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Extinction learning is an importantmechanism in the successful

psychological treatment of anxiety. Individual differences in

response and relapse followingCognitive Behavior Therapymay

in part be explained by variability in the easewithwhich fears are

extinguished or the vulnerability of these fears to re-emerge.

Given the role of the endocannabinoid system in fear extinction,

this study investigates whether genetic variation in the endo-

cannabinoid system explains individual differences in response

to CBT. Children (N¼ 1,309) with a primary anxiety disorder

diagnosis were recruited. We investigated the relationship

between variation in the CNR1, CNR2, and FAAH genes and

change in primary anxiety disorder severity between pre- and

post-treatment and during the follow-up period in the full

sample and a subset with fear-based anxiety disorder diagnoses.

Change in symptom severity during active treatment was nomi-

nally associated (P< 0.05) with two SNPs. During the follow-up

period, five SNPs were nominally associated with a poorer

treatment response (rs806365 [CNR1]; rs2501431 [CNR2];

rs2070956 [CNR2]; rs7769940 [CNR1]; rs2209172 [FAAH])

and one with a more favorable response (rs6928813 [CNR1]).

Within the fear-based subset, the effect of rs806365 survived

multiple testing corrections (P< 0.0016).We found very limited

evidence for an association between variants in endocannabi-

noid system genes and treatment response once multiple testing

corrections were applied. Larger, more homogenous cohorts are

needed to allow the identification of variants of small but

statistically significant effect and to estimate effect sizes for

these variants with greater precision in order to determine their

potential clinical utility.

� 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsy-

chiatric Genetics Published by Wiley Periodicals, Inc.

Key words: anxiety; endocannabinoids; fear extinction;
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INTRODUCTION

Childhood anxiety disorders are very common [Kessler et al., 2005]

and are associated with a wide range of impairments [Kim-Cohen

et al., 2003; Erath et al., 2007; Asendorpf et al., 2008]. Response to

Cognitive Behavior Therapy (CBT) varies substantially between

patients [James et al., 2013]. Identifying predictors of response is

important given the potential for clinicians to identify children and

adolescents at risk for poorer outcomes before treatment begins and

to help inform the development of more efficacious therapies.

Recent years have seen a growing interest in the genetic prediction

of response to psychological therapy, a field known as therapyge-

netics [Lester and Eley, 2013]. Yet to receive attention is the

endocannabinoid (ECB) system, despite a growing literature impli-

catingendocannabinoids in thepathogenesisof anxietyand fear, fear

extinction, and emotional processing [Lafenetre et al., 2007; Hillard

et al., 2012; Ruehle et al., 2012; Mechoulam and Parker, 2013].

Extinction learning is assumed to be an important component of

CBT, in which individuals are repeatedly exposed to their feared

object, situation, or anxiety-provoking thought in the absence of

any aversive consequences. Over successive exposures, the patient
learns that their feared object is not predictive of an aversive

outcome and anxiety is reduced [Craske et al., 2014]. However,

extinguished fears are vulnerable to recovery and can re-emerge

with the passage of time, which creates limitations on the potential

durability and effectiveness of CBT [Craske et al., 2008; Arch and

Craske, 2009]. This is because extinction is a new learning process

that involves the encoding of a new competing memory, but which

does not replace the original fear memory, leaving it potentially

ready to re-emerge [Bouton, 2002]. A feature of anxiety disorders

both in adult and child samples is their tendency to recur even

following initially successful treatment with relapse rates reported

to approximate 20–30% in child and adolescent samples [Gearing

et al., 2013; Piacentini et al., 2014]. Surprisingly, little is known

about predictors of relapse. One possibility is that individual

differences in the ease with which fears are extinguished and/or

vulnerability of extinguished fears to re-emergemay in part explain

inter-individual variation in initial response and risk of relapse

following CBT.

The ECB system comprises of cannabinoid receptors (CB1 and

CB2), the endogenous endocannabinoids (anandamide [AEA] and

2-arachidonoylglycerol [2-AG]), and the catabolic enzymes for

endocannabinoid degradation (fatty acid amide hydrolase [FAAH]

for AEA and monoacylglycerol lipase [MAGL] for 2-AG). Consid-

erable research supports the hypothesis that endogenous endo-

cannabinoid signaling regulates anxiety. There is also suggestive

evidence that targeting components of the ECB system via activa-

tion of CB1 receptors or by manipulating FAAH activity may

produce anxiolytic effects [Kathuria et al., 2003; Lafenetre et al.,

2007; Gunduz-Cinar et al., 2013]. Pertinent to our understanding

of the factors influencing treatment response is research in adults

demonstrating the role of the ECB system in fear extinction

[Gunduz-Cinar et al., 2013]. Failure to effectively extinguish

fear when cues that previously predicted threat are no longer

present can lead to the maintenance of fear and has been proposed

as an important mechanism in the etiology of anxiety disorders

[Hofmann, 2008].

