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Abstract 1 

 2 

Plant-derived proanthocyanidins (PAC) have been promoted as a natural method of improving health and immune 3 

function in livestock. It has previously been shown that PAC are effective agonists for activating ruminant γδ T-cells in 4 

vitro, however effects on other livestock species are not yet clear. Moreover, the fine structural characteristics of the 5 

PAC which contribute to this stimulatory effect have not been elucidated. Here, we demonstrate activation of porcine 6 

γδ T-cells by PAC via up-regulation of CD25 (IL-2Rα) and show that 1) activation is dependent on degree of 7 

polymerization (DP), with PAC fractions containing polymers with mean DP >6 significantly more effective than 8 

fractions with mean DP <6, whilst flavan-3-ol monomers (the constituent monomeric units of PAC) did not induce 9 

CD25 expression and 2) both procyanidin and prodelphinidin-type PAC are effective agonists. Furthermore, we show 10 

that this effect of PAC is restricted to the γδ T-cell population within porcine peripheral mononuclear cells as 11 

significant CD25 up-regulation was not observed in non γδ T-cells, and no activation (via CD80/86 up-regulation) was 12 

evident in monocytes. Our results show that dietary PAC may contribute to enhancement of innate immunity in swine 13 

via activation of γδ T-cells.  14 

 15 
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 26 

 27 

 28 
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Introduction 1 

 2 

There is currently intense interest in increasing the efficiency and output of modern livestock production, in order to 3 

ensure food security for a rapidly growing population (Wu et al., 2014). At the same time, consumer demand for 4 

healthy animal produce and rising antibiotic resistance due to prophylactic inclusion in animal feed, means that 5 

routine use of antimicrobial drugs to control pathogens and ensure high quality end products is unsustainable 6 

(Marshall and Levy, 2011; Thornton, 2010). An alternative approach is to identify natural dietary compounds that 7 

promote healthy and robust animal performance, through modulatory and/or stimulatory effects on the animal’s 8 

immune system.  9 

 10 

The gastrointestinal (GI) tract is one of the most immunologically active tissues in the body, and is exposed to a variety 11 

of bacterial and parasitic pathogens that can result in acute and chronic inflammation, diarrhoea and weight loss (Hale 12 

et al., 1985; Nagy and Fekete, 2005) . Therefore, maintenance of healthy gut function is essential for robust 13 

performance. The GI mucosa is home to a variety of innate immune system effectors including defensins, natural killer 14 

cells and γδ T-cells (Bevins et al., 1999; Smith and Garrett, 2011). γδ T-cells are increasingly recognised as crucial 15 

players in responses to GI pathogens. A key distinguishing feature from αβ T-cells is that γδ T-cells are not clonal for a 16 

specific antigen, and do not require antigens to be presented in the context of major histocompatibility complex 17 

(MHC) molecules, but rather have the ability to recognise conserved pathogen pattern receptors such as 18 

phosphoantigens (Gu et al., 2015). In contrast to humans and mice, where γδ T-cells make up only a small proportion 19 

of the peripheral lymphocyte population (Kalyan and Kabelitz, 2013), mammalian livestock (particularly young 20 

animals) have large numbers of circulating γδ T-cells – in some cases up to 50% of the lymphocyte pool, depending on 21 

age – and this is true of both ruminants (Holderness et al., 2007; Tibe et al., 2012) and swine (Gerner et al., 2009). 22 

Despite this large population of γδ T-cells in livestock, how these cells function during GI infections is not fully 23 

understood (Gerner et al., 2009). Therefore, much of our knowledge on the role of γδ T-cells in GI infections derives 24 

from studies in mice, where it is known that they are able to secrete both pro- and anti-inflammatory cytokines, help 25 

to recruit neutrophils and B-cells,  and maintain homeostasis and repair of mucosal barriers (Witherden and Havran, 26 

2013). Moreover, their importance has been demonstrated in a number of host-pathogen systems.  Mice deficient in 27 

γδ T-cell receptor expression have impaired immunity to the GI helminth Nippostrongylus brasiliensis, resulting in 28 
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higher parasite burdens as well as increased lesions and pathology in the intestine compared to wild-type mice 1 

(Inagaki-Ohara et al., 2011), and are also more susceptible to infection with the mucosal bacterium Salmonella 2 

typhimurium (Ismail et al., 2011). Furthermore, γδ T-cells have been shown to play important roles in control of viral 3 

