signal processing community.
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1. Introduction

The aim of this work is to provide a brief account of
recent advances in time series analysis and imaging, lead-
ing to the identification of commonalities between TPI and
DCE-MRI imaging modalities as both approaches are com-
plementary in their ability to identify and assess disease
proliferation. A further aim of the work is to suggest some
future directions for machine learning approaches that po-
tentially lead to the automation of diagnostic processes.
To clarify these concepts, the paper is structured as fol-
lows: Section 1 provides an introduction to THz-transient
spectrometry as this is the more well-established modali-
ty for building THz imaging systems as well as an accoun-
t of recent advances in MRI clarifying commonalities in
both systems when inferring de-excitation lifetimes at the
molecular level. In section 2, the techniques of THz pulsed

∗ X.-X. Yin, Email: xiaoxia.yin@vu.edu.au

imaging and DCE-MRIs are examined, together with the
imaging modalities that are employed and the type of da-
ta that are acquired. We introduce the image formation in
relation to THz and DCE-MRI datasets involved in this re-
search, discuss their properties and acquisition parameters,
represent their experimental setups, and highlight advan-
tages and drawbacks of both type of images. Additionally,
sparse data acquisition methodologies are discussed that
can lead to an accelerated data in acquisition. This is cur-
rently most relevant to MRI in clinical practice, but can
benefit the TPI community, especially if such systems are
to undergo clinical trials. Section 3 discusses generic sig-
nal de-noising methodologies, applicable to both system-
s and feature extraction methods using linear transform-
s. The above discussions are effectively focusing on robust
feature extraction from a single pixel perspective. We also
discusses recent advances in different classifier methodolo-
gies, with an emphasis in complex ELM approaches. The
methodology may be naturally extended to multi-pixel or
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voxel images. In addition to supervised learning to be rep-
resented, the current clustering techniques to segment ter-
ahertz images are reviewed briefly. In section 4, we present
current DCE-MRI image analysis algorithms. A brief dis-
cussion on imaging algorithms relevant to both modalities
is provided via an outlook into future design of tensor and
Clifford algebra based feature. Extensions to multi-channel
classifiers are afforded, as these are necessary to account
for specific geometrical features observed across an image
and enable data fusion from heterogeneous sources. In ad-
dition, such multi-channel approach enables the fusion of
information acquired frommultiple images at different time
stamps, thus potentially elucidating disease proliferation.
This section also discusses image registration issues. Sec-
tion 5 provides some concluding remarks. The work aims
to highlight progress towards a generic framework for the
automated quantitative assessment of disease proliferation
using both sensing modalities.

1.1. Concise introduction to fundamental physicochemical
processes associated with interactions of waves with matter
across the THz region of the EM spectrum

Investigations at the terahertz (THz) part of the electro-
magnetic (EM) spectrum loosely defined between 100 GHz-
10 THz are of much relevance to the biological sciences,
because complementary information to traditional spectro-
scopic measurements on low-frequency bond vibrations, hy-
drogen bond stretching and torsions in liquids and gases
may be obtained (Fig. 1). The vibrational spectral charac-
teristics of bio-molecules, which lie in this range (wavenum-
bers between 3.3–333 cm−1) make T-ray imaging systems
a promising sensing modality for clinical diagnosis. Since
THz photons, (or T-rays), have significantly lower energies
(e.g., only 1.24 meV at 300 GHz) than X-rays, they have
been considered by many as non-invasive. Although non-
linear interactions between biological tissue and coherent
THz radiation have been predicted by Fröhlich [1] and ex-
perimentally verified by the careful work of Grundler and
the analysis of Kaiser [2] in the ’90s, the widely held view
at the moment is that any measurement technique that op-
erates at THz frequencies should be evaluated using cur-
rent guidelines on specific absorption rates; these are only
associated with the thermal effects of the radiation with
the tissue so from a clinical perspective, such irradiation
should be considered as non-invasive. Such view is also fur-
ther supported by noting that, the Gibbs free energy con-
veyed in the THz light beam is insufficient to directly drive
chemical reactions. For example, the molar energy at a fre-
quency f of 100 GHz would be given from E = Nhf where
N = 6.023 × 1023 mol−1, (Avogadro’s number), and h =
6.626 × 10−34 Js (Planck’s constant), resulting in a cal-
culated value of only E = 0.04 kJ mol−1 which is so low
(approximately 100 times lower than the amount of molar
energy required for ATP hydrolysis) that for most prac-
tical purposes we may assume that the interference with

biochemical processes would be minimal.
Further advantages of performing imaging based on the

optical properties of biological tissue with THz radiation
are the improved penetration depth within the tissue and
the comparatively lower scattering than infrared light. Or-
gan differentiation on the basis of tissue water content us-
ing microwave transmission or reflection measurements is
most of the times impractical because the diffraction limit-
ed minimum spot size related to a free-space beam is rather
large, and as a consequence there is significant beam spill-
over around most tissues and organs. This has limited the
further proliferation of microwave imaging techniques to
the biomedical field.
From a technological point of view, THz imaging is an

emergent complementary imaging modality of much inter-
est within the biomedical community. Its proliferation has
been somehow delayed because it often needs to compete
with positron emission tomography (PET) imaging that is
capable of picomolar sensitivity but has poor spatial reso-
lution and magnetic resonance imaging (MRI), which pro-
vides millimolar sensitivity with high spatial resolution.
A diffraction limited imaging system operating at 2 THz
would have a spatial resolution of 150 µm, which may be
considered limiting for many biomedical applications for
which this imaging modality offers niche applications (e.g.
differential imaging of cancer cells in breast tissue of preg-
nant or lactating women). From a clinical perspective, tu-
mours need to be identified at the earliest possible devel-
opmental stage and unless suitable THz super-resolution
techniques can be developed, it is unlikely current system-
s will be adapted by clinicians. If, however, imaging sys-
tems with sufficient SNR could be developed to operate at
10 THz, these would in principle have an attainable reso-
lution of 30 µm, which potentially have a resolving power
just about sufficient for such applications. An additional
complication of this imaging modality is that since 70% of
the human body is composed of water, a large proportion
of the excitation energy would be significantly attenuated.
As a consequence, the resultant spectra in many biomedi-
cal experiments may only be unambiguously resolved after
the application of elaborate post-processing techniques.

1.2. Introduction to dynamic contrast enhanced MRI
(DCE-MRI)

The principle of magnetic resonance imaging (MRI) was
discovered in the late 1940s, through pioneering experi-
ments by Sir Peter Mansfield while he was a student at
QueenMaryCollege, University of London under the super-
vision of D. H. Martin and independently by Paul Lauter-
bur while he was at the University of Pittsburgh, the Mel-
lon Institute of Industrial Research and subsequently the
State University of New York at Stony Brook after follow-
ing the work of Robert Gabillard on Nuclear Magnetic Res-
onance (NMR). It was only, in 1980, however, that MRI
was introduced as a new diagnostic modality and a lot lat-
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Fig. 1. Multidisciplinary interpretation of the electromagnetic spectrum.

er that it gained wider acceptance as an imaging tool for
a diverse range of biomedical disciplines such as neurology,
oncology, obstetrics and gynaecology. In a clinical setting,
it is now routinely used in cardiovascular, musculoskeletal,
gastrointestinal and liver imaging as well as in neuroimag-
ing, providing information on their physiological status and
pathologies. In this respect it also complements NMR.

Note that MRI de-embeds structural details of the vari-
ous organs on the basis of the observation of hydrogen atom
(proton) de-excitation rates as they arise following an exci-
tation by an oscillatory radio signal within a magnetic field.
The energy emission stemming from the spinning hydrogen
molecules is determined by two time constants, T1 and T2

and the contrast between different tissues is determined by
the rate at which excited atoms return to the equilibrium
state. The radio signals can be made to encode position in-
formation by varying the main magnetic field using gradi-
ent coils, enabling the formation of images. Simple T1 and
T2 weighted images are very common in many medical ap-
plications. An important advantage that MRI has over its
computed axial tomography (CAT) counterpart is that it
avoids the deleterious effects associated with X-ray irradi-
ation.

A significant advance in MRI technology for the non-
invasive assessment of disease proliferation has been wit-
nessed through the use of exogenous contrast agents, the
so-called dynamic contrast enhanced MRIs (DCE-MRIs).
Note that DCE-MRI enables the detection of tumour
anomalies with high sensitivity [3]. The crucial advantage
of DCE-MRIs over standard MRIs is that the DCE-MRI
modality provides 3D spatial lesion information as well as
temporal information regarding the progression of lesions.

Furthermore it provides information by showing variations
in contrast agent uptake rates and enables a more accurate
assessment of the extent of lesions and new opportuni-
ties for their better characterisation [4, 5]. From a clas-
sification perspective, DCE-MRI produces a sequence of
three-dimensional (3D) patterns recorded at different time
instances. These datasets are therefore four-dimensional,
with three spatial dimensions and a quantization in the
time domain defined by the image interval lapse time. The
detection of anomalies in spatiotemporal datasets is an
emergent interdisciplinary topic that requires the develop-
ment of completely new software tools [6]. Furthermore, as
discussed in [7–10], analysing spatiotemporal patterns is
critical for the correct identification of tumour anomalies
in DCE-MRIs, establishing whether they are malignant or
benign. Finally, it is worth noting that currently clinical
MRI stands at the cross-roads between some important
technological developments. These include the recent ad-
vances in higher field (3 Tesla) imaging systems as well
as the more experimental low field (milli-Tesla) systems
which have cryogenically cooled phased array detectors.
Detail in the images produced by these new experimental
modalities differs from that found in the traditional 1.5 T
systems, requiring additional time by trained experts for
their interpretation. Such problems can compromise their
further proliferation unless automatic image classification
algorithms can be developed.
Progress in machine learning offers new opportunities for

automated biomedical data mining and disease diagnosis as
it can potentially simplify the process of searching through
large volumes of medical images for features selection and
identification, as well as tumour screening. In addition, it

3



can also potentially provide associations and correlation-
s through time series analysis of datasets, thus elucidating
disease proliferation [11–16]. Image processing techniques
can be used to extract quantitative information on lesion
morphology, volume and kinetics, as well as to distinguish
viable from nonviable tissue [4, 14]. Techniques for process-
ing large volumes of medical image datasets with high di-
mensionality are not sufficiently mature, however. Experts
often distinguish tissue states on the basis of tumour infor-
mation from radiological reports by characterizing lesions
either as malignant or as benign [4, 17–20]. Such practice
is subjective, relying on the availability of experts and oc-
casionally inaccurate, as it involves a binarization step of
the classified output without taking into consideration in-
termediate values as a fuzzy-set expert system would do
(it also incorporates a slight bias towards false-positives to
avoid mistaken diagnoses as this could potentially tarnish
an expert’s reputation). A further disadvantage of this ap-
proach is that it can be slow and therefore costly, inducing
additional pressure loads in otherwise already overloaded
health systems worldwide. In addition, it is also worth not-
ing that alternative, tumour detection methodologies based
on analysing a series of two-dimensional texture features as
local descriptors using a slidingwindow, have amajor short-
coming in that they are unable to take into consideration
more complex morphological features of tumour anomalies
across the entire tissue volume [10, 14, 21].