Animal research has shown that genetic deletion and pharma-

cological blockade of CB1 receptors impedes extinction [Marsi-

cano et al., 2002; Lafenetre et al., 2007]. In contrast, enhancing

cannabinoid neurotransmission using either anandamide reuptake

inhibitors, which alter FAAH activity or direct CB1 agonists

facilitates fear extinction [Chhatwal et al., 2005; Pamplona et al.,

2006; Bitencourt et al., 2008]. The ECB system may be particularly
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important for the consolidation and retention of extinction mem-

ories [Suzuki et al., 2008] thus attenuating the spontaneous

recovery of conditioned fear responding. Two studies, one [Rabi-

nak et al., 2013], which administered tetrahydrocannabinol (THC)

pre-extinction, and a second [Das et al., 2013] that administered

cannabidiol after extinction learning found consolidation of ex-

tinction learning to be enhanced in human participants. However,

a third study [Klumpers et al., 2012], which also administered THC

did not detect an effect of THC on consolidation of fear extinction.

Several studies have also shown that administration of cannabinoid

system modulators, such as THC, modulates the neural substrates

(amygdala, ventromedial prefrontal cortex, hippocampus) in-

volved in extinction learning, extinction memory recall [Rabinak

et al., 2014], and the processing of emotional stimuli [Phan et al.,

2008; Fusar-Poli et al., 2009; Bossong et al., 2013]. Given these

findings, cannabinoid-based pharmacotherapy and augmentation

of existing treatments has been proposed as a promising avenue for

the development of novel treatments for anxiety disorders

[Domschke and Zwanzger, 2008; Graham and Milad, 2011; Fitz-

gerald et al., 2014], although as of yet the evidence for efficacy

remains unclear [Whiting et al., 2015].

Recent research has investigated the effects of genetic variability

in human endocannabinoid signaling for fear extinction. Numer-

ous single nucleotide polymorphisms (SNPs) have been identified

in CNR1 and CNR2, the genes that encode for cannabinoid

receptor 1 and 2, respectively and in FAAH, the gene that encodes

for the FAAHprotein, the primary regulator of AEA signaling in the

brain [Cravatt et al., 2001]. Variation in rs2180619, a SNP in the

promoter region of CNR1 has been associated with fear extinction.

G allele carriers demonstrated robust extinction of fear evidenced

by a reduction in fear-potentiated startle relative to AA homozy-

gote carriers who failed to extinguish fear [Heitland et al., 2012]. A

small number of variants in CNR1 (e.g., rs1049353; rs806368) and

CNR2 (rs2501431) have been investigated in the context of emo-

tional processing of socially relevant stimuli [Chakrabarti et al.,

2006; Domschke et al., 2008] and in predicting antidepressant

treatment response in patients with Major Depression [Domschke

et al., 2008; Mitjans et al., 2012, 2013].

Research in mice has shown that FAAH inhibitors facilitate

extinction by augmenting AEA signaling in the amygdala. Simi-

larly, healthy carriers of the low-expressing A allele at rs324420,

which leads to reduced expression of FAAH and elevated levels of

AEA showed reduced amygdala activity [Hariri et al., 2009].

Furthermore, low expressing A allele carriers showed more rapid

habituation of amygdala responses to threatening stimuli relative

to CC homozygotes [Gunduz-Cinar et al., 2013]. They also

reported lower scores on a personality measure of stress reactivity

[Gunduz-Cinar et al., 2013]. A recent study showed persuasive

convergent effects of FAAH variation in both humans and mice.

Human A allele carriers showed enhanced fear extinction indexed

by reduced skin conductance response to the extinguished cue and

lower levels of trait anxiety.Mice carrying theA allele demonstrated

reduced freezing behavior on presentation of the extinguished cue

and decreased anxiety in response to two measures of anxiety-like

behaviors that involved placing the mice in conflict situations

(elevated plus maze test and novelty induced hypophagia test)

[Dincheva et al., 2015]. These findings suggest that variation in
FAAH may be an important moderator of anxiety-related behav-

iors and is a plausible candidate for involvement in determining for

whom psychological treatments involving exposure components

will be most effective.

In the current study, we tested the association between poly-

morphisms of the CNR1, CNR2, and FAAH genes and response to

CBT in children and adolescents with an anxiety disorder diagno-

sis. To our knowledge, this is the first study to investigate genetic

variation in the endocannabinoid system and response to a psy-

chological treatment.We began by testing our hypotheses in a large

sample of children (N¼ 1,309) experiencing the full range of

anxiety disorder diagnoses and who had received a course of

CBT in order tomaximize power to detect genetic effects. However,

one possibility is that extinction learning may be implicated more

or less in the mechanisms of treatments for different disorders. For

example, extinction learning may be of greater relevance for the

successful treatment of predominantly fear based disorders such as

specific phobias and to a lesser extent for distress based disorders

like generalized anxiety disorder [Borkovec and Ruscio, 2001].

Thus, in secondary analyses, we tested our hypotheses in a subset of

the sample (N¼ 749) that had received a fear-based anxiety

disorder diagnosis (e.g., specific phobia, social phobia, separation

anxiety disorder, panic disorder). Theses analyses were informed

by research using genetic and phenotypic data to determine the

structure of psychopathology [Lahey et al., 2004; Clark and Wat-

son, 2006; Watson et al., 2008] and which suggests that emotional

disorders can be decomposed into distress disorders (e.g., major

depression, generalized anxiety disorder, posttraumatic stress dis-

order); fear disorders (e.g., phobias, panic disorder); and the

bipolar disorders [Watson et al., 2008].