(MCMV) and fungal (Candida albicans) infections (Conti et al., 2014; Khairallah et al., 2015), indicating key functions 4 

against a variety of pathogens. 5 

 6 

It has become apparent that in addition to activation by pathogen ligands, γδ T-cells may also be activated by non-7 

pathogen related molecules such as bioactive dietary compounds. For example, proanthocyanidins (PAC) are a group 8 

of plant secondary metabolites that are widely found in common plant sources such as berries, grapes and nuts. They 9 

consist of polymers of flavan-3-ol monomers, and their structure can vary widely depending on the degree of 10 

polymerization and the nature of the monomeric sub-units, most of which are either catechin and its cis isomer 11 

epicatechin (which give rise to procyanidin-type PAC – PC) or gallocatechin and its cis-isomer epigallocatechin (which 12 

give rise to prodelphinidin-type PAC – PD). The major difference between these groups is an extra hydroxyl group in 13 

the B-ring of PD-type PAC (Figure 1).  14 

 15 

PAC have been widely investigated for both their anti-oxidant activities and their putative positive effects on gut 16 

health due to both anti-microbial and immuno-stimulatory properties (Martinez-Micaelo et al., 2012). It has been 17 

shown that PAC can effectively activate both human and ruminant γδ T cells in vitro by inducing cell proliferation and 18 

expression of CD25 and CD69 (Holderness et al., 2007; Tibe et al., 2012). In addition, increased numbers of peripheral 19 

γδ T-cells have been observed in sheep fed PAC-containing willow fodder (Ramírez-Restrepo et al., 2010) and 20 

peripheral γδ T-cell proliferation is increased in humans ingesting PAC-rich cranberry juice (Nantz et al., 2013). 21 

However, the structural characteristics of PAC that contribute to these stimulatory effects on γδ T-cells have not been 22 

fully elucidated. Moreover, there is no information on whether porcine γδ T-cells can be activated by PAC in a similar 23 

fashion to ruminants. PAC-containing feedstuffs have recently been investigated as a cost-effective feed supplement 24 

for pigs to promote gut health without reliance on antimicrobials (Feisel et al., 2014; Sehm et al., 2007) and thus an 25 

exploration of the effects of PAC on porcine γδ T-cell function is warranted.  26 

 27 
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Here, we used well characterised PAC fractions containing distinct PC and PD profiles and mean degree of 1 

polymerization (mDP) to determine whether porcine γδ T cells could be effectively activated by PAC via increased 2 

CD25 expression, and the contribution of PC/PD profile and mDP to this effect. 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 
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 18 

 19 
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 24 
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Methods: 1 

 2 

Materials 3 

Skins from hazelnut (Corella avellana; hereafter referred to as HN) were provided by Dr Hervé Hoste (INRA, Toulouse, 4 

France). Leaves from blackcurrant (Ribes nigrum; hereafter referred to as BC) were sourced from Goring-upon-5 

Thames, UK. Catechin, epicatechin, concavalin A (con A) and lipopolysaccharide (LPS) were obtained from Sigma-6 

Aldrich (Schnelldorf, Germany).  7 

 8 

Extraction, fractionation and analysis of proanthocyanidins  9 

Detailed procedures for the extraction and purification of PAC are described elsewhere (Williams et al., 2014). Briefly, 10 

plant material was extracted with acetone/water, and the resulting extract was freeze-dried, suspended in water and 11 

then loaded onto Sephadex LH-20 columns. Low-molecular weight PAC were eluted with acetone water (3:7) to yield 12 

fraction 1 (F1), and high-molecular weight PAC eluted with acetone/water (1:1) to yield fraction 2 (F2). Fractions were 13 

analysed using thiolytic degradation and HPLC-MS (Gea et al., 2011) which yielded information on the purity of PAC, 14 

mDP and PC/PD ratio.  15 

 16 

Blood samples and isolation of PBMC 17 

The use of animals was approved by the Experimental Animal Unit, University of Copenhagen, and procedures carried 18 

out according to the guidelines of the Danish Animal Experimentation Inspectorate (Licence number 2010/561-1914). 19 

Blood samples were drawn by jugular venipuncture from 9-12 week old healthy female pigs (Danish 20 

