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Transcriptomics and proteomics show that selenium
affects inflammation, cytoskeleton, and cancer
pathways in human rectal biopsies
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ABSTRACT: Epidemiologic studies highlight the potential role of dietary selenium (Se) in colorectal cancer prevention.
Our goal was to elucidate whether expression of factors crucial for colorectal homoeostasis is affected by physiologic
differences in Se status. Using transcriptomics and proteomics followed by pathway analysis, we identified path-
ways affected by Se status in rectal biopsies from 22 healthy adults, including 11 controls with optimal status (mean
plasma Se = 1.43 pM) and 11 subjects with suboptimal status (mean plasma Se = 0.86 pM). We observed that 254
genes and 26 proteins implicated in cancer (80%), immune function and inflammatory response (40%), cell growth
and proliferation (70%), cellular movement, and cell death (50%) were differentially expressed between the 2 groups.
Expression of 69 genes, including selenoproteins W1 and K, which are genes involved in cytoskeleton remodelling
and transcription factor NFkB signaling, correlated significantly with Se status. Integrating proteomics and tran-
scriptomics datasets revealed reduced inflammatory and immune responses and cytoskeleton remodelling in the
suboptimal Se status group. This is the first study combining omics technologies to describe the impact of differ-
ences in Se status on colorectal expression patterns, revealing that suboptimal Se status could alter inflammatory
signaling and cytoskeleton in human rectal mucosa and so influence cancer risk.—Méplan, C., Johnson, I. T., Polley,
A. C.]J., Cockell, S., Bradburn, D. M., Commane, D. M., Arasaradnam, R. P., Mulholland, F., Zupanic, A., Mathers,
J. C., Hesketh, J. Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer
pathways in human rectal biopsies. FASEB J. 30, 000-000 (2016). www.fasebj.org
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Low intake of the dietary antioxidant micronutrient sele-
nium (Se) is associated with increased risk of colorectal
adenoma and of colorectal cancer (CRC) mortality (1); for
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resis; AQPs, aquaporines; CRC, colorectal cancer; EPIC, European Pro-
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glutathione peroxidase; IEF, isoelectric focusing; IPA, Ingenuity Pathway
Analysis; MALDI/ToF, matrix-assisted laser desorption ionization time-
of-flight; MS, mass spectrometry; Se, selenium; SELK, selenoprotein K;
SEPP, selenoprotein P; SEPW, selenoprotein W
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example, in the double-blind, randomized, placebo-
controlled Nutrition Prevention Cancer Trial, there was a
significant (58%) reduction in CRC incidence in people
receiving 200 pg supplementary Se in the form of Se-
enriched yeast/d (2), and the strongest effect of Se
supplementation was observed in subjects within
the lowest tertile for plasma Se at the start of the trial
(<1.34 pM). In contrast, in the Women’s Health Ini-
tiative and Selenium and Vitamin E Cancer Prevention
Trial (SELECT) trials, no benefit of increased Se intake
was observed for individuals with high Se intakes
(3, 4). Recent data from a European Prospective In-
vestigation into Cancer and Nutrition (EPIC) cohort
revealed that, in most European countries, plasma Se
status is suboptimal and is associated with increased
risk of CRC in women (5). Moreover, evidence from
animal models showed that Se supplementation can
prevent chemically induced colorectal carcinogenesis
(6, 7). Taken together, these data support a role for Se
in reducing risk of CRC initiation and progression;
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however, the intake at which Se has cancer-preventive
properties and the mechanisms underlying its anti-
carcinogenic properties remain unclear.

The biologic actions of Se are thought to be mediated
largely by selenoproteins in which Se is incorporated in the
form of the amino acid selenocysteine. Functional genetic
polymorphisms in selenoprotein genes (GPX4, SEPP1,
SELS, and GPX1) modulate risk of CRC or inflammatory
responses (8, 9), in combination with Se status (9). Sele-
noproteins are crucial in the biochemical pathways es-
sential for colorectal function, including redox control and
responses to inflammatory, oxidative, and endoplasmic
reticulum stress (10). For example, GPx4 expression was
necessary for mitochondrial function and NF«B response to
TNFa in a human colorectal adenoma cell model (11, 12),
and Se intake affected mRNA mTOR, TNF«a, and NF-«B
signaling pathways in the colon of mice fed a marginally Se-
deficient diet (13). Thus, the protective effect of Se appears to
be mediated through the role of selenoproteins in molecular
pathways that help to maintain homeostasis when cells
experience oxidative and inflammatory challenges (9).
However, the effects of Se status on such pathways within
the human colorectal epithelium remain poorly understood.

To identify key factors and pathways affected by Se status,
we combined transcriptomics and proteomics in a compre-
hensive, unbiased analysis of rectal biopsy specimens from
healthy participants. For the first time, we have shown in
humans that differences in Se status within the physiologic
range affect global gene expression patterns in the human
rectum. We found that Se status affected factors implicated in
inflammatory signaling, immune function, and cytoskeleton
remodelling. These findings provide insights into the mech-
anisms through which Se may influence cancer risk and may
help in the development of early biomarkers of disease risk.