We tested two hypotheses. Firstly, that genetic variation in

CNR1, CNR2, and FAAH would be significantly associated with

change in symptom severity from baseline to post-treatment

reflecting the influence of genetic variation in the ECB system

during the active treatment period. One possibility is that any effect

of ECB genes on early symptom change may reflect the role of the

ECB system in the extinction of fear. Second, we examined whether

ECB genetic variation was associated with change in symptom

severity from post-treatment to follow-up reflecting the influence

of ECB genetic variation onmaintenance of treatment gains.While

for some, this will reflect a period in which they continue to

consolidate the gains made during treatment, for others this

may reflect a period in which they begin experiencing a relapse

of symptoms. One possibility is that any effect of ECB genes on

symptom change and specifically the continuance of treatment

gains during the follow-up period may reflect the role of the ECB

system in the maintenance of extinction memories.

MATERIALS AND METHODS

Participants
Participants were recruited for the Genes for Treatment Study

(G�T) study, a multi-site international collaboration designed to

identify clinical, demographic and genetic predictors of outcome

following CBT for anxiety disorders in children and adolescents

[Hudson et al., 2015]. The sample comprised 1,309 individuals for

whom treatment response data was available at the post and/or
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follow-up time points and genotype data was available for one or

more SNPs. Participants were 5–17 years of age (89.6% aged 5–12

years, mean age: 9.81 years, 52% female) and met DSM-IV criteria

for primary diagnosis of an anxiety disorder. Exclusion criteria

comprised significant physical or intellectual impairment, psycho-

ses, and concurrent treatment. Participants completed a course of

CBT as part of a trial or as treatment as usual at one of eleven sites:

Sydney, Australia (n¼ 641); Reading andOxford,UK (n¼ 302 and

n¼ 15); Aarhus, Denmark (n¼ 123); Bergen, Norway (n¼ 39);

Groningen, The Netherlands (n¼ 36); Bochum, Germany

(n¼ 52); Florida, US (n¼ 38); Basel, Switzerland (n¼ 47), Cam-

bridge, UK (n¼ 12); and Amsterdam, The Netherlands (n¼ 4). All

treatments were manualized and treatment protocols across sites

were comparable for core elements of CBT including teaching of

coping skills, cognitive restructuring, and exposure. Three broad

groups of treatment modality were given: individual CBT (27.4%),

group based CBT (52.8%), and parent-supported guided self-help

CBT (19.9%). Follow-up data was collected at three (n¼ 231), 6

(n¼ 675), or 12-months (n¼ 250) after cessation of treatment.

Further sample characteristics for the full sample are given in

Table I and site-specific trial information is given in the supple-

mentary information accompanying this article. Sample character-

istics for the subset with a fear-based diagnosis (excluding

Generalized Anxiety Disorder (GAD), Obsessive Compulsive

Disorder (OCD), Post Traumatic Stress Disorder (PTSD), Anxiety

Disorders NotOtherwise Specified (ADNOS)) are given in Table SI

in the supplementary materials.
Measures
Diagnoses were made using the Anxiety Disorders Interview

Schedule for DSM-IV (ADIS-IV-C/P) [Silverman and Albano,

1996] at all sites except for Bochum and Basel where the German

equivalent Kinder-DIPS was used [Schneider et al., 2009]. Clinical

Severity Ratings (CSRs) ranged from 0 to 8 and were based on

composite parent and child reports (see Hudson et al., 2015, for

further details). Treatment response was assessed as change in

primary diagnosis severity from pre-treatment to post-treatment

and from post-treatment to follow-up. A diagnosis was assigned

when the childmet diagnostic criteria and received aCSR of four or

greater. Primary diagnoses included Generalized Anxiety Disorder

(GAD; 37.7%), Separation Anxiety Disorder (SAD; 21.7%), Social

Anxiety Disorder (21.3%), Specific Phobia (11.4%), or Panic

Disorder, Obsessive Compulsive Disorder, Post Traumatic Stress

Disorder, Selective Mutism,1 or Anxiety Disorders Not Otherwise

Specified (other anxiety disorders; 7.9%).
Genotyping
DNA was collected using buccal swabs or Oragene saliva samples

(DNAGenotek, Ottawa, Canada). Buccal swab DNAwas extracted

using established procedures designed to maximize the purity and

yield of the sample [Freeman et al., 2003]. DNA from saliva samples
1In cases with primary selective mutism, a diagnosis of severe social phobia was
also given. The selective mutism was considered by the clinician to be primary,
the most interfering.
was extracted using Prep-it.L2P according to the manufacturers

protocol (DNA Genotek). Sample preparation prior to genotyping

is described elsewhere [Coleman et al., 2016]. In brief, samples were

subjected to ultrafiltration and resuspension to increase DNA

concentration and included in genotyping if the resulting concen-

tration exceeded 50 ng/ul.

Genotypes for seven CNR1 polymorphisms (rs2180619;

rs1049353; rs806368; rs806371; rs806379; rs1535255; rs806369),

one CNR2 polymorphism (rs2501431) and one FAAH polymor-

phism (rs324420) drawn from the candidate gene literature on fear

extinction, emotional processing, and response to antidepressant

treatment were genotyped by LGC Genomics (Hoddesdon, UK)

using validated arrays with KASP technology or were obtained

from the Illumina Core Exome-12v1.0microarray. Four additional

markers, which were genotyped using both platforms showed an

average of 98% consensus on genotype calls.