Furthermore, there are other pressing needs for the fur-
ther development and wider proliferation of multi-channel
machine learning algorithms for the biomedical community.
In DCE-MRI, for example, motion correction software of-
ten needs to be employed [22]. Correlations with breathing,
provided from an additional channel source (e.g. an optical
fibre based plethysmograph) could assist pixel de-blurring
at a post-processing stage, minimizing artefacts [23]. Hy-
perspectral imaging is also another emergent modality in
biomedical screening (e.g for skin cancer detection), requir-
ing such multi-channel signal processing. From a signal-to-
noise ratio (SNR) image quality perspective, for each pixel,
an improvement is only possible by using a stronger exci-
tation source per spectral bin, by improving on the detec-
tor responsivity and noise floor, and by integrating over a
longer time at each pixel or voxel. Equipment manufactur-
ers argue that there is really no substitute for increased
integration time to perform the de-noising process. Broad-
band signals, however, enjoy the Fellgett multiplex advan-
tage, which makes use of the broadband nature of a short
pulse measurement modality to provide superior clarity per
pixel for a set measurement integration time when com-
pared to successively scanned frequency domain investiga-
tions using continuous-wave source measurement modali-
ties. It is not uncommon, therefore, that in order to speed-
up measurement time in many MRI applications, different
software approaches are considered by limiting the fideli-
ty (number of pixels or voxels) or reducing the number of
tomographic projections. Such practice, however, can lead
to image feature artefacts if sampling is not performed fol-

lowing Nyquist’s criterion in the spatial domain [24, 25]. A
pre-processing step that can reduce the dimensionality of
the data-set by compressing it to more parsimonious rep-
resentations without distorting it can potentially minimise
the dimensionality of the input dataset presented to a clas-
sifier. This can help in improving its classification accuracy
and generalization ability. Furthermore, an additional ad-
vantage from compression is that it is advantageous from
a signal-to-noise ratio perspective as the co-averaged sig-
nal components in each spectral bin are always in-phase
whereas the noise component are out-of-phase and thus
suppressed. Image reconstruction and registration are fur-
ther discussed to more detail in the third section of this
paper.

2. Biomedical imaging techniques and modalities
for THz radiations and DCE-MRIs

Medical imaging is the technique and process of creating
visual representations of the interior of a body and seeks
to reveal internal structures hidden by the skin and bones,
as well as to diagnose and treat disease. This section incor-
porates in depth study on the design, clinical applications
and research potentials of the two highly specialised imag-
ing modalities: terahertz pulsed imaging and DCE-MRIs.
Emphasis is on technology development but extends to the
science of image formation along with the properties and
acquisition parameters of theses two imaging modalities,
with a focus on the physics and mathematics of their imag-
ing devices and systems.

2.1. Time-dependent techniques using terahertz radiation

Although much of the pioneering work in building inter-
ferometric spectro-radiometers and other continuous wave
measurement systems at the THz part of the spectrum
took place at Queen Mary College over a period of almost
30 years under the guidance of D.H. Martin [26], it was
only during the past two decades that THz science and
technology has literally flourished as a universally accepted
new sensing modality. This has been largely due to the ad-
vent of time domain spectroscopy (TDS) with ultrashort-
pulse laser sources. These systems enable time-resolved ‘far-
infrared’ (FIR) studies for biomarker identification, which
through explorative spectroscopic investigations may even-
tually lead to novel imaging applications in the submillime-
ter part of the spectrum. T-rays have significant potential
in advancing both in in vivo and in vitro biosensing applica-
tions [27–29] due to their relatively non-invasive interaction
with biological tissue. Furthermore, several biomolecules
have several characteristic ‘fingerprint’ resonances due to
overtone and combination bands [30, 31].
Notably, THz-TDS is a time-domain technique similar to

the well-known pulsed radar sensing modality, where the
time gated reflections are analysed directly in the time do-
main by observing their attenuation, phase delay and tem-
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poral spread after interacting with matter. Their tempo-
rally good definition can provide localization of tissue in-
terfaces on the basis of their different refractive index (the
real part associated with impedance mis-match) or through
the complex part which is associated with the attenuation
due to the number of absorbers and their extinction coef-
ficient. Studies in reflection geometry also enable the in-
direct assessment of sample or layer thickness, as well as
in determining the position of embedded unknown object-
s, etc. [27]. Pulsed terahertz (THz) wave technology has
also been applied extensively in biosensing. The pioneer-
ing investigations in biomolecule characterization were per-
formed by the Aachen group [32] and Jepsen’s group [33].
These were followed by a subsequent avalanche of investiga-
tions by other researchers worldwide [34–36]. An interest-
ing example is that of an affinity biosensor monitoring the
binding between biotin and avidin molecules on supported
membranes composed of biotin layers on a quartz surfaces
treated with octadecanol, as proposed by Menikh et al [37].
In that work, an amplified detection of biotin-avidin bind-
ing was very clearly observed through the dithering of the
samples in a THz beam. This was attributed to the con-
jugation of agarose particles and avidin molecules and a
change in contrast due to a change of refractive index re-
sulting from the chemical binding process [30, 38]. As avidin
has a very strong affinity for biotin and is capable of being
bound to any biotin-containing molecules, the developed
detection technique is quite generic and can potentially be
used to detect DNA hybridization and antigen-antibody
interactions [30]. Fischer et al. [39] was able to reliably dis-
tinguish between two artificial RNA single strands, com-
posed of polyadenylic acid (poly-A) and polycytidylic acid
(poly-C) from their different THz spectral transmission re-
sponses. In that study poly-C samples consistently showed
stronger signal attenuation than poly-A samples.

2.2. Frequency dependent terahertz spectroscopy

In the THz part of the spectrum, many molecules have
characteristic ‘fingerprint’ absorption spectra [27]. Sub-
stances in the condensed phase are held together by either
ionic, covalent or electrostatic forces, and therefore the
lowest frequency modes will be associated with intermolec-
ular motion [40]. The interaction between THz radiation
and biological molecules, cells, and tissues can be under-
stood using assumptions of propagation of an angular
spectrum of plane waves through the material [41]. Fol-
lowing standard dielectrics theory postulations, a medium
may be characterized in terms of its permittivity ε (the
ability of the medium to be polarized) and conductivity
σ (the ability of ions to move through the medium). At
higher frequencies, transitions between different molecular
vibrational and rotational energy levels become increas-
ingly dominant and are more readily understood using
a quantum-mechanical framework [42]. Terahertz pulse
spectroscopy provides information on low-frequency inter-

molecular vibrational modes [43].

2.2.1. THz radiation absorption and detection in tissue
Terahertz radiation interacts strongly with polar

molecules, a prime example being water. [44]. Polar water
molecules are active in the infrared region and have vari-
ous vibrational modes [45]. In the mid- to far-infrared, the
vibrations involve combinations of the symmetric stretch
(ν1), asymmetric stretch (ν3), and bending (ν2) of the
covalent bonds. The vibrations of water molecules may
be thought of as restricted rotations, resulting in a rock-
ing motion, as shown in Fig. 2(a). In liquid water, since
hydrogen bonds are much weaker than the covalent bond-
s (intra-molecular), their bond lengths are much longer

(1.97 Å versus 0.96 Å), as shown in Fig. 2(b). Steric effects
from dipole moments in water clusters vary according to
hydrogen proximity and as a consequence, shifts in ro-
vibrational modes at THz frequencies are encountered.
Furthermore, these shifts are expected to be loosely cor-
related with different water potential values, which surro-
gately affect its ability to interact with the surrounding
molecules. This has further important ramification on the
way proteins influence the state of water and can lead to
further understanding of the function of hydration shells
in proteins [46, 47]

symmetric stretch asymmetric strecth bend

x,y and z librations

ν ν ν1 23

x y z

(a)

hydrogen

bond

length

1.97 

0.96

covalent

bond

length

o
A

o
A

(b)

Fig. 2. (a) The main vibrational modes in water. (b) A schematic di-
agram illustrating the differences between intra- and inter-molecular

bonding in water. After [45].

THz time-domain spectroscopy provides a direct mea-
sure of the real and imaginary components of the permit-
tivity. A Debye relaxation model can be used to analyze
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the strong absorption of terahertz radiation in polar liquids
at least up to 1 THz [31, 48]. This model can be directly
related to the associated intermolecular dynamics.

Biological tissue is generally composed of polar liquids.
Due to the exceptionally high absorption losses of polar liq-
uids at terahertz frequencies and the low source power in
TPI systems, it is impossible for the THz radiation to pene-
trate through biological tissue of any substantial thickness.
However, the same high absorption coefficient that limit-
s penetration in tissue also provides extreme contrast be-
tween samples at various degrees of water saturation [31].
This property has proven advantageous in the examination
of the properties of water uptake and distribution in plants
[49, 50], as well as in the evaluation of the severity of burn-
s through the evaluations of necrotic skin samples [28]. In
addition, [51] and [52] describe the application of TPI tech-
niques for imaging of basal cell carcinomas (BCC) ex vivo
and in vivo. BCCs typically show an increase in absorption
of THz radiation compared to normal tissue. This may be
attributed to either an increase in interstitial water with-
in the diseased tissue [53] or a change in the vibrational
modes of water molecules through interactions with other
functional groups. Systematic studies in tissue identifica-
tion are reviewed in [31].

2.2.2. Identification of compounds with complex
composition

The identification of pure compounds using molecular
signatures with THz-TDS systems is still not straightfor-
ward because of the inherently broad spectral signatures in
liquids and solids. Nevertheless, there is a growing number
of multiply confirmed observations of particular resonant
signatures that may be attributed to the presence of many
compounds in pure form [54]. Of particular relevance here is
the growing interest in studying the conformational struc-
ture, binding states, and vibrational or torsional modes of
proteins and oligonucleotides [55, 56] through the analysis
of spectral features [57]. Different reflection or absorption
signatures may also be attributed to a change of density
or polarizability, or may indicate a dehydration state, or
a denaturing process leading to a new amorphous absorp-
tion band or a temperature related absorption band shift.
A compilation of readily identifiable spectral signatures of
complex biomolecules in an atlas has already been consid-
ered at Durham University, and significant progress is be-
ing made, yet there is recognition by the THz community
that it is unlikely it will have the universal applicability as-
sociated with other databases such as HITRAN, because
of the variability in the location of the spectral bands ob-
served under different experimental protocols.

There are still, however, several examples of useful stud-
ies that may be found in the recent literature. Nishizawa et
al. [58] illustrated the use of a widely tunable coherent ter-
ahertz scanning system for THz transmission spectroscopy
to study samples consisting of nucleobases, nucleosides, de-
oxynucleosides, and nucleotides, to further gain an insight

of the composition of RNA and DNA molecules. THz spec-
tra of those samples in crystalline form were measured
in the 0.4–5.8 THz range. These studies showed that the
molecules have quite different characteristic spectral pat-
terns in this frequency region, furthermore the absorption
signature patterns observed were sufficiently clear and re-
producible for identifying and discriminating between these
molecules. Using pulsed THz spectroscopy [55] it has also
been possible to study the low frequency collective vibra-
tional modes of bio-molecules, i.e. DNA, Bovine Serum Al-
bumin and Collagen in the range 0.1 and 2.0 THz. It is gen-
erally accepted that for most samples, broadband absorp-
tion increases with frequency and a large number of the low
frequency collective modes for these systems is also deemed
as IR active. Herrmann et al. [59] also carried out measure-
ments of THz spectra of Poly(dA-dT)-Poly(dT-dA) DNA
and Poly(dG)-Poly(dC) DNA and used new signal process-
ing routines to infer the THz complex refractive index. The
resultant spectral features showed that those samples were
indeed distinguishable in the range 0.1 to 2.4 THz. Several
research groups in Germany and Australia, have also stud-
ied the photo-isomerization of retinal chromophores [60, 61]
focusing on the conjugated polyene chain of the biologically
important chromophore retinal and its low-frequency tor-
sional vibration modes. In that work, the absorption and
dispersion spectra of different retinal isomers (all-trans; 13-
cis; and 9-cis retinal) in the far-infrared region between 10
and 100 cm−1 (0.3 ± 3.0 THz) were measured by THz-
TDS at 298 and 10 K. At low temperatures, it was observed
that the broad absorption bands resolve into narrow peaks
that directly correlated to torsional modes of the molecule.
The study also confirmed that vibrational modes within the
molecule can be approximately localized through a compar-
ison of the absorption spectra of different retinal isomer-
s. An alternative important research direction vigorously
pursued by Teraview Ltd., Cambridge, U.K., aims to put
an end on patent infringements within the pharmaceuti-
cal industry by detecting the presence of drug polymorphs
[43, 62, 63]. Such studies, for example, have successfully
used TPI to examine the variation in the crystalline struc-
ture of Ranitidine Hydrochloride polymorphs. Significant
differences in the spectra of two different polymorphs were
clearly observed at around 1.10 THz enabling their correct
identification. A recent account on advances in the identi-
fication of crystalline structure of drugs using TPI is pro-
vided in [64]. Furthermore, the observation of the crystal-
lization of compounds has also been possible [65].