MATERIALS AND METHODS
Study population and sample collection

A subgroup of 22 adults who took part in the Biomarkers of Risk
of Colorectal Cancer (BORICC) study were recruited from pa-
tients attending for routine flexible sigmoidoscopy at Wansbeck
General Hospital (14), but shown to be free of colorectal disease.
Ethics approval was granted by the Northumberland Local Re-
search Ethics Committee, and research governance was obtained
from the Northumberland Healthcare Trust (NLREC2/2001).
Exclusion criteria included the presence or history of colonic
inflammation, colorectal cancers or polyps, or a strong family
history of colorectal cancer. Biopsies were performed in indi-
viduals who had no evidence of colorectal neoplasia or inflam-
matory bowel disease at endoscopy. Mucosal pinch biopsies
were obtained from anatomically normal mucosa 10 cm from the
rectal verge, snap frozen in liquid nitrogen for proteomic analysis
or placed immediately in RN Alater (Thermo Fisher Scientific Life
Sciences, Paisley, United Kingdom) for transcriptomic analyses,
and stored at —80°C. Plasma Se concentration was measured by
inductively coupled plasma mass spectrometry (MS).

RNA isolation and microarray analysis

RNA extraction was performed with Trizol (Thermo Fisher
Scientific Life Sciences), according to standard procedures.
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Briefly, RNAlater was drained from the biopsy specimens
before they were submerged in 0.5 ml Trizol. After homoge-
nizing the tissues on ice, an additional 0.5 ml Trizol was
added, and samples were incubated for 5 min at room tem-
perature. Samples were centrifuged (10 min, 12,000 g, 4°C),
supernatants were extracted for 3 min with 0.2 ml chloroform
per 0.2 ml Trizol) and centrifuged (15 min, 12,000 g, 4°C), and
the upper phase was precipitated in 70% EtOH prepared in
diethylpyrocarbonate-treated milliQ water (EMD-Millipore,
Billerica, MA, USA). Samples were purified on a PureLink
RNA cartridge (Thermo Fisher Scientific Life Sciences) and
eluted in RNase-DNase—free water. RNA integrity was de-
termined by capillary electrophoresis with a Bioanalyzer
Nano chip (Agilent Technologies, Stockport, United Kingdom)
before microarray analysis, using whole-genome HumanHT-12,
v3 single-color bead chips (Illumina, San Diego, CA, USA).
Microarray results were confirmed by real-time PCR; however,
because the biopsy specimens were very small, the amount of
RNA was sufficient to confirm only the expression of 2 genes and
a housekeeping control used to normalize the data.

Protein preparation and gel electrophoresis

Proteins were extracted from thawed tissue with a modified
ReadyPrep Sequential Extraction Kit (Bio-Rad, Hemel Hemp-
stead, United Kingdom), and the specimens were homogenized
with a hand-operated micropestle (Eppendorf, Hamburg,
Germany) before sonication in an ice-water bath for 10 min. The
samples were centrifuged, and aliquots of supernatants were
stored at —80°C. Proteins were separated by 2-D electrophoresis
(15). Separation of proteins in the first dimension was performed
by isoelectric focusing (IEF), with 24 cm immobilized pH gradi-
ent strips (pH 4-7) run on an Ettan IPGphor bed (GE Healthcare,
Pittsburgh, PA, USA) with a step-n-hold protocol of 500 V for
0.5 kVh; a gradient of 1000 V for 0.8 kVh; a gradient of 8000 V for
13.5kVh; and a step-n-hold of 8000 V for 30.0 kVh at 20°C, giving
a total of 44.8 kVh (8 h 49 min) with a rate-limiting factor of 50 p.A.
After completion of IEF, the strips were stored at —80°C. The 2-
dimension protein separation was carried out on 1 mm thick 10%
Duracryl homogenous gels [30% acrylamide with 0.65% N,N-
methylene bis-acrylamide cross-linker, 1.5 M Tris (pH 8.7-9.0),
3.6 mM SDS, 0.5 ml/L tetramethylethylenediamine, and 11 mM
ammonium persulfate, prepared in-house in 28 X 23 cm gel-plate
cassettes]. Electrophoresis conditions were set to give an top
voltage of 500 V, power of 20 W/gel, and a total run time of
~4.5 h. Gels were stained with SYPRO Ruby fluorescent stain
(Bio-Rad) and imaged with a Pharos FX Plus molecular imager
(Bio-Rad; 532 nm excitation laser and 605 nm emission filter at
100 pm resolution). Using Progenesis SameSpot software (Non-
linear Dynamics, Newcastle, United Kingdom), an experienced
operator aligned the gel images to a single reference image,
chosen for its overall quality and spot clarity, and protein spots
were quantified. At this stage, staining artifacts were removed
manually, and undetected double spots were corrected. Proteins
of interest were extracted and analyzed by using matrix-assisted
laser desorption/ionization time-of-flight (MALDI/ToF) MS.
In-gel trypsin digestion was performed with a ProGest Protein
Digester (Genomic Solutions, Ltd., London, United Kingdom).
After preincubation, the digestions were carried out at 37°C for
3 h, using 50 ng sequencing-grade porcine trypsin (5 pl/well;
Promega, Southampton, United Kingdom). The digests were
analyzed with an Ultraflex MALDI-ToF/ ToF mass spectrometer
(Bruker Daltonics, Ltd., Coventry, United Kingdom). A 200 Hz
nitrogen laser was used to desorb/ionize the matrix/analyte
material, and ions were detected in positive ion reflectron mode.
Peptide masses obtained from the MALDI-ToF analysis were
searched against the Mass Spectrometry Data Base using the
Mascot peptide mass-fingerprint program (Matrix Science, Ltd.,
London, United Kingdom). The results gave a probability-based
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Mowse score of —10 * log(P), where P is the probability that
the observed match is a random event. Under those parame-
ters, protein scores <63 were considered statistically signifi-
cant (P < 0.05).