For the subset of the sample with array data (n¼ 980) additional

genotypes were available for 123 CNR1 polymorphisms, 159 CNR2

polymorphisms, and 318 FAAH polymorphisms. Array data was

included in all analyses to provide LD context for multiple testing

corrections and to provide more accurate gene-based tests of

association.

Quality control and imputation procedures for those samples

with microarray data are provided in full elsewhere [Coleman

et al., 2016]. Briefly, common variants (minor allele frequency

>5%) were included in the analyses if they were genotyped in

>99% of samples and if they did not deviate substantially from

Hardy–Weinberg equilibrium (HWE test P-value> 10�5). SNPs

were included if they could be imputed to the December 2013

release of the 1000 Genomes Project reference [1000Genomes-

Consortium, 2012] with >90% completeness, and an info metric

of >0.8 (a value ranging between 0 and 1 which indicates the

certainty with which the SNP has been imputed). Using these cut-

offs, data was available for 127 CNR1 SNPs, 160 CNR2 SNPs, and

318 FAAH SNPs. Gene coverage estimated using directly geno-

typed and imputed SNPsmeeting criteria for inclusionwas 11.5%,

19.8%, and 28.9% for CNR1, CNR2, and FAAH genes, respec-

tively. For each gene, analyzed variants were entered as tagging

SNPs in the Tagger utility of Haploview [Barrett et al., 2005]. All

common variants (MAF3 0.05) within and �100 kb of the gene

boundaries (as listed in HapMap release IIþ III) were in linkage

disequilibrium (r2> 0.8) with at least one tagging SNP. This

indicates good coverage of all linkage regions across the genes

studied. To account for patterns of linkage disequilibrium (LD)

between SNPs, LD based clumping was performed for each

analysis to reduce the SNP set to a smaller number of clumps

of correlated SNPs.
Ethical Approval
Each site had trial-specificHuman Ethics and Biosafety Committee

approval for the collection of biological samples with the research

conducted in accordance with the Declaration of Helsinki. In all

instances parents provided written informed consent, children

assent. The storage and analysis of DNA was approved by the

King’s College London Psychiatry, Nursing and Midwifery Re-

search Ethics Sub-Committee.
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Analyses

Two outcome measures were considered in our primary analyses.

First, the change in severity (CSR score) of the primary anxiety

diagnosis from baseline to post-treatment, reflecting the active

treatment period. Second, the change in severity of the primary

anxiety diagnosis from post-treatment to follow-up time points,

reflecting a period of consolidation or risk for relapse.

Linear mixed effects models were performed to investigate the

effect of ECB polymorphisms on change in severity (CSR score) of

the primary anxiety disorder diagnosis. All genotypeswere coded to

reflect an additive model where �1, common homozygote; 0,

heterozygote; and 1, rare homozygote. To make use of all available

post baseline measurements and provide estimates in the presence

ofmissing data, the effects of predictors of response were estimated

using mixed models fitted with full maximum likelihood. All

models included either the fixed effects of baseline severity (CSR

of the primary anxiety disorder diagnosis at baseline, centred at the

mean) or post-treatment severity (CSR of the primary anxiety

disorder diagnosis at post-treatment, centred at the mean), age

(centred at the mean), and gender. Analyses investigating post to

follow-up change also included the linear and quadratic effects of

time to account for the curvilinear slope of treatment response

across this period. All models included the random effects of

individual to account for correlations between repeated measures

from the same individual. We also included a higher order random

effect of trial to account for between trial differences in outcome. As

each trial was conducted at a single site, this random effect also

accounted for between-site differences.

In all analyses, the beta values of variables predicting a more

favorable response to treatment or continued gains during the

follow-up period (i.e., greater reduction in severity) are negative,

while variables predicting a less favorable response are positive.

Analyses were performed in STATA version 12.0.

All analyses (baseline to post-treatment change, post-treatment

to follow-up change, fear-based diagnoses subset ((N¼ 749), gene-

based association tests) consider data from all available SNPs

including both directly genotyped SNPs available on the entire

sample (N¼ 1,309) and the additional SNPs available for the subset

of the sample with array data (n¼ 980). N’s are given for each

sentinel SNP in the corresponding table for each analysis.

Results from the initial association analyses were clumped

based on patterns of LD according to P-value using PLINK

[Purcell et al., 2007], thus reducing the SNP set to a smaller

number of correlated SNPs. Each independent clump was rep-

resented by a sentinel SNP (that with the lowest P-value in the

clump), and contained all SNPs in linkage disequilibrium with

the sentinel (R2> 0.25, within 250 kb of the sentinel). To correct

for multiple testing, revised significance thresholds were calcu-

lated based on the number of independent clumps identified for

each analysis.

