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Abstract 

Aim 

To propose a general approach to spatially synthesize known predictors of vulnerability at the 

species level in order to identify areas directly associated with specific conservation problems. Under 

this problem-detection framework, the coincidence or divergence of main strengths and weaknesses 

can be used to propose tailor-made conservation strategies. This approach is illustrated for terrestrial 

mammal species evaluating two of their main components of vulnerability: life-history traits and 

land use pressure.  

 

Location 

Global. 

 

Methods 

We determine, at the species level, the relationships between extinction risk and two well-known 

predictors of vulnerability: life-history traits (intrinsic) and land use (extrinsic). Transferring these 

findings into the spatial domain, we identify the areas of the world where one of these two facets is 

predominant and those areas where both coincide.  

 

Results  

The proposed approach allows us to recognize four types of areas: 1) double-susceptibility areas: 

where both the characteristics of the species and the existing human activities pose a threat, therefore 

the simultaneous management of both species/habitats and human activities are needed; 2) intrinsic-

susceptibility areas: where species are naturally fragile and human presence is scarce, thus species-

specific management plans would be particularly efficient; 3) extrinsic-susceptibility areas: where 

human pressure is high but species are not intrinsically vulnerable; which requires special attention 
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to human activities; and 4) low-susceptibility areas: where there are not remarkable threats for 

existing terrestrial mammals, which additionally are not particularly fragile.  

 

Main conclusions 

Our approach can spatially synthesize known predictors of vulnerability identifying areas where 

different factors predispose species to become extinct. This method builds on conservation planning 

approaches by targeting actions based on known strengths and weaknesses of a given area, and 

offering a new implementation of comparative studies of extinction risk. This approach may be 

applied to different species and to particular regions, focusing on different drivers, and 

complemented by incorporating social and economic trade-offs. 
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Introduction 

Since Myers (1989, 1990) first identified the now-famous global hotspots of biodiversity, many 

different criteria have been applied to identify areas of the planet that most "deserve" limited 

conservation resources (e.g. Olson & Dinerstein 2002) and numerous methods are available to define 

optimal networks of protected areas (Moilanen et al., 2009). While the practical applications of 

global prioritization studies have been debated (Tulloch et al., 2015), it is accepted that these efforts 

are important to raise awareness about where the critical areas and species to preserve are. Indeed, 

these studies can have great success in mobilizing resources; e.g., by 2003 over US$750 million in 

funding had been invested in the global hotspots identified by Myers (Brooks et al., 2006). 

Systematic conservation planning (SCP) focuses on the spatial facet of conservation actions 

by identifying important areas for biodiversity that may be considered for protection (Watson et al., 

2011), aiming to optimize the benefits per investment of proposed conservation measures and to 

achieve economically feasible targets (Naidoo et al., 2006; Underwood et al., 2008). SCP largely 

relies on the concepts of irreplaceability (likelihood that a site is strictly necessary to meet some 

targets, e.g., preserve the maximum functional diversity) and vulnerability (risk of a site being 

transformed, e.g., by human use of land), considering that high values of both are desirable to 

prioritize an area (Margules & Pressey, 2000); however, additional properties can be defined to 

select areas to preserve (see Kukkala & Moilanen 2013 for a review). Furthermore, some studies 

have incorporated species’ intrinsic traits to identify areas to prioritize, e.g., sites where more species 

are likely to become threatened (Cardillo et al., 2006), or where species recovery would be more 

probable (Di Marco et al., 2012), demonstrating the value of including knowledge at the species’ 

level into conservation planning.  

Nevertheless, conservation-prioritization schemes are supposed to prescribe more than areas 

to protect (Game et al., 2013). There is a broad spectrum of proposals to complement this approach, 

such as land use zoning, which proposes a range of management actions for the whole territory 
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(Watts et al., 2009); prioritizing management of specific threats according to local sensibilities 

(Carwardine et al., 2012; Auerbach et al., 2015); dynamic reserves’ delimitation, accounting for 

dynamic features of the landscape (Leroux et al., 2007); or specific plans for most endangered 

species (Vargas et al., 2008), among others. In fact, most of the world land is not a protected area 

(IUCN & UNEP-WCMC, 2015), but other conservation actions can, to a greater or lesser extent, be 

implemented independently of the protection level of an area; thus there is a need to create guidelines 

to identify what can and should be done in different regions. Complementing SCP with a global 

framework to prioritize conservation actions should provide the next step in the identification of 

valuable areas for conservation while offering practical information relevant for conservation 

management.  

At the species level, the comparative literature on extinction risk has dedicated considerable 

effort to identify key factors that make some species more vulnerable to extinction. Some of these 

studies have concentrated on intrinsic species traits (Davidson et al., 2009; González-Suárez & 

Revilla, 2013), others have focused on external drivers related to the degree of anthropization within 

species geographic range (Pekin & Pijanowski, 2012), and some have combined both aspects to 

compare the importance of intrinsic vs. extrinsic predictors of vulnerability (Cardillo et al., 2005), or 

to explore their interactions (González-Suárez et al., 2013). Vulnerability reflects a combination of 

the intrinsic characteristics of the species and the extrinsic human threats to which it is exposed. 

Incorporating this knowledge into to the spatial facet may help to prioritize actions according to the 

particular weaknesses and strengths of different areas.  

One step forward in the delimitation of areas for conservation is to consider the processes 

leading to vulnerability in order to develop more targeted conservation actions. In this study we 

incorporate information on the main predictors of vulnerability at the species level —both intrinsic 

and extrinsic— and then map areas where they differentially occur, aiming to prioritize conservation 

actions according to the main weaknesses and strengths of each area. To illustrate our approach, we 
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use global data on terrestrial mammals because this is a charismatic, well-studied group for which 

data are available at the global scale. 

Particularly, we identify intrinsically vulnerable hotspots using data on species’ traits that 

have consistently been associated with vulnerability to extinction at the species level. Additionally, 

we define extrinsically vulnerable areas as those with higher levels of anthropization, reflecting 

primarily human land use as a key global threat for mammals. Overall vulnerability is then evaluated 

combining both types of factors to obtain a global zonation that differentiates susceptibilities and 

thus, allows distinguishing areas in which different conservation management strategies (e.g., 

manage the species, manage human activities, or both) may be advisable. The present study does not 

aim to be a comprehensive review of all known vulnerability factors for particular species or to 

propose a final global prioritization map for mammals. Instead, we propose and illustrate the 

potential of an easy-to-implement approach to detect areas of susceptibility and frame conservation 

actions. Although we use terrestrial mammals as an example here, focusing on few key predictors at 

a global scale, this approach could be extended to other taxa, other spatial scales, and to include 

different or additional predictors of vulnerability, with the only constraint of data availability.  

 

Methods  

To define spatially-explicit intrinsic and extrinsic vulnerability maps we followed two steps briefly 

summarized here and described in more detail in the next sections. First, we fitted regression models 

at the species level (species-based models) to define relationships between predictors of intrinsic or 

extrinsic vulnerability (PV) and global threat status (Fig.1, A-B). Species’ threat status was defined 

using the IUCN Red List (IUCN, 2014) with categories converted into an ordered numeric scale (LC, 

0; NT, 1; VU, 2; EN, 3; CR, 4). Second, we used the obtained regression's coefficients to spatially 

predict vulnerability (spatial predictions) according to the characteristics of the terrestrial mammals 

occurring within each 1ºx1º cell of a grid covering the world’s land surface (intrinsic vulnerability), 
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and according to the human land use within each cell (extrinsic vulnerability. Fig. 1, C-D). Finally, 

we spatially quantified the degree of agreement/disagreement of both vulnerability predictions by 

means of bivariate local spatial autocorrelation (Fig. 1E; see below). All spatial data were convened 

using the equal-area projection Eckert IV, WGS84, in ArcView 3.2 and ArcGIS 9.3 (ESRI, 1999, 

2008). 

 

Species-based models: Intrinsic predictors of vulnerability  

The selection of traits included in the analyses was based on results from previous studies of 

extinction risk in terrestrial mammal species at the global scale. A recent publication (Verde 

Arregoitia, 2016) exhaustively reviews this issue. Excluding studies focusing on particular 

mammalian groups or regions (which have a different scope than the present study) we identified 11 

global studies —from the 68 in the review— covering terrestrial mammals in general (see Table S1 

in Supplementary Information). Those 11 studies consistently tested and identified as relevant four 

traits: adult body mass, geographical range, population density and weaning age (Figure S1). These 

four traits were also consistently identified as most relevant in the general review, considering 

regional- and taxa- specific studies, completed by Verde Arregoitia (2016).  

For our analyses we retrieved species-level data for adult body mass, population density and 

weaning age from the freely available PanTHERIA database (Jones et al. 2009; Table S2). Estimates 

of the geographic range area for each species were calculated using the IUCN distribution data 

(IUCN 2014) for terrestrial mammals, selecting only areas identified as native in origin and presence 

classified as extant or probably extant. We acknowledge that current geographic range is not a purely 

intrinsic characteristic of a species, since it is widely influenced by external factors, such as climate 

or human activities (Laliberte & Ripple, 2004; Di Marco & Santini, 2015). Still, geographic range 

sizes capture ecological and dispersal attributes that can influence extinction risk and are not well-
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captured by any of the other intrinsic or extrinsic vulnerability indicators included in the present 

work. 

We accounted for lack of independence when working at the species level by adjusting 

phylogenetic generalized least-squares (PGLS) regressions based on the updated mammalian 

supertree of Bininda-Emonds et al. (2007) presented by Fritz et al. (2009). PGLS models were fitted 

using the procedure pgls within the R-package 'caper' (Orme et al., 2013; R Core Team, 2014). 

Correlation among predictors was tested to avoid collinearity (Table S3). Population density was 

excluded, due to its high correlation with adult body mass (ρ =-0.76) and its lower sample size. 