2.3. Time-frequency dependent terahertz spectroscopy

Time-frequency analysis methods have been develope-
d to provide very parsimonious parametrizations of time
series datasets and in this sense complement well other
parametrization schemes performed in either time or fre-
quency domains [66, 67]. The wavelet transform (WT) is a
popular technique suited to the analysis of short-duration
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Fig. 3. Classification errors (%) as a function of noise level in the
interferograms. Nonoptimized db4 wavelet (green), optimized wavelet
(red) and Euclidean distance (blue) classifiers. The inset shows a

leather interferogram with (a) no artificially added noise and noise
with standard deviation of (b) 0.1 and (c) 0.5. After [73].

signals [68]. It decomposes the time series signal using t-
wo filter banks separating the high (detail) and low (ap-
proximation) frequency components of the signal assuming
a pre-defined mother wavelet function. The approach pro-
vides very efficient de-noising capabilities in the presence
of Gaussian white noise and has very parsimonious repre-
sentation. An important feature of this transform is that it
is orthogonal so that it enjoys perfect reconstruction sym-
metry, which enables its inverse transform to reproduce the
original dataset without loss of information. This is a par-
ticularly important property from a biomedical signal pro-
cessing perspective as software certification for biomedical
purposes should require complete traceability of all the da-
ta processing steps. A further development in the biomed-
ical signal processing literature has been the use of adap-
tive wavelets [69], where the mother wavelet is specifically
tailored at each decomposition level (wavelet scale) accord-
ingly, to minimize the least squares error associated with
the difference between the transformed signal from its orig-
inal one. This approach holds great promise for optimizing
the extraction of the spectroscopic information contained
in each THz pulse transient as well as in THz TPI generally
[70–73]. Figure 3 presents the result of this simulated test,
in terms of classification errors. To generate this graph, the
standard deviation of the noise was varied from 0.001 to 0.5.
For each noise level, 250 noisy patterns were generated for
each class (lycra and leather). As can be seen, the classifi-
cation is much more robust to noise when carried out in the
wavelet domain than in the original domain. Moreover, the
robustness to noise is further increased by the optimization
of the wavelet transform.

In addition to the above more elaborate routines, there
have also been other examples of studies that incorpo-
rate wavelet transform pre-processing routines for signal-
to-noise-ratio enhancement and classification of THz spec-
tra [28, 74]. Such pre-processing steps enabled the success-
ful discrimination of cancerous from normal tissue in wax-
embedded histopathological melanoma sections as well as

the classification of dentine and enamel regions in teeth [70].
It is nowadays generally accepted that the performance of
a classifier based on the output of a wavelet filter bank is
better than that of an Euclidean distance classifier in the
original spectral domain [73]. Finally, an alternative very
promising approach for the modelling of de-excitation dy-
namics which has its origins to the theory of complex di-
electrics is through the use of fractional order calculus and
the fitting of fractional order models. In this approach, the
time series experimental datasets are modelled using very
parsimonious pole-zero expressions associated to dynamics
of resistive, capacitive or inductive networks [75–77]. Al-
though the fractional-order system identification literature
is still at its infancy, it promises to provide much lower
residual errors in the identified models thus significantly
advancing the science of Chemometrics which is essential
to the further advancement of the discussed biomedical in-
vestigations. The approach can account for spectral shifts
in amorphous materials as well as de-embed solvation dy-
namics.

2.4. A brief introduction to experimental set-ups for THz
trans-illumination

THz imaging can be remarkably informative regarding a
sample’s composition. The Fourier transform of the associ-
ated time domain waveform over a certain spectral range
allows the calculation of the frequency dependent refrac-
tive index and absorption coefficients of the sample. If the
Fourier transform is performed in real time using dedicated
hardware, it becomes possible to extract the above param-
eters also in real time. Since wavelengths are longer in the
THz part of the spectrum, there is sufficient phase stability
in the experimental apparatus, this enables the extraction
of phase information by varying the time delay between the
THz wave and the probe beam [27]. Since some materials
are transparent to THz radiation, it is occasionally feasible
to measure transmission responses and acquire spectral in-
formation. Reflectance imaging is also straightforward, and
through their combination, a spectral absorbance may be
inferred. This is not always possible at the infrared and op-
tical parts of the spectrum where errors due to scattering
of shorter waves due to the surface roughness of the sam-
ples preclude direct calculations of absorbance. Elementary
signal analysis may also be used (e.g., differential absorp-
tion) to produce informative contrast images that can be
invaluable to the evaluation of disease proliferation.
Using continuous wave systems, there is a variety of in-

struments that may be assembled using quasi-optical active
and passive components. The AB Millimetre vector net-
work analyser, if available, is the preferred choice for con-
tinuous wave measurements with significant signal-to-noise
ratio per spectral bin all the way up to 1.2 THz although it
is not as user friendly for extracting scattering parameters
as other commercially available solutions which operate at
much lower frequencies. An account of different topologies
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using null-balance methods can be found in [78] whereas
polarimetric measurements for dichroic samples should be
ideally performed using the topologies discussed in [79, 80]
or Fabry-Perot structures, e.g. [81]. Alternative broadband
experimental configurations may include Mach-Zehnder or
Martin-Puplett configurations as discussed in [50]. When
high power per spectral bin is needed, THz imaging may al-
so be performed with high-power THz sources under pulsed
scanning mode and pulse-gated detection using large scale
facilities (e.g. Jefferson lab, FELIX etc) but at significan-
t cost. Currently, however, bio-medical investigations with
such facilities lag behind investigations performed by the
semiconductor community.

An important advantage of time-domain systems over
their continuous wave counterparts that are plagued by e-
talon effects is that of being able to perform time gating of
the pulses. This is possible as long as the multiple reflec-
tions in the measurement system are sufficiently far away so
as not to be mixed with the molecular de-excitation signals
of the sample. The typical time-resolved THz spectrometer
used in most of the studies discussed so far utilize a short
coherence length infrared source (centered at around 800 n-
m) to generate a sub-100 femtosecond duration pulse train
with repetition frequency of around 80 MHz. Each infrared
pulse, is split into separate pump and probe beams. The
pump beam is used to excite an optical rectification crys-
tal, which acts as a T-ray emitter, and the T-rays produced
(duration around 200 fs) are collimated and focused onto a
sample by a pair of parabolic mirrors. The T-rays emerging
from the sample are re-collimated by another pair of mir-
rors, before being combined with the probe beam in a T-ray
detector crystal. As a result, the modification by the sample
T-ray and the probe beams propagates through the THz
detector crystal co-linearly. The pump beam, which is also
transmitted through a chopper, travels through an optical
delay stage that is modulated accordingly, so that the pump
and probe beams arrive at the detector in a time-coincident
manner. The electro-optic detector crystal produces an out-
put that is proportional to the birefringence observed from
the interaction of the THz pulse with the time-coincident
infrared pulse replica within the crystal. This output is pro-
portional to the T-ray response of the sample and this sig-
nal is measured with the use of a balanced optical photo-
detection scheme. A lock-in amplifier (LIA) is also used to
demodulate the signal, and this avoids 1/f (flicker) noise
problems that are present in this detector-limited measure-
ment scheme. THz-TPI is performed through a 2D raster
scan after translating the sample in both the x and y di-
rection, while keeping it at the focal plane of the parabolic
mirrors. A typical setup [82] is shown in Fig. 4.

It is also worth noting that in all of the above experi-
mental set-ups one needs to always consider that there may
also be additional pseudocoherence errors because differ-
ent parts of the beam across its aperture travel differen-
t paths through different regions of the sample (if this is
of non-uniform thickness), interfering constructively or de-
structively with each other when they recombine. A recent
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Fig. 4. A schematic experimental setup for electrooptic transmission
terahertz imaging with ZnTe as EO generation and detection, illu-

minated by a femtosecond laser.

account of advances in THz metrology discussing errors in
both continuous wave as well as THz-transient systems can
be found in [83]. Such errors are endemic to much of the
THz literature although this is not extensively discussed.
Management of these artefacts and their relevance to imag-
ing applications is therefore an open issue requiring further
consideration.
The resultant measurement at each pixel position of an

image is an entire time-dependent waveform. Therefore, the
result from TDS-TPI is a three-dimensional (3D) data set,
which then can be potentially mapped to two-dimensional
(2D) images [84], where structural and compositional dis-
crimination based on a sample’s optical properties may
be conveniently performed using pattern recognition algo-
rithms. In the following section, sample responses frommul-
tiple THz spectrometry experiments are extended to pro-
vide a pattern recognition framework . The proposed ap-
proach extends the range of application of pattern recogni-
tion to emergent sensing modalities [85].

2.5. DCE-MRI imaging techniques and modalities

The diagnosis, grading and classification of tu-
mours has benefited considerably from the devel-
opment of magnetic resonance imaging (MRI). It is
now essential to the adequate clinical management
ofmany tumour types.The ability ofMRI to demon-
strate tumour morphology and the relationships of
malignant lesions to neighbouring structures pro-
vides essential clinical information for both clini-
cal management and surgical planning. Magnetic
resonance has innate advantages in these applica-
tions enabling clear delineation of normal anatomi-
cal structures and organs and, in most cases clear-
ly delineating and identifying pathological change.
please help me rewrite this paragraph. this is from
some other authors work.
As a high-performance imaging modality, DCE-MRI is

now widely used in the diagnosis of cancer and is becoming
a promising tool for monitoring tumour response to treat-
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ment [86]. Dynamic contrast enhancement patterns can
be affected by a wide range of physiological factors which
include vessel density, blood flow, endothelial permeabili-
ty and the size of the extravascular extracellular space in
which contrast is distributed [86, 87]. The crucial difference
from traditional medical imaging (i.e. X-rays) is that the
DCE-MRI modality provides 3D spatial information about
lesions as well as temporal information about lesion phys-
iology (showing variations in contrast agent uptake rates),
allowing for more accurate assessment of lesion extent and
better lesion characterisation [8].

Typically, DCE-MRI images are acquired with the use
of a conventional gradient echo (GRE) pulse sequence to
repeatedly image a volume of interest after injecting a con-
trast agent, such as gadolinium diethylenetriamine pen-
taacetic acid (Gd-DTPA) into the patient’s blood stream.
The DCE imaging employs a full k-space sampling strategy,
(where the k-space relates to the associated wavenumber,
a terminology originally established by the semiconductor
industry). Three dimensional (3D) volume acquisition slice
profiles are generally rectangular and slices are always con-
tiguous. This means that signal derives uniformly from all
tissue in each slice, without cross-talk.

One of the biggest advantages of the gradient-echo pulse
sequence is that it can be performed quickly enough to en-
able 3D Fourier Transform (3DFT) data acquisitions. In
3DFT imaging, a volume or slab of tissue is excited, rather
than merely a thin slice of tissue. It means the 3D MRI
data acquisation consists of three different phase encoding
directions: the transaxial plane, the sagittal plane, and the
coronal plane. Typically, 3D image sets are obtained se-
quentially every few seconds for up to 5–10 minutes. There
is always a trade-off between spatial (sRes) and temporal
(tRes) resolution. Usually, most radiologist’s clinical pro-
tocols show a preference for scans at high sRes allocating
only 1–2 min for tRes data acquisition [88].

A typical DCE-MRI dataset used for the image analysis
consists of one baseline 3DMR image which is used as a ref-
erence before contrast agent injection. This is subsequent-
ly measured in a repeated manner to acquire post-contrast
images at the second, third, till sixth time slices. Each time
slice has a typical time interval equal to 60 seconds.