Gene-based tests for association with response were performed

using VEGAS modified to use the hg19 genome build [Liu et al.,

2010]. Gene boundarieswere defined as the longest transcript of the

gene listed in the UCSC Genome Browser and variants considered

�100 kb from each end. Linkage disequilibrium patterns were

calculated from the genotyped data.
Power Calculations
Power calculations indicated that with a sample size of 980, we had

80% power to detect a variant with a minor allele frequency of 0.05

capturing 1.6%of variancewith a corrected alpha level of 0.017. For

variants explaining 0.1%, 0.5%, and 1% of the variance we had

1.6%, 18%, and 50% power, respectively.
RESULTS

Clinical outcomes in the full sample were comparable to previ-

ously reported estimates [Hudson et al., 2013, 2015; James et al.,

2013]. Following treatment, 58% of the sample was free of their

primary anxiety disorder diagnosis with this rate rising to 67% by

follow-up. Symptom severity reduced significantly between base-

line (6.22) and post-treatment (2.97, t(1256)¼ 54.57, P< 0.0001)

and post-treatment and follow-up time points (2.42, t

(1256)¼ 9.40, P< 0.0001). We initially explored the effects of

clinical (baseline severity; primary diagnosis; treatment type) and

demographic factors (age; gender) on change in symptom severity

between baseline and post-treatment. Findings were broadly

similar to those reported for the full sample [Hudson et al.,

2015]. Individuals with Social Anxiety Disorder, Specific Phobias,

or Separation Anxiety Disorder showed a significantly poorer

response to treatment compared to those with Generalized Anxi-

ety Disorder (b¼ 0.24, P< 0.0001; b¼ 0.11, P¼ 0.005, and

b¼ 0.06, P¼ 0.044, respectively. Higher severity at baseline was

associated with significantly poorer response to treatment

(b¼ 0.30, P< 0.0001). However, treatment response did not

differ according to sex, age, or treatment type (all P values> 0.05).

For change in symptom severity between post-treatment

and follow-up time points, individuals with Specific Phobias

showed a significantly poorer treatment response compared to

those with Generalized Anxiety Disorder (b¼ 0.15, P¼ 0.011).

Higher severity at post-treatment was also associated with signifi-

cantly poorer response during the follow-up period (b¼ 0.19,

P< 0 .0001). Response during the follow-up period did not differ

according to sex, age, or treatment type (all P values> 0.05). A

highly similar pattern of results was observed when the sample was

restricted to those with a fear-based anxiety disorder diagnosis

only.
Change in Symptom Severity From Baseline to
Post-Treatment: Analyses Using the Entire
Sample (N¼ 1,309)
Thirty independent clumps were identified based on patterns of

LD and were used to calculate adjusted P values for multiple

testing corrections (P< 0.0017). Each independent clump was

represented by a sentinel SNP (that with the lowest P-value in the

clump), and contained all SNPs in linkage disequilibrium with

the sentinel (R2> 0.25, within 250 kb of the sentinel). Two

independent clumps were nominally associated with response

(P< 0.05). An increasing number of copies of the minor allele of

rs12133557 was associated with a more favorable treatment

response (i.e., greater reductions in severity) across the treatment

period. In contrast, the minor allele of the sentinel SNP
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TABLE II. Independent Clumps Nominally Associated (P< 0.05) With Treatment Response Between (a) Baseline and Post-Treatment
and (b) Post-Treatment and Follow-Up

(a) Change in symptom severity from baseline to post-treatment

Sentinel SNP Gene Clump BP Minor allele MAF Info b 95% CI P na

rs12133557 CNR2 24191219–24223859 T 0.098 0.978 �0.07 �0.14 to

�0.01

0.020 925

rs6454676 CNR1 88860482–88885426 A 0.104 0.977 0.07 0.002–

0.13

0.042 926

(b) Change in symptom severity from post-treatment to follow-up

Sentinel SNP Gene Clump BP Minor allele MAF Info b 95% CI P n

rs806365 CNR1 88843390–88845949 T 0.408 Genotyped

(microarray)

0.11 0.04–0.18 0.004 702

rs2501431 CNR2 24108683–24206032 G 0.423 Genotyped (LGC) 0.09 0.03–0.16 0.007 874

rs2070956 CNR2 24191219–24223859 C 0.101 0.995 0.14 0.02–0.26 0.021 698

rs6928813 CNR1 88860482–88885426 G 0.180 Genotyped

(microarray)

�0.11 �0.20 to

�0.01

0.033 702

rs7769940 CNR1 88947649–88973751 T 0.209 Genotyped

(microarray)

0.10 0.01–0.19 0.034 702

rs2209172 FAAH 46938837–46978946 T 0.206 Genotyped

(microarray)

0.09 0.00–0.18 0.044 702

All genotypes were coded to reflect an additive model where �1, common homozygote; 0, heterozygote; and 1, rare homozygote.
Regression weights (b) significantly less than 0 indicate that an increasing number of copies of theminor allele of the SNP was associated with a greater reduction in symptom severity across the active
treatment or follow-up period. Values significantly greater than 0 indicate that an increasing number of copies of the minor allele of the SNP was associated with a poorer reduction in symptom severity.
an reflects total number of cases included in regression analysis for the sentinel SNP.
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rs6454676 (with this clump including the directly genotyped

rs1535255) was associated with a poorer treatment response

(i.e., smaller reductions in severity or an increase in severity

associated with increasing number of copies of the minor allele,

see Table II). However, neither of these effects survived multiple

testing corrections at P< 0.0017. The remaining SNPs all had P

values exceeding 0.05. Analyses restricted to a subset that identi-

fied as having four White European grandparents (n¼ 916) are

available in the supplementary materials. Gene based association

tests were non-significant (CNR1: P¼ 0.172; CNR2: P¼ 0.202;

FAAH: P¼ 0.846).
Change in Symptom Severity From Baseline to
Post-Treatment: Fear-Based Anxiety Disorder
Diagnosis Subset (N¼ 749)
Twenty-nine independent clumps were identified based on pat-

terns of LD and were used to calculate adjusted P values for

multiple testing corrections (p< 0.0017). Two independent

clumps were nominally associated with response (P< 0.05) with

an increasing number of copies of the minor allele of the sentinel

SNP rs6454676 (with this clump including the directly genotyped

rs1535255) associated with a poorer treatment response (see

Table III). The minor allele of rs12133557 was associated with a

more favorable treatment response across the treatment period.