Transcriptomics and proteomics analysis

Raw gene expression data were analyzed with GeneSpring GX
11 (Agilent Technologies). Raw data were normalized with a
quantile algorithm, and the baseline was transformed to the
median of all samples. Those probes with a flag value of pre-
sent or marginal in =80% of any of the experimental categories
were selected for further analysis. The R package RankProd
(Bioconductor; http://bioconductor.org/) was used to identify
differentially expressed genes. Genes were defined as differ-
entially expressed if the percentage of false positives in 1000
permutations of the Rank Products test was <5% and the
change in expression was >1.2X in either direction. Genes
meeting these criteria were used to generate functional net-
works and pathway analyses with Ingenuity Pathways Anal-
ysis (IPA; Ingenuity Systems, Redwood City, CA, USA).
Spearman’s correlation tests were performed on the gene sets
with a cutoff of 1.2-fold changes in either direction using SPSS
Statistics, version 22.0 software (IBM, Armonk, NY, USA). IPA
was used to generate functional networks and pathways for
the gene sets for which expression correlated significantly with
plasma Se status, and the proteomics dataset and the Com-
parison function in IPA were used to integrate the tran-
scriptomic and proteomic datasets.

RESULTS
Se status of the participants

Participants were selected on the basis of their plasma Se
status and divided into 2 groups that were discordant in
plasma Se status, but matched for body mass index (24.7 £
0.88 and 24.1 = (.72 in suboptimal and optimal Se groups,
respectively), age (53.6 = 2.91 and 54.7 = 3.6, in sub-
optimal and optimal Se groups, respectively), and sex
(5 males, 6 females in each group). The Third National
Health and Nutrition Examination Survey estimated that
the mean serum Se level in the U.S. population is 1.58 puM
(16), a level considered to represent Se adequacy (17). In
contrast, average plasma Se concentration in healthy British
adults was estimated at 1.13 pM (18). The latter concen-
tration is similar to those in other European countries and
is considered suboptimal (5). In the present study, the
group of participants with plasma Se concentrations sim-
ilar to that in the U.S. population, having a mean * sem
plasma Se status concentration of 1.43 = 0.06 uM (range,
1.25-1.82), a value within the optimal range based on the
hazard ratio for mortality (18) was designated as the op-
timal Se status group. This concentration is well below the
Se concentrations (>2.22 uM) that have been associated
with adverse health outcomes of high Se doses observed in
supplementation trials (4, 17, 19). The suboptimal Se status
group corresponds to individuals with a mean = sem
plasma Se status concentration of 0.86 = 0.01 uM (range,
0.79-0.92), a range that is suboptimal as defined by the
hazard mortality ratio and that has been associated with
increased risk of CRC in women in a large European
population in the EPIC study (5).

SELENIUM TARGETS IN RECTAL MUCOSA

Effects of Se status on gene
expression profiles

Both RNA and proteins were extracted from individual
rectal biopsies. After microarray analysis, differential gene
expression analysis was determined using the RankProd
package and a cutoff of 1.2-fold change showed that 254
genes were differentially expressed between the 2 Se
groups, with 128 genes being up-regulated and 126 down-
regulated in the suboptimal Se group compared with the
optimal Se group (for details see Transcript Profiling; http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

token=epkzqgighfujhkh&acc=GSE70550).

Two selenoprotein genes (SEPW1 and SELK) were
down-regulated in the suboptimal Se group, but they were
not among the top 25 down-regulated genes. Table 1
presents the top 25 genes up- and down-regulated in rectal
tissue from the suboptimal Se group compared with the
optimal Se group. In the suboptimal Se group, water chan-
nel AQPS, serine protease inhibitor SPINK4, antiapoptotic
factor OLFM4, chloride channel CLCA4, carbonic anhydrase
CA4, and carcinoembryonic antigens CEACAM6 and -7
exhibited the greatest up-regulation. Similarly, other family
members (AQP11, SPINK5, and CEACAM1 and -5) were also
upregulated in the suboptimal Se group. In contrast, HLA-
A29.1, IL1B, the transcription factor CHURC1, antiapoptotic
factors PHDLA1 and IER3, tumor suppressor ERRFI1/Mig6,
and microRNA MIR-221 showed the strongest down-
regulation in the suboptimal Se group compared with the
optimal Se group. Real-time PCR confirmed the micro-
array results, with significant correlation observed be-
tween microarray and real-time-PCR expression for MFF
(P =0.005) and ERRFII (P = 0.033) (data not shown).

Ingenuity Pathway Analysis (IPA) was performed on
the microarray dataset to identify biologic functions, ca-
nonical pathways, and networks modulated by Se status
and to predict potential upstream regulators. A large pro-
portion of genes differentially expressed between the 2 Se
groups belonged to cancer [204/254 genes (80%)], gastro-
intestinal diseases (58%), and inflammatory diseases (39%)
categories (Tables 2 and 3).