PGLS included the selected intrinsic traits as independent variables (log10-transformed) and the 

numeric IUCN threat status as the dependent variable. This simplification considers IUCN categories 

as a continuous and thus, assumes differences among categories are equal, which may not be 

realistic. Nevertheless, using a numeric threat status allows us to account for phylogenetic signal in 

explanatory variables, to rank predictions from lower to higher risk, and to easily compare our 

findings with previous literature using equivalent approaches (e.g. Purvis et al., 2000; Di Marco et 

al., 2012). Species with status defined as Data Deficient (DD), Extinct (EX) or Extinct in the Wild 

(EW) were not considered for the analysis (NDD=788; NEX=73; NEW=2). To avoid circularity we 

excluded species listed as threatened by the IUCN under criteria B (based on the size of their 

geographic range, N=554). In addition, some species could not be included because phylogenetic 

relationships were not defined (N=13) or trait data were not available for all three traits (N=2953). 

The final model was fitted for 981 terrestrial mammal species.  

Acknowledging the reduced and biased sample size representing intrinsic vulnerability of 

terrestrial mammals, we fitted alternative models to assess sensibility of results to data availability. 

To increment the sample size, we (1) included all terrestrial mammals not excluding species listed 

under criterion B but eliminating geographic range as a predictor (sample size increased to N=1027); 

and (2) built a model including the two most data-complete and least correlated traits: body mass and 
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geographic range (Table S3; sample size increased to N=2747). (3) We considered the option of 

imputing missing data as done in recent studies based on large incomplete trait databases (Di Marco 

& Santini, 2015), acknowledging that they are likely missing not at random (Nakagawa & 

Freckleton, 2008). To do that, we employed the phylopars and phylopars.predicts functions from the 

‘Rphylopars’ package in R (Goolsby et al., 2015); this approach incorporates phylogenetic 

information and relationships among variables to impute data and has been shown to perform well 

imputing data for similar traits (Penone et al., 2014). However, for weaning age we lack data for 

>70% of species, thus, results based on imputed data need to be interpreted with caution. Lastly, to 

explore the biases in data availability between small and large species (because the latter are better 

studied; González-Suárez et al. 2012) we performed separate analyses for small (body mass ≤3kg; 

Cardillo et al. 2005) and large mammals (body mass> 3kg).  

 

Species-based models: Anthropogenic predictors of vulnerability 

We estimated the degree of anthropization within each species geographic range based on the 

anthromes global classification by Ellis & Ramankutty (2008). In particular, we used the series 

corresponding to the year 2000 from “Anthropogenic Biomes v.2” (Ellis et al., 2010). This 

classification provides an integrated perspective with a gradient ranging from low to highly modified 

areas, and recognizes six broad groups (anthromes): wildlands (woodlands and barren lands), semi-

natural lands (inhabited woodlands and barren lands), rangelands, croplands, villages and dense 

settlements (Table S4). 

As in the previous section, we fitted PGLS to test the relationship between anthromes’ 

composition at the species level and IUCN threat status as a numerical response. The predictors were 

the proportions of each species’ range covered by each of the anthromes mentioned above. Due to 

topological errors (discrepancies between IUCN geographic ranges and anthromes spatial database), 

for some species the sum of all anthromes proportions represented <95% of their geographic range; 
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these species were not included in the analyses (N=86, Table S5). Species not included in the 

phylogeny were also excluded (N=440). Compositional data present challenges for analyses because 

of the implicit relationship between proportions: the increase of one necessarily implies a decrease in 

another (or several at the same time), which is not reflected by a simple correlation test (Table S6). 

As in Aitchison & Egozcue (2005) we used a log-ratio transformation: one category is defined as a 

reference (in our case dense settlements, the most modified anthrome) and the other values are 

calculated as ratios from that reference. We used the Aitchison zero replacement procedure 

(Aitchison, 2003) as described in Fry et al. (2000), which replaces values as follows: 

            Eq 1. 

 

Where, Ci is the new component value (in parts per unit), δ is the maximum rounding error (we used 

the minimum overlapping percentage estimated: 8.02·10
-7

), N is the total number of components (in 

our case always 6), M the number of components that are zero (which varies among observations), 

and i is the original component with a non-zero value. 

Because distribution data were available for many more species than life-history trait data, 

the number of species available for this analysis was notably higher than in the traits-based models. 

To ensure that differences in sample size were not driving our results, we defined anthropogenic 

models for both the whole set of species with distributional data meeting the requirements above 

(N=3908), and the same subset of species for which the main intrinsic-traits model was fitted. To 

partly account for the fact that different species may be exposed to different threats (González-

Suárez et al., 2013), and to allow for the assessment of spatial coincidence/divergence in relation to 

intrinsic vulnerability, we also built separate models for small (body mass ≤3kg. δ =8.02·10
-7

 in eq. 

1) and large terrestrial mammals (body mass> 3kg. δ =1.99·10
-6

 in eq. 1).  Additionally, we built a 
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full model including both intrinsic and extrinsic predictors to weight the relative contribution of each 

of them in explaining threat status (Table S7).  

 

Spatial predictions 

To make spatial predictions from the species-based models we first defined a 1x1º grid covering the 

world emerged surface. We overlapped this grid with the IUCN geographic distribution range data 

for each mammalian species to determine which species occur in each cell. To predict intrinsic 

vulnerability per grid cell, we defined cell values of body mass, geographic range and weaning age 

as the median value obtained from all species occurring in a given cell and for which trait data were 

available. These median trait values aim to depict the representative mammal occurring within each 

grid cell. Medians were preferred over mean values to counteract the overrepresentation of large 

mammals in the life-history traits database. For predicting extrinsic vulnerability we superimposed 

the 1x1º global grid and the anthromes layers to calculate the proportion of each cell occupied by 

each of the anthrome categories. Proportion values (compositional data) were transformed using 

equation 1 (δ = 1.28∙10
-06

). Alternatively, we predicted intrinsic and extrinsic vulnerability 

(separately) as the mean species-based vulnerability for all present species in each grid cell (Cardillo 

et al., 2006).  

Finally, to evaluate the spatial coincidence of both types of vulnerability, we computed 

bivariate local Moran's I values (local indicators of spatial association, LISA) and cluster maps with 

the software GeoDa (Anselin et al., 2006), considering first order queen spatial weights (cells sharing 

at least one point are neighbours), and a significance level of p < 0.01 for cluster inclusion. This 

analysis classifies clusters based on the values of each grid cell and its neighbouring grid cells; four 

combinations are possible high-high, low-low (both positive spatial autocorrelation values), high-low 

and low-high (both negative spatial autocorrelation values). High or low values are defined in 

relation to the mean value of the given set of data; i.e. high values of intrinsic vulnerability are those 
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over the mean predicted intrinsic vulnerability for all grid cells, and low values are those under the 

mean; and the same for extrinsic vulnerability. 

 

Results 

 

Species-based models: Intrinsic predictors of vulnerability  

As expected, our regression analyses suggest that larger mammals, occupying small geographic 

ranges and with older weaning age tend to be at higher risk (Table 1). These relationships are 

generally supported by alternative versions of the model (Table S8), except for the alternative model 

including imputed data which suggests that earlier weaning ages increase risk, a biologically 

counterintuitive result (Model I4, Table S8). This relationship appears to be an artefact of the 

imputation technique itself, as imputed data values vary widely depending on the different subset of 

variables that are considered for the imputation (Fig. S2). Results based on data imputation for traits 

with significant data gaps needs to be interpreted with great caution and here we feel relying on non-

imputed data is more sensible. The model including three traits (without imputation) presents the 

highest adjusted R
2
, similarly to the alternative model excluding weaning age, with practically 

identical coefficient estimates (Model I3, Table S8). Broadly, results are qualitatively the same when 

large and small mammals are analyzed separately, except that weaning age is not a significant 

predictor of threat status for large mammals (Table 1).  

 

Species-based models: Anthropogenic predictors of vulnerability 

Our analyses suggest that greater overlap with croplands and semi-natural lands is associated with 

higher threat status in terrestrial mammals; whereas greater overlap with wildlands is associated with 

lower risk (for all mammals, and for large and small species separately). Overlap with villages has no 

significant effect in any of the tested models (Tables 2 and S9). Greater overlap with rangelands has 
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no significant effect when all mammals are analyzed together likely because there are opposite 

effects between groups: more overlap is associated with higher risk in small mammals but with lower 

risk in large mammals (Table 2). Results are qualitatively the same for a model fitted only for species 

with available intrinsic traits’ data, with a notable decrease in the adjusted R
2 

(Table S9). 

Overall, species-based models based on intrinsic traits have more explanatory power than 

those based on anthropogenic effects, with more pronounced differences when comparing models 

fitted for the same subset of species (Model I1 vs. A2, Tables S8 and S9). However, anthropogenic 

variables clearly play a role in explaining species’ threat status (Tables 1 and 2) as supported when 

both intrinsic and extrinsic indicators are analyzed together (Table S10).  

 

Spatial predictions 

Here we focus on predictions based on median trait values per grid cell (intrinsic vulnerability) and 

extrinsic vulnerability predicted from the proportion of grid-cell covered by different anthromes 

(extrinsic vulnerability). These predictions are the most robust to data biases and limitations (i.e., 

which subset of mammals is employed to fit the species-based models; Appendix S3). Broad scale 

differences between this approach and the alternative approach of averaging the predicted 

vulnerability for all species occurring within a grid-cell are generally small, being more evident for 

extrinsic vulnerability, where predictions are correlated only at 0.60 (Spearman's ρ; Table S12, Fig. 

S4). Comparing intrinsic vulnerability predictions, they present Spearman's ρ correlation values 

between 0.77 (full model) and 0.91 (including only geographic range and body mass, and imputing 

data; Table S11, Fig. S3). Further discussion of these different outputs is included in Appendix S3. 

Vulnerability due to intrinsic predictors is estimated for a total of 17980 grid cells, which 

represent approximately 134.2 M km
2
 of emerged land (99.4% of the total World’s land area, 

excluding Antarctica). Considering all mammals and based on median trait values per grid cell, we 

find that high intrinsic vulnerability areas occur in diverse parts of the world, including Southeast 
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Asia, India, southern and Horn of Africa and the Andes. Areas of low intrinsic vulnerability include 

most of South America, and Europe (Fig. 2A).  