However, neither of these effects survived multiple testing correc-

tions. Gene based tests on this subset were non-significant (CNR1:

P¼ 0.129; CNR2: P¼ 0.148; FAAH: P¼ 0.694).
Change in Symptom Severity From Post-
Treatment to Follow-Up
Thirty independent clumps were identified and were used to

calculate adjusted P values for multiple testing corrections

(P< 0.0017). Of these, five independent clumps were associated

with a poorer response (i.e., smaller reductions in severity or an

increase in severity associated with an increasing number of copies

of the minor allele) during the follow-up period at a nominal P-

value of < 0.05 (sentinel SNPs: rs806365; rs2501431; rs2070956;

rs7769940; rs2209172) while one independent clump (sentinel

SNP: rs6928813) predicted a more favorable response (i.e., greater

reductions in severity associated with increasing number of copies

of minor allele). All clumps with P< 0.05 are displayed in Table II.

However, none of the suggestively significant clumps survived

multiple testing correction (P< 0.0017) with rs806365 having

the lowest P-value at P¼ 0.004. Analyses restricted to a subset

that identified as having four White European grandparents are

available in the supplementary materials. Gene based association

tests on the full sample were all non-significant (CNR1: P¼ 0.360;

CNR2: P¼ 0.092; FAAH: P¼ 0.745).

Change in Symptom Severity From Baseline to
Follow-Up: Fear-Based Anxiety Disorder
Diagnosis Subset
Thirty-one independent clumps were identified and were used to

calculate adjusted P values for multiple testing corrections

(P< 0.0016). Of these, three independent clumps were associated



TABLE III. Independent Clumps Nominally Associated (P< 0.05) With Treatment Response Between (a) Baseline and Post-Treatment
and (b) Post-Treatment and Follow-Up in the Subset of the Sample With Fear-Based Anxiety Disorder Diagnoses (n¼ 749)

(a) Change in symptom severity from baseline to post-treatment

Sentinel SNP Gene Clump BP Minor allele MAF Info b 95% CI P na

rs12133557 CNR2 24191219–24223859 T 0.094 0.978 �0.11 �0.20 to �0.03 0.011 540

rs6454676 CNR1 88860482–88885426 A 0.108 0.977 0.09 0.005–0.17 0.038 539

(b) Change in symptom severity from post-treatment to follow-up

Sentinel

SNP Gene Clump BP Minor allele MAF Info b 95% CI P n

rs806365 CNR1 88843390–88845949 T 0.392 Genotyped

(microarray)

0.17 0.07–0.27 0.0011 399

rs7769940 CNR1 88947649–88973751 T 0.216 Genotyped

(microarray)

0.19 0.07–0.32 0.003 399

rs2501431 CNR2 24108683–24206032 G 0.448 Genotyped

(LGC)

0.14 0.04–0.23 0.004 495

All genotypes were coded to reflect an additive model where �1, common homozygote; 0, heterozygote; and 1, rare homozygote.
Effects that survived multiple testing corrections are highlighted in bold.
Regression weights (b) significantly less than 0 indicate that an increasing number of copies of the minor allele of the SNP was associated with a greater reduction in symptom severity across the active
treatment or follow-up period. Values significantly greater than 0 indicate that an increasing number of copies of the minor allele of the SNP was associated with a poorer reduction in symptom severity.
an reflects total number of cases included in regression analysis for the sentinel SNP.
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with a poorer response (i.e., smaller reductions in severity or an

increase in severity associated with increasing number of copies of

the minor allele) during the follow-up period at a nominal P-value

of <0.05 (sentinel SNPs: rs806365; rs7769940; rs2501431, see

Table III). These same SNPs were nominally significant in the

analyses using the entire dataset. However, the effects were stronger

when examined in the subset of participants with fear-based

disorders, with the effect for rs806365 surviving multiple testing

corrections (P¼ 0.0011). Gene based tests on this subset were non-

significant (CNR1: P¼ 0.620 CNR2: P¼ 0.053; FAAH: P¼ 0.335).
DISCUSSION

Given the potential role of the ECB system in fear extinction and the

maintenance of extinction memories, this study investigated

whether genetic variation in the CNR1, CNR2, and FAAH genes

was associated with response to CBT in children and adolescents

with an anxiety disorder. In our analyses, two SNPs (rs12133557

and rs6454676) were nominally associated (P< 0.05) with change

in symptom severity in both the entire sample and the subset with

fear based diagnoses. An increasing number of copies of the minor

allele of rs12133557 was associated with a more favorable response

during the active treatment period. In contrast, an increasing

number of copies of the minor allele of rs6454676 was associated

with a poorer response during the active treatment period. How-

ever, these effects did not survive stringent multiple testing cor-

rection in either the entire sample or subset restricted to fear-based

diagnoses only. Furthermore, we hypothesized that individual

differences in the continuation of treatment gains during the

follow-up period may be associated with genetic variation in

ECB genes. Six independent clumps were nominally associated

(P< 0.05) with change in symptom severity over the follow-up

period in the entire sample, five where an increasing number of

copies of the minor allele was associated with a poorer response
(sentinel SNPs: rs806365; rs2501431; rs2070956; rs7769940;