The cell and molecular functions most affected by Se
status included cellular growth and proliferation, cellular
movement and development, cell death and survival, and
cell-to-cell signaling and interaction (Table 2). The 5 most
significantly affected canonical pathways corresponded to
pathways involved in inflammatory and immune signal-
ing, suggesting an overall down-regulation of immune
response in individuals with suboptimal Se status. IPA
generated 25 networks, among which 19 had at least 10
focus molecules (data not shown), with the 5 most sig-
nificantly affected networks presented in Table 3. As a
result of these changes, IPA predicted that PDGFBB
(P=246E~, regulating 114 genes/254), TNFa (P=3.58E ™,
regulating 145 genes/254), and IL1b (P = 3.31E™ >, reg-
ulating 128 genes/254) are likely to be the most impor-
tant upstream regulators affected by Se status (Table 4).
In addition, most of the identified upstream regulators
(23 of the top 25) are key to immune and inflammatory
responses, and the observed changes indicate that this
response is inhibited by lower Se status. Crosstalk
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TABLE 3. Most significantly affected networks for the microarray and proteomics datasets

Microarray Proteomics
Network Zscore Focus molecules Network Zscore Focus molecules
Antimicrobial response, inflammatory 35 26 Inflammatory response, cell death and 38 16
response, cellular movement survival, connective tissue
disorders
Respiratory system development 35 26 Cellular development, cell death and 18 9
and function, carbohydrate survival, cell cycle
metabolism, cancer
Cellular growth and proliferation, 33 25 Molecular transport, carbohydrate 3 1
hematologic system development and metabolism, developmental
Jfunction, tissue morphology disorder
Cancer, organismal injury and 33 25
abnormalities, reproductive system
disease
Cellular development, cellular growth 31 24

and proliferation, cell death and

survival

The most significantly enriched networks are indicated with the z score and number of focus molecules. Networks affected in both
microarray and proteomics datasets are indicated in italics.

between NFkB, TNFa, PDGFBB, and IL1B signaling
pathways (Fig. 3) and between NF«B and other tran-
scription factors, such as p53 and STAT3 (Table 4), has
been described (20). Overall, these results indicate that
genes involved in immune and inflammatory responses,
cell signaling, cell proliferation, tissue and cell mor-
phology, and cellular movement are differentially ex-

pressed in response to Se status.

TABLE 4. Predicted upstream regulators

Correlation of gene expression with Se status

RankProd identified genes that exhibit the highest change
in expression between the 2 Se groups, but did not define
the degree to which gene expression correlated with Se
status. Thus, to further investigate the relationship be-
tween Se status and gene expression, Spearman’s corre-
lation analyses were performed on expression data from

Upstream regulator

Molecule type

Predicted

activation state

Activation z score

P of overlap

Target molecules in dataset (n)

PDGF BB
TNF

IL1B

SP1
TREM1
1L6

IFNG
NFkB (complex)
TGFB1
CREB1
a-Catenin
STAT3
IRAK4
IgG

IL1IA

PI3K (complex)
Jnk

P38 MAPK
TLR3

Cg

TP53

ERK
CEBPA
RET

FAS

Complex

Cytokine

Cytokine

Transcription regulator
Transmembrane receptor
Cytokine

Cytokine

Complex

Growth factor
Transcription regulator
Group

Transcription regulator
Kinase

Complex

Cytokine

Complex

Group

Group

Transmembrane receptor
Complex

Transcription regulator
Group

Transcription regulator
Kinase

Transmembrane receptor

Inhibited
Inhibited
Inhibited

Inhibited
Inhibited

Inhibited

Inhibited

Inhibited

Inhibited

Inhibited

Inhibited

Inhibited

Inhibited

—4.672
—2.883
—2.584
—0.808
—2.593
—2.161
—0.682
—2.275
—1.782
—2.584

0.895
—2.979
—1.135

1.833
—2.535

0.299
—2.736
—1.211
—1.318
—3.384
—1.432
—2.113

0.613
—2.970

1.328

2.46E-36
3.58E-30
3.31E-25
4.40E-20
6.32E-19
7.33E-18
8.83E-18
1.64E-17
2.88E-17
2.25E-16
2.71E-16
5.98E-16
9.12E-16
9.78E-16
1.30E-15
2.43E-15
3.55E-15
8.03E-15
1.22E-14
2.18E-14
3.38E-14
9.28E-14
1.43E-13
7.22E-13
8.18E-13

