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ABSTRACT

With the development of convection-permitting numerical weather prediction the efficient use of high-

resolution observations in data assimilation is becoming increasingly important. The operational assimilation of

these observations, such as Doppler radar radial winds (DRWs), is now common, although to avoid violating the

assumption of uncorrelated observation errors the observation density is severely reduced. To improve the

quantity of observations used and the impact that they have on the forecast requires the introduction of the full,

potentially correlated, error statistics. In this work, observation error statistics are calculated for the DRWs that

are assimilated into theMet Office high-resolution U.K. model (UKV) using a diagnostic that makes use of

statistical averages of observation-minus-background and observation-minus-analysis residuals. This is the first in-

depth study using the diagnostic to estimate both horizontal and along-beam observation error statistics. The new

results obtained show that theDRWerror standard deviations are similar to those used operationally and increase

as the observation height increases. Surprisingly, the estimated observation error correlation length scales are

longer than the operational thinning distance. They are dependent both on the height of the observation and on

the distance of the observation away from the radar. Further tests show that the long correlations cannot be

attributed to the background error covariancematrix used in the assimilation, although they are, in part, a result of

using superobservations and a simplified observation operator. The inclusion of correlated error statistics in the

assimilation allows less thinning of the data and hence better use of the high-resolution observations.

1. Introduction

With the recent development of convection-permitting

numerical weather prediction (NWP), such as the Met

OfficeU.K. variable resolution (UKV)model (Lean et al.

2008; Tang et al. 2013), the assimilation of observations

that have high frequency both in space and time has be-

come increasingly important (Park and Zupanski 2003;

Dance 2004; Sun et al. 2014; Ballard et al. 2016; Clark

et al. 2015). The potential for assimilating one such set of

observations, the Doppler radar radial winds (DRWs)

(Lindskog et al. 2004; Sun 2005), has been explored by a

number of operational centers (e.g., Lindskog et al. 2001;

Salonen et al. 2007; Rihan et al. 2008; Salonen et al. 2009).

The assimilation of the DRWs has been shown to

provide a significant positive impact on the forecast (Xiao

et al. 2005; Lindskog et al. 2004; Montmerle and Faccani
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2009; Simonin et al. 2014; Xue et al. 2013, 2014) and as a

result they are now included in operational assimilation

(Xiao et al. 2008; Simonin et al. 2014).

Currently at the Met Office the error statistics associ-

ated with DRWs are assumed to be uncorrelated

(Simonin et al. 2014). To reduce the large quantity of data

and ensure the assumption of uncorrelated errors is rea-

sonable the DRW observations are ‘‘superobbed’’ and

thinned before assimilation (Simonin et al. 2014). These

processes result in a large number of observations being

discarded. To improve convection-permitting NWP it is

necessary to make better use of high-frequency DRW

observations. This requires less thinning of the observa-

tional data, and hence the inclusion of correlated obser-

vation error statistics in the assimilation system is

required (Liu and Rabier 2003). Currently the full ob-

servation error statistics associated with the DRWs are

unknown. Therefore, the aim of thismanuscript is both to

estimate and to provide an understanding of the corre-

lated observation errors associated with DRW.

In general, the errors associated with the observations

can be attributed to four main sources: 1) instrument

error, 2) error introduced in the observation operator,

3) errors of ‘‘representativity’’ (i.e., errors that arise where

the observations can resolve spatial scales that the

model cannot), and 4) preprocessing errors (i.e., errors

introduced by preprocessing). For DRWs the instrument

errors are independent and uncorrelated. Observation

error correlations, which may be state dependent and

dependent on the model resolution, are likely to arise

from the other sources of error (Janjić and Cohn 2006;

Waller 2013; Waller et al. 2014a,b) (see section 5b for a

more detailed description). The inclusion of correlated

observation errors in the assimilation has been shown to

lead to a more accurate analysis, the inclusion of more

observation information content, and improvements in

the forecast skill score (Stewart et al. 2013; Stewart 2010;

Healy and White 2005; Stewart et al. 2008; Weston et al.

2014). Significant benefit may even be provided by us-

ing only a crude approximation to the observation error

covariance matrix (Stewart et al. 2013; Healy and

White 2005).

A number of methods exist for estimating the obser-

vation error covariances (e.g., Hollingsworth and

Lönnberg 1986; Dee and da Silva 1999). Xu et al. (2007)

presented an innovation method based on that of

Hollingsworth and Lönnberg (1986) for estimating

DRW error and background wind error covariances.

Simonin et al. (2012) previously calculated observation

error statistics for DRWs using the method of Xu et al.

(2007). The work of Simonin et al. (2012) suggests that

the observation error standard deviation increases with

the height of the observation and that the observations

errors have a correlation length scale of 1–3 km. How-

ever, the Hollingsworth and Lönnberg (1986) method

was initially designed to provide estimates of the back-

ground error statistics under the assumption of un-

correlated observation errors. The method can be used

to estimate both correlated background and correlated

observation errors; however, determining how to split

the estimated quantity into observation and background

errors is nontrivial (Bormann and Bauer 2010). Indeed

the result is subjective. To overcome this difficulty most

recent attempts to diagnose the observation error cor-

relations have made use of the diagnostic proposed in

Desroziers et al. (2005). Initially designed as a consis-

tency check, the diagnostic provides an estimate of the

observation error covariance matrix using the statistical

averageof observation-minus-backgroundandobservation-

minus-analysis residuals. However, in theory it relies on the

use of exact background and observation error statistics in

the assimilation. Despite this limitation, the diagnostic has

been used to estimate interchannel observation error sta-

tistics (Stewart et al. 2009, 2014; Bormann and Bauer 2010;

Bormann et al. 2010; Weston et al. 2014) even when the

error statistics used in the assimilation are not exact. The

method of Desroziers et al. (2005) has also been used by

Wattrelot et al. (2012) to calculate observation error sta-

tistics for the Doppler radial winds assimilated into the

Météo-France system. Their results, published as a confer-

ence paper, show a similar error standard deviation to those

found in Simonin et al. (2012), but suggest that the obser-

vation errors have a larger correlation length scale of ap-

proximately 10km (we cannot determine the length scale

precisely because of the data thinning they have applied).