Separate predictions for large and small mammals reveal interesting differences. For 

example, vulnerability in northern Africa is mostly associated to smaller species (Fig. 2c). In 

addition, new areas of high intrinsic vulnerability are revealed when examining only small mammals, 

including Central and South America, and southern Europe (Fig. 2c). Additional patches are revealed 

in northern Europe and Russia when considering only large mammals (Fig. 2e). Overall, 

vulnerability patterns are not preeminently driven by any of the two subgroups, with low values of 

correlation between all-large (Spearman’s ρ=0.19), and all-small (ρ=0.20) predictions. 

 Vulnerability due to extrinsic predictors is estimated for 17631 grid cells, covering around 

133.7M km
2 

(98.9% of the World’s emerged land, excluding Antarctica). The included surface is 

slightly smaller than in the intrinsic analysis because Greenland is not included in the anthromes 

classification. High extrinsic vulnerability areas occur in numerous areas of the World, reflecting 

widespread human impacts, and include eastern United States, Central America, the coast of Brazil, 

most of Sub-Saharan Africa, Europe and South East Asia, China, Pakistan, and India (Fig.2b). 

Predictions based on the separate models for small and large mammals show similar, highly 

correlated patterns (all vs. small ρ=0.81, all vs. large mammals ρ=0.84. Figs. 1d and 1f).  

Estimates of spatial association of both vulnerabilities —based on bivariate local Moran’s I 

values— was possible for 17474 grid cells based on the ensemble of terrestrial mammals with 

available information. We identify four types of clusters: double-susceptibility areas (~20.1M km
2
), 

where high values of intrinsic vulnerability are surrounded by high values, or vice versa (significant 

positive spatial autocorrelation; p<0.01); intrinsic-susceptibility areas (~ 12.3M km
2
), where high 

intrinsic vulnerability values are surrounded by low extrinsic values, or low extrinsic values are 

surrounded by high values of intrinsic vulnerability (significant negative spatial autocorrelation); 

extrinsic-susceptibility areas (~25.5M km
2
), where high values of extrinsic vulnerability are 
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surrounded by low intrinsic vulnerability, or low intrinsic vulnerability values are surrounded by 

high values of extrinsic vulnerability (significant negative spatial autocorrelation); and low-

susceptibility areas (~16.7M km
2
) where low values of intrinsic vulnerability are surrounded by low 

extrinsic vulnerability values, or vice versa (significant positive spatial autocorrelation). Double-

susceptibility areas occur primarily in Southeast Asia, Madagascar and Sub-Saharan Africa. 

Intrinsic-susceptibility areas are primarily located in the Sahara region, Botswana-South Africa, 

Tibet and near the Arctic in the American continent. Extrinsic-susceptibility areas occur in most of 

Europe, North America, Brazil and parts of southern Africa. Low-susceptibility areas are essentially 

found in Siberia and small regions of Europe, North and South America (Fig. 3a). The four types of 

areas together represent 56% of the global surface for which data are available. The remaining areas 

present intermediate values of intrinsic and extrinsic vulnerability which are not assigned to 

particular clusters. (Additional information about zones is included in Appendix S3). 

Separate cluster analyses for small (16948 grid cells) and large terrestrial mammals (17183 

grid cells) present largely different pictures (Fig. 3). Venn diagrams show how the four zoning 

categories coincide among the three groups of species (all, small and large; Fig. 3b); overall we find 

relatively low spatial overlap in assigned cluster type. A 38% of grid-cells classified as double-

susceptibility areas including all species are equally allocated for separate groups of species, 17% in 

the case of extrinsic-susceptibility areas, and 18% of  low-susceptibility areas, whereas only 7% of 

intrinsic-susceptibility areas are equally assigned for all groups. Low-susceptibility or double-

susceptibility areas are more widespread when only small species are analyzed; and extrinsic-

susceptibility areas occupy the vastest surface when considering large mammals separately (Fig. 3).  

 

Discussion 

Understanding the processes driving vulnerability patterns (or irreplaceability, or any other property 

worth preserving) should be as important as ranking areas as priority for conservation. With this 
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understanding we can move from a prioritization framework to a problem-detection approach that 

could lead to more effective conservation planning and more informed management decisions. 

Information about the factors that drive vulnerability is increasingly available at the species level 

(Kleyer et al., 2008; Frimpong & Angermeier, 2009; Jones et al., 2009), therefore, the easy-to-follow 

protocol we present here could be applied to different taxa and at different spatial scales. This 

approach requires five steps (Fig. 1). The first step is to identify relevant predictors of vulnerability 

(PV) for the selected group of species (Fig. 1A; e.g. life-history determinants and land use). The 

second step requires selecting a measure of conservation status (e.g. IUCN status) and establishing 

the relationship between status and PV (Fig. 1B). The third step is to define the region of interest 

(e.g. the world emerged surface) and calculate the selected PV values for discrete spatial units (e.g. 

1x1º grid cells; Fig 1C). In step 4 we spatially predict conservation status at the new selected unit 

(i.e. grid-cell spatial vulnerability; Fig. 1D) based on the identified relationship between PV and 

conservation status at the species level. The final step consists on evaluating the coincidence or 

divergence of extreme values of these predictions by any measurement of spatial association (e.g. 

bivariate local Moran's I) to obtain a spatial summary of the main factors considered and, 

consequently, to reveal and help prioritize conservation actions within different areas.  

 The identification of PV does not need to be exhaustive. As illustrated in the present work, 

the final goal may not be to include all known factors influencing species conservation, but to 

summarize the ones of interest (e.g., because they are the most worrying in a given area or time) and 

spatially compare them. Although the two groups of variables considered in the present work are not 

completely independent (e.g. geographic range is determined by intrinsic properties of a species, like 

dispersal ability, as well as extrinsic human factors; Di Marco & Santini, 2015), they represent the 

two main components of vulnerability discussed in the literature of comparative extinction risk 

analyses. Certainly, our analysis is a simplification, as other life-history traits (e.g. litter size, diet 

specialization) and external threats (e.g. invasive species, fire) are relevant for some groups and 
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regions, but generality requires focusing on broad, key factors affecting most species. Moreover, to 

complement the spatial summary, explicit descriptors of socioeconomic development could be 

considered in order to better define the human context in which decisions are going to take place 

(Polaina et al., 2015). 

The final proposed zonation categories offer a useful summary, which does not reflect 

hierarchical priorities but categorical descriptors, i.e. double-susceptibility are not more important 

than the rest, although they may require more resources given their conflictive situation. In fact, the 

four zone-categories are not a definitive guide for management; additional (or fewer) zones may be 

defined depending on the conservation goals and available data and resolution. Nevertheless, these 

categories are useful to identify different types of regions for which diverse management actions may 

be most useful.   

Double-susceptibility areas are, by definition, zones that harbour naturally sensitive fauna, 

which may be charismatic species able to capture public and institutional attention (Roberge & 

Angelstam, 2004), but also may represent difficult —and expensive— conservation targets 

(Andelman & Fagan, 2000). Human activities in these areas may also play an important role to 

threaten species. In our global analyses we found that an important portion of these areas is currently 

classified as seminatural (Fig. S5) and thus, with potential for human land uses to intensify 

(Neumann et al., 2010). Proposing conservation actions in these areas requires making difficult 

trade-offs, since human needs are certainly going to confront with the conservation of sensitive 

species (Dobrovolski et al., 2011).  

Intrinsic-susceptibility areas present similar characteristics to double-susceptibility areas in 

terms of sensitive fauna; with the subsequent mentioned advantages and difficulties. Human land use 

in these areas is less threatening in general (mainly deserts and remote areas; Fig S5); thus, human-

wildlife conflicts are less likely, which a priori would facilitate any conservation action. 
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Nevertheless, human impact may still exist as threats such as hunting and persecution may be a high 

risk factor for sensitive fauna, including larger species (González-Suárez & Revilla, 2014). 

Extrinsic-susceptibility areas are occupied by species with low intrinsic vulnerability, 

potentially able to cope with the existing high levels of anthropization (e.g. Wilson et al. 2014); 

therefore, these areas should be easier to manage. Still, any effective conservation strategy within 

these areas should include close monitoring of species and an important control of human expansion 

in the form of land-use intensification, because additional anthropogenic activities could compromise 

the conservation of even widespread and resilient species. Importantly, many of these regions may 

actually no longer be intrinsically vulnerable because sensitive species went extinct time ago 

(Morrison et al., 2007). If correctly managed or restored, these areas could potentially host some of 

these species again. 

Low-susceptibility areas have low-intrinsically vulnerable species and low human impacts. 

These areas are relatively safe because key factors associated with species vulnerability are largely 

absent or have limited impact. They present an opportunity to implement potentially inexpensive, 

low-conflict passive conservation actions that may contribute to maintain the low-susceptibility 

status in the long term (Sanderson et al., 2002). Nevertheless, additional threats, not included in the 

analyses, may exist in these areas, so specific recommendations would require a careful evaluation of 

threats and impacts. 

Data quality is a recurrent issue in global analyses including many species; however, our 

results prove that delimitating broad patterns, differences are generally not qualitative, and that high 

vulnerability areas can be consistently detected (Appendix S3). Nevertheless, there are likely data 

biases regarding human land use descriptors, including the fast changes that are occurring in some 

areas (Verburg et al., 2011) or differences in data quality across regions, which we could not explore 

and that could influence zonation schemes. At the species level, our analyses for terrestrial mammals 

reveal intrinsic traits as better predictors of the IUCN threat status than the extrinsic factors 
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considered here (namely land use), in agreement with previous studies (e.g. Cardillo et al. 2004). 

However, this does not imply that external factors are irrelevant, but instead, that this type of 

statistical methods may adjust better to life-history traits. Species-based models' explanatory power 

may seem overall low (Adj.R
2
<0.3), however, these low values are in fact higher than the average 

variance explained by other ecological/evolutionary works (Jennions & Moller, 2002). 