114
145
128
101
128
128
121
143
146

81

49
119
114
126

88
132
135
146
129
124
149
120
101

89
132

IPA upstream transcriptional regulator analysis was performed to identify the cascade of potential upstream regulators that can explain the
observed gene expression changes in the microarray dataset. The most likely regulators are presented, together with the type of molecule, the
number of known targets for each upstream regulator present in the dataset, the predicted z score activation state, the Pvalue of overlap between
genes targeted by each regulator in the dataset, and the genes known to be a target for each upstream regulator.
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all participants for the 254 genes modulated by Se status,
using plasma Se concentration as a continuous variable.
Expression of 69 genes (recognized by 75 different gene
probes) correlated significantly with Se status, of which 34
correlated positively and 35 correlated negatively (Sup-
plemental Table S1 and Fig. 1). Expression of the 2 sele-
noprotein genes SELW and SELK, identified as being
down-regulated in the suboptimal Se group, showed a
strong positive correlation with Se status (pserw = 0.637;
P = 0.001, and psec = 0.474; P = 0.026). Expression of
DNAJC12, a member of the DnaJ/Hsp40 family acting as a
cochaperone with Hsp70 and involved in protein folding
and export (21); antisense RNA SNHG6; and SEPW1
showed the strongest positive correlations with Se concen-
tration. Hsp70 is involved in nonsense-mediated decay (22)
and has been involved in the control of selenoprotein mRNA
degradation in conditions of low Se status (23). In contrast,
expression of acyl-coenzyme A oxidase ACOX1, the first
enzyme in peroxisomal fatty acid B-oxidation, strongly
negatively correlated with Se status. Because ACOX1 acti-
vates NFkB (24), negative correlation of ACOX1 expression
with Se status could contribute to the observed NF«kB in-
hibition. Moreover, NUAK2, which is regulated by NF«B
and is involved in actin cytoskeleton remodelling (25), and
ACTB, ALDOA, SLC9A3R1, MYHY, DYNLRBI1, and TUBALS3,
which are implicated in cytoskeleton organization (26, 27), had
expression that correlated strongly with Se status.
Subsequently, pathway analysis of the 69 genes for
which expression correlated strongly with Se status
revealed that the most affected diseases and disor-
ders correspond to the cancer and cancer and tu-
morigenesis subcategories (34 molecules/69; 49%;
P=1.71E"%-4.93E %) and to inflammatory response
(18 molecules/69; 26%; P = 4.88E~°-4.67E%?). Three
main networks identified were: 1) cancer, organismal

1.00] v
NUAK2
Se
FCGBP
v X 'se
ACOX1
v ~'se
NUAK2
Se
~—~ 50 FCGBP
= Y oxm " Se
: . R ACOX1
< Se; ACOX1
= b & - Se: R? Linear = 0.355
o o 7> NUAK2
‘@ W SeNUAK2
7] < S - Se: R? Linear = 0.337
D oo Tl BT x > FCGBP
a v R -V 7 Se;FCGEP
x 3 =~ Se: R? Linear = 0.160
> o % \ v
2 Ty
> =
o R
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-50]
-1.00

1 :30 ZTGD
Plasma Se concentration pmol/L
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injury, and abnormalities, reproductive system disease
(21 focus molecules, z score 45), centered around NFkB; 2)
cellular function and maintenance carbohydrate metab-
olism, small-molecule biochemistry (16 focus molecules, z
score 31), centered around TNF; and 3) hematologic dis-
ease, cellular growth and proliferation, cellular develop-
ment (9 focus molecules, z score 15) centered around TP53
(Supplemental Fig. S1). Supporting these observations,
inhibition of sequestosome 1 (SQSTM1), which regulates
TNF-driven activation of NFkB, was identified as the
most significant upstream regulator (P = 2.50E~ %), fol-
lowed by PLK2 and IL13, also involved in NF«B regula-
tion, the second and third most significant (P = 4.09E~*
and P = 4.61E™%, respectively). Overall, these results in-
dicate that genes whose expression correlate with Se status
play a key role in inflammatory pathways, with a central
role for NFkB and TNF.

Effects of Se status on proteomics profiles

Proteomic profiles from whole rectal biopsies were
characterized by 2-D gel electrophoresis, followed by
in-gel trypsin digestion and MALDI-ToF MS. To limit
the bias normally associated with proteomic analysis
when the analysis is restricted toward the more
abundant proteins, analysis was performed on all
220 spots that were identified by MS. Of these 220, 36
spots, corresponding to 26 individual proteins, were
differentially expressed between the suboptimal Se
and optimal Se status groups (Table 5). They include a
substantial proportion [13/36 spots; 7/26 (~ 26%)
proteins] of cytoskeleton proteins: 1) 4 cytokeratins
and desmin, 2) actin ACTA2, and 3) tubulin TUBA1B.
In addition, 4 proteins known to be involved in the

4 DNAJCI2
Se
1.007
| o SEPw1
10 %"
i | SNHGE
" Se
DNAJC12
1 Se
I SEPWI
~ Se
- }-.. SNHGE
s | Se
g DNAJC12
S Se;DNAJC12
c | Se: R? Linear = 0.466
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x |se: R? Linear = 0.393
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Figure 1. Correlation of gene expression with plasma Se concentration. Spearman’s correlation was performed on the gene set
generated by microarray analysis, to identify expression of genes that significantly correlate with plasma Se concentration.
Scatterplots show the relationship between gene expression and Se status for genes with the strongest negative (A) or
positive (B) correlation coefficient. A list of genes with expression significantly correlated with Se status is presented in

Supplemental Table S1.
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cytoskeletal organization, S518, S100A9, SEN, and
HSP90B, exhibited differential expression between
the 2 Se groups. These observations suggest that
cytoskeleton remodelling is a major signature of
Se effects in rectal tissue. All cytoskeletal proteins
and associated factors were up-regulated in the
suboptimal Se group compared with the optimal Se
group, apart from 1 spot corresponding to cytokeratin
8 and S100A9.