Here we present the first in-depth study using the di-

agnostic of Desroziers et al. (2005) to calculate obser-

vation error statistics for the DRWs assimilated into

the Met Office UKV model. Because of the limitations

of the diagnostic we consider the sensitivity of the

estimated observation error statistics to the choice of

assimilated background error statistics. To aid our un-

derstanding of the source of observation error we also

consider the sensitivity of the estimated observation

error statistics to the use of superobservations and the

use of a more sophisticated observation operator. We

find that, for summer season observations, the DRW

error standard deviations are similar to those used op-

erationally although, surprisingly, the observation error

correlation length scales are longer than the operational

thinning distance. Because of the uncertainty in the re-

sults arising from the diagnostic the estimated correla-

tion length scales should be interpreted as indicative,

rather than necessarily quantitatively perfect. However,

results from the diagnostics can still provide useful in-

formation as further tests show that the long correlations
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cannot be attributed to the background error covariance

matrix used in the assimilation, although they may, in

part, be a result of using superobservations and a sim-

plified observation operator.

This paper is organized as follows. In section 2 we

give a description of the diagnostic of Desroziers et al.

(2005). We describe the DRW observations and their

model representations in section 3 and in section 4 we

describe the experimental design. In section 5 we con-

sider the estimated observation error statistics from four

different cases. Finally we conclude in section 6.

2. The diagnostic of Desroziers et al. (2005)

Data assimilation techniques combine observations

y 2 R
Np

with a model prediction of the state, the back-

ground xb 2 R
Nm

, often determined by a previous forecast.

HereNp andNm denote the dimensions of the observation

and model state vectors, respectively. In the assimilation

the observations and background are weighted by their

respective errors, using the background and observation

error covariancematricesB 2 R
Nm3Nm

andR 2 R
Np3Np

, to

provide a best estimate of the state, xa 2 R
Nm

, known as

the analysis. To calculate the analysis the background

must be projected into the observation space using the

possibly nonlinear observation operator,H :RNp

/R
Nm

.

After an assimilation step the analysis is evolved

forward in time to provide a background for the next

assimilation.

Desroziers et al. (2005) assume that the analysis is

determined using

xa 5 xb 1K
�
y2H (xb)

�
, (1)

where K5BHT(HBHT 1R)21 is the gain matrix and H is

the linearized observation operator, linearized about the

current state.

The diagnostic described in Desroziers et al. (2005)

estimates the observation error covariance matrix by

using the observation-minus-background and observation-

minus-analysis residuals. The background residual, also

known as the innovation,

do
b 5 y2H (xb) , (2)

is the difference between the observation y and the

mapping of the forecast vector, xb, into observation space

by the observation operator H . The analysis residual,

do
a 5 y2H (xa) (3)

’ y2H (xb)2HKdo
b , (4)

is similar to the background residuals, but with the

forecast vector replaced by the analysis vector xa. By

taking the statistical expectation of the product of the

analysis and background residuals results in

E[do
ad

oT
b ]’R , (5)

assuming that the forecast and observation errors are

uncorrelated. Equation (5) is exact if the observation

and background error statistics used in assimilation

are exact. The theoretical work of Waller et al. (2016)

provides insight into how results from the diagnostic

can be interpreted when the incorrect background

and observation error statistics are used in the as-

similation. Because of the statistical nature of the

diagnostic the resulting matrix will not be symmetric.

Therefore, if the matrix is to be used it must be

symmetrized.

3. Doppler Radar radial wind observations and
their model representation

a. The Met Office UKV model and 3D variational
assimilation scheme

The operational UKV model is a variable-resolution

convection permitting model that covers the United

Kingdom (Lean et al. 2008; Tang et al. 2013). The model

has 70 vertical levels. The horizontal grid has a 1.5-km

fixed resolution on the interior surrounded by a variable-

resolution grid that increases smoothly in size to 4km.The

variable-resolution grid allows the downscaled boundary

conditions, taken from the global model, to spin up before

reaching the fixed interior grid. The initial conditions are

provided from a 3D variational assimilation scheme that

uses an incremental approach (Courtier et al. 1994) and

is a limited-area version of theMetOffice variational data

assimilation scheme (Lorenc et al. 2000; Rawlins et al.

2007). The assimilation uses an adaptive mesh that allows

the accurate representation of boundary layer structures

(Piccolo and Cullen 2011, 2012). The background error

covariance statistics used in this study are described in

section 4.

b. Doppler radar radial wind data

Doppler radar is an active remote sensing instrument

that provides observations of radial wind by measuring

the phase shift between a transmitted electromagnetic

wave pulse and its backscatter echo. The radial velocity

of a scattering target is then estimated from the Doppler

shift (Doviak and Zrnić 1993). While it is possible to

derive clear air radar returns (e.g., Rennie et al. 2010,

2011), in this work we consider only observations where

the scattering targets are assumed to be raindrops. The

DRW data used at the Met Office are acquired using 18
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C-band weather radars. Each radar completes a series of

scans out to a range of 100 km every 5min at different

elevation angles (typically 18, 28, 48, 68, and 98) with a

18 3 600m resolution volume. Before being assimilated

the data are processed and a quality control procedure is

applied. This ensures that no observations that disagree

with neighboring observations or have a large departure

from the background are assimilated. The observa-

tions errors are assumed Gaussian and uncorrelated in

space or time with standard deviations that range from

1.8m s21 for observations close to the radar to 2.8m s21

for observations farthest away from the radar. Further

details of the operational assimilation of DRWs at the

Met Office can be found in Simonin et al. (2014).

1) THE CURRENT OPERATIONAL OBSERVATION

OPERATOR

To compare the backgroundwith the observations it is

necessary tomap themodel state into observation space.

The current operational observation operator, following

Lindskog et al. (2000), first interpolates the NWPmodel

horizontal and vertical wind components u, y, and w to

the observation location. The horizontal wind is then

projected in the direction of the radar beam and pro-

jected onto the slant of the radar beam using

y
r
5 (u sinf1 y cosf) cos(u)1w sin(u) , (6)

where f is the radar azimuth angle clockwise from due

north and u is the beam center elevation angle. The el-

evation angle u5 «1a includes a correction term a that

must be added to the measurement elevation angle «.