Following the terminology introduced independently by
Ljunggren [89] and Twieg [90] we shall refer to the, k-space
to denote the spatial (either 2-D or 3-D) frequency domain
of the imaging system. Within the context of temporary
image processing the k-matrix, is composed of digitizedMR
signals stored during the data acquisition process before
any reconstruction computations. The complex data entries
are associated to a pulse sequence of accurately timed radio
frequency and gradient pulses.

In clinical practice e.g during a DCE-MRI mammogram,
it is desirable to reduce the signal acquisition time; this is
normally achieved by undersampling the k-space. This may
achieved by adopting a random partial k-space updating
[91] protocol. The HASTE sequence which samples half the
k-space [92] is now routinely used in clinical MRI.

Aliasing from sampling the k-space below the Nyquist
rate, however, introduces imaging artifacts. Since there is
always a need for better tRes while preserving adequate S-
NR and sRes, several groups [93–95] have shown that it is
possible to accelerate DCE-MRI (without employing par-
allel imaging) by a factor of ten using compressed sensing
(CS) based for image reconstruction as proposed in [24].
The approach allows filling of missing k-space data using a
constrained optimization technique to interpolate the val-
ues between under-sampled adjacent data points in the s-
patial domain.
Research byYin et al. [96] is based on the broad principles

of compressed sensing and makes use of the fact that, when
under-sampling the k-space, it is possible to use variable
density sampling schemes in a Cartesian coordinate system
to widely distribute the resulting artifacts and reduce their
visual impact. Such approach was further explored using
a model-based method for the restoration of MRIs with s-
parsity representation in a transformed domain, e.g. spatial
finite-differences (FD), or discrete cosine transform (DCT).
The reduced-order model, in which a full-system-response
is projected onto a subspace of lower dimensionality, has
been used to accelerate image reconstruction by reducing
the size of the linear system associated with the measure-
ment space. The singular value threshold technique [97]
(SVT) was used in the denoising scheme to reduce and se-
lect the model order of the inverse Fourier transform image,
and to restore multi-slice breast MRIs that have been com-
pressively sampled in k-space. Restored MRIs with SVT
de-noising show reduced sampling errors compared to di-
rect MRI restoration methods via spatial FD, or DCT. The
difference image related to IT shown in Fig. 5(b) contain-
s a relatively large number of noisy (error) pixels that are
located around the boundary of the imaged section. Recon-
struction with IT shows also some blur at the image edges.
In contrast, the reconstructed image using SVT denoising
illustrated in Fig. 5(a) shows a reduced number of error
pixels compared to the reconstructed image in Fig. 5(b).

2.6. Advantages and disadvantages of T-rays and
DCE-MRIs

Advanced terahertz pulsed imaging (TPI) and DCE-
MRIs are becoming widely available in conventional clinical
practice, where data acquisition and analysis are compa-
rable despite inherent differences in signal production and
mechanism of tissue contrast. One of the primary advan-
tages of THz imaging over competing techniques including
MRIs is the availability of spectroscopic data within a
potentially crucial frequency band. Unfortunately, the re-
sponses of many biological tissues are unknown in this
band. A significant amount of research is to characterize
tissues, such as DNA [55, 58, 59]. An associated problem is
the development of computer aided diagnostic algorithms
for interpreting the multispectral images obtained by T-
ray imaging [98]. A number of authors have considered
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Fig. 5. Illustrations of resultant experiments at the 26th layer, (a) the difference image segment between the measured MRI and reconstructed
image using SVT for denoising. (b) The difference image segment between the measured MRI and transformed image from sampled k-space.

this question by fitting the measured data to linear fil-
ter models and using the filter coefficients as a means to
classify tissue types [99]. One of the most important poten-
tial applications for terahertz technology is the detection
and identification of biological and chemical agents [100].
Although T-rays can be used to image tumour microvas-
culature, more reports on the feasibility study using TPI
are focused on imaging breast tumours [101, 102] and skin
cancer [103], due to the absorption of THz waves by water
that is found in biological tissue. A recent review has been
carried out by Yu et al. [104], where investigations relat-
ing to the potential of terahertz imaging and spectroscopy
for cancer diagnosis has been highlighted. An important
progress in THz tumour image was reported by Huang et
al. [105] in 2006. In their work, they provided an in vitro
demonstration of gold nanorods as novel contrast agents
for both molecular imaging and photothermal cancer ther-
apy. As a result of the strongly scattered red light from
gold nanorods in dark field, observed using a laboratory
microscope, the malignant cells are clearly visualized and
diagnosed from the nonmalignant cells.

Dynamic contrast-enhanced magnetic resonance imag-
ing (DCE-MRI) is the acquisition of serial MRI images be-
fore, during, and after the administration of an MR con-
trast agent. Unlike conventional enhanced MRI, which sim-
ply provides a snapshot of enhancement at one point in
time, DCE-MRI permits a fuller depiction of the wash-in
and wash-out contrast kinetics within tumors. Depending
on the analysis approach chosen, measurements may be de-
rived from signal intensity data, or more commonly, signal
intensity data are transformed into contrast concentration
data prior to analysis [106]. Different from terahertz mea-
surements that the impulse function for tumour is very dif-
ferent to that of normal adipose (fatty) tissue, the resultan-

t changes in signal intensity taken from DCE-MR images
are different for healthy and tumour tissues according to
the different degree of absorption of contrast agent. Differ-
ent from terahertz measurements that are the function of
continuous time, DCE-MRIs are acquired at several time
frames that form low temporal solution. This forms limita-
tion in accurate reconstruction of tumours after projecting
4D images to 3D as illustrated in the section “DCE-MRI
imaging analysis”.

3. Analysis & classification of THz imaging data

T-ray pattern classification aims to select a sub-set of
significant features in the image data set, without incurring
a dramatic loss of information. Through pattern analysis,
any relations, regularities, or structures associated with the
measured T-ray response can be found. By detecting pat-
terns, a T-ray classification system should be able to au-
tomatically make generalizations on its input space on the
basis of its training set [107]. Such approach is particular-
ly useful within a laboratory automation context. Conse-
quently, complete automated solutions should be seen as
composed of three different modules that may be individ-
ually optimized for particular samples and data sets: the
data acquisition imaging spectrometer module, the data
de-noising pre-processing module and the classifier module.
Depending on the type of sample, tuning may be tailored
for each module before the learning process is initiated.

3.1. Pre-processing for THz-TDS pulses

During pre-processing, input data vectors need to be
grouped together into sets of feature vectors [85]. The choice
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of parameters for grouping is fundamental to the subse-
quent performance of the classifier. Data pre-processing
aims to isolate the real T-ray responses from the effects
of amplitude and phase noise associated with the pulse to
pulse stability of the source, laser beam pointing stability
and detector shot noise, thus reducing artefacts that could
compromise the classifier performance. Co-averaging mul-
tiple measurements by moving the scanning delay line uni-
directionally several times through its central maximum
(slow-scan mode) or changing the lock-in time constant
(fast-scan method) improves signal-to-noise-ratio per pixel
but at the expense of significantly increased measurement
time and image acquisition. Since improvement in signal-
to-noise ratio is proportional to the square root of the num-
ber of co-averaged time-domain responses; this approach
significantly limits the integration time that may be bud-
geted for each pixel. Furthermore the approach is unsuit-
able to the analysis of samples whose THz response is time-
dependent e.g. drying. Signal processing can partly allevi-
ate some of these issues. Window apodization for example
reduces frequency domain Gibbs ripple due to the data dis-
continuities at the edge of the recorded time domain inter-
ferograms. Optimization of the apodization function is now
possible using algorithms accounting for the asymmetry of
the propagating femtosecond THz pulses [108].

Multiresolution techniques such as wavelet transforms
are particularly effective to further de-noise mean-centered
apodized interferograms. A typical de-noising procedure
consists of decomposing the original signal using DWPT
or DWT [109–111], thresholding the detail coefficients, and
reconstructing the signal by applying the appropriate in-
verse transform (IDWT or IDWPT respectively). For the
de-noising of femtosecond THz transients, a three-level de-
composition is usually sufficient [112] and unnecessary com-
putational load associated with more decomposition levels
can be avoided. Fig. 6, illustrates the process [113].

An alternative promising pixel de-noising method in-
volves the use of wavelet power spectrum estimation tech-
niques (WPSET), as discussed by Kim et al. [114]. This
approach may remove spectral artefacts without distorting
spectral features in a more efficient manner. The author’s
application of WPSET to the transmission spectrum of wa-
ter vapor verified the effectiveness of the approach. This is
a nonparametric approach based on a wavelet representa-
tion of the logarithm of the power spectrum [115]. Alter-
native signal pre-processing methods for de-noising include
base line correction [116], smoothing [117], first and sec-
ond derivative [117, 118], multiplicative scatter or (signal)
correction [119], and standard normal variate analysis[120],
Although all these methods have their own merit under dif-
ferent experimental conditions, one may argue that wavelet
de-noising has the widest applicability [121].

From an imaging perspective, the discrete cosine trans-
form (DCT) using Wang factorization, Lee’s power of two
block lengths DCT scheme, Arai’s scheme, Loffler’s algo-
rithm or Feig-Winograd factorization [122–125] are par-
ticularly useful. The attractiveness of the DCT algorithm

Fig. 6. Image of an insect on an oak leaf obtained by terahertz
pulse imaging. The image is produced by plotting the peak value of

the response for each pixel. (a) Raw image. (b) 3 dB SNR image
corrupted by noise such that the SNR was. (c) Reconstructed image
after de-noising using a Coiflet wavelet filter decomposition of order
4 where the average SNR is 10 dB greater than in (b). After [113].

stems from the fact that it is asymptotically equivalent
to the Karhunen-Love transform which possesses opti-
mal de-correlation as well as optimal energy compaction
properties. Two-dimensinal wavelet transforms are well
established in multimedia coding standards (H.265 and
JPEG2000) [126]. Almost real-time hardware implemen-
tation is possible nowadays using dedicated Field Pro-
grammable Gate Array technologies, with 45 nanometer
complementary metal-oxide-semiconductor (CMOS) stan-
dard cells capable of operating at 7.6 Gpixel/second for an
8x8 block rate at more than 100 MHz [127].

3.2. Feature extraction methods

Each T-ray measurement with n data points can be
viewed as a vector in a n dimensional space, known as a
pattern space. The time sequence then appears as a point
in the pattern space. The object of feature extraction is
to reduce dimensionality by converting pre-processed data
to feature vectors. There are three considerations in the
feature extraction and selection process: (i) the establish-
ment of sound feature evaluation criteria, (ii) deciding the
dimensionality of the feature space, and (iii) the choice of
the algorithmic optimisation procedure adopted.
This analysis is carried out pixel by pixel, on the THz

image. These feature vectors are grouped together via a de-
cision function and then are evaluated to see whether they
provide meaningful information. The features of interest
upon which a classifier may be constructed are pulse height,
shape, delays in the time domain, as well as the spectral con-
tent of the pulse in the frequency domain (after retaining
both real and complex parts). Alternative parameters in-
clude the complex reflection coefficient commonly associat-
ed with an impedance mismatch and the complex insertion
loss, commonly associated with the number of absorbers
and extinction coefficient of the components in the sample.
Differential transmittance and absorbance, with reference
to a known sample can also provide contrast information
which may be used for classification purposes.
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Fig. 7. Illustration of Fourier spectrum. (a) shows the amplitude (attenuation) as a function of terahertz frequency, whereas (b) shows the

corresponding frequency dependent phase delay (equivalent to chromatic dispersion)

Essentially, features should consist of parameters that
display non-transformed structural characteristics: mo-
ments, power, amplitude information, energy, etc. as well
as transformed structural characteristics: frequency and
amplitude spectra, coefficients from wavelet decomposi-
tion, AR, ARMA coefficients, coefficients derived using
subspace identification methods from state space analysis
of the corresponding time series, etc.