In this study we also explored different approaches to map the main findings at the species 

level (namely using a median descriptor of traits, or averaging species predictions), which are 

congruent at the broad scale, but reveal important regional differences for both intrinsic (e.g. 

Northern South America is often predicted as a low vulnerability area, but in some cases it is 

detected as vulnerable; Fig. S3) and extrinsic vulnerability (e.g. North America is a low extrinsic 

vulnerability area when considering mean predictions, but patches of high vulnerability emerge when 

using real cover values per grid cell; Fig. S4). These regional discrepancies should not be overlooked 

if using this approach to define conservation actions and strategies. In our example we also found 

different zonations when small and large terrestrial mammals were analyzed separately. While this 

separation had an illustrative purpose (to show the effects of data biases) it is important to notice 

how patterns vary depending on the particular subset of species. For example, in the case of small 

species, the vast coverage of double-susceptibility areas (Fig. 3) suggests that more human-wildlife 

conflicts may occur for this subgroup of species than detected by the all-species prediction.  

A bewildering mix of advice for global conservation planning has been produced in recent 

years aiming to delimit the minimum area necessary to protect the endangered species/ecosystems of 

the world; however, we are still witnessing a decrease in global biodiversity (Ceballos et al., 2015). 

Here, we present an approach to detect spatial differences in risk which also allows extracting the 

most of valuable information at the level of species, populations and, potentially, other ecological 

entities. Focusing on patterns and ignoring the, often complex, processes that drive those patterns can 

lead to simplistic and inefficient biodiversity conservation strategies (Peres & Terborgh, 1995). 
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occurring within a grid cell, according to all alternative models. 

Figure S5 Representation of the percentage per grid-cell covered by each of the six anthromes’ 

categories (all species).  

Figure S6 Representation of the percentage per grid-cell covered by each of the six anthromes’ 

categories (small species).  



25 
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Tables and figures 

 

Table 1. Results of the species-based phylogenetic generalized least squares (PGLS) models testing 

the association between intrinsic traits and threat status in terrestrial mammals. Models were fitted 

for all terrestrial mammals (All), small terrestrial mammals (body size≤3 kg. Small), and large 

terrestrial mammals (body size>3 kg. Large). Traits were log10-transformed prior to analyses. We 

report regression coefficient estimates (β) with their standard errors (SE), as well as the number the 

species analyzed in each model (N). 

Traits β (SE) 

  All (N=981) Small (N=678) Large (N=303) 

Geographic range -0.45 (0.028)*** -0.31 (0.024)*** -0.76 (0.068)*** 

Weaning age 0.26 (0.127)* 0.24 (0.103)* -0.02 (0.284) 

Body mass 0.29 (0.047)*** 0.10 (0.038)** 0.55 (0.151)*** 

Adjusted R
2
 0.25 0.23 0.32 

*** p<0.001; ** p<0.01; * p<0.05; ·p<0.1 

 

Table 2. Results of the species-based phylogenetic generalized least squares models (PGLS) testing 

the association between the distribution range anthromes’ composition and threat status in terrestrial 

mammals. Anthromes represent log-transformed ratios between each category and the "dense 

settlements" category (more detail in the methods). Models were fitted for all terrestrial mammals 

(All), small terrestrial mammals (body size≤3 kg. Small), and large terrestrial mammals (body size>3 

kg. Large). We report regression coefficient estimates (β) with their standard errors (SE), and the 

number the species analyzed in each model (N). 

Anthromes   β (SE)  

 
All (N=3908) Small (N=2404) Large (N=508) 

Villages 0.00 (0.010) 0.01 (0.011) 0.05 (0.045) 

Croplands 0.08 (0.012)*** 0.05 (0.014)*** 0.10 (0.049)· 

Rangelands 0.00 (0.009) 0.10 (0.011)*** -0.10 (0.030)** 

Semi-natural lands 0.22 (0.012)*** 0.12 (0.015)*** 0.54 (0.051)*** 

Wildlands -0.17 (0.009)*** -0.18 (0.012)*** -0.24 (0.034)*** 

Adjusted R
2
 0.13 0.11 0.24 

*** p<0.001; ** p<0.01; * p<0.05; ·p<0.1 
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Figure 1. Summary of the proposed methodology to prioritize conservation actions. Light grey 

boxes indicate steps to be taken at the species level; dark grey boxes show steps at the spatial level.  
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Figure 2. Predicted intrinsic (a) and extrinsic (b) vulnerability based on all terrestrial mammal 

species, and separately for small (body size≤3kg; c & d) and large species (>3kg; e & f). All 

predictions (of continuous Red List Status) are standardized between 0-1 to facilitate comparison. 

Legend categories are based on quantiles. More intense colors indicate higher vulnerability. Black 

areas indicate no data. 
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Figure 3. Zonation based on the concordance or discordance between intrinsic and extrinsic 

vulnerability, for all terrestrial mammal species (a), and separately considering small (body size 

≤3kg; c) and large species (>3kg; d). The four types of zone (double-, low-, intrinsic- and extrinsic- 

susceptibility) are delimited by calculating bivariate local Moran’s I. Panel b shows Venn diagrams 

(one for each type of zone) of the spatial agreement among predictions based on all mammals (A), 

only small (S) and only large species (L). The legend in panel b applies for both the maps and the 

diagrams; horizontal axis represents extrinsic vulnerability and vertical axis, intrinsic vulnerability. 
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Appendix S1. Species-based models: data  

 

Intrinsic predictors of vulnerability  

 

From the eleven consulted articles, seven of them considered exclusively biological/ecological variables 

describing species’ traits (Morrow & Fricke, 2004; Davidson et al., 2009; Liow et al., 2009; González-Suárez 

& Revilla, 2013; Verde Arregoitia et al., 2013; Chen, 2014; Polishchuk et al., 2015). Three others included 

species’ traits and additionally explored the role of human variables and environmental indicators describing 

conditions within species geographic range (Cardillo et al., 2005, 2008; Jetz & Freckleton, 2015). The last 

study evaluated environmental and socioeconomic characteristics within ecoregions, predicting risk levels by 

ecoregion instead of for specific species (Fritz et al., 2009). Studies focusing on a certain subgroup of 

mammals, or not covering the whole Earth surface were discarded, based on the review in Verde Arregoitia, 

(2016) .  

 

Table S1. Summary of the reference studies (N=11). Variables found to have a significant effect on the 

response variable (IUCN global threat status, converted to numeric) are in bold.  

Reference Statistic model Intrinsic variables Other variables 

Cardillo et 

al. 2005 

Multiple 

regression on 

phylogenetically 

independent 

contrasts 

- Age eyes' opening 

- Age first breeding 

- Body mass 

- Diet 

- Diurnality 

- Geographic range 

- 5th percentile of HPD 

- External threat index 

- Human population density 

(HPD) 

- Latitude  
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Reference Statistic model Intrinsic variables Other variables 

- Gestation length 

- Habitat mode 

- Home range 

- Interbirth interval 

- Island endemic 

- Litter size 

- Litters per year 

- Neonatal body mass 

- Population density 

- Population size 

- Sexual maturity age 

- Social group size 

- Terrestriality 

- Trophic level 

- Weaning age 

Cardillo et 

al. 2008 

GLM (with 

previous 

phylogenetically 

independent 

contrasts) 

- Age eyes' opening 

- Age first breeding 

- Body mass 

- Diet 

- Diurnality 

- Geographic range 

- Gestation length 

- Habitat mode 

- Home range 

- Interbirth interval 

- Island endemic 

- Litter size 

- Litters per year 

- Neonatal body mass 

- Population density 

- Population size 

- Sexual maturity age 

- Social group size 

- Terrestriality 

- Trophic level 

- Weaning age 

- Human population density 

(HPD) 

- 5th percentile of HPD 

- External threat index 

- Latitude 

Chen 2014 Polyserial 

correlations 

- Geographic range 

- Areal size of high suitable 

habitat 

- Areal size of intermediate 

suitable habitat 

- Areal size of low suitable 
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Reference Statistic model Intrinsic variables Other variables 

habitat 

Davidson et 

al. 2009 

Decission-tree 

models 

- Body mass 

- Diurnality 

- Geographic range 

- Habitat mode 

- Home range 

- Island endemic 

- Population density 

- Social group size 

- Sociality 

- Speed of life history 

- Trophic level 

 

Fritz et al. 

2009 

Phylogenetic 

generalized 

linear model 

- Body mass 

- Geographic range 

- Gestation length 

- Population density 

- Weaning age 

(Ecoregional scale) 

- Ecoregion area 

- Habitat heterogeneity 

- Historic agriculture index 

- Mean annual actual 

evapotranspiration 

- Mean elevation 

- Mean gross domestic product 

- Mean human appropriation of 

net primary productivity 

- Mean human influence index 

- Mean human population 

density 

- Proportion of cropland in 2000 

- Proportion of urban land cover 

in 2000 

González-

Suárez & 

Revilla 

2013 

 

Taxonomically 

informed 

GLMM 

- Body mass 

- Body mass variability 

- Geographic range 

- Litter size 

- Litter size variability 

- Population density 

- Population density variability 

- Sexual maturity age 

- Sexual maturity age variability 

- Weaning age 

- Weaning age variability 

 

Jetz & 

Freckleton 

Phlyogenetic 

generalized 

- Body mass 

- Geographical range 

- Human encroachment 
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Reference Statistic model Intrinsic variables Other variables 

2015 least-squares 

(PGLS) 

Liow et al. 

2009 

Phylogenetic 

independent 

contrasts 

- Body mass 

- Geographic range 

- SLOH (sleeping or hide) 

behavior 

- Trophic level 

 

Morrow & 

Fricke 2004 

Comparative 

analysis of 

independent 

contrasts 

(CAIC) 

- Sexual dimorphysm 

- Testes size 

 

Polishchuk 

et al. 2015 

Mixed-effects 

logistic 

regression 

model 

- Body mass 

- Nonsynonymus to synonymus 

sustitutions (Ka / Ks) 

 

Verde 

Arregoitia et 

al. 2013 

phylogenetic 

generalized 

linear mixed 

model 

(PGLMM) 

- Body mass 

- Net diversification rate 
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Figure S1. Biological and ecological data availability, and frequency of association with extinction risk in 

terrestrial mammals. Length of bars represent the proportion of studies in which variables were considered 

(max=11). Dark filling represents studies in which variables significantly related to the threat status of 

mammals. Light filling represents studies in which variables did not relate to the threat status of mammals. 