The correction term

a5 tan21

�
r cos(«)

r sin(«)1 a
e
1h

r

�
, (7)

where hr is the height of the radar above sea level, r is the

range of the observation, and ae is the effective Earth

radius (1.3 times the actual Earth radius) required to

take account of Earth’s curvature and the radar beam

refraction (Doviak andZrnić 1993). The correction term

is not exact. The value of ae is only valid in the in-

ternational standard atmosphere. This simple opera-

tional observation operator does not account for the

beam broadening or reflectivity weighting. Additionally,

only the horizontal wind components are updated in the

minimization, and the vertical component of wind is

ignored, which for small elevation angles should be ac-

ceptable. In addition no information about hydrometeor

fall speed is available to the assimilation system.

This operational observation operator is used in the

majority of results discussed in this article.

2) AN IMPROVED OBSERVATION OPERATOR

An improved observation operator has been trialled

in the operational system; it accounts for some broad-

ening of the beam (vertical only), as well as a reflectivity

weighting. Both of these processes are often ignored in

operational DRW assimilation (Ge et al. 2010). This

improved observation operator is similar to the operator

described by Xu and Wei (2013), although it differs in

some important details. The beam broadening model

Wbb takes the form

W
bb
(u

z
)5 exp

�
22 ln(2)

u2z
u23dB

�
, (8)

with uz 5 u2 ub, where u is the beam center elevation as

in (6), ub is the elevation within the beam, and u3dB is the

half power bandwidth (angular range of the antenna

pattern in which at least half of the maximum power is

still emitted; Toomay and Hannen 2004). For the re-

flectivity weighting, a climatological profile with height h

is used:

W
ref
(h)5Zh1 c , (9)

where

Z5

�
26 dB: h,Brightband

L

22 dB: h.Brightband
U

, (10)

c is a constant scaling factor, BrightbandL is the lower

limit of the bright band, and BrightbandU is the upper

limit of the bright band. The height of the bright band (a

layer of melting ice resulting in intense reflectivity re-

turn; Kitchen 1997) is derived from the forecast model

temperature field, and has a thickness set to 250m. The

reflectivity profile increases by 10dB from the bottom to

the center of the bright band and then decreases linearly.

The beam broadening and reflectivity weighting are

combined to give a single weight, W5WrefWbb and this

weighting is included in the new observation operator:

y
r
5 �

MLubeam

W(u sinf1 y cosf) cos(u) . (11)

The summation in (11) is made over the model levels

(MLubeam) present within the beam thickness. In this

formulation, �W is equal to one over MLubeam . The im-

plementation of this new observation operator has been

shown to reduce the error in the background residuals.

This new observation operator may be further improved

(Fabry 2010), although the operational use of a more

complex observation operator may not be feasible.

While these simplifications and omissions in the
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observation operator exist, they will introduce addi-

tional error when the model background is projected

into observation space. These errors may well be cor-

related and should ideally be accounted for in the ob-

servation error covariance matrix.

3) SUPEROBSERVATION CREATION

To reduce the density of the observations, multiple

observations are made into a single superobservation.

Only observations that have passed the quality control

procedure described in Simonin et al. (2014) are com-

bined to make the superobservations. There are a num-

ber ofmethods for calculating the superobservations. The

Doppler radar superobservations used at the Met Office

are calculated using innovations following the method of

Salonen et al. (2008). The radar scan is divided into 38 by
3km cells and one observation is created per cell using

the following procedure:

1) Project background winds into observation space

using (6).

2) Calculate the background residual at each observa-

tion location.

3) Average all background residuals that fall within a

superobservation cell.

4) Add the average residual to the simulated back-

ground radial wind at the center of the superobser-

vation cell to give a value for the superobservation.

The calculated superobservations are subject to a second

quality-control procedure (Simonin et al. 2014). They are

then further thinned to 6km, where it is assumed that the

observations will have uncorrelated error, using Poisson

disk sampling (Bondarenko et al. 2007).

4) SUPEROBSERVATION ERROR

The calculated superobservations have an associated

superobservation error «so. The literature shows that the

superobbing procedure reduces the uncorrelated por-

tion of the error; however, the correlated error is not

reduced (Berger and Forsythe 2004). Berger and

Forsythe (2004) showed that the covariance of the su-

perobservation error will be equivalent to the averaged

observation error covariance matrix for the raw obser-

vations (i.e., creating the superobservations using the

background does not introduce any background error

into «so) if the following conditions are met:

1) The observation and background errors are

independent.

2) The background state errors are fully correlated

within the superobservation cell.

3) The background state errors in a superobservation

cell all have the same magnitude.

4) The background residuals are equally weighted within

a superobservation cell.

However, for DRWs it is not clear that all the assump-

tions will hold. In particular, assumptions 1 and 2 are

valid at close range to the radar where the super-

observation cells are small. However, at far range the

superobservation cells are large and the assumptions are

likely to be invalid. Therefore, it is possible that at large

ranges there is a small influence of the background er-

rors on the error associated with the superobservation.

5) ERROR SOURCES FOR DOPPLER RADAR

RADIAL WINDS

In the introduction the four main sources of obser-

vation error are introduced. The observation error will

not only be a function of the observation type, but also of

the observation preprocessing, observation operator

and model resolution. Here we list some of the obser-

vation error sources specific to DRWs:

d Errors introduced by clutter removal.
d Error introduced when creating the superobservations.
d Misrepresentation of radar beam bending.
d Misrepresentation of beam broadening.
d Approximation of volume measurement as point

measurement.
d Discrete approximation of continuous mapping from

model to observation space.
d Errors of representativity.
d Instrument error.

There may be additional unknown sources of error.

It has been shown that some of these errors, such as

the instrument error or those errors caused by the mis-

representation of radar beam bending, are small (Xu

and Wei 2013). However, there are other errors, such

as the error introduced when creating the super-

observations, misrepresentation of beam broadening,

and the approximation of volume measurement as a

point measurement, that we hypothesize will have a

more significant contribution to the observation error

statistics. Indeed, Fabry and Kilambi (2011) suggest that

if the antenna beamwidth and reflectivity weighting are

ignored in the observation operator, then the observa-

tion errors will have long correlation length scales

greater than 10km.

4. Experimental design

To calculate estimates of the observation error co-

variances we require background and analysis residuals.