rs2209172), and one with a more favorable response (sentinel

SNP: rs6928813). Again, none of these effects survived multiple

testing corrections. Three of these same sentinel SNPs were also

nominally associated with response in the fear-based subset

(rs806365; rs7769940; rs2501431). The effect size of these SNPs

was larger in the fear-based subset with the effect of rs806365

remaining significant after multiple testing corrections were ap-

plied. Gene based tests of association were all non-significant. In

summary, our findings suggest only very limited evidence for a role

of genetic variation in the ECB system in predicting individual

differences in response toCBT for anxiety disorders in children and

adolescents. Where these effects do exist they are very small and

appear to have greater predictive powerwhen examined in a sample

restricted to fear-based anxiety diagnoses only.

The strongest finding in our analyses was for SNP rs806365,

which was nominally associated with a poorer response during the

follow-up period in the full sample (P¼ 0.004) and remained

significantly associated after multiple testing correction in the

fear-based anxiety diagnosis subset (P¼ 0.0011). While not previ-

ously investigated with respect to anxiety linked traits or fear

extinction, this locus has shown preliminary evidence of associa-

tion with insulin resistance, risk for Type 2 diabetes and coronary

heart disease [de Miguel-Yanes et al., 2011]. Of greater relevance is

research suggesting that variation at this locus may be associated

with differential response to smoking cessation treatments and thus

it could be hypothesized, sensitivity to environmental influences

such as treatment regimens. For example, male carriers of one or

moreminor T alleles had increased rates of abstinence to treatment

with buproprion (a norepinephrine and dopamine reuptake in-

hibitor) and transdermal (patch) nicotine replacement therapy but

significantly decreased odds of abstinence in response to nicotine

nasal spray replacement therapy [Lee et al., 2012]. In the present

study, with each additional T allele, participants showed a signifi-
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cantly poorer response (a smaller reduction in severity) to treat-

ment across the follow-up period. This may indicate that T allele

carriers are less sensitive to any continuing effects of CBT beyond

the initial treatment period and ultimately may be placed at a

greater risk of relapse. One possible mechanism worthy of further

investigation is that this SNP (and the ECB system more broadly)

may be involved in the maintenance of extinction memories

beyond the active treatment period. While not possible in this

study, it would be of interest to observe whether T allele carriers are

at an increased risk of relapse with a longer follow-up assessment

period perhaps as a consequence of increased risk for spontaneous

recovery of conditioned fear responding.

None of the SNPs previously studied in candidate gene studies of

laboratory based fear extinction [Heitland et al., 2012; Dincheva

et al., 2015], emotional processing [Chakrabarti et al., 2006;

Domschke et al., 2008; Hariri et al., 2009; Gunduz-Cinar et al.,

2013] or response to antidepressant treatment [Domschke et al.,

2008;Mitjans et al., 2012, 2013], on which data was available in this

study, approached significance in either analysis. The only excep-

tion was rs2501431, a SNP in CNR2 that was previously studied in

relation to response to treatment with citalopram in a small sample

of outpatients with depression [Mitjans et al., 2012]. In this earlier

study, variation in rs2501431 was not associated with symptom

change in response to citalopram, but overall AA homozygotes

reported more severe depression across the entire treatment pe-

riod. In the present study, GGhomozygotes showed a less favorable

response (a smaller reduction in severity) during the follow-up

period, albeit only at a nominal level of significance. Unlike prior

research, there was no significant difference in severity of anxiety at

baseline or mean severity across the treatment and follow-up

period as a function of rs2501431 genotype. Differences in phe-

notype, sample type, treatment approach and sample size may

explain the inconsistency in direction of effects seen across this

study and that of Mitjans et al. [2012].

There are several explanations, which may in part account for

the lack of convincing significant findings in this study despite

encouraging experimental work for a role of genetic variation in

ECB genes in fear extinction and emotional processing. Firstly, the

CBT protocols given to participants, while strongly underpinned

by the principles of extinction through exposure, also comprised a

number of cognitive elements including teaching of coping skills

and cognitive restructuring. Inevitably, this creates a far noisier

analogue of the fear extinction paradigms used in the laboratory

environment, which may have reduced the ability to detect signifi-

cant effects. Furthermore, previous associations between variation

in CNR1 and FAAH and fear extinction have been observed in

response to short-term experimentally conditioned fears in adults

and not to clinical levels of anxiety in children and adolescents.

Nonetheless, stronger effects may have been observed on response

to a purer exposure-based treatment or with a sample that was less

heterogeneous with regard to anxiety diagnosis and treatment

modality. In particular, the present sample and our initial analyses

included the full range of anxiety disorder diagnoses. One possi-

bility is that extinction learning may be implicated more or less in

themechanisms of treatments for different disorders. For example,

extinction learning may be of greater relevance for the successful

treatment of predominantly fear based disorders such as specific
phobias and to a lesser extent for distress based disorders like

generalised anxiety disorder [Borkovec and Ruscio, 2001]. A

secondary analysis performed in the subset of the sample restricted

to those with a fear-based anxiety diagnosis provides suggestive

evidence that this may be the case. The magnitude of effects was

somewhat stronger in this restricted sample with the effect of

rs806365 remaining significant even after multiple testing correc-

tions were applied (see Table III). Further research should also

establish a role for the ECB system in fear extinction in children and

adolescents given that all of the experimental and treatment

research to date has been with adult samples.