Black circles symbolize the proportion of species with data for that trait in the database PanTHERIA (Jones et 

al., 2009) or self-obtained data employed in the cited studies, from the 4668 terrestrial mammals with data for 

at least one trait in PanTHERIA. 
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Table S2. Description of intrinsic traits included in the analyses. N, number of terrestrial species with 

available estimates. 

Trait  Definition provided in the data source reference N  Data source 

Adult body mass 

(g) 

Mass of adult (or age unspecified) live or freshly-killed specimens 

(excluding pregnant females) using captive, wild, provisioned, or 

unspecified populations; male, female, or sex unspecified 

individuals; primary, secondary, or extrapolated sources; all 

measures of central tendency; in all localities. 

3427 PanTHERIA 

(Jones et al, 2009) 

Geographical range 

(km
2
) 

Calculated using IUCN distribution data with a cylindrical equal-

area projection (ArcGIS 9.3). 

4668 Spatial data of the 

IUCN Red List 

(IUCN, 2014) 

Population density 

(n/km
2
) 

Number of individuals per square kilometer, estimated with either 

direct, indirect or unspecified counts, measured in any area size 

within a human, ecological or unspecified boundary, over any 

duration of time, using non-captive, non-provisioned populations; 

male, female, or sex unspecified individuals; primary, secondary, or 

extrapolated sources; all measures of central tendency; in all 

localities. 

936 PanTHERIA 

(Jones et al, 2009) 

Weaning age 

(days) 

Age when primary nutritional dependency on the mother ends and 

independent foraging begins to make a major contribution to the 

offspring’s energy requirements, measured as either 

weaning/lactation length, nutritionally independent, first solid food, 

last observed nursing, age at first flight (bats only), age at pouch exit 

or length of teat Attachment (marsupials only) or unspecified 

definition, using captive, wild, provisioned, or unspecified 

populations; male, female, or sex unspecified individuals; primary, 

secondary, or extrapolated sources; all measures of central tendency; 

in all localities. 

1095 PanTHERIA 

(Jones et al, 2009) 

 

 

Table S3. Correlations between explanatory variables included in the intrinsic species-based model. 

Spearman's ρ values and sample sizes (in brackets) are provided. 

  Population density Geographic range Weaning age 

Geographic range -0.14 (902) 

 

 

 

 

Weaning age -0.57  (568) -0.11 (1056) 

 

 

Body mass -0.76 (899) -0.08  (3088) 0.61 (1041) 
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Anthropogenic predictors of vulnerability 

 

Table S4. Description of anthromes as in Ellis et al. (2010) . 

Group Biomes included Description 

Dense 

settlements 

Urban  Urban and other dense settlements 

Mixed ettlements Dense built environments with very high populations 

Villages Rice villages Villages dominated by paddy rice 

Irrigated villages Villages dominated by irrigated crops 

Rainfed villages Villages dominated by rainfed agriculture 

Pastoral villages Villages dominated by rangeland 

Croplands Residential irrigated 

croplands 

Irrigated cropland with substantial human populations 

Residential rainfed 

croplands 

Rainfed croplands with substantial human populations 

Populated rainfed cropland Croplands with significant human populations, a mix of irrigated and 

rainfed crops 

Remote croplands Croplands without significant populations 

Rangeland Residential rangelands Rangelands with substantial human populations 

Populated rangelands Rangelands with significant human populations 

Remote rangelands Rangelands without significant human populations 

Seminatural 

lands 

Residential woodlands Forest regions with minor land use and substantial populations 

Populated woodlands Forest regions with minor land use and significant populations 

Remote woodlands Forest regions with minor land use without significant populations 

Inhabited treeless and 

barren lans 

Regions without natural tree cover having ony minor land use and a range 

of populations 

Wildlands Wild woodlands Forests and savanna  

Wild treeless and barren 

lands 

Regions without natural tree cover (grasslands, shrublands, tundra, desert 

and barrend lands) 

 

 

Table S5. Terrestrial mammal species excluded from the anthropogenic models (PGLS) due to topological 

errors (their geographic ranges were covered by anthromes in less than 95% of their total surface; N=86). 

Thr,. indicates if the species is thereatened (1) or not (0); the following columns represent the overlapping 

proportion of the geographic range with each anthrome class: D, dense settlements; V, villages; C, croplands; 

R, rangelands; S.N., semi-natural lands; W, wildlands; Addition, of all previous classes.  

Species name Thr. D V C R S.N. W Addition 

Abrothrix hershkovitzi 0 0 0 0 0 0 0.92 0.92 

Acerodon humilis 1 0.22 0 0.02 0 0.71 0 0.95 
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Species name Thr. D V C R S.N. W Addition 

Aethomys kaiseri 0 0.01 0.05 0.11 0.34 0.42 0.02 0.95 

Allactodipus bobrinskii 0 0 0.01 0.02 0.74 0.01 0.12 0.90 

Alopex lagopus 0 0 0 0 0.01 0.06 0.82 0.89 

Ardops nichollsi 0 0.03 0 0.42 0.05 0.44 0 0.95 

Babyrousa togeanensis 1 0 0 0 0 0.92 0 0.92 

Bettongia lesueur 0 0 0 0 0.24 0.14 0 0.39 

Brachyphylla cavernarum 0 0.41 0.03 0.21 0.06 0.25 0 0.95 

Chilonatalus tumidifrons 0 0 0 0 0 0.5 0.41 0.91 

Chiroderma improvisum 1 0.01 0 0.37 0.16 0.4 0 0.94 

Crocidura jacksoni 0 0.02 0.2 0.23 0.4 0.06 0.02 0.93 

Crocidura orii 1 0.12 0 0 0 0.82 0 0.94 

Crocidura watasei 0 0.2 0.04 0.03 0 0.63 0 0.90 

Dasyprocta coibae 1 0 0 0 0 0.07 0.5 0.57 

Dicrostonyx groenlandicus 0 0 0 0 0 0.02 0.9 0.92 

Dicrostonyx torquatus 0 0 0 0 0 0.06 0.88 0.94 

Dipodomys insularis 1 0 0 0 0.05 0.51 0 0.57 

Dipodomys margaritae 1 0 0 0 0 0 0.03 0.03 

Dobsonia pannietensis 0 0.08 0 0 0 0.84 0.02 0.95 

Echymipera davidi 1 0 0 0 0 0.76 0 0.76 

Emballonura semicaudata 1 0 0 0.02 0 0.05 0.25 0.32 

Enhydra lutris 1 0 0 0 0 0.01 0.02 0.03 

Geocapromys ingrahami 1 0 0 0 0 0 0 0 

Hippocamelus bisulcus 1 0 0 0 0.34 0.15 0.43 0.93 

Lagorchestes hirsutus 1 0 0 0 0 0 0 0 

Lemmus sibiricus 0 0 0 0 0 0.03 0.9 0.93 

Leontopithecus caissara 1 0 0 0.2 0.5 0.06 0 0.76 

Leporillus conditor 1 0 0 0 0 0 0 0 

Lepus arcticus 0 0 0 0 0 0.04 0.82 0.86 

Lepus flavigularis 1 0 0 0.39 0.48 0 0 0.87 

Lepus insularis 0 0 0 0 0.04 0 0 0.04 

Lontra felina 1 0 0 0 0.04 0.05 0.09 0.18 

Lophuromys medicaudatus 1 0.13 0.36 0.13 0.09 0.24 0 0.94 

Lophuromys woosnami 0 0.06 0.54 0.12 0.06 0.13 0.02 0.93 

Melomys caurinus 1 0.22 0 0.02 0 0.71 0 0.95 

Melomys talaudium 1 0.22 0 0.02 0 0.71 0 0.95 

Mesocapromys angelcabrerai 1 0 0 0.37 0 0 0 0.37 

Microtus abbreviatus 0 0 0 0 0 0 0.32 0.32 

Miniopterus fuscus 1 0.18 0.06 0.03 0 0.67 0 0.94 

Mirimiri acrodonta 1 0 0 0 0 0 0.06 0.06 

Mormopterus acetabulosus 1 0.11 0.03 0.26 0 0.33 0 0.72 

Mus triton 0 0.02 0.15 0.14 0.39 0.24 0.01 0.95 

Mustela erminea 0 0.01 0.02 0.17 0.12 0.15 0.48 0.95 

Myonycteris brachycephala 1 0 0 0.2 0 0.74 0 0.94 

Myotis vivesi 1 0 0 0 0.69 0.14 0.01 0.83 
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Species name Thr. D V C R S.N. W Addition 