We use archived observations and background data pro-

duced by the operational Met Office system from June,
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July and August 2013. To generate the analyses we run

four different assimilation configurations, detailed be-

low. Using these backgrounds, analyses, and observa-

tions we are able to determine the background do
b and

analysis do
a residuals. Observations in this study come

from 9 of the 18 radars in the network. Although ob-

servation errors are likely to be state dependent

(Waller et al. 2014b), we have used 3 months’ worth of

data to ensure that we have enough data for the sta-

tistical sampling error to be small. We have restricted

ourselves to the summer season as we expect mainly

convective rainfall (Hand et al. 2004; Hawcroft et al.

2012), which is likely to result in state-dependent ob-

servation errors that are all similar.

Case 1 uses residuals produced by running the UKV

under the January 2014 operational configuration. This

uses superobservations (calculated as described in sec-

tion 3b) thinned to 6 km and the observation operator

given in (6). The background error covariance (‘‘New’’)

has been derived using the Covariances and VAR

Transforms (CVT) software, which is the new Met Of-

fice covariance calibration and diagnostic tool that an-

alyses training data representing forecast errors [either

using the so-called National Meteorological Center

(NMC) lagged forecast technique or ensemble pertur-

bations]. Here an NMC method has been applied to

(T 1 6 h) 2 (T 1 3 h) forecast differences to diagnose

a variance and correlation length scale for each

vertical mode.

Case 2 considers the effect of using the old (used prior

to January 2013) operational UKV background error

covariance matrix (‘‘Old’’). These statistics were gen-

erated from (T1 24h)2 (T1 12h) forecast differences;

contrary to the CVT approach, the correlation functions

used specific fixed length scales (Ballard et al. 2016).

This background error covariance matrix has larger

variances than the matrix used in case 1 and the corre-

lation length scales are slightly longer. A comparison

between cases 1 and 2 shows the impact of the assimi-

lated background error covariance matrix on the esti-

mated observation error statistics.

Case 3 uses the same background error covariance

as case 1, but used raw observations (thinned to 6 km)

rather than using the superobservations. A compari-

son between cases 1 and 3 shows the impact of the

superobservations on the estimated observation error

statistics.

Case 4 uses the same design as case 3, the assimilation

of raw observations, but the operational observation

operator is replaced with the observation operator de-

scribed in (11). A comparison between cases 3 and 4

shows the impact of the observation operator on the

estimated observation error statistics.

We summarize the different cases in Table 1. For

each case the available data for each radar scan are

stored in 3D arrays of size Ns 3Nr 3Na, where Ns is

the number of scans containing data, Nr 5 16 is the

number of ranges, and Na 5 120 is the number of azi-

muths. Figure 1 shows a radar scan with the typical

superobservation cells. The data are also separated by

elevation, with data available at elevation angles 18, 28,
48, and 68. (We do not estimate the observation error

statistics for the 98 beam due the lack of available

data.) The position of these observations at these el-

evations is shown in Fig. 2 (we note that the color

scheme for each given elevation is used throughout the

figures in this manuscript). It is important to note that

these observations are only available in areas where

there is precipitation and it is possible that only part of

the scan contains observations. Furthermore, the use

of the superobservations, thinning, and quality control

results in a limited amount of data in each scan. The

amount of data available differs for each elevation,

with data for the lower elevations available out to far

range (a result of the quality control procedures) and

for higher elevations available only for near range.

This lack of data means that standard deviations and

correlations are not available for every range at each

elevation. Results are only plotted for standard de-

viations if 1500 or more samples were available and for

correlations if the number of samples was greater than

500. The minimum number of samples is chosen to

ensure that sampling error does not contaminate our

estimates of the error statistics. Observations may be

correlated along the beam, horizontally or vertically.

Here we consider both horizontal correlations and

those along the beam.

Horizontal correlations consider how observations

at a given height are correlated. The blue cells in Fig. 1

show a set of observations that would be compared for a

given height. For each radar scan, data are sorted into

200-m height bins. Here the height takes into account

the height of the radar above sea level. All observations

that fall into a particular height bin are considered. The

data are binned by separation distance for each pair

of observations and from this the correlations are

calculated.

TABLE 1. Summary of experimental design for different cases.

Case B Superobservations

Observation

operator

1 New Yes Old

2 Old Yes Old

3 New No Old

4 New No New
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When calculating along-beam correlations we con-

sider how observations in the same beam are correlated

to each other, where correlations are expressed for the

separation distance along the beam. The red cells in

Fig. 1 show one set of observations that would be con-

sidered in this case. Here the samples used for calcu-

lating (5) are taken to be the individual scans along the

azimuth. Samples are taken on all dates, from all radars,

and from each azimuth. When calculating results along

the beam we do not expect to obtain symmetric corre-

lation functions. When considering the along-beam

correlations at any given range the positive separation

distance will result in a different correlation to the

negative separation distance. For example, say we are

considering the correlations for the observation lo-

cated at 30-km range; the correlation with the 18-km

observation (212-km separation) will have a smaller

measurement volume whereas the observation at

42 km (112-km separation) will have a larger mea-

surement volume. This is an important factor to con-

sider when analyzing the along-beam correlation

results. When plotting the along-beam correlation

functions, it can appear as though the plot is in-

complete for data at low elevation, far range, and high

height (e.g., Figs. 10 and 11). This is a result of the

range limit of the radar. For example, as depicted in

FIG. 1. A typical radar scan where each box is the location of a superobservation. The blue

cells show a group of observations, all at the same height, that would be compared to calculate

horizontal correlations. The red cells show observations that would be compared to calculate

the along-beam correlations.

FIG. 2. A typical radar beam at elevations 18 (black), 28 (blue), 48 (red), and 68 (cyan).
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Fig. 2, at an elevation of 18 and height of 2.5 km, the

range of the observation is 94 km. There are no ob-

servations available beyond a range of 100 km from

the radar, so therefore we are unable to calculate the

correlation beyond a separation distance of 16 km

(i.e., 6 km farther from the radar).

For both horizontal and along-beam correlations it is

possible to calculate an average correlation function using

all available data that is homogeneous for all elevations,

heights, and ranges. These average correlation functions

provide an overall impression of how the calculated co-

variance differs between cases. The average along-beam

correlation functions are also comparable to those calcu-

lated in Wattrelot et al. (2012). The disadvantage of this

method is that different elevations represent different

heights in the atmosphere, and also have interaction with

different model levels. Therefore it is difficult to dis-

tinguish how the error correlations arise, whether they

are a result of errors in the observation operator or

arise from the misrepresentation of scales. In an at-

tempt to understand exactly what is contributing to the

error we also calculate the correlations for different

elevations separately as this allows us to better un-

derstand the origin and behavior of the errors.