Pre-processing techniques focusing on dimensionality re-
duction in the feature space are at the core of a successful
pattern recognition system. Inclusion of more features im-
proves classifier performance but compromise the general-
ization ability of the classifier. This is the well-known curse
of dimensionality [128], which becomes quite prominent if
the number of features is above 30.

The fast wavelet transform may be adopted to achieve
effective feature extraction. The features presented to the
classifier, in this case become the extracted wavelet coef-
ficients. The use of Auto Regressive (AR) and Auto Re-
gressive Moving Average (ARMA) models on the wavelet
transforms of measured T-ray pulse data has been previ-
ously discussed in our research paper [99]. The features of a
processed THz signal are eventually classified by an Maha-
lanobis distance classifier. The effectiveness of this method
is demonstrated via cancer cell discrimination from normal
tissue and on the problem of recognising different kinds of
powders.

3.2.1. Linear transforms for feature extraction
Linear transforms are useful both for noise extraction

and for representing the information in the data using fewer
coefficients. Noise extraction can be performed by assum-
ing that the system is detector noise limited rather than
source noise limited. In this case, the noise spreads equal-

ly among all transform coefficients, while useful informa-
tion will generally be concentrated in a few coefficients.
Examples of commonly used linear transformations for the
processing of spectroscopic data include Fourier transfor-
m, windowed Fourier transforms, wavelet transforms, and
principal-component analysis (PCA). A comprehensive e-
valuation of various linear transforms that may be used for
the de-noising of spectra from continuous wave THz spec-
trometers can be found in [66], the main conclusions of the
work are shown in Table 1.
An example of using patterns in the spectra to

perform classification of TPI signals is discussed in
Yin et al. [129]. The amplitude and phase at certain
key frequency components constitute pairs of fea-
ture subsets on which the classification is based. An
important advantage of this approach is the small di-
mensionality of feature vectors. This allows the fea-
tures to be directly extracted from pulsed responses
with relatively low computational complexity. Fig. 7
shows the phase and amplitude plots in the frequen-
cy domain for six different powder samples: sand,
talcum, salt, powdered sugar, wheat flour, and bak-
ing soda. Each curve is associated with a single pixel
sampled from the image data. The spectrum has a
cut-off frequency at 3 THz. Sharp changes of ampli-
tude at the second frequency binmay be observed in
Fig. 7(a). It can also be seen that samples have sig-
nificantly different frequency dependent phase pat-
terns, so that a classifier using this information can
be implemented illustrated in Fig. 7(b). Please re-
vise this paragrahy, suggested by our first reviewer.
An example of using patterns in the spectra to perform

classification of TPI signals is discussed in Yin et al. [129].
The amplitude and phase at certain key frequency compo-
nents constitute pairs of feature subsets on which the classi-
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Table 1

Advantages and Drawbacks of Linear Transforms

Transform Advantages Disadvantages

PCA:Y=U ∆ V T Maximum information compression Each PC is related to the whole spectrum.

“Problematic” regions in the spectrum cannot be

excluded after the computation of the PCs.

Since the analysis functions are obtained from

the statistics of the data, many calibration

samples may be required to obtain reliable PCs.

Fourier The analysis functions are fixed. Spatial information is lost. Problematic

regions in the spectrum cannot be excluded after

the transform.

Wavelet Spatial information is kept. The width The choice of the mother wavelet is usually

of the analysis window is difficult.

automatically varied.

fication is based. An important advantage of this approach
is the small dimensionality of feature vectors. This allows
the features to be directly extracted from pulsed responses
with relatively low computational complexity. Fig. 7 shows
the phase and amplitude plots in the frequency domain for
six different powder samples: sand, talcum, salt, powdered
sugar, wheat flour, and baking soda. Each curve is associ-
ated with a single pixel sampled from the image data. The
spectrum has a cut-off frequency at 3 THz. Sharp changes
of amplitude at the second frequency bin may be observed
in Fig. 7(a). It can also be seen that samples have signif-
icantly different frequency dependent phase patterns, so
that a classifier using this information can be implemented
illustrated in Fig. 7(b).

Zhang et al. [130] proposed two feature extraction meth-
ods to avoid misplacement phase error in terahertz reflec-
tion time-domain spectroscopy (THz-RTDS). In their work,
the first or second order derivative of the phase of the rel-
ative sample reflectance was used to extract the frequency
dependent absorption signatures of the materials under s-
tudy. Ryniec et al. [131] applied decision trees as a feature
selection method to identify terahertz spectra of differen-
t compounds, demonstrating the effectiveness of decision
tree methods in the classification of THz spectra.

Generally, Fourier expansions suffer from drawbacks such
as the notion of an infinite support in the time domain
[25], which compromises the quality of the signal unless
apodization routines are adopted [66] to eliminate Gibb’s
ripple resulting from discontinuities at the edges of the time
domain interferogram. This is especially true when fast scan
data acquisition is performed in TPI applications where the
time domain signals are more truncated.

These drawbacks are more efficiently addressed through
the use of windowed Fourier transforms that further reduce
the number of coefficients needed to describe the trans-
formed dataset in featureless parts of the spectrum as well
as through the wavelet transform which addresses the issue

by successively increasing the resolution (increase in scale)
of both the temporal and frequency domain features of the
TPI signal.

3.2.2. Wavelet coefficients as feature sets for THz pattern
analysis
The objective of feature extraction techniques is to iso-

late the relevant features from the T-ray signals to im-
prove classification performance. Wavelet transforms (WT-
s) complement the traditional Fourier-based techniques in
THz signal analysis by providing superior time-frequency
localization characteristics that are well-matched to the
requirements for the short-duration T-ray pulse signals.
Stephani et al. [132] used wavelet coefficients to extrac-
t features from hyperspectral THz-TDS datasets. The ap-
proach enabled a coarse pre-clustering operation represent-
ing the target images successfully. An alternative approach
is through the wave atoms transform (WAT) which was first
introduced by Fu et al. [133] in the context of THz tran-
sient processing of reflectance signatures. This is a multi-
resolution technique that has a sparser expansion for os-
cillatory and oriented sample textures. It can provide im-
proved resolution for pattern identification, when textural
artefacts contaminate the THz transient response is con-
cealing the compositional absorbance or reflectance of the
sample.
An alternative to occasionally generate even more par-

simonious feature matrices, reported by Yin et al. [99], as-
suming AR, MA and ARMAmodels of different order, may
also be considered, depending on the data structure. In that
approach, the averages of the modelling coefficients, (de-
noted as DC values in Fig. 7), are computed over the three
decomposition levels of the wavelet transform employed
on each data set. The model coefficient averages are then
joined to produce feature vectors with a dimension equal
to the number of sub-bands in the adopted wavelet decom-
position. The feature vectors obtained from two different
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AR orders, and MA orders may be combined respectively,
to form the final AR and MA feature matrices. The AR-
MA feature matrix is obtained by combining two different
orders of AR and MA vectors together. The extracted AR
and MA feature vectors are calculated at each decomposi-
tion level j. This approach may be introduced to further
supress the number of features in the input of the classifi-
er so as to further improve its generalization ability. The
complete procedure for calculatingDCARMA

j is depicted in
Fig. 8.

An alternative to time-frequency analysis by wavelet
transforms and further compression using MA routines is
through the use of the Radon transform. Such approach
has been used to successfully identify micro-Doppler mo-
tion of a target and has its origins in the high-resolution
radar identification community. Xu et al. [134] suggested
a combination of time frequency analysis with the Radon
transform to perform micro-feature extraction but the ap-
proach incorporates echo-cancellation which often leads to
an undesirable channel spectrum in the frequency domain,
a common source of error in TPI imaging which can really
compromise classifier performance. Alternative feature ex-
traction procedures include principal components analysis
(PCA), as discussed in [101] and [66]. The usual problem
with such approach is the necessity to have a reliable set
of calibration samples, which is often un-feasible.

3.3. Pattern Classification

In signal processing, pattern classification refers to the
separation of patterns, measured or observed, into small
classes, and then the assignment of each pattern to a par-
ticular class. The classification scheme is usually based on
training sets that have already been successfully classified
(supervised learning strategies). Learning can also be un-
supervised, but such approaches fall usually away from a
biomedical software certification perspective. The classifi-
cation or description schemes that follow are mostly based
on statistical (or decision-theoretic) approaches such as the
Mahalanobis distance classifier, the Euclidean discrimina-
tion matrix, Support Vector Machines (SVMs) and Ex-
treme Learning Machine (ELM) classifiers.

3.3.1. The Mahalanobis distance classifier via extracted
features

The Mahalanobis distance classifier [135] is a type of
minimum distance classifier, which is optimal for normally
distributed classes with equal covariance matrices (linear
discriminant) and equal a priori probabilities. Such classi-
fier is often chosen because it is simple to implement and
it provides reasonable results for a variety of biomedical
waveforms. One possible approach is to formulate the Ma-
halanobis classification scheme on a set of feature matrices
of ARMA modelled datasets after signal decomposition in
wavelet subbands [99]. For a given class, m, the distance
from a feature matrixDCl

j to the class meanAm, is defined

as

ρm(X) =
√
(DCl

j −Am)TC−1
m (DCl

j −Am) (1)

where Cm is the covariance matrix of the feature vectors
regarding classm,DCl

j with l = 1, 2, 3 represents the aver-
aged coefficients matrix related to AR (l = 1), MA (l = 2),
and ARMA (l = 3) modeling of wavelet approximation co-
efficients at three decomposition levels j, that is,DC1

j being

DCAR
j ,DC2

j beingDCMA
j ,DC3

j beingDCARMA
j . In prac-

tice, the covariance matrix is estimated from the training
vectors. During classification, the minimum Mahalanobis
distance from feature matrix DCl

j to each class centre Am

is used to assign the appropriate class label.

3.3.2. Support Vector Machine classifiers (SVMs)
Kernel based learning and support vector machine

(SVM) methodologies reside at the core of a range of inter-
disciplinary challenges. Their formulation shares concepts
from different disciplines such as: linear algebra, mathe-
matics, statistics, signal processing, systems and control
theory, optimization, machine learning, pattern recogni-
tion, data mining and neural networks. The idea of the
SVM is to map data from the input space into a high-
dimensional feature space, in which an optimal separating
hyper-plane that maximizes the boundary margin between
two classes can be established. At its core, SVMs are two-
class classifiers. In more recent times, SVMs have been
extended to solve multi-class classification problems from
noisy biomedical measurements. Furthermore, there are
several reports discussing the use of SVMs for THz mate-
rial identification. Pan et al. [136] used SVMs to classify
THz absorption spectra for the purpose of illicit drugs i-
dentification. They successfully identified seven pure illicit
drugs establishing the methodology as an efficient method
for drug identification. Fitzgerald et al. [101] applied the
SVM approaches combined with a radial basis function
to discriminate normal from malignant breast tissue from
THz-TPI. Yin et al. [129] applied SVMs to perform multi-
class classification of THz powder spectra for six types of
powder materials with similar optical properties. Fig. 9
illustrates the multi-class separation for the six types of
powder substances using SVMs. SVMs are designed ac-
cording to a pair wise-strategy. One real Gaussian kernel
with C = 1000 and σ = 1 × e−7 is used to map the input
data into a 2D Fourier feature space for visualisation pur-
poses. The support vectors indicated by cyan circles are
subsets of the training data sets and are used to construct
a two-dimensional hyper-plane in feature space, which acts
as a boundary separating each class of different powder
materials.