Additional proteins differentially expressed between
the 2 Se groups (Table 5) include: 1) proteins involved in

immune and inflammatory response (tumor rejection
antigen GP96 (HSP90B1), complement component C3,
glycyl-tRNA synthetase (28) and calcium-binding protein
S100A9); 2) proteins involved in lipid metabolism and
disruption of cholesterol homeostasis known to be linked
to inflammatory processes (29) and to affect signal trans-
duction and membrane trafficking (29) (FABP5, apolipo-
protein Al, StAR-related lipid transfer protein); and 3)
proteins involved in antioxidant mechanisms, including
glutathione S-transferase w 1 (GSTO1), SI00A9, and al-
bumin. The lowered expression of these genes in the

TABLE 5. Proteins differentially expressed in suboptimal and optimal Se groups

UniProt/
Entrez Swiss-Prot Fold
Symbol gene name accession change P Network Location Type
Optimal Se group
HBB Hemoglobin, P68871 2.287862  1.57E-02 1 Cytoplasm Transporter
KRT9 Keratin 9 P35527 2.136131  3.99E-02 Other Other
TUBAIB Tubulin, a 1b B3KPS3  1.649467 7.15E-03 2 Cytoplasm Other
HSPY0B1 Heat shock protein 90 kDa  P14625 1.60214  1.94E-02 1,2 Cytoplasm Other
B (Grp94), member 1
LAP3 Leucine aminopeptidase 3 ~ P28838 1.566994 1.66E-02 2 Cytoplasm Peptidase
KRTI19 Keratin 19 P08727 1.561573  1.17E-03 1 Cytoplasm Other
SS18 Synovial sarcoma Q15532  1.536875 1.20E-02 2 Nucleus Transcription
translocation, regulator
chromosome 18
STARD4 Star-related lipid Q96DR4  1.461044 2.55E-02 1 Cytoplasm Transporter
transfer (START)
domain containing 4
KRTI0 Keratin 10 P13645 1.417157  2.15E-03 1 Cytoplasm Other
ACTA2 Actin, a 2, smooth P62736 1.355664  4.27E-02 1 Cytoplasm Other
muscle, aorta
SEN Stratifin P31947 1.250929  4.12E-02 2 Cytoplasm Other
DES Desmin P17661 1.249196  4.81E-02 1 Cytoplasm Other
FABP5 Fatty acid binding protein Q01469  1.164734 4.86E-02 1 Cytoplasm Transporter
5 (psoriasis-associated)
Suboptimal Se group
GALE UDP-galactose-4-epimerase Q14376  0.853818  4.49E-02 3 Cytoplasm Enzyme
SERPINCI Serpin peptidase inhibitor, =~ P01008 0.789494  1.09E-02 1 Extracellular  Enzyme
clade C (antithrombin), space
member 1
GARS Glycyl-tRNA synthetase P41250 0.783497  4.30E-02 2 Cytoplasm Enzyme
A2ML1 a-2-Macroglobulin-like 1 A8K2UO  0.782412  3.50E-02 Cytoplasm Other
HPX Hemopexin P02790  0.757333  2.35E-02 1 Extracellular ~ Transporter
space
S100A9 S100 calcium binding P06702 0.747425  1.00E-02 1 Cytoplasm Other
protein A9
APOAI Apolipoprotein A-I P02647  0.746389  3.93E-02 1 Extracellular ~ Transporter
space
G6PD Glucose-6-phosphate P11413 0.716481  5.06E-03 1 Cytoplasm Enzyme
dehydrogenase
ALB Albumin P02768 0.712025  3.30E-02 1,2 Extracellular Transporter
space
GSTO1 Glutathione P78417  0.68968  7.87E-03 2 Cytoplasm Enzyme
Stransferase w 1
KRTS Keratin 8 P05787 0.625898  2.22E-02 1 Cytoplasm Other
(65} complement component 3 ~ B4E216  0.622869 1.59E-02 1 Extracellular  Peptidase
space
FI3A1 coagulation factor P00488  0.59791  1.97E-02 2 Extracellular  Enzyme
XIII, Al polypeptide space

After, 2-D gel electrophoresis, proteins were identified by MALDI/ToF MS. Differentially expressed proteins between the 2 Se
groups are presented, together with their UniProt (http://www.uniprot.org) identification (ID), and the P value and fold change
estimated from 2-D gel quantification.
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suboptimal Se group not only suggests a reduced immu-
nity and capacity to protect against oxidative damage, but
is compatible with the links between glutathione and Se
metabolism. Moreover, the cytoskeleton, a key mediator of
immune and inflammatory processes (30, 31), is highly
sensitive to oxidative stress (32).

IPA analysis of the proteomic data also predicted
activation of cancer pathways (z score activation, 2.575;
P = 2.89E%: focus molecules, 21) in individuals with
suboptimal Se status. Consistent with observations
from RNA expression analysis by microarray, immu-
nologic and inflammatory responses biologic func-
tions and networks, together with cell death and
survival, cellular movement and development, cell
growth and differentiation, and hematologic system
and molecular transport (Table 2) were among the
most affected by Se status. IPA identified 3 networks,
with network 1, centered around NFkB (focus mole-
cules, 16; z score 38), representing the most important
one (Table 3).

Integrated transcriptomics and proteomics

Tables 2 and 3 summarize the pathways and networks
altered by Se status in transcriptomic and proteomic
datasets. To integrate the 2 approaches, the datasets
were combined, and IPA was used to identify biologic
processes or pathways in which features from both

Network
3

Network Network Network Network Network Network
20 21 22 23 24 25

transcripts and proteins are enriched. Twenty-eight
networks were identified, and the interconnection be-
tween proteomic and transcriptomic networks was
analyzed. Proteomic network 1 is connected to 8 net-
works from the microarray dataset, and proteomic
network 2 is connected to 6 microarray networks.
Merging proteomic network 1 (p 1) with individual
connected microarray networks (4-7 and 10 m) re-
vealed NFkB to be the central node of these merged
networks (Fig. 2) and IL1, TNF, and Akt to be the
central nodes of merged networks 1-1, 1-18, and 1-12,
respectively (data not shown). On the other hand, the
proto-oncogenes c-Myc, c-Fos and B-catenin were
identified as central nodes from merging proteomic
network 2, with connected microarray networks 2 and
8,4, and 6 (data not shown).