5. Results

a. Case 1—Results from the operational system

We begin by calculating the observation error co-

variances for case 1. Here data were acquired using the

January 2014 operational system. This uses super-

observations (calculated as described in section 3)

thinned to 6 km, the observation operator given in (6),

and the new background error covariance statistics.

1) HORIZONTAL CORRELATIONS

We first calculate the average horizontal correlation

function using all data from all elevations. We show the

standard deviation for this case in Table 2 and the corre-

lation in Fig. 3. (Note that the table and figure contain

results for all cases; in this section we discuss the results for

case 1 only). The standard deviation falls within the range

of operational DRW standard deviations. We see that the

estimated correlation length scale [defined to be the dis-

tance at which correlation becomes insignificant (,0.2);

Liu andRabier 2002] is approximately 24km.This ismuch

larger than the distance of 1–3km calculated in Simonin

et al. (2012) using the method of Xu et al. (2007) and the

operational thinning distance of 6km. This indicates that

the assumption of uncorrelated errors is incorrect.

We now consider the horizontal correlations for dif-

ferent heights and each elevation separately. In Fig. 4 we

plot the standard deviation with height for each eleva-

tion. We see that the standard deviations increase with

height, with the exception of the lowest levels, and are

similar for each elevation. For each elevation, the vol-

ume of atmosphere sampled by the observation in-

creases with height. (Note that at any given height the

volume sampled by the 68 beam will be smaller than the

18 beam). Observations that sample larger volumes are

TABLE 2. Horizontal and along-beam standard deviations

calculated for cases 1–4 using all available data up to a height of

5 km.

Case

Horizontal standard

deviation (m s21)

Along-beam standard

deviation (m s21)

1 1.97 1.95

2 1.57 1.59

3 1.96 1.99

4 1.82 1.89

FIG. 3. All elevation horizontal observation error correlations for case 1 (control; squares),

case 2 (alternate background error statistics; diamonds), case 3 (thinned raw data; triangles),

and case 4 (new observation operator; circles). Error correlations are deemed to be insignificant

below the horizontal line at 0.2.
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expected to have a larger instrument error as theDoppler

shift is calculated from multiple scattering targets in the

measurement volume. In addition, these observations

will be subject to more error from the observation oper-

ator as only information from the model level nearest to

the center of the sample volume is utilized, evenwhen the

sample volume spans several model layers. The increased

errors at the lowest height may be a result of larger rep-

resentativity errors as the observations at the lower

heights sample smaller volumes than the model resolu-

tion. Our results support previous work in Simonin et al.

(2014) and we find that the standard deviations are sim-

ilar to those used operationally.

Next we consider how the horizontal correlation length

scale changes for a given elevation at different heights.We

plot the calculated correlation functions for a range of

heights in Fig. 5. We see that the correlation length scale

increases with height and ranges between 17 and 32km.

For all heights the correlation length scale is longer than

the operational thinning distance. An increase in height

corresponds to an increase in both the distance of obser-

vation away from the radar and the volume of the mea-

surement box and therefore the change in correlation

length scale could be attributed to either of these variables.

In an attempt to determine the cause of the change in

length scale we consider the horizontal correlations at the

2.5-km height for the different elevations. At any given

height the measurement volume of the observation is

larger for lower elevations. Figure 6 shows that the cor-

relation length scales are larger for the lower elevations.

This suggests that it is the change inmeasurement volume

that affects the correlation length scale.As in this case the

FIG. 4. Horizontal observation error standard deviation for elevations 18 (black), 28 (blue), 48 (red), and 68 (cyan) for case 1 (control;

squares), case 2 (alternate background error statistics; diamonds), case 3 (thinned raw data; triangles) and case 4 (new observation

operator; circles).

FIG. 5. Horizontal observation correlations for elevation 28 at heights 1.1 km (dotted), 2.7 km

(dashed), 3.5 km (solid), and 4.3 km (dot–dashed) for case 1 (control). Error correlations are

deemed to be insignificant below the horizontal line at 0.2.
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observation operator does not account for the observa-

tion volume, it is likely that the correlated error is, in part,

caused by the error in the observation operator.

It is also possible to compare observations at the

same range, observations will have the same mea-

surement volume but will be at different heights in the

atmosphere. In this case we find that for each eleva-

tion the correlation length scale is similar (e.g., at a

range of 40 km each elevation has a correlation length

scale of ;23 km; not shown). This suggests that the

measurement volume of the observation has the

largest impact on the horizontal correlation length

scale, with correlation length scale increasing with

measurement volume.

2) ALONG-BEAM CORRELATIONS

Next we calculate the along-beam observation errors

using the data from case 1. We begin by calculating the

average observation error covariance and comparing

these results with those from Météo-France (Wattrelot

et al. 2012). We do not expect estimated statistics to be

equal to those found by Météo-France as there are

differences in the operational setup (e.g., observation

and background error covariance statistics, observa-

tion processing, observation operators, and thinning

distances) and the region and time scale covered by

the data.

Our estimated standard deviation (Table 2) is larger

than the standard deviation found by Météo-France,
which is 1.51m s21. This is likely to be the result of the

different operational setup and observation process-

ing. We plot our estimated correlation function along

with the correlation found by Météo-France in Fig. 7.

We see that the correlation length scales are approx-

imately 5 km longer than those found by Météo-
France. Given the different operational setup used by

FIG. 6. Horizontal correlations at height 2.5 km for elevations 18 (black), 28 (blue), 48 (red),
and 68 (cyan) for case 1 (control). Error correlations are deemed to be insignificant below the

horizontal line at 0.2.

FIG. 7. All elevation along-beam observation error correlation for cases 1 (control; squares),

2 (alternate background error statistics; diamonds), 3 (thinned raw data; triangles), and 4 (new

observation operator; circles) and those found previously by Météo-France (crosses). Error

correlations are deemed to be insignificant below the horizontal line at 0.2.
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Météo-France, the similarities between the results

are reassuring and suggest that we are obtaining

a reasonable estimate of the observation error

correlations.