Myotis yanbarensis 1 0.21 0 0 0 0.63 0 0.84 

Mysateles gundlachi 1 0 0 0.27 0.01 0.49 0.06 0.84 

Mysateles meridionalis 1 0 0 0 0 0.67 0.18 0.85 

Natalus primus 1 0 0.02 0.4 0.01 0.43 0.06 0.91 

Nesoryzomys swarthi 1 0 0 0 0 0 0.51 0.51 

Notomys aquilo 1 0 0 0 0.77 0.01 0.02 0.8 

Octodon pacificus 1 0 0 0 0 0.9 0 0.9 

Oligoryzomys magellanicus 0 0 0 0 0.58 0.03 0.32 0.93 

Ovibos moschatus 0 0 0 0 0 0.03 0.85 0.89 

Peromyscus keeni 0 0.01 0 0.01 0.02 0.25 0.65 0.94 

Peromyscus pseudocrinitus 1 0 0 0 0.92 0 0 0.92 

Phyllomys thomasi 1 0 0 0 0.76 0.15 0 0.91 

Pipistrellus maderensis 1 0.03 0 0.08 0.64 0.1 0 0.85 

Potorous gilbertii 1 0 0 0 0.04 0 0 0.04 

Pseudomys fieldi 1 0 0 0 0 0 0 0 

Pteropus faunulus 1 0 0 0.15 0 0.36 0 0.5 

Pteropus fundatus 1 0.01 0 0 0 0.68 0 0.69 

Pteropus livingstonii 1 0.14 0 0.73 0 0.01 0 0.88 

Pteropus melanotus 1 0 0.23 0.52 0 0.16 0 0.91 

Pteropus niger 1 0.12 0 0.15 0 0 0 0.27 

Pteropus nitendiensis 1 0 0 0.57 0 0 0 0.57 

Pteropus pohlei 1 0.03 0 0.02 0 0.9 0 0.95 

Pteropus rennelli 1 0 0 0 0 0.78 0.01 0.79 

Pteropus seychellensis 0 0.06 0.07 0.53 0.05 0.03 0.14 0.87 

Rattus simalurensis 1 0 0.07 0.33 0 0.03 0 0.43 

Rattus stoicus 1 0 0 0.61 0 0.18 0 0.79 

Rhinolophus ruwenzorii 1 0.03 0.37 0.23 0.11 0.2 0.01 0.95 

Sorex jacksoni 0 0 0 0 0 0.04 0.83 0.87 

Stenoderma rufum 1 0.63 0.04 0.05 0.06 0.14 0 0.94 

Sturnira thomasi 1 0.01 0 0.37 0.16 0.4 0 0.94 

Sylvilagus mansuetus 0 0 0 0 0.13 0.59 0 0.72 

Sylvisorex johnstoni 0 0.02 0.1 0.11 0.17 0.36 0.17 0.94 

Tadarida bemmeleni 0 0.02 0.2 0.2 0.32 0.14 0.03 0.91 

Tadarida bregullae 1 0 0 0.05 0 0.83 0.03 0.91 

Tadarida tomensis 1 0.08 0 0.25 0 0.6 0 0.94 

Taterillus lacustris 0 0 0.03 0.86 0.01 0.05 0 0.95 

Tokudaia tokunoshimensis 1 0 0 0 0 0.83 0 0.83 

Tragulus nigricans 1 0 0 0.17 0 0.63 0 0.80 

Urocyon littoralis 1 0 0 0.05 0.21 0 0.13 0.40 

Ursus maritimus 1 0 0 0 0 0.02 0.26 0.28 
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Table S6. Correlations between explanatory variables included in the extrinsic species-based model 

(N=4348). Spearman's ρ values are provided.  

  Urban Villages Croplands Rangelands Semi-natural lands 

Villages 0.21 

    Croplands 0.03 0.14 

   Rangelands -0.24 -0.32 -0.30 

  Semi-natural lands 0.01 -0.19 -0.28 -0.60 

 Wildlands -0.14 -0.25 -0.29 -0.22 0.04 

 

 

Table S7. Correlations between all explanatory variables included in both the intrinsic and extrinsic species-

based models (only species with information for both types of variables are considered). Spearman's ρ values 

and sample sizes (in brackets) are provided.  

  Urban Villages Croplands Rangelands 
Semi-natural  

lands 
Wildlands 

Geographic  

range 
Body mass 

Populaion  

density 

Villages 0.53  

(4339) 

        Croplands 0.39  

(4339) 

0.49  

(4339) 

       Rangelands -0.33  

(4339) 

-0.20  

(4339) 

-0.20  

(4339) 

      Semi-natural  

lands 

0.18  

(4339) 

-0.06  

(4339) 

-0.20  

(4339) 

-0.59  

(4339) 

     Wildlands -0.10  

(4339) 

-0.31  

(4339) 

-0.26  

(4339) 

-0.08 

 (4339) 

0.30 

 (4339) 

    Geographic  

range 

0.11  

(4339) 

0.12  

(4339) 

0.11  

(4339) 

0.15  

(4339) 

0 

 (4339) 

0.53  

(4339) 

   Body mass -0.11  

(3017) 

-0.06  

(3017) 

-0.10  

(3017) 

-0.03  

(3017) 

0.07 

 (3017) 

-0.01  

(3017) 

-0.09  

(3017) 

  Populaion  

density 

0.25  

(876) 

-0.12  

(876) 

0.16  

(876) 

0.05 

 (876) 

-0.19 

 (876) 

-0.03  

(876) 

-0.13  

(876) 

-0.76  

(868) 

 Weaning  

age 

-0.15  

(1023) 

0.03  

(1023) 

-0.14  

(1023) 

-0.03  

(1023) 

0.15  

(1023) 

-0.03  

(1023) 

-0.11  

(1023) 

0.60  

(1006) 

-0.57  

(545) 
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Appendix S2. Species-based models: complementary results  

 

Intrinsic predictors of vulnerability 

 

Table S8. Results of the intrinsic PGLS including all mammals with available data. Model I1 is presented in 

the main manuscript. Models I1, I3 and I4 exclude species classified as threatened following criterion B. 

Model I2 includes all species with available data for the presented variables. Model I4 includes all terrestrial 

mammals in the IUCN Red List after imputation of data for missing traits. β, coefficient estimates; SE, 

standard errors of the coefficients.  

Traits 
Model I1 (N=981) Model I2 (N=1027) Model I3 (N=2747) Model I4 (N=3595) 

β (SE) β (SE) β (SE) β (SE) 

Geographic range -0.45 (0.028)*** - -0.44 (0.015)*** 
-0.42 

(0.014)*** 

Weaning age 0.26 (0.127)* 0.31 (0.147)* - 
-0.27 

(0.066)*** 

Body mass 0.29 (0.047)*** 0.28 (0.052)*** 0.31 (0.031)*** 
0.28 

(0.033)*** 

Adjusted R
2
 0.25 0.06 0.25 0.22 

*** p<0.001; ** p<0.01; * p<0.05 

 
 

 

 

Note about the imputation technique 

The results thrown by model I4 (Table S8) show that weaning age negatively relate to threat status, 

i.e. terrestrial mammals with a later maturation are less likely to be threatened. This contradicts 

previous studies and is biologically unlikely (e.g. Davidson et al. 2009; Marco et al. 2014). Imputed 

data to fit model I4 were obtained based on the available log10-transformed data for geographic range 

(sq·km), weaning age (days) and body mass (g) and the supertree of Bininda-Emonds et al. (2007) 

presented by Fritz et al. (2009); using the phylopars and phylopars.predicts functions from the 

‘Rphylopars’ package (Goolsby et al., 2015) in R (R Core Team, 2014).  

 

To further understand these results, we additionally followed the same procedure but using a more 

complete database including the three mentioned traits plus population density (excluded from the 

analyses due to its correlation with body mass). Results from these two different imputation 

processes are quite different (Fig. S2), especially for those variables with less available data like 

weaning age (Fig. S2c). This suggests that imputed values are highly dependent on the initial subset 

of variables from which the function imputes data and call for caution when interpreting results. 
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Figure S2. Linear regression between the imputed values of the three intrinsic predictors of vulnerability, 

based on 4 traits in the original data set (X-axis) and based on 3 traits in the original data set (Y-axis). 

 

 

Anthropogenic predictors of vulnerability 

 

Table S9. Results of the anthropogenic PGLS for all mammals. Model A1 is included in the main manuscript, 

including all mammals with available distribution data and phylogenetic information. Model A2 includes the 

same species as the main model fitted for intrinsic traits (Model I1, Table S8), except from four species which 

geographic range did not overlap with the Anthromes geographic data (Table S5). β, coefficient estimates; SE, 

standard errors of the coefficients.  

Anthromes  
Model A1 (N=3908) Model A2 (N=977) 

β (SE) β (SE) 

Villages 0.00 (0.01) -0.01 (0.015) 

Croplands 0.08 (0.012)*** 0.09 (0.027)*** 

Rangelands 0.00 (0.009) -0.02 (0.019) 

Semi-natural 0.22 (0.012)*** 0.20 (0.029)*** 

Wildlands -0.17 (0.009)*** -0.13 (0.021)*** 

Adjusted R
2
 0.13 0.07 

*** p<0.001; ** p<0.01; * p<0.05 
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Intrinsic and anthropogenic predictors of vulnerability 

 

Table S10. Results of the PGLS including both intrinsic and anthropogenic variables for all mammals. β, 

coefficient estimates; SE, standard errors of the coefficients. (N=955) 

Traits β (SE) 

Geographic range -0.43 (0.034)*** 

Weaning age 0.25 (0.126)* 

Body mass 0.25 (0.048)*** 

Villages 0.02 (0.014) 

Croplands 0.09 (0.024)*** 

Rangelands -0.04 (0.017)* 

Semi-natural 0.05 (0.029) 

Wildlands -0.03 (0.021) 

Adjusted R
2
 0.25 

*** p<0.001; ** p<0.01; * p<0.05  
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Appendix S3. Spatial predictions: data & results 

 

The gridded distribution of mammals was obtained by overlapping a 1x1º grid with every species geographic 

range in ArcView 3.2. (ESRI, 1999). Grids were projected in Eckert IV (equal area) to match the projection of 

the land use original data source (see below). Therefore, not all grids have the same area, ranging from 1402 

km
2
 (in the Poles) to 12391 km

2
 (in the Equator). These differences in grid-cell size should not be a problem, 

since the only purpose of gridding the study area is to spatially represent predictions based on adjusted 

coefficients of previous fitted models at the species level.  

 

The nomenclature employed in this section follows the models on previous appendices.  

 

Intrinsic vulnerability 

 

As this is not a spatial parameter per se, different paths to estimate intrinsic vulnerability and map it can be 

followed. Previous studies have used the average prediction (based on life-history and ecological traits) for all 

species occurring within a certain grid cell (Cardillo et al., 2006), but this approach limits the analyses to 

species with data on all traits included in the model. Therefore, we explored an additional approach based on 

calculating the median value for all traits included in the model -aiming to represent the “average” mammal 

occurring within each grid cell- and predicted based on these values. This approach may produce 

combinations of traits that are not biologically realistic (e.g. late weaning age and small body size) but allows 

us to include information from as many species as possible. We also explore an approach based on average 

predictions and below we compare from both approaches. 