DISCUSSION

This study is the first to integrate transcriptomic and
proteomic approaches for assessing the effects of
physiologic differences in status of the dietary anti-
oxidant Se on events in the large-bowel mucosa in
healthy individuals. Using this approach, we report
that the expression of factors implicated in inflam-
matory signaling, immune function, and cytoskel-
eton remodelling is altered in individuals with
suboptimal Se status in healthy human rectal mucosa,

/o) o

wod}

Figure 2. Interconnection between networks identified from proteomic and transcriptomic datasets. A) IPA analysis
performed on the combined proteomic and transcriptomic datasets revealed 28 networks, corresponding to 25 microarray
networks (white background) and 3 proteomic networks (dark gray background). Connections between these networks
are represented by lines. Figures adjacent to the lines indicate the number of common genes shared between pathways.
Major proteomic networks 1 and 2 are interconnected and showed connections with 8 and 6 microarray networks,
respectively. This information was used to identify central regulatory nodes for interconnected networks. B) With this
approach, NFkB was identified as a common central node for 5 of 8 merged networks involving proteomic network 1 (1 p)
and microarray network (4-7 and 10 m). The Venn diagram presents the number of molecules shared by these merged

networks.
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providing novel insights into the mechanisms through
which Se may influence cancer risk and colorectal
function. Crosstalk between these pathways is funda-
mental to the maintenance of gut homeostasis through
a partnership among the gut epithelium, immune cells,
and responses to bacteria (33). Among the genes and
proteins exhibiting the strongest change in expression
between the 2 Se groups (Tables 1 and 5), many have
been shown to have altered expression in colorectal
adenomas.
As expected differences in selenoprotein mRNA
expression were observed between the 2 groups,

with significant reduction of both selenoprotein W
[fold change (FC) = —1.404] and selenoprotein K

(FC = —1.286) in the suboptimal group (Gene Expression

Lumen .
Optimal Se
Response to —
pathogens and e m——
commensal

microbiota

Desmosome

Intermediate
filaments

€

Omnibus repository, GSE70550; http:/fwww.ncbinlm.nih.
gov/geo/). Moreover, expression of both SEPW1 and SELK
correlated strongly with Se status (Supplemental Table S1),
consistent with the responsiveness of selenoproteins to Se in
the colon. It is known that identification of selenoproteins
using MS is problematic, and it is therefore not surprising
that our proteomic analysis did not identify specific
selenoproteins.

We observed significant effects of Se status on im-
mune and inflammatory signaling in both the microarray
and proteomics datasets (Table 2), with approximately a
third of identified genes (80/254) and proteins (7/26) in-
volved in immune cell trafficking, with most canonical
pathways associated with inflammation, and with in-
flammatory and immune diseases and inflammatory

Sub-optimal Se
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W ’ “l
n\\ i /
in N N
et:ode‘““g, - )

/

- L
SN ey E‘%
7 " ‘ i
lng, I \Cytoskeleton 1 I Apoptosls/
i . % 3 Survival
) ,, \remode ing N imbalance
I ‘ /, ) \\\ \\\‘ 1

S

I' !

L Actin )(\ ,'l N ‘\\ S | .
PDGFBB Cellular >< \ \\‘ A\
) movement Epithelial B
alteration barrier ‘ i * 9
/ damage ' F
= 1 \ L]
Cell survival/ § l ! cy%
Apoptosis v B ®
o A - v @
2 TI\,I(Fa * Y Cell / tissue Bacterial .
° ::y'to ines - Ucell morphology invasion Reduced .'
e Recruitment | ™ = alteration immunity ®
-/ |immunecell |~ l "
! £ Chronic
A N inflammation
Dendritic cell B cell Macrophage

Healthy Tissue

Tissue dysplasia

Figure 3. Hypothetical model illustrating the integration of observed effects of suboptimal Se status on colorectal function.
This model illustrates how the observed changes in gene expression and protein levels affect inflammatory and immune
signaling, cytoskeletal remodelling and apoptotic/survival pathways, and how these changes and crosstalk between these
pathways have the potential to contribute to tissue dysplasia in the rectum of an individual with suboptimal Se status. In

the healthy colorectal epithelium, NFkB plays a critical role of coordinator, regulating: I) cytokine and chemokine
production (blue circle) in response to the gut bacteria (blue rectangles)

) the recruitment of immune cells (red, yellow,
and beige) to the epithelium to ensure immuno-surveillance, and 3) the regulation of the balance between survival and
apoptotic factors. We propose that NFkB inhibition, as a result of suboptimal Se status, reduces immune and inflammatory
signaling and induces cytoskeleton remodelling (changes associated with suboptimal Se are indicated in red and dotted

lines). Cytoskeletal alteration and imbalance of apoptotic/survival signals could result in epithelial barrier damage and
changes in cell and tissue morphology and cell movement. Moreover, the combined alteration of the epithelial barrier

reduced expression of IL1B and IL8, and reduced immunity could favor bacterial invasion
inflammation.