Next we calculate the error statistics along the beam

for each elevation. In Fig. 8 (square symbols) we plot the

change in standard deviation with height for beam ele-

vations of 18, 28, 48, and 68. (For the horizontal correla-

tions the height of the radar above sea level was

accounted for; here height is calculated assuming that

the radar is at sea level). For all elevations the obser-

vation error standard deviation generally increases with

height, with the exception of the lowest levels. This is

similar to the behavior of the standard deviations for the

horizontal case. Unlike the horizontal case the standard

deviations for each elevation are not so similar. For any

given height the standard deviations are larger for the

lower elevations. At any given height the lower eleva-

tions will be sampling larger volumes of the atmosphere.

Observations sampling large volumes are subject to both

larger instrument error and more error in the observa-

tion operator.

We now consider how the correlation length scale

changes for a given elevation at different heights. The

estimated observation error correlations for a range of

heights are plotted in Fig. 9. The along-beam correlation

length scales are shorter than the horizontal correla-

tions, although the correlation length scale still increases

with height for any given elevation. This highlights the

relationship between the increase in correlation length

scale with the increasing height, range, and volume

measurement of the observation.

FIG. 8. Along-beam observation error standard deviation for elevations 18 (black), 28 (blue), 48 (red), and 68 (cyan) for case 1 (control;
squares), case 2 (alternate background error statistics; diamonds), case 3 (thinned raw data; triangles), and case 4 (new observation

operator; circles).

FIG. 9. Along-beam observation correlations for elevation 28 at heights 1.1 km (dotted), 3.0 km

(dashed), and 3.5 km (solid) for case 1 (control).
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In Fig. 10 we consider how the correlation function

differs with measurement volume. We plot the along-

beam correlation function for each elevation at a height

of 2.5 km. Here the height for each observation is the

same, but the measurements are taken at different

ranges with the lowest elevation at the farthest range.

Figure 10 shows that the correlation length scale in-

creases with range. Again this is likely to be a result of

the larger measurement volumes at far range.

In Fig. 11 we plot the correlation function for each

elevation at a range of 40 km. Here the volume of

measurement for each observation is the same, but

measurements from lower elevations are at lower heights.

We see that the correlation length scale differs with ele-

vation and decreases with height. We hypothesize that the

change in correlation is a result of the different levels of

the atmosphere sampled by different beam elevations.

For the low elevation angles the beam gradient is

shallow, hence different gates measure similar heights

in the atmosphere; this results in larger error correla-

tions. Larger elevation angles have larger beam gra-

dients, and different gates sample a wider range of

heights in the atmosphere; this results in small obser-

vation error correlations.

3) SUMMARY

For this case we have calculated observation error

statistics using background residuals from June, July,

and August 2013, the analysis residuals are produced by

running the UKV model using the January 2014 oper-

ational configuration. We find the following:

d DRW standard deviations increase with height (with

the exception of the lowest heights). This is likely due

FIG. 10. Correlations along the beam at height 2.5 km for elevations and approximate ranges

18’ 94 km (black), 28’ 64 km (blue), 48’ 35 km (red), and 68’ 22 km (cyan) for superobbed

data (squares/solid lines) and thinned raw data (triangles/dashed lines). Error correlations are

deemed to be insignificant below the horizontal line at 0.2.

FIG. 11. Correlations along the beam at range 40 km for elevations and approximate heights

18’ 0:8 km (black), 28’ 1:5 km (blue), 48’ 3:0 km (red), and 68’ 4:3 km (cyan) for super-

obbed data (solid lines) and thinned raw data (dashed lines). Error correlations are deemed to

be insignificant below the horizontal line at 0.2.
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to the increasing measurement volume with height.

The larger errors at the lowest height are likely to be a

result of representativity errors.
d The correlation length scale is larger than the thinning

distance of 6 km chosen to ensure that the assumption

of uncorrelated errors is valid.
d For both horizontal and along-beam correla-

tions and for all elevations the observation error

correlation length scale increases with height. We

hypothesize that this is in part due to the larger

errors in the observation operator and correlated

superobservation errors at large range. This will be

the subject of further investigation (see sections 5c

and 5d).

b. Case 2—The effect of changing the assimilated
background error statistics

The diagnostic of Desroziers et al. (2005) uses the

assumption that the observation and background error

covariancematrices used in the assimilation are exact. In

the operational assimilation, case 1, the observation

errors are assumed uncorrelated and the background

error variance and correlation length scale are believed

to be too large. (The Met Office has an ongoing project

to develop an improved background error covariance

matrix; this is expected to reduce error variances and

correlation length scales compared to those used in case

1 of this study.) Results given in Waller et al. (2016)

relating to the diagnostic suggest that under these cir-

cumstances the diagnostic will underestimate the ob-

servation error correlation length scale. Therefore it is

possible that the true observation error statistics have

longer correlation lengths than those calculated for

case 1.

To provide information on how results in case 1 may

compare to the true observation error statistics, we

consider the sensitivity of the estimated observation

error statistics to using different background statistics.

Here we use previous operational background error

statistics that have larger variances and larger length

scales than the background error statistics used in the

previous experiments.

1) HORIZONTAL CORRELATIONS

The average standard deviation given in Table 2

shows that the use of background error statistics with

larger variance and longer length scales results in a

lower estimate of the observation error standard de-

viation. The correlation function, plotted in Fig. 3, shows

clearly that using a different background error co-

variance matrix has reduced the estimated observation

error correlation length scale. These results agree with

the theoretical results in Waller et al. (2016) (larger

overestimates of variance and correlation length scale in

the assimilated background statistics result in more se-

vere underestimates of observation error variance and

correlation length scale) and suggest that the theoretical

results developed under simplifying assumptions are still

applicable in an operational setting. The theoretical

work and results from cases 1 and 2 suggest that if the

variances and length scales in the assumed covariance

matrix B were further reduced compared to case 1, the

estimated observation error correlation length scales

would be larger.

Figure 4 shows that the change in standard deviation

with height for each elevation is similar to case 1.

However, the standard deviations for case 2 are smaller

than those from case 1, a result of the larger background

error variances used in the assimilation.

As with the average correlations, results relating to

the correlations for each individual elevation and

height have smaller correlation length scales than case

1 (not shown). However, we still find that the quali-

tative behavior of the correlation length scales

remains the same; that is, for any elevation the cor-

relation length scale increases with height and for any

given height the length scale decreases as elevation

increases.