 

On the first place, we predicted intrinsic vulnerability based on the median trait values per grid using the four 

versions of the intrinsic model. All the alternatives are displayed in figs. S2a, S2d, S2g and S2j (first column); 

with each row representing a different model from Table S2 (Models I1, I2, I3 and I4, respectively). These 

predictions show qualitatively the same, well-correlated results (Spearman's ρ, 0.72-0.99) with a moderate 

level of spatial coincidence among areas of high vulnerability (50% of areas are classified as such 

independently of the model employed) and low vulnerability (51% of areas are classified as such 

independently of the model employed). Non-coincident areas were very rarely classified as the opposite (i.e. 

high vulnerability as low vulnerability areas or vice versa); they normally were considered as non-significant. 

Areas of high and low vulnerability were defined based on spatial autocorrelation clusters, calculated as local 

Moran's I values within queen neighbors grid-cells (positive significant correlation, p<0.01).  

 

Secondly, we defined spatial intrinsic vulnerability (per grid cell) as the mean value of the predicted value for 

species occupying that area. The results from this approach are shown in figures S2b, S2e, S2h and S2k 
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(second column).  Differences among rows represent the various models used for prediction (Models I1, I2, I3 

and I4, respectively) that have relatively high correlation (Spearman's ρ, 0.54-0.85) and moderate coincidence 

among areas of high vulnerability (49% of areas are classified as such independently of the model employed) 

and low vulnerability (44% of areas are classified as such independently of the model employed).  

 

Both approaches (prediction from median trait values and mean of species predictions) provide similar results 

(Table S11), but as presented above, we found more differences among alternative models when averaging 

species predictions by grid cell than when using median values per grid cell. Thus, we focused on the 

approach based on median traits per grid cell and including more predictors in the main manuscript.  

 

 

Table S11. Correlations between intrinsic vulnerability predictions based on the same model, but using 

different calculations for their spatial representation (prediction from median trait values and mean of species 

predictions; first vs. second column in Fig. S2). Spearman's ρ values are provided.  

Species-based model Spearman's ρ between predictions 

I1 0.77 

I2 0.81 

I3 0.91 

I4 0.91 
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Figure S3. Spatial intrinsic vulnerability calculated as the prediction from the median terrestrial mammal inhabiting each grid cell (a, d, g & j), and as the mean value of 

vulnerability per species occurring within a grid cell (b, e, h & k). First-row predictions (a & b) are based on Model I1 (main manuscript), including geographic range, adult 

body mass and weaning age. Second row (d & e) shows predictions from Model I2, combining adult body mass and weaning age. Third-row maps (g & h) are predicted 

using Model I3: adult body mass and geographic range. Last-row predictions are based on the model with imputed data (Model I4), including the three traits (Table S7). 

Percentage of available data (number of species for which data included in the models were available, over the total mammals known to be present in each grid cell) are 

presented in the last column (c, f, i & l), to show the uncertainty when mapping vulnerability in this way. All predictions (of continuous Red List Status) are standardized 

between 0-1 to facilitate comparison, and divided by data quantiles, with darker colors indicating higher vulnerability. Map of data availability presents equal breaks, as 

indicated on the legend. Framed map shows the version included in the main text.  
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Extrinsic vulnerability  

 

Species-based models were adjusted based on two different subgroups of terrestrial mammals, one including 

all species with available information (Model A1) and the other including only species included in the intrinsic 

species-based model (Model A2). Spatial predictions on Figs. S3a and S3b correspond to Model A1, whereas 

predictions of Figs. S3c and S3d are based on Model A2. Differences between maps on the left (S3a and S3c) 

and right columns (S3b and S3d) are consequence of the method used to define extrinsic vulnerability at the 

grid-cell level. In the first case, grid cells are considered "new species” for which percentage of land covered 

by the different anthromes per grid cell are the new explanatory variables. In the second case, extrinsic 

vulnerability is calculated as the mean extrinsic vulnerability, predicted for all species occurring within a grid 

cell (for comparison with the approach explored for intrinsic traits).  

 

There is high coincidence between Model A1 (S3a) and Model A2 (S3c), with a Spearman's rank correlation 

coefficient (ρ) of 0.97. Areas of high extrinsic vulnerability (calculated as univariate local Moran’s I) coincide 

in 83% of cases, and low extrinsic vulnerability is assigned equally with both models in 84% of cases. Results 

are thus, not very sensitive to differences in the subset of species included in model A1 versus A2. 

 

In the case of predictions made by averaging the individual extrinsic vulnerabilities of all species inhabiting 

each grid cell, results from the model including all species and the one including only those with intrinsic 

information available (S3b vs. S3d) are not that similar, despite a high Spearman's rank correlation value (ρ = 

0.94). Areas of high extrinsic vulnerability coincide in 76% of cases, while low vulnerability clusters only 

coincide in 33% of cases. Areas of high vulnerability are relatively persistent, whereas many low intrinsic 

vulnerability areas disappear when considering only a subset of species (Fig. S3d).  

 

In general, differences among methods to spatially represent extrinsic vulnerability are not large (Table S12). 

However, areas of high and low vulnerability substantially vary depending on the employed method to 

spatially predict. Hence, it is not trivial to choose one approach or the other. In our case, we believe predicting 

based on the actual cover is more informative and allows to pick more restricted areas, without the limitation 

of the "buffer effect" (consequence of the nature of species' geographic ranges) that appears in cases b and d 

(Fig. 3S). 

 

 

 

Table S12. Correlations between extrinsic vulnerability predictions based on the same model, but using 

different calculations for spatial representation (prediction from median trait values and mean of species 

predictions; first vs. second column in Fig. S3). Spearman's ρ values are provided.  
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Species-based model Spearman's ρ between predictions 

A1 0.60 

A2 0.60 

 

 

 

 

 

 

 

Figure S4. Spatial extrinsic vulnerability calculated as the prediction from the proportion of anthromes 

occurring within each grid cell (a & c), and as the mean value of vulnerability per species occurring within a 

grid cell (b & d). First-row predictions (a & b) are based on Model A1 (main manuscript), and the alternative 

including the same species as the main intrinsic model (c & d; Model A2; Table S8). All predictions (of 

continuous Red List Status) are standardized between 0-1 to facilitate comparison; legend's categories follow 

quantiles' division. Darker colors indicate higher vulnerability. Black areas indicate no data. Framed map 

shows the version included in the main text.  
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Zonation 

 

Zonation is based on areas where high values of high/low intrinsic and extrinsic vulnerability coexist (positive 

spatial autocorrelation) or counteract (negative spatial autocorrelation) each other. In the main manuscript we 

presented the map of zones based on all terrestrial mammals, and also two separate zonations for small (≤3kg) 

and large mammals (>3 kg). As expected, the delimination of these areas varies depending on the subset of 

species analyzed.  

 

Tables S13 to S15 present a description of the main characteristics of the identified zones including species’ 

trait data availability, mammalian richness, and number of threatened mammals. In addition, we have included 

descriptive maps to illustrate the predominant anthromes’ classes within each of the zone categories based on 

all mammals (Fig. S5), only small (Fig. S6) and only large mammals (Fig. S7).  
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Table S13. Summary of the available information for the traits employed to calculate intrinsic vulnerability, and numbers of threatened and total mammalian richness, 

global and segregated by zone category. Calculations are based on all terrestrial mammal species (N=5237). Mean refers to the mean number of mammals with available 

information by grid cell, % is that number divided by the total mammalian richness by grid cell; Min-max shows the minimum and maximum number of mammals with 

information by grid cell. N indicates the number of grid cells included in that zone. 

Variable Global (N=17474) Double-susceptibility (N=2068) Intrinsic-susceptibility (N=2370) Extrinsic-susceptiblity (N=2945) Low-susceptibility (N=2530) 

 
Mean % r Min-max Mean % r Min-max Mean % r Min-max Mean % r Min-max Mean % r Min-max 

Species knowledge   
  

  
           

geographic range 55.7 100% 1 - 252 86.4 100% 1 - 252 22.0 100% 1 - 141 84.5 100% 1 - 241 48.2 100% 1 - 233 

body mass 48.4 87% 1 - 213 71.9 83% 1 - 213 19.3 88% 1 - 114 74.6 88% 1 - 211 43.4 90% 1 - 203 

weaning age 27.9 50% 1 - 104 35.0 41% 1 - 103 13.9 63% 1 - 70 39.7 47% 1 - 101 25.0 52% 1 - 66 

Threatened species 2.6 5% 0 - 40 6.7 8% 0 - 38 1.6 7% 0 - 25 2.8 3% 0 - 20 1.3 3% 0 - 16 

Data deficient species 1.3 2% 0 - 20 2.3 3% 0 - 20 0.2 1% 0 - 9 2.7 3% 0 - 20 1.1 2% 0 - 16 

Richness 55.7 - 1 - 252 86.4 - 1 - 252 22.0 - 1 - 141 84.5 - 1 - 241 48.2 - 1 - 233 
 ǂǂ100%  availability is inherent to the nature of the analysis. If there is not information about geographic range, the species cannot enter the model. 

 

Table S14. Summary of the available information of the selected traits employed to calculate intrinsic vulnerability, and numbers of threatened and total mammalian 

richness, global and segregated by zone category. Calculations are based on species smaller or equal than 3kg (N=2773). Mean refers to the mean number of mammals 

with available information by grid; % is that number divided by the total mammalian richness by grid cell; range shows the minimum and maximum number of mammals 

with information by grid cell. N indicates the number of grid cells included in that zone. 