3.3.3. Complex Valued ELMs for classification
Our recent work [137] extended a very important class

of recently developed classifiers called Extreme Learning
Machines (ELMs) to complex valued problems [138, 139].
The motivation for the proposed extension stems from the
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a Gaussian kernel for mapping. There are 49 pixels selected randomly
from each of the six powder samples. Background colour shows clearly

the contour shape of the decision surface. The small yellow region on
the bottom of the right hand side denotes undecided classification.

fact that the real valued ELM has shown some of the low-
est training errors among machine learning algorithms and
in particular support vector machines classifiers (SVMs)
[25, 129, 140, 141]. Furthermore, existing machine learning
techniques are focused on real valued datasets. Traditional
amplitude only based pattern mining approaches of spatio-
temporal images has classification limitations in highly cor-
related time-space features. CELMadopts induced complex
RKHS kernels [142] to map inputs from complex-valued
non-linear spaces to other real valued higher dimensional
linear spaces. This permits us to classify the inputs with
linear complex valued feature vectors. It involves aspects of
quaternary classification, through the introduction of two
complex-coupled hyper-planes [143]. A widely linear esti-
mation processing approach is adopted and the argument
composed of the sum of the two parts (real and imaginary)

is employed to model the output weights connecting the
hidden layer with the feature mapping of the input into the
hidden-layer feature space. The approach enables us to de-
fine a kernel function specific for the separation of the data
in high dimensional complex coupled hyper-planes. The ap-
proach is compatible with the processing of datasets in ten-
sorial format which enable additional image features (hy-
perspectral, amplitude, phase, polarization or spatiotem-
poral components) to be simultaneously retained.
The CELM classifier approach has a very broad applica-

tions domain across the biomedical community encompass-
ing all types of research associated to the study of the inter-
action of matter with waves, and in particular spectroscopy
(acoustic, dielectric, optical, terahertz, infrared, electron-
spin resonance, nuclear magnetic or paramagnetic reso-
nance, etc.) as well as imaging and tomography modalities
encountered across the Physical, Chemical and Biomedi-
cal disciplines. It is thus fundamental both from a Machine
Learning as well as from a Chemometrics perspective [144].
Because the above relations are also analogous to the blur-
ring function (relating amplitude and phase) developed by
Bode [145] to describe the dynamics of physical systems,
CELMs have a wide range of applications across all physi-
cal sciences. A typical example of the proposed approach is
the recent study [146] which focused on the use of CELM
to perform binary and multi-class classification of RNA
and powder samples respectively on the basis of images ac-
quired by THz-TPI. The analysis was performed on large
data sets as would be the case in a typical bio-medical or
quality control setting. Classification was performed on the
basis of discernible features in the measured THz spectra.
Examples of learning vector patterns for multiclass recog-
nition via CELM, are shown in Fig. 10(a) after Fourier
transformation of the time-domain signatures and extrac-
tion of the corresponding complex valued features in fre-
quency domain, regarding phase and amplitude. We used
49 input vectors related to each powder sample for train-
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ing the classifier. Two real RKHS kernels were used for
mapping. The optimal Gaussian parameter of σ was set to
100 and the penalty parameter C was set to 0.1. The la-
bels were complex-valued and produced 12 output classes.
Background colour shows the contour shape of the decision
surface, (these are numbered from 2–12), these correspond
to the amplitude calculations derived from the sum of real
and imaginary values of the respective complex labels. It
can be observed that THz measurements of powder sam-
ples of salt, sand, talcum, are groupedmore tightly than the
powder samples of flour, soda and sugar. The labelled con-
tours that correspond to different real and imaginary parts
(the real and imaginary parts label the different classes)
are illustrated in Fig. 10(b). These regions are undecided
in the classification process and are therefore excluded to
avoid over-fitting problems.

Complex valued extreme learning machine algorithms
(CELMs) may be naturally extended to multi-pixel or voxel
images. This aims to achieve complex valued learning of 3D
inputs of complex valued features, i.e., to classify the com-
plex valued input data selected from a tensor. The proposed
approach will address aspects of quaternary classification
within a tensor algebra context. For 3D inputs, three pairs
of complex coupled hyperplanes will be designed through
orthogonal projections. The approach enables us to define
kernel function specific for the calculation of high dimen-
sional complex coupled hyper-planes. It will allow effective
classification of a more natural representation of the data
in a tensor format.

3.4. A further example for cancer diagnosis using THz
imaging and pattern classification algorithms

Eadie et al. [147] carried out multi-dimensional terahertz
imaging analysis for colon cancer diagnosis. Their research
uses decision trees to find important parameters, with neu-
ral networks and support vector machines that are used to
classify the terahertz data as indicating normal or abnor-
mal samples. This work finds the sensitivities of 90− 100%
and the specificities of 86−90% in the colon cancer diagno-
sis. Thus, the use of terahertz reflection imaging allows the
colon cancer samples to be detected via optimized analysis
of terahertz imaging data. The definitions regarding speci-
fication and specification can refer to Table 2.

3.5. Clustering techniques to segment terahertz images

Clustering, also termed cluster analysis is the formal s-
tudy of algorithms and methods for grouping unlabelled
data into subsets (called clusters) according to measured or
perceived intrinsic characteristics or similarity. Clustering
deals with data without using category labels that tag ob-
jects with prior identifiers, i.e., class labels. The absence of
category information distinguishes data clustering (unsu-
pervised learning) from classification or discriminant anal-
ysis (supervised learning). The two most frequently used

clustering techniques are the K-means and the ISODATA
clustering algorithm. Both of these algorithms are iterative
procedures. In general, both of them assign first an arbi-
trary initial cluster vector. Then each pixel is classified to
the closest cluster. Finally the new cluster mean vectors
are calculated based on all the pixels in one cluster. The
second and third steps are repeated until the “change” be-
tween the iteration is small. The ”change” can be defined
in several different ways, either by measuring the distances
that the mean cluster vector have changed from one iter-
ation to another or by the percentage of pixels that have
changed between iterations. The ISODATA algorithm has
some further refinements by splitting and merging of clus-
ters [148]. Clusters are merged if either the number of mem-
bers (pixel) in a cluster is less than a certain threshold or if
the centers of two clusters are closer than a certain thresh-
old. Clusters are split into two different clusters if the clus-
ter standard deviation exceeds a predefined value and the
number of members (pixels) is twice the threshold for the
minimum number of members.
Currently, there are several papers report clustering tech-

niques to segment terahertz images. Brun et al. [149] re-
port on terahertz (THz) time-domain spectroscopy imag-
ing of 10 µm thick histological sections, where clustering
methods is used to cluster THz spectral images that are
produced through the extracted refractive index data. The
results show that THz spectral differences exists not on-
ly between tumor and healthy tissues but also within tu-
mors. Ayech and Ziou have produced a couple of research
papers on K-means clustering methods for segmentation
of terahertz imaging. In [150], a combination of autore-
gressive (AR) model and principal component analysis (P-
CA) is proposed to extract effective temporal/spectral fea-
tures from THz pulsed images before carrying out soft de-
cision of Kharmonic-means (KHM), which outperform the
hard decision of traditional K-means. In [151, 152], a nov-
el approach of segmentation of terahertz images is pro-
posed, where the k-means technique is reformulated under
a ranked set sample. Their approach consists to estimate
the expected centers, select the relevant features and their
scores, and classify the observed pixels of THz images. This
method is essentially less sensitive to the initialization of
the centers. A more recent research represented in [153] us-
es two-step partitional clustering approach to segment THz
measurements of the inner structure of cave bear teeth. A k-
nearest neighbor graph that is built on the reduced channel
information [154] is further split into segments by a mini-
mum edge cut bi-sectioning method. The results show that
the layer-like structures are discernable within the materi-
al, giving a more detailed image of the inner structure of
the tooth. Using ISODATA algorithm to cluster THz spec-
trum for THz image segmentation was first investigated by
Berry et al. [155]. In their work, two specimens were exam-
ined in this pilot study, one of basal cell carcinoma and one
of melanoma. Unsupervised ISODATA classification using
three selected parametric terahertz pulsed images was com-
pared qualitatively with k-means classification using the
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Fig. 10. Illustration of CELM multi-class classification scheme. (a) Complex valued learning vectors for the six samples plotted to illustrate

the linear decision function among each classes by applying induced real RKHS kernels to map the complex input data into 2D complex
valued feature space. There are 49 pixels selected randomly from each of the six powder samples. The labels are complex valued, generating
12 classes. (b) Illustration of the colour coded regions with non-zeros indicated by the colour bar. The colour regions with non-zero value
indicate that the multi-class powder sample classification process remains undecided by CELM as the real and imaginary parts are not equal

to each other.

shape of the whole time series, and with conventional s-
tained microscope slides. There was good qualitative agree-
ment between the classifications. Classifications were con-
sistent with the morphological appearances expected. The
results have implications for the future development of the
technique as the need for only a small number of features
could lead to considerably reduced acquisition times.

4. Analysis of DCE-MRI data

There has been already a decade since DCE-MRI was
reported as a highly sensitive method for the detection of
invasive breast cancer [156]. Because of its high 3D resolu-
tion and its ability to acquire kinetic contrast information,
it has steadily gaining popularity over traditional diagnos-
tic techniques such as mammography or ultrasound [157].
For breast tumors, lesion diagnostic sensitivities can reach
97% [158].

However, specificity of breast DCE-MRI is still rather
low, with rates of between 30% and 70% [159, 160]. High
false positive detection rates on MRI often lead not only to
anxiety for the patient butmay also result in an unnecessary
invasive biopsy [157, 159]. This hinders its use as a routine
imaging technique in breast cancer patients. Benefits of
breast MRI include better cancer detection rates in high-
risk women and providing more information regarding the
extent of disease in women with known breast cancer.

Computer-aided diagnosis (CAD) approaches for breast
MRI are typically employed for automatically identifying
tumors from normal tissues when these are at a stage of
rapid development [8, 13, 161, 162] whereas the more com-

plex task of classifying a lesion as benign or malignant
[4, 20, 161, 163–170] is proving more difficult to address.
In clinical practice, in order to enable the interpretation of
patterns resulting from contrast enhancement across a se-
ries of MRI volumes, the intensity changes per voxel are
color-coded by an automated kinetic assessment protocol.
However, the technique is not fully automated and requires
continuous feedback from experts. A major challenge in the
diagnosis of breast DCE-MRI is the spatiotemporal associ-
ation of tumour enhancement patterns, a task that humans
are not as optimized to perform [4]. With many CAD sys-
tems now available commercially, Pan et al. [171] evaluate
which system can best help detect signs of breast cancer on
breast MRI. The most commonly used CAD systems in the
USA are CADstream (CS) (Merge Healthcare Inc., Chica-
go, IL) and DynaCAD for Breast (DC) (Invivo, Gainesville,
FL). Their primary objective in this study was to compare
the CS and DC breast MRI CAD systems for diagnostic ac-
curacy and postprocessed image quality. The experiments
were to evaluate 177 lesions in 175 consecutive patients who
underwent second-look ultrasound guided biopsy or MRI-
guided biopsy. The results illustrate that the two CAD sys-
tems had similar sensitivity and specificity (CS had 70 %
sensitivity and 32 % specificity whereas DC had 81 % sen-
sitivity and 34 % specificity). Both CS and DC had a high
sensitivity for detecting malignant lesions on breast MRI;
however, neither system significantly improved specificity
for the diagnosis of benign lesions. The ROC curve plots
using both CS and DC systems are illustrated in Fig. 11.
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Fig. 11. ROC curves of the mean scores for the CADstream and the
DynaCAD for Breast systems. The figure shows the ROC curves
based on the two mean diagnostic scores of the three raters for each

software system. CS CADstream, DC DynaCAD for Breast, AUC
area under the curve, ROC receiver operating characteristic. After
[171].

4.1. Outlook for future tensorial and Clifford algebra based
feature and image registration

In dynamic pattern recognition methods for the anal-
ysis of DCE-MRI, the emphasis has been on either high
temporal resolution and empirical analysis [94, 172] or on
high spatial resolution with a stand-alone morphologic fea-
ture extraction [172, 173]. Time-series analysis is a time-
consuming task due to spatiotemporal lesion variability,
and changes in spatial intensity of imaged tumours are oth-
er problems that cause an inherent difficulty in segmenta-
tion of an object of interest [174]. For example, Fig. 12(a)
depicts an imaged ductal carcinoma in situ (DCIS). While
the parts depicted by the arrows show the same anatomical
structure taken from the same tumour region, the intensity
values are different. The intensity indicated by a yellow ar-
row is higher than the intensity indicated by the red arrows.
After conducting intensity based segmentation as illustrat-
ed in Fig. 12(b), the region with low intensity may feature
as a gap separating the image into two disconnected parts.
The gap forms an area without edge. A multi-channel clas-
sification method that consider the associations between s-
patial and temporal features of high-dimensional images is
proposed in order to achieve accurate diagnosis of tumour
tissues. The detection of anomalies in spatiotemporal data
is an emergent interdisciplinary topic that involves highly
innovative computer science methods. Mining spatiotem-
poral patterns is critical for the correct identification of
tumour anomalies in DCE-MRI and yet remains challeng-
ing because of complexities in analyzing the time-series of
three-dimensional image data.