2) ALONG-BEAM CORRELATIONS

For the average along-beam correlation we find the

standard deviation (Table 2) is reduced compared to

case 1. The correlations plotted in Fig. 7 also have a

shorter length scale (approximately 10 km) and are

more comparable to those found by Météo-France.
When considering the standard deviations for each

elevation we again see that they are reduced (see di-

amonds in Fig. 8), although the change in standard de-

viation with height is qualitatively similar to case 1. We

find that the shape of the correlation function is similar,

but the length scales are shorter than those calculated in

case 1 (not shown). The variation in the correlation

length scale with elevation, height, and range is, how-

ever, unaltered.

3) SUMMARY

For this case we have calculated observation error

statistics using different background error statistics that

have larger variances and correlation length scales. We

find the following:

d Estimated observation error standard deviations

(length scales) are smaller (shorter) when using the

alternative background error statistics with larger

standard deviations and longer correlation length
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scales. This result follows the theoretical work of

Waller et al. (2016).
d Changes in observation error standard deviation and

correlation length scale with height remain qualita-

tively similar to case 1.
d Given that the background error standard deviations

and correlation length scales in case 1 are believed to

be too large and long, it is likely that the true observa-

tion error statistics have larger standard deviations and

longer length scales than those calculated in case 1.

c. Case 3—The effect of the superobservations

The creation of the superobservations, discussed in

section 3b, results in an observation error that is only

independent of the background error if the errors in the

background states used in the calculation of each su-

perobservation are of the same magnitude and are fully

correlated (Berger and Forsythe 2004). This assumption

is true at close range to the radar, but it is possible that it

is violated at far range resulting in increased observation

error correlation length scales. To determine if the su-

perobservations have this effect we consider the results

from case 3, where the assimilation uses thinned raw data.

We return to using the new background error statistics.

1) HORIZONTAL CORRELATIONS

Table 2 shows that the average standard deviation for

this case is very similar to that of case 1. However, the

correlation length scale is slightly reduced compared to

case 1 (Fig. 3). This suggests that the use of super-

observations may introduce some observation error

correlation but does not appear to be the main source of

correlations.

Figure 4 shows that the standard deviations for indi-

vidual elevations are similar to those found in case 1. In

general we find that the use of the thinned data results

in slightly shorter observation error correlation length

scales for observations that are at lower elevations and

far range. For example, Fig. 12 shows, for the 28 eleva-
tion, that the use of the superobservations has little

impact on the correlation length scale at short range.

However, at far range the correlation length scale for

case 1 is approximately 5 km longer than that for case 3.

This result supports our hypothesis that the use of su-

perobservations increases the observation error corre-

lation length scale at far range. This is a result of the

invalid assumption that the errors in the background

states used in the superobservation creation are of the

same magnitude and fully correlated.

2) ALONG-BEAM CORRELATIONS

From Table 2 we see that the average along-beam

observation error standard deviation is similar to that

found using the data from case 1. Figure 7 shows that the

correlation length scale is also slightly reduced.

Figure 8 shows that the standard deviations for sepa-

rate elevations are similar to case 1. Figures 10 and 11

show that using the raw observations results in a simi-

larly shaped correlation function to case 1 but with a

slightly reduced length scale. The exception is the

highest elevation (closest range) where the length scales

are slightly larger. These results suggest that using the

superobservation has the opposite effect, namely the

introduction of correlation at far range, but a reduction

of correlation in the higher elevations.

3) SUMMARY

We have calculated observation error statistics using

thinned raw observations. We make these findings:

d Using thinned raw data has little impact on the

estimated observation error standard deviations; this

is similar to case 1.
d In general, horizontal correlation length scales at far

range are reduced. This implies that using super-

FIG. 12. Horizontal observation correlations for elevation 28 at a range of 24 km (solid) and

90 km (dashed) for case 1 (control; squares) and case 3 (thinned raw data; triangles). Error

correlations are deemed to be insignificant below the horizontal line at 0.2.
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observations introduces correlated error at far range,

possibly as a result of an invalid assumption in the

superobservation creation.
d In general along-beam correlation length scales are

reduced for the lower elevations; however, they are

slightly increased for the 68 beam.

d. Case 4—The effect of an improved observation
operator

The previous cases have all used the simplified ob-

servation operator described in (6). The omission of the

more complex terms introduces both additional error

variance and correlation (Fabry 2010). It may not be

possible to use a full observation operator in opera-

tional assimilation, although the use of the sophisti-

cated observation operator in (11) may be considered.

In this case we use this new observation operator to

see if including beam broadening and reflectivity

weighting in the observation operator has any effect

on the observation error statistics. Here we use the thin-

ned raw observations rather than the superobservations

(the creation of the superobservation involves the obser-

vation operator, and ideally we wish to isolate the impact

of the observation operator in the assimilation), so the

results here must be compared to case 3.

1) HORIZONTAL CORRELATIONS

For the average horizontal error statistics both the

standard deviation and correlation length scale have

decreased compared to case 3 (see Table 2 and Fig. 3).

For the separate elevations, as with all previous cases,

we find that the standard deviations increase with height

(Fig. 4), although here the actual values for the lower

elevations are reduced compared to the standard de-

viations found in case 3. The reduction is not seen in the

higher elevations as observations are at near range

where the effects of beam bending and broadening, ac-

counted for in the new observation operator, are not so

significant. In general, we find that the correlations for

every elevation are decreased when using the improved

observation operator. In Fig. 13 we show that using an

improved observation operator reduces the correlation

length scale slightly at near range, and at far range by

approximately 40%.

When considering horizontal correlations we com-

pare observations at the same range away from the radar

that have the same measurement volume, and hence the

new observation operator should have the same im-

provement for each observation we compare. The re-

duction in error standard deviation and correlation

shows that the inclusion of the beam broadening and

reflectivity weighting has improved the observation

operator. It also suggests that the use of an even more

sophisticated observation operator may further reduce

the observation error correlation.