SELENIUM TARGETS IN RECTAL MUCOSA

, leading to chronic


http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://FJ.fasebj.org/lookup/suppl/doi:10.1096/fj.201600251R/-/DC1

response among the top biologic functions and net-
works in both datasets. Genes exhibiting the largest
fold changes in expression included those involved in
the immune response (HLA-A29.1 and HLA-DRBI),
growth factors and cytokines (BMP4, CCL19, CCL12,
IL1B, and IL§), genes previously reported to be associ-
ated with either inflamed colonic epithelium [OLFM4
(34) and SPINK4 (35, 36)] or colorectal cancer [AQPS8
and OLFM4 (37, 38)], and tumor suppressor genes
[ERRFI1 and PHLDA1 (39)] (Table 1). Furthermore, a
large number of proteins identified by proteomics
are key players in inflammation and immune function
(e.g., ApoAl, Serpin C1, S1009, C3, HPX, HSP90B1, and
G6PD). Integrating the 2 datasets identified NF«B, IL1,
TNF, and Akt, which play key roles in inflammation, as
central nodes of merged networks (Fig. 2B). Moreover,
most of the highly significant predicted upstream reg-
ulators were cytokines and growth factors involved in
inflammation and immune response (Table 4). Pathway
analysis of genes for which expression correlated sig-
nificantly with Se status highlighted the central regu-
latory role of NFkB and TNFa. SELK expression, which
correlated positively with Se status (Supplemental Ta-
ble S1), has been identified recently as a key player in
the immune response and in calcium signaling path-
ways (40, 41). Thus, overall pathway and network
analysis was consistent with both a reduction of in-
flammatory signaling capacity and inhibition of NF«B
and proinflammatory cytokines TNFa and IL1B in
rectal tissue of individuals with suboptimal Se status.
Because NF«kB plays a central role in coordinating the
response to gut microflora and the inflammatory sig-
naling response, we propose that inadequate Se status
results in disruption of the coordination by NF«B of
immune and inflammatory responses with the potential
to contribute to the transformation process (Fig. 3).
This theory is supported by previous observations
that NFkB signaling and inflammatory response
pathways were altered in the colon of mice fed a diet
marginally deficient in Se (13, 42), and inhibition of
NFkB signaling in epithelial cells leads to sponta-
neous development of severe inflammatory condi-
tions in mice (43). Dysregulation of immune and
inflammatory functions are central to colorectal car-
cinogenesis (20).

Proteomic data indicated that relatively small dif-
ferences in Se status were associated with changes in
abundance of a substantial proportion of cytoskeletal
proteins, including cytokeratins, desmin, actin, and
tubulin (Table 5). Cytokeratins have key regulatory
functions, and actin microfilaments maintain the in-
tegrity of the epithelial barrier and cell polarity (44).
Consequently, cellular movement, growth and pro-
liferation and tissue morphology were among the
most affected biologic functions identified by IPA
(Table 2). Consistent with these observations, the
same biologic functions were affected significantly at
the mRNA level (Table 2). This finding suggests the
potential for substantial remodelling of the cytoskel-
eton in rectal mucosa in response to suboptimal Se
status. This process would be expected to a have major
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impact on the colonic epithelium as it undergoes
normal cycles of proliferation, migration, and differ-
entiation. Indeed, previous work has found altered
expression of cytoskeletal components in CRC; des-
moglein 2 and cytokeratins KRT18, KRT6A, and
KRT8 were identified as signatures of CRC subtypes
(45), high expression of desmin was associated with
CRC and cytokeratins 8, 10, 18, and 19 and B-actin
were up-regulated in CRC tumors (46). In addition, pre-
vious work has indicated a role for the cytoskeleton in
mediating the immune and inflammatory responses
(30, 31).

In the present study, both RNA and proteins were
extracted from rectal biopsy tissues, which are complex
with multiple cell types and at different stages of dif-
ferentiation. Therefore the results reflect changes in
protein and RNA profiling from diverse cell types of
both epithelial and immune origin, and changes in the
proportions of these 2 major cell types may account for
some of the observed effects. However, we have no
reason to believe that there are any systematic differ-
ences in cellularity of the biopsies between those with
normal and suboptimal Se status, and this complexity
takes into account the different cellular actors present in
the rectal mucosa.

Overall, the present data indicate that, in the mac-
roscopically normal rectal mucosa, suboptimal Se
status is associated with alterations in cytoskeleton
remodelling and reduced inflammatory and immune
signaling capacity. This finding suggests that the in-
flammatory response and the capacity to recruit im-
mune cells are reduced in the rectum of individuals
with suboptimal Se status. Colorectal cancer is char-
acterized by derangements in immune and inflam-
matory signaling and cytoskeleton alterations. We
hypothesize that suboptimal Se status has the poten-
tial to compromise an individual’s redox capacity
and ability to mount appropriate immune and in-
flammatory responses to exogenous, physiologic, or
microbiological stressors and, as a result, could favor
the development of cancer (Fig. 3). In support of this
hypothesis, cancer pathways were identified as the
most affected pathways in both proteomic and tran-
scriptomic datasets. Recent evidence from genetic
association studies has led to the hypothesis of a con-
vergence of hormones, inflammation, and energy-
related factors (CHIEF) pathway in the etiology of
CRC (29). We propose that the convergence of reduced
immunity and inflammatory response and cytoskele-
ton remodelling associated with reduced Se status
would increase CRC risk.
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