Tensor decomposition of high-dimensional medical im-
age data, i.e. fMRI, has gradually drawn attention since it
can explore the multi-way data’s structure which exists in-
herently in human organic imaging [175]. Tensors are mul-

timode (multi-way) arrays, of whom vectors (i.e., one-mode
tensors) and matrices (i.e., two-mode tensors) are special
cases. The tensor representation captures useful informa-
tion that is difficult to provide in a conventional vectorial
formalism. To effectively utilize the rich information con-
tained in tensors, we propose to extend the CELM for ef-
fective tensor classification. Since most standard learning
algorithms assume data instances are feature vectors, it is
not straightforward to apply these algorithms on tensori-
al data. The CELM method enables the identification and
learning of inter-mode relations of features.
Unlike classic SVMs, the complex valued hyper-planes of

CELM are addressed via calculating the smallest norm of
output weights with the smallest training error in a simi-
lar manner as in ELM, which discards the normal thresh-
old found in SVMs, without calculating support vectors.
The extended CELM has significant potential to solve com-
plex valued problems for multiclass classification of tensori-
al datasets with dramatically reduced computational com-
plexity and significantly improved computational speed. It
enables the classification of tensorial data while preserving
information associated with adjacent and overlapping data
vectors as well as differentially extracted features.
Registration of images is a crucial step in many image

processing applications where the final information is ob-
tained by combining multiple input images. In many appli-
cations multi-channel images are available, which require
adequate processing of vector data. However, traditional
approaches in achieving multi-channel image registration
can cause inaccuracies by introducing information loss or
misinterpretations and may lead to inappropriate results.
An alternative way to perform registration of multichannel
images described by associated vectorial datasets is through
the use of Geometric Algebras (such as Clifford Algebra).
The main advantage of this algorithm is that it directly op-
erates on the multichannel signal, instead of scaling the sig-
nal down to one dimension (e.g. by averaging) and thereby
loosing a lot of information.

4.2. Performance measures

Evaluation of diagnostic tests is a matter of concern in
modern medicine not only for confirming the presence of
disease but also to rule out the disease in healthy subject-
s. The diseased subject detection process via DCE-MRI
aims to achieve voxel-based classification result. From the
frequency of test results among patients with and without
disease based on gold standard, any voxel in MRIs can be
classified either as diseased or surrounding tissue. Conse-
quently, there are four possibilities; two classifications and
two misclassifications. The classifications are the true posi-
tive (TP) and the true negative (TN) where the number of
tumour voxels and background voxels which are correctly
detected respectively; the false positive (FP) is the num-
ber of pixels not belonging to a vessel, but is recognised as
one, and the false negative (FN) is the number of pixels be-
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Fig. 12. (a) illustration of intensity inconsistency for breast tumour tissue images. Yellow arrows indicate a high intensity and red arrows
low intensity. (b) Illustration of intensity based segmentation with inhomogeneous boundaries; yellow arrows indicate an irregular ring region

with hole inside and a green arrow indicates missing areas.

longing to a vessel, but is recognised as background pixels,
mistakenly.

One can further derive the probability of a positive test
result for patients with disease and the probability of nega-
tive test results for patients without disease. The true pos-
itive rate (TPR) represents the fraction of voxels correctly
detected as diseased voxels. The false positive rate (FPR) is
the fraction of voxels erroneously detected as diseased vox-
els. The accuracy (Acc) is measured by the ratio of the total
number of correctly classified voxels (sum of true positives
and true negatives) to the number of voxels in the image
field of view. Sensitivity (SN) reflects the ability of the algo-
rithm to detect the diseased voxels. Specificity (SP) is the
ability to detect non-diseased voxels. It can be expressed
as 1-FPR. The positive predictive value (PPV) gives the
proportion of identified diseased voxels which are true dis-
eased voxels. The PPV is the probability that an identified
diseased voxel is a true positive.

A receiver operating characteristic (ROC) analysis has
become a popular method for evaluating the accuracy of
medical diagnostic systems. ROC curve plots the fraction
of diseased voxels correctly classified as diseased tissues,
namely the TPR), versus the fraction of non-diseased voxels
wrongly classified as diseased voxels, namely the FPR).
The better performance of the system is closer to the upper
left hand corner of the ROC space. The most frequently
used performance measure extracted from the ROC curve
is the value of the area under the curve (AUC) which is
1 for an optimal system. For MRI images, the TPR and
FPR are computed considering only voxels inside the FOV.
Table 2 summaries the performance metrics used by DCE-
MRI image segmentation algorithms.

Table 2
Performance metrics for diseased tissue detection process via DCE-
MRIs

Measure Description

TPR TP/deased voxel count

FPR

FP/non-diseased voxel count Specificity TN/(TN + FP)

Sensitivity TP/(TP + FN)

Accuracy (Acc) (TP +TN)/FOV voxel count

4.3. Extensions to multi-channel classifiers

Using tensor algebra can assist analysis of spatiotempo-
ral associated features and will allow development of a mul-
tidimensional unified MRI framework for processing DCE-
MRIs. Mining spatiotemporal associated features of lesions
from MRIs can increase the accuracy and efficiency of pat-
tern identification. Current DCE-MRI is not sufficiently ac-
curate for the early detection of tumours because of a lack
of association between the spatial and temporal features.
In this section, we introduce a novel dynamic tensor re-

construction algorithm aimed at principal component sep-
aration. This is addressed via an offline tensor analysis al-
gorithm (OTA) in combination with PCA. It focuses on
the analysis of dynamic projection matrices for principal
component separation of cancerous and healthy tissues.
Figure 10(a)-(e) provides an illustration of the d-

ifferentiation between the fourth post-contrast en-
hanced images and base line images from layer 71
to layer 75. (a)-(e) Illustration of the differentia-
tion between the fourth post-contrast enhanced im-
ages and base line images from layer 71 to layer 75.
Plsease revise this paragraph as suggested by our
first reviewer. (f)-(j) Illustration of the images achieved
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by applying the proposed tensor reconstruction algorithm
on six subtracted images with different time frames, one
of which is illustrated in (a)-(e). (k)-(o) Illustration of the
extracted volume image in relation to tumor region via ap-
plying FCM on the reconstructed images shown in (f)-(j).
The tensorisation of DCE-MRI is reconstructed via multi-
dimensional unified analysis of MRI data according to ten-
sor factorization. One of the advantages of such a recon-
struction is to blend the temporal information into spatial
voxels and projecting four dimensional time-spatial vectors
into a three dimensional space that shows spatial and tem-
poral information fusion with decreased number of dimen-
sions for reduced computation cost.

4.4. Image registration of DCE-MRIs

In DCE-MRI, there are (i) spatial motion artefacts
caused by patient movement, respiratory motion, intestinal
peristalsis and cardiac pulsations during data collection
[176–178], and (ii) signal intensity changes in T1-weighted
images when the contrast agent diffuses out from the vas-
cular tissue and accumulates in the interstitial space. These
signal intensity variations lead to contrast agent concen-
tration estimation errors which can further amplify errors
in pharmacokinetic models of tissue blood volume and
vascular permeability compromising evaluations of thera-
peutic response [179]. Proper registration of pixels in the
chosen co-ordinate frame is a critical step in the data ac-
quisition process as uncorrected voxel displacements from
the motion artefacts will corrupt the voxel information.

In DCE-MRI data, there are also further challenges as
time progresses after compound injection. Both rigid (align-
ment using only translation and rotation) and non-rigid
algorithms (associated with more complex deformations)
have been proposed for image registration, i.e. in DCE-
MRIs of kidney [180], breast [181], liver [182], lungs [183,
184] and the heart [185]. Reviews discussing advances in
DCE-MRI image registration can be found in [176, 186,
187]. A conceptually straightforward rigid transformation
is through manual delineation of the volume images of the
target object after aligning the centers of gravity [188]. An
automated feature-based algorithm has been presented by
Song et al. [189]. In this work, wavelet-based edge detection
is followed by the computation of a geometric transforma-
tion based on a Fourier transform. Zikic et al. proposed a
locally rigid registration algorithm with a gradient-based
similarity measure to allow for global changes in kidney en-
hancement [180]. Another approach is to register the images
by optimizing the fit of the enhancement curves to a phar-
macokinetic model [190] and [191]. Nonrigid algorithms in-
clude a vertical, deformable transformation minimizing a
cost function which suppresses motion and smoothes the
enhancement curves [192] while at the same time maximize
the mutual information using a cubic B-splines deformation
[181, 193]. More recent approaches to registration aim to
incorporate additional a priori information based on specif-

ic anatomical markers [194], volume preservation of tissue
[195] or local rigidity assumptions[196]. Schäfer et al. [197]
propose a regional segmentation approach to study breast
tissue lesions taking into consideration whether there was
an observed similarity in the tissue perfusion characteris-
tics, thus improving on single voxel-based approaches [198].
This approach has also additional advantages from a clini-
cal diagnostics perspective.
Current literature [182] suggests that there are advan-

tages in non-rigid registration when compared to rigid reg-
istration. For non-rigid registration, deformable image reg-
istration of DCE-MRI time series is accomplished using
(normalized) mutual information (MI) [178, 199] approach-
es. Normally, the images contain edge information between
various tissue types. A gradient dependent cost functional
is proposed for registration. In recent work, it was shown
that normalized gradient fields (NGF) provide a viable al-
ternative to MI for the registration of DCE-MRI images
[176].
An alternative approach to non-rigid motion correction

uses a Bayesian framework [200] to provide pharmacokinet-
ic parameter estimation in DCE-MRI sequences. A physi-
ological image formation model is used to provide the sim-
ilarity measure used for motion correction. Hodneland et
al. [176] compared a normalized gradients approach with
the mutual information approach for motion correction of
DCE-MRI datasets and showed that using cost function-
s based on normalized gradients can successfully supress
artefacts from moving organs in clinical DCE-MRI records.
An alternative approach, proposed by Lin et al. [201] dis-

cusses a respiratory motion-compensated DCE-MRI tech-
nique using k-space-weighted image contrast (KWIC) ra-
dial filtering. The technique combines the self-gating prop-
erties of radial imaging with the reconstruction flexibility
provided by the golden-angle view-order strategy. The sig-
nal at the k-space center is used to determine the respi-
ratory cycle, and consecutive views during the expiratory
phase of each respiratory period are grouped into individ-
ual segments. The principle is to divide k-space into con-
centric rings. The boundary of each circular region is de-
termined by the Nyquist criterion, after assuming that the
views within each region have uniform azimuthal spacing.
The feature extraction algorithms mentioned earlier are

relevant to both medical image registration as well as mo-
tion compensation [202, 203]. An alternative approach to
localize anatomical features in DCE-MRI is using level sets,
an approach originally proposed in [204, 205]. The method
is applicable to post-contrast enhanced MR images to de-
lineate the variable shape of features of interest. Yin et al.
[206] proposed such approach to localize anatomical fea-
tures in-breast costal cartilage imaged using DCE-MRI.
The contours in each layer are cumulatively added to the
first contour to produce the results illustrated in Fig. 14(a).
The shape of the feature of interest clearly varies from lay-
er to layer. The variable shape of contours acquired from a
level-set-based segment image actually determines the fea-
ture region of interest. This is subsequently used as a guide
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Fig. 13. Tensor reconstruction of preprocessed DCE-MRIs. (a)-(c) Illustration of the differentiation between the fourth post-contrast enhanced

images and base line images from layer 71 to layer 75. (d)-(f) Illustration of the images achieved by applying the proposed tensor reconstruction
algorithm on six subtracted images with different time frames, one of which is illustrated in (a)-(c). (g)-(i) Illustration of the extracted
volume image in relation to tumor region via applying FCM on the reconstructed images shown in (d)-(f).

to specify initial masks for feature extraction. Fig. 14(b)
shows the superposition of the mask and the level-set based
projection of Fig. 14(a). The motion action of the fourth
pair of breast costal cartilages are obtained by re-projecting
the resultant segments from transaxial planes to sagittal
planes. Rotational motion artefacts in the DCE-MRI are
illustrated in Fig. 14(c).