2) ALONG-BEAM CORRELATIONS

In this case Table 2 and Fig. 8 show that the error

standard deviation is reduced compared to case 3,

suggesting that the more sophisticated observation

operator is indeed an improved map from background

to observation space. Both Fig. 7 and the correlations

for separate elevations suggest that introducing the

new observation operator slightly increases the corre-

lation length scale. We hypothesize that this is a result

of the inclusion of the beam broadening. When using

the old observation operator observations at different

ranges at any elevation were unlikely to consider data

from the same model levels. With the introduction of

the beam broadening different observations will now

use information from the same model levels and this is

FIG. 13. Horizontal observation correlations for elevation 18 at a range of 18 km (solid) and

74 km (dashed) for case 3 (thinned raw data; triangles) and case 4 (new observation operator;

circles). Error correlations are deemed to be insignificant below the horizontal line at 0.2.
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likely to be the cause of the increased correlation

length scales.

3) SUMMARY

For this case we have calculated observation error

statistics using thinned raw observations and an im-

proved observation operator. We find the following:

d Using the new observation operator reduces the error

standard deviations for the lower elevations. Less

impact is seen in the higher elevations where the

effects of beam bending and broadening (accounted for

in the new observation operator) are not so significant.
d For the horizontal correlations using the new obser-

vation operator reduces the estimated observation

correlation length scale. This suggests that error in

the observation operator may be in part responsible

for the large correlation length scales.
d Using the new observation operator increases the

along-beam correlation. This is likely to be the result

of close observation residuals sharing increased

amounts of background data.

6. Conclusions

With the development of convection-permitting NWP

the assimilation of high-resolution observations is be-

coming increasingly important. Currently large quanti-

ties of high-resolution data are discarded to ensure the

assumption of uncorrelated observation errors is rea-

sonable. The assimilation of high-resolution observa-

tions will require less thinning of the observational data

and, hence, the inclusion of correlated observation error

statistics in the assimilation system. Observation errors

can be attributed to a number of different sources, some

of which may be state dependent and dependent on the

model resolution. Calculation of observation error sta-

tistics is difficult as they cannot be measured directly.

Recently the diagnostic of Desroziers et al. (2005) has

been used to estimate interchannel observation error

correlations for a number of different observation types.

When inexact background and observation errors are

used in the assimilation cost function, theory (Waller

et al. 2016) shows that the results arising from the di-

agnostic are uncertain and should be interpreted as in-

dicative, rather than necessarily quantitatively perfect.

However, results from the diagnostics can still provide

useful information on the sources of error correlation

and how it may be reduced. Furthermore, idealized

studies using correlated observation error matrices in-

dicate that much of the benefit in assimilation accuracy

can be obtained from using approximate correlation

structures (Stewart et al. 2013; Healy and White 2005).

The aim of this manuscript is to use the diagnostic to

estimate spatially correlated errors for Doppler radar

radial wind (DRW) observations that are assimilated

into the Met Office UKV model. Errors for DRWs

may be correlated horizontally, vertically, or along the

path of the radar beam. In this work we consider both

the horizontal and along-beam error statistics. We

also considered if results from the Hollingsworth and

Lönnberg (1986) diagnostic could provide further in-

formation. We note that, for the data used in this study,

there was no clear way to partition the results from the

Hollingsworth and Lönnberg (1986) diagnostic into the

observation and background error portions. Any obser-

vation error correlations estimated from this data using

the Hollingsworth and Lönnberg (1986) method would

have been highly dependent on the subjective choice of

correlation function fitted.

Initially error statistics were calculated for observa-

tions assimilated into the UKV model operational in

January 2014. This provided information on the general

structure of the observation errors and how they vary

throughout the atmosphere. Error statistics were also

calculated using data from an assimilation run using al-

ternative background error statistics. This provided in-

formation on how sensitivity of the results to the

specification of the background error statistics. The di-

agnostic was then applied to data from two additional

assimilation runs. These evaluated the impact that the use

of superobservations and errors in the observation op-

erator has on the estimated observation error statistics.

Results from all four cases showed similar behavior for

the estimated statistics. We are able to conclude that most

DRWerror standard deviations and horizontal and along-

beam correlation length scales increase with height, as a

function of the increase in measurement volume. Thus at

least part of the correlated error is likely to be related to

the uncertainty in the observation operator. The excep-

tions are the standard deviations at the lowest heights.

Observations at the lowest heights have the smallest

measurement volumes, smaller than the model grid spac-

ing, and hence representativity errorsmaywell account for

the larger standard deviations at lower heights. The results

presented here are for summer season observations; how-

ever, results considered forwinter season observations show

that the qualitative behavior of the estimated DRW error

statistics is similar to the summer case.

Results showed that the estimated standard de-

viations are similar to those used operationally. How-

ever for the majority of cases, with exception of the 68
beam, the correlation length scales are much larger than

those found in Simonin et al. (2012) and the operational

thinning distance of 6 km. Despite the differences in

operational system, our estimated average along-beam
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correlations are similar to those calculated by Météo-
France (Wattrelot et al. 2012). Furthermore, observa-

tion error statistics estimated when using an alternative

background error covariance matrix in the assimilation

and the results from Waller et al. (2016) imply that the

observation error correlation length scale is under-

estimated. This suggests that the errors are correlated to a

degree that it should be accounted for in the assimilation.

In an attempt to understand the source of the error

correlations, the effects of using superobservations and

an improved observation operator are considered. The

use of the superobservations does not affect the error

standard deviations. However, results suggest that the

use of superobservations introduces correlated error at

far range, possibly as a result of an invalid assumption in

the superobservation creation. The use of an improved

observation operator reduces the error standard de-

viations, particularly at low elevations and at far range

where observations have large measurement volumes.

This is expected since the new observation operator

takes into account the beam broadening and bending,

both of which affect the beam most at far range. The

improvement in the low elevations is related to the in-

clusion in the observation operator of information from

more model levels. These are denser in the lower at-

mosphere where the low elevations provide observa-

tions. The use of the new observation operator results in

an increase of the along-beam correlation length scale.

We hypothesize that this is a result of nearby observation

residuals now sharing information from the same model

levels. However, the horizontal correlations were slightly

reduced. This suggests not only that some of the horizontal

correlations previously seen were a result of omissions in

the observation operator, but also that the horizontal

correlation length scale may be further reduced with the

use of an even more complex observation operator.

These results provide a better understanding of DRW

observation error statistics and the sources that con-

tribute to them. We have shown that these observation

errors exhibit large spatial correlations that are much

larger that the operational thinning distance. This implies

that, if high-resolution DRW observations are to be as-

similated correctly, the inclusion of correlated observa-

tion error statistics in the assimilation system is required.
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