Variable Global (N=16699) Double-susceptibility (N=3165) Intrinsic-susceptibility (N=651) Extrinsic-susceptiblity (N=1768) Low-susceptibility (4808) 

 

Mean % r Min-max Mean % r Min-max Mean % r Min-max Mean % r Min-max Mean % r Min-max 

Species knowledge   

              geographic range 36.3 100% 1 - 178 50.7 100% 1 - 178 28.1 100% 1 - 138 44.8 100% 1 - 142 16.6 100% 1 - 138 

body mass 36.3 100% 1 - 178 50.7 100% 1 - 178 28.1 100% 1 - 138 44.8 100% 1 - 142 16.6 100% 1 - 138 

weaning age 17.5 48% 1 - 58 20.4 40% 1 - 58 10.5 38% 1 - 54 23.1 52% 1 - 45 10.9 66% 1 - 37 

Threatened species 0.6 2% 0 - 21 1.1 2% 0 - 17 1.4 5% 0 - 21 0.6 1% 0 - 6 0.0 0% 0 - 2 

Data deficient species 0.6 2% 0 - 12 1.0 2% 0 - 12 0.9 3% 0 - 12 0.9 2% 0 - 9 0.0 0% 0 - 6 
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Richness 36.3 - 1 - 178 50.7 - 1 - 178 28.1 - 1 - 138 44.8 - 1 - 142 16.6 - 1 - 138 
ǂǂ100%  availability is inherent to the nature of the analysis. If there is not information about geographic range, the species cannot enter the model. 

 

Table S15. Summary of the available information of the selected traits employed to calculate intrinsic vulnerability and numbers of threatened, and total mammalian 

richness, global and segregated by zone category. Calculations are based on species larger than 3kg (N=538). Mean refers to the mean number of mammals with available 

information by grid; % is that number divided by the total mammalian richness by grid cell; range shows the minimum and maximum number of mammals with 

information by grid cell. N indicates the number of grid cells included in that zone. 

Variable Global (N=17183) Double-susceptibility (N=1817) Intrinsic-susceptibility (N=1796) Extrinsic-susceptiblity (N=2614) Low-susceptibility (N=2394) 

 

Mean % r Min-max Mean % r Min-max Mean % r Min-max Mean % r Min-max Mean % r Min-max 

Species knowledge   

              geographic range 13.4 100% 1 - 60 21.5 100% 1 - 59 9.6 100% 1 - 53 12.0 100% 1 - 37 9.3 100% 1 - 31 

body mass 13.4 100% 1 - 60 21.5 100% 1 - 59 9.6 100% 1 - 53 12.0 100% 1 - 37 9.3 100% 1 - 31 

weaning age 10.8 81% 1 - 48 15.0 70% 1 - 46 8.1 84% 1 - 41 9.8 81% 1 - 26 8.1 87% 1 - 24 

Threatened species 1.9 14% 0 - 49 6.2 29% 0 - 49 1.3 14% 0 - 38 1.2 81% 0 - 13 0.9 9% 0 - 6 

Data deficient species 0.1 1% 0 - 3 0.1 0% 0 - 2 0.0 0% 0 - 2 0.3 10% 0 - 3 0.1 1% 0 - 3 

Richness 13.4 - 1 - 60 21.5 - 1 - 59 9.6 - 1 - 53 12.0 - 1 - 37 9.3 - 1 - 31 
 

ǂǂ100%  availability is inherent to the nature of the analysis. If there is not information about geographic range, the species cannot enter the model. 
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Figure S5. Representation of the 

percentage per grid-cell covered 

by each of the six anthromes’ 

categories (built-up areas,  

villages, croplands, rangelands, 

seminatural lands and wildlands), 

one in each row. Darker filling 

represents higher coverage of  a 

certain anthrome. One zone 

category is overlapped in each 

column: double-susceptibility 

areas (panels a, e, i, m, q and u; 

red), intrinsic- susceptibility 

areas (panels b, f, j, n, r and v; 

orange), extrinsic-susceptibility 

areas (panels c, g, k, o, s and w; 

purple) and negligible-

susceptibility areas (panels d, h, l, 

p, t and x; green). Zonation based 

on all terrestrial mammals.  
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Figure S6. Representation of the 

percentage per grid-cell covered 

by each of the six anthromes’ 

categories (built-up areas,  

villages, croplands, rangelands, 

seminatural lands and wildlands), 

one in each row. Darker filling 

represents higher coverage of  a 

certain anthrome. One zone 

category is overlapped in each 

column: double-susceptibility 

areas (panels a, e, i, m, q and u; 

red), intrinsic- susceptibility 

areas (panels b, f, j, n, r and v; 

orange), extrinsic-susceptibility 

areas (panels c, g, k, o, s and w; 

purple) and negligible-

susceptibility areas (panels d, h, l, 

p, t and x; green). Zonation based 

on terrestrial mammals 

smaller/equal than 3 kg.  
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Figure S7. Representation of the 

percentage per grid-cell covered 

by each of the six anthromes’ 

categories (built-up areas,  

villages, croplands, rangelands, 

seminatural lands and wildlands), 

one in each row. Darker filling 

represents higher coverage of  a 

certain anthrome. One zone 

category is overlapped in each 

column: double-susceptibility 

areas (panels a, e, i, m, q and u; 

red), intrinsic- susceptibility 

areas (panels b, f, j, n, r and v; 

orange), extrinsic-susceptibility 

areas (panels c, g, k, o, s and w; 

purple) and negligible-

susceptibility areas (panels d, h, l, 

p, t and x; green). Zonation based 

on terrestrial mammals larger 

than 3 kg.  



57 

References 1 

Bininda-Emonds O.R.P., Cardillo M., Jones K.E., Macphee R.D.E., Beck R.M.D., Grenyer R., 2 

Price S.A., Vos R.A., Gittleman J.L., & Purvis A. (2007) The delayed rise of present-day 3 

mammals. Nature, 446, 507–512.  4 

Cardillo M., Mace G.M., Gittleman J.L., Jones K.E., Bielby J., & Purvis A. (2008) The 5 

predictability of extinction: biological and external correlates of decline in mammals. 6 

Proceedings of the Royal Society B, 275, 1441–1448.  7 

Cardillo M., Mace G.M., Gittleman J.L., & Purvis A. (2006) Latent extinction risk and the 8 

future battlegrounds of mammal conservation. Proceedings of the National Academy of 9 

Sciences of the United States of America, 103, 4157–4161.  10 

Cardillo M., Mace G.M., Jones K.E., Bielby J., Bininda-Emonds O.R.P., Sechrest W., Orme 11 

C.D.L., & Purvis A. (2005) Multiple causes of high extinction risk in large mammal 12 

species. Science, 309, 1239–1241.  13 

Chen Y.-H. (2014) Areal sizes of high, intermediate, low and total suitable habitats are 14 

correlated to the global extinction risk for mammals. Archives of Biological Sciences, 66, 15 

963–967.  16 

Davidson A.D., Hamilton M.J., Boyer A.G., Brown J.H., & Ceballos G. (2009) Multiple 17 

ecological pathways to extinction in mammals. Proceedings of the National Academy of 18 

Science of the United States of America, 106, 10702–10705.  19 

Ellis E.C., Klein Goldewijk K., Siebert S., Lightman D., & Ramankutty N. (2010) 20 

Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and 21 

Biogeography, 19, 589–606.  22 

ESRI (1999) Arc View 3.2. Environmental Systems Research Institute, Redlandes, California, 23 

USA.  24 

Fritz S.A., Bininda-Emonds O.R.P., & Purvis A. (2009) Geographical variation in predictors of 25 

mammalian extinction risk : big is bad , but only in the tropics. Ecology Letters, 12, 538–26 

549.  27 

González-Suárez M. & Revilla E. (2013) Variability in life-history and ecological traits is a 28 

buffer against extinction in mammals. Ecology letters, 16, 242–51.  29 

Goolsby E.W., Bruggeman J., & Ane C. (2015) Rphylopars. Phylogenetic comparative tools for 30 

missing data within-species variation. R package version 0.1.1.  31 

IUCN (2014) The IUCN Red List of Threatened Species. Version 2014.3. International Union 32 

for Conservation of Nature, http://www.iucnredlist.org/.  33 

Jetz W. & Freckleton R.P. (2015) Towards a general framework for predicting threat status of 34 

data-deficient species from phylogenetic , spatial and environmental information. 35 

Philosophical Transactions of the Royal Society B, 370, 20140016.  36 



58 

Jones K.E., Bielby J., Cardillo M., Fritz S.A., O’Dell J., Orme C.D.L., Safi K., Sechrest W., 37 

Boakes E.H., Carbone C., Connolly C., Cutis M.J., Foster J.K., Grenyer R., Habib M., 38 

Plaster C.A., Price S.A., Rigby E.A., Rist J., Teacher A., Bininda-Emonds O.R.P., 39 

Gittleman J.L., Mace G.M., & Purvis A. (2009) PanTHERIA : a species-level database of 40 

life history, ecology , and geography of extant and recently extinct mammals. Ecology, 90, 41 

2648.  42 

Liow L.H., Fortelius M., Lintulaakso K., Mannila H., & Stenseth N.C. (2009) Lower extinction 43 

risk in sleep-or-hide mammals. The American naturalist, 173, 264–272.  44 

Marco M. Di, Buchanan G.M., Szantoi Z., Holmgren M., Grottolo G., Gross D., Tranquilli S., 45 

Boitani L., & Rondinini C. (2014) Drivers of extinction risk in African mammals : the 46 

interplay of distribution state , human pressure , conservation response and species 47 

biology. Philosophical Transactions of the Royal Society B, 369, 20130198.  48 

Morrow E.H. & Fricke C. (2004) Sexual selection and the risk of extinction in mammals. 49 

Proceeding of the Royal Scoiety of London, Series B, 271, 2395–2401.  50 

Polishchuk L. V., Popadin K.Y., Baranova M.A., & Kondrashov A.S. (2015) A genetic 51 

component of extinction risk in mammals. Oikos, 124, 983–993.  52 

R Core Team (2014) R: A language and environment for statistical computing. R Foundation 53 

for Statistical Computing, Vienna, Austria.  54 

Verde Arregoitia L.D. (2016) Biases, gaps, and opportunities in mammalian extinction risk 55 

research. Mammal Review, 46, 17–29.  56 

Verde Arregoitia L.D., Blomberg S.P., & Fisher D.O. (2013) Phylogenetic correlates of 57 

extinction risk in mammals: species in older lineages are not at greater risk. Proceedings of 58 

the Royal Society B, 280, 20131092.  59 

 60 