4.5. Pattern identification of spatiotemporal association
features of tumours in DCE-MRI data

One of the current challenges in breast DCE-MRI as
a screening modality is reducing false positive detection
errors, thereby boosting detection specificity. Computer-

aided diagnosis (CAD) approaches for breast MRI are typ-
ically employed for automatically identifying tumors from
normal tissues when these are at a stage of rapid devel-
opment [8, 13, 161, 162] whereas the more complex task
of classifying a lesion as benign or malignant [4, 20, 161,
163–170] is proving more difficult to address. In dynam-
ic pattern recognation methods, the emphasis has been
on either high temporal resolution and empirical analy-
ses [4, 17–20] or on high spatial resolution with a stand-
alone morphologic feature extraction [4, 8, 9, 162, 167, 170].
Even though time-series analysis enables radiologists to in-
fer information regarding the tissue state, such assessmen-
t is a time-consuming task, because of spatiotemporal le-
sion variability. Currently, most studies consider aggregate
measurements for tumour morphological characterization
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Fig. 14. (a) Cumulative contours from 25 layers’ result from the level-set method, with two white arrows indicating the positions of features
of interest. (b) Illustration of the superposition between the total segment and the level-set based segment. (c) Illustration of the 3D plots

of plane centroid produced datasets.

[4, 162, 170] with an initially model-free [162, 170] and
data-driven [13, 161] segmentation according to manually
marked region-of-interest (ROI).

Common practice in these methods is to process the im-
aged 3D volumes separately, and then incorporate the tem-
poral information into the spatial databases through a sep-
arate processing step. Image reduction based feature ex-
traction enables identification on the basis of the dominant
features present in the image. For example, in [14, 15], prin-
cipal component analysis (PCA) was applied on enhanced
and scaled datasets for a whole 2D object region obtained
by DCE-MRIs. This is in contrast to traditional PCA ap-
plied in two-dimensional MRI image analysis ignoring any
spatial information associated with a time series evolution
of disease progression. To address the issues of low specifici-
ty and high inter-observer variability in breast DCE-MRI,
the analysis of spatiotemporal patterns remains challeng-
ing [4] and requires the development of new software tools.

Representation of multi-dimensional features in a tensor
space is a relatively new concept in the computer science
and pattern recognition literature. The motivation of us-
ing tensor decomposition is to explore via multimode data
analysis of image arrays the spatiotemporal correlations of
sequences of DCE-MRI images. Recent work [207] shows
that there is potential to identify tumour shape by com-
bining non-negative tensor decomposition and directional
texture synthesis. The approach uses symmetry informa-
tion about 3D shapes that is represented by 2D textures
synthesised from sparse, decomposed images.

Tensorial analysis is directional so interactions of compo-
nents within the associated matrices provide additional de-
grees of freedom for data analysis, enabling spatiotemporal
data correlations to be made along each co-ordinate direc-
tion as shown in Fig. 15(a). Isolation of such correlations in
each co-ordinate plane can provide a clearer picture of dis-

ease proliferation. A third order tensor that may be associ-
ated with a DCE-MRI dataset is illustrated in Fig. 15(b)-
(d). Fig. 15(e) illustrates the way to flatten the third order
tensors along frontal slices.
Tensor factorisation of a 3D spatial matrix uses multi-

linear algebra to analyse an ensemble of volume images,
in order to separate and parsimoniously represent high-
dimensional spatial datasets into constituent factors [208].
The 3D spatial image datasets are treated as a third order
tensor. The image dataset tensor A(3) ∈ RI1×I2×I3 is de-
composed [209] or factorised to a core tensor C ∈ RJ1×J2×J3

and three different modes of 2D image matrices X(n) ∈
RIn×Jn , n = 1, 2, 3, as illustrated in Fig. 15(f).
In our recent research [207], we explored tensor decompo-

sition for the identification of shape with mirror symmetry.
We conclude that if both the first mode matrix (i.e. along
the y and the z axes) and second mode matrix (i.e. along
the x and the z axes) are symmetric, the frontal plane (a-
long the x and the y axes) is a mirror symmetric plane, and
vice versa.
Spatial shape datasets with a simple geometry is used

for an illustration purposes. Fig. 16 illustrates the three-
dimensional mirror symmetry analysis of a spherical object
with a radius of 31 pixels. Fig. 16(a) illustrates that the
flattened basis images are cropped in the middle area after
non-negative tensor decomposition of the sphere. As an ex-
ample, it is obtained via tensor multiplication of the core
tensor, first mode and second mode matrices. Fig. 16(b) il-
lustrates sparse texture extraction of the spherical object.
Fig. 16(c) shows a synthesis of the extracted texture re-
garding the sphere. The resultant synthesised image is sym-
metric with both vertical and horizontal symmetric axes,
which means the object is symmetric with the frontal plane
as a reflective mirror.
A second case is to explore the mirror symmetry of brain
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Fig. 15. (a) Illustration of the directions regarding the x-, y-, and z-axis. (b), (c), and (d). Illustration of three direction slices of a third
order tensor: horizontal, vertical, and frontal, respectively, which are perpendicular to the x-, y-, and z-axis, respectively. (e) Illustration of
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direction are involved to form an image matrix. (f) Illustration of a third-order decomposition.
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Fig. 16. Illustration of three-dimensional mirror symmetry analysis of a spherical object. (a) Non-negative tensor decomposition. (b) Sparse

texture extraction. (c) Synthesis of the extracted texture.

23



structural MRI of white mass with rough resolution. The
MR image size is 47× 58× 43. Fig. 17 (a)-(c) illustrate one
of the 2D cross-sectional slices along a horizontal plane,
vertical plane, and frontal plane. Fig. 17 (d) illustrates a
brain slice image with asymmetry along an x-y plane.

The generated 3D images with symmetry and asymme-
try are assembled into the third order tensors and non-
negative tensor decomposition is applied to factorise the
non-negative tensors to factors, with the core tensor size of
32× 32× 32 and the flatten basis image size of 58× 1024.
The center region of the basis images is cropped to a size of
58×180. Fig. 18(a)-(d) illustrate the resultant synthesis for
the symmetric MRI, and the generated the first (with 15
asymmetric layers), the second (with 25 asymmetric layer-
s), and the third (with 35 asymmetric layers) asymmetric
MR images.

To ascertain the degree symmetry (or the lack of it), (i)
k means clustering is used to group the synthesis pattern-
s and find the associated 2-dimensional geometric pattern;
(ii) histogram images from the synthesis patterns are used
to evaluate the degree of intensity symmetry in the im-
age. In this way, the analysis of 3D shape can be mapped
into 2D space, therefore, performing the required dimen-
sionality reduction. The current study thus proposes a way
forward towards addressing the challenges associated with
tensor decomposition of MRIs for abnormality detection of
simulated breast tumours.

This is currently most relevant to MRI in clinical prac-
tice, but can benefit the TPI community, especially if such
systems are to soon undergo further clinical trials.

5. Conclusion and future work

This work considered commonalities in datasets acquired
using TPI and DCE-MRI measurement modalities. Both
approaches are currently being explored as viable alterna-
tive imaging modalities to assess disease proliferation in a
non-invasive manner. DCE-MRI is well established and as
such it is regularly used in clinical environments. In con-
trast, TPI has yet to gain popularity although there is a
general recognition of its potential to provide complemen-
tary information to clinicians.

TPI scans provide information from individual pixels
that show wavelength dependent attenuation, dispersion
and phase delay according to the state of hydration of the
tissue. Specific vibrational signatures may also be identi-
fied in the frequency domain after Fourier transformation
of the time-domain data. Similarly, MRI datasets are based
on observations of de-excitation lifetimes so there are com-
mon grounds for the signal processing of both signal types.
Furthermore, in both cases, specific signatures may be iden-
tified and assigned to biomarkers to improve on specificity
and additional molecular identification of compounds.

Both systems have slow image acquisition rates. This can
be distressing to patients in a clinical environment and leads
to movement artefacts which need to be corrected. Correc-

tion algorithms using image registration can account for the
movement of organs in DCE-MRI, but have yet to be used
by the TPI community. Signal de-noising is more advanced
in the THz community, whereas techniques for sparser da-
ta acquisition are more developed in the MRI community.
There is therefore scope for placing these algorithms in a
more unified framework. Both scanning systems generate
very large datasets which need to be appropriatelymanaged
by trained professionals. In addition, both systems can be
enhanced by pulse shaping methodologies that can selec-
tively excite molecular systems. Pre-processing using adap-
tive signal apodization, can maximize the resolving power
of the imaging system. The fitting of ARX, ARMAX and
subspace identification models can provide a more parsi-
monious signal representation that can facilitate de-noising
and extract de-excitation lifetimes in a very parsimonious
manner. In TPI, wavelet de-noising, especially using adap-
tive wavelets can compress the signals to a few coefficients
before introducing them into a classifier. SURE de-noising
provides a universally accepted way to perform threshold-
ing of coefficients associated to any of the above data trans-
formations. Modelling using fractional order system iden-
tification routines is also an important emergent modality
of relevance to both imaging systems.
To achieve accurate detection and diagnosis of tumours,

emphasis should be placed on the analysis of spatiotempo-
ral features using a unified perspective. Automatic classifi-
cation may be performed using either Mahalanobis, SVM
or ELM classifiers. In the case of SVM and ELM algo-
rithms, their complex extensions are more useful because
features in amplitude and phase or time and frequency re-
spectively may be simultaneously presented to the classi-
fier as different entities. Separately tuned kernels for the
real and complex parts of the signal can improve classifi-
cation accuracy. Extensions to multi-channel kernels using
quaternary algebra and tensorial image registration enable
additional measurement parameters to be considered such
as state of polarization, or additional image morphological
features such as tissue folds and striations that account for
different degrees of dispersion of the signal in preferential
directions across an image to be taken into consideration
at the input space of the classifiers. Such approach can lead
to improved classification accuracy. Multi-channel classi-
fiers also enable information from other sensing modalities
associated to image de-blurring to be taken into consider-
ation in the classification task. Such approach also enables
information from images at different time stamps to be also
fused before being presented to the classifier.
The observed commonalities in the signal processing of

both datasets demonstrate that it is natural to envisage fu-
ture systems combining both diagnostic capabilities. There
is thus a need to integrate the proposed algorithms under
a single software environment for data analysis and visual-
ization. Such approach will potentially lead to automated
quantitative assessment of disease proliferation in a man-
ner that may be accepted by clinicians.
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Fig. 17. Illustration of the mirror symmetry of brain structural MRI with rough resolution. The brain MRI size is 58 × 47 × 43. (a)-(c)
Illustration of 2D cross-sectional slices along a horizontal plane, vertical plane, and frontal plane. (d) Illustration of a brain slice image with
asymmetry along an x-y plane.
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Fig. 18. Illustration of the synthesised images related to the generated 3D brain structural MR image with symmetry (refer to Fig. 17(a)-(c))
and asymmetry (refer to Fig. 17(a),(b), and (d)). (a)-(d) Illustration of the resultant synthesis for the symmetric brain structural MRI,
and the generated the first (with 15 asymmetric layers), the second (with 25 asymmetric layers), and the third (with 35 asymmetric layers)

asymmetric brain structural MR images, respectively.
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