Secondly, any effects of ECB genetic variation on the mainte-

nance of treatment gains, or conversely relapse of symptoms, may

require a longer follow-up period to emerge (90% of the current

sample had a follow-up period of 6 months or less). The change in

symptom severity over the follow-up period was smaller and less

variable than that seen during the active treatment phase with 47%

of participants showing no change in symptom severity from post-

treatment to follow-up. Only a minority of participants (17%)

showed any worsening of symptoms over the follow-up period.

Thus, analyses of the follow-up period were limited by the reduced

variance in response.

A more general limitation of the present study is that it took a

candidate gene approach. However, this limitation was mitigated

by the inclusion of array data on a subset of the sample providing

more comprehensive coverage of the genes under investigation and

LD context for the calculation of multiple testing corrections.

Nonetheless within psychiatric genetics broadly, and the therapy-

genetics literature to date, candidate gene studies have often failed

to replicate, have typically reported very small effect sizes and are

sensitive to publication bias [Duncan and Keller, 2011; Lester and

Eley, 2013]. Nominating candidate genes for investigation requires

knowledge of the pathophysiology of the phenotype under inves-

tigation and the putativemechanisms through which CBTmay act.

Psychological treatment response is a complex trait and while

extinction learning is an important process underpinning CBT,

the etiology of treatment response is multifactorial. Thus, it is very

unlikely that any single genetic polymorphism within the ECB

system, or more generally, will explain a sufficiently large amount

of variance in response to be clinically meaningful. To date, the

strongest evidence for a role of the ECB system in fear extinction

has come from animal studies employing genetic deletion and

pharmacological modulation designs [Lafenetre et al., 2007]. Such

studies are more likely to show large and pervasive effects in

comparison to human genetic association studies, where the

biological effect of an individual variant in vivo is likely to be

very small. Despite being by far the largest therapygenetics study to

date, the present study was powered to detect a variant capturing

1.6% of variance in treatment response with 80% power but had

only 1.5% power to detect a variant of very small effect size

explaining 0.1% of variance. If the true effect of rs806365 lies

closer to the effect size of 0.0029% observed (in the full sample),

then this would require a sample of 5,435 to detect these effects at

a¼ 0.0017 with 80% power. Notwithstanding the huge expense

and effort that would be required to assemble samples of this

magnitude, such a small effect on its own is extremely unlikely to be

of any clinical utility.
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Given the challenges of candidate gene studies, it will become

increasingly important for the therapygenetics field to work col-

laboratively to assemble large datasets that can be used to both

study the mechanisms underlying CBT response and which will

allow us to exploit hypothesis-free whole genome based

approaches. These methods have the potential to identify novel

and unexpected variants associated with treatment response [Cole-

man et al., 2016]. In conjunctionwith statistical approaches such as

polygenic risk scoring, genome wide approaches allow the oppor-

tunity tomove beyond single variant approaches tomethodswhich

aggregate across a large number of markers in order to capture a

greater and ultimately clinically significant proportion of the

variance in outcome [Krapohl et al., 2015; Keers et al., 2016].

An interesting avenue for further research is to investigate epige-

netic and gene expression predictors and correlates of psychologi-

cal treatment response, as these approaches may allow us to get

closer to the biological mechanisms of CBT response. This work

while in its infancy has shown early promise [Perroud et al., 2013;

Roberts et al., 2014, 2015; Yehuda et al., 2015]. Of relevance, a

recent study investigating gene expression change in response to

exposure-basedCBT for anxiety disorders reported that an increase

in DALGB gene expression (diacylglycerol lipase beta gene), which

is involved in the biosynthesis of 2-AG (an endogenous endocan-

nabinoid), was associated with greater reductions in severity while

a reduction in DALGB expression corresponded with lower reduc-

tions in severity [Roberts et al., 2016]. This finding is consistent

with research showing that increased levels of 2-AG (an endoge-

nous endocannabinoid) are associated with anxiolytic effects

[Gunduz-Cinar et al., 2013].

In summary, this is the first study to investigate the role of

genetic variation in the endocannabinoid system and response to

psychological therapy for anxiety disorders. A small number of

genetic variants were nominally associated with individual differ-

ences in treatment response during the active treatment and follow-

up period. Only one of these effects remained significant after

multiple testing corrections and in a sample restricted to those with

a fear-based anxiety disorder diagnosis. The ECB system remains a

plausible target for involvement in response to psychological

therapies underpinned by the principles of extinction learning.

However, the effect of any single variant is likely to be very small

given the complexity and multitude of mechanisms underpinning

response to psychological treatments. The use of larger samples

with greater statistical power and more homogeneous samples

which reduce noise in the data would allow us to estimate the effect

size of any variant with greater precision. Notwithstanding this,

there are potentially large benefits for patients and wider society in

knowing more about what determines who responds well to

psychological therapies, and why. Thus, therapygenetics remains

an important area for further research.
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