Landrace/Yorkshire/Duroc) into vacutainers containing sodium heparin. PBMCs were isolated on histopaque 1.077, 21 

washed in PBS and then suspended in complete culture media (RPMI 1640 supplemented with 10% inactivated foetal 22 

bovine serum, 2 mM L-glutamine, 100 U/mL of penicillin and 100 µg/mL of streptomycin).  Viability of PBMC was 23 

assessed by trypan blue staining and was routinely >98%.  24 

 25 

Cell culture 26 

For whole PBMC culture, cells were seeded in duplicate at 10
6
/mL in 48-well plates. Purified PAC fractions were 27 

dissolved in PBS and added at concentrations of 20 or 10 μg/mL – preliminary experiments showed that higher 28 
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concentrations significantly reduced cell viability (data not shown). Con A (5 μg/mL) and PBS-stimulated cells were 1 

included in all experiments as positive and negative controls, respectively. Cells were incubated for 48 hours at 37°C 2 

and 5% CO2 before being harvested for analysis. For monocyte culture, monocytes were purified (>90% purity) from 3 

PBMC with anti-human CD14 microbeads (Auray et al., 2013) and magnetic separation (MACS, Miltenyl Biotech). 4 

Purified monocytes were suspended in RPMI 1640 media supplemented with 10% inactivated foetal bovine serum, 1% 5 

MEM non-essential amino acids, 10 mM HEPES, 50 μM β-mercaptoethanol, 100 U/mL of penicillin and 100 µg /mL of 6 

streptomycin. The cells were rested for 24 hours, and then stimulated in duplicate for a further 24 hours with either 7 

LPS (500 ng/mL) or PAC fractions at 20 or 10 μg/mL.  For PBMC, four separate experiments were performed with cells 8 

from different pigs. and for monocytes, three separate experiments were performed with cells from different pigs. 9 

 10 

Flow cytometry 11 

For PBMC, cells were harvested and stained with anti-porcine γδ TCR (Clone PGBL22A; Monoclonal Antibody Centre, 12 

Washington State University, Pullman, USA) and anti-porcine CD25 (Clone K231.3B2; AbD serotec, Kidlington, UK). 13 

CD25 (IL-2Rα ) was used as a common and well-studied marker of peripheral T-cell activation (Caruso et al., 1997; 14 

Jouen-Beades et al., 1997). The mAbs were conjugated to either FITC or APC fluorophores using Zenon antibody 15 

labelling kits (Invitrogen), according to the manufacturer’s instructions. For monocytes, cells were stained for CD80/86 16 

expression using human CTLA-4/mouse IgG-FITC fusion protein (Ancell, Bayport, USA).  Appropriate isotype controls 17 

(BD biosciences) were included in every experiment. Cells were acquired on an Accuri C6 flow cytometer. Gating for 18 

lymphocytes or monocytes was carried out based on forward/side scatter and at least 10000 events were acquired. 19 

Data were analysed using FCS express version 5 (De Novo Software, Glendale, CA). 20 

 21 

ELISA 22 

TNF-α in monocyte culture supernatants was quantified using the swine TNF-α ELISA kit (Life Technologies) according 23 

to the manufacturer’s instructions.   24 

 25 

Statistical Analysis  26 

Differences in CD25 or CD80/86 expression were determined by ANOVA with Bonferroni post-hoc testing (Graphpad 27 

Prism v6.00, GraphPad Software, La Jolla, California, USA, www.graphpad.com ).   28 
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Results and Discussion  1 

 2 

Extraction and purification of two fractions each from two different plant sources (HN and BC) yielded PAC with 3 

contrasting PC/PD profiles. Full details of the chemical analysis have been presented previously (Williams et al., 2014), 4 

and are summarised briefly in Table 1. Proanthocyanidins purified from HN consisted of around 80% PC units, whereas 5 

those from BC were PD-rich, with more than 90% of the PAC consisting of PD units. For both plant sources, F1 6 

contained lower molecular weight polymers with mDP < 6, and F2 contained high-molecular weight PAC with mDP >6.   7 

  8 

We first tested the PC-rich PAC fractions from HN for their ability to induce CD25 (IL-2Rα) expression in γδ T-cells. The 9 

F2 fraction (20 µg/mL) induced significant up-regulation of CD25, with around 50% of γδ TCR
+
 cells positive for CD25 10 

expression compared to <5% in unstimulated cells (P<0.01) although the effect was not as strong as that induced by 11 

the positive control con A (Figure 2B,C). This effect was dose-dependent, as a concentration of 10 µg/mL induced 12 

lower, but still statistically significant up-regulation (data not shown). When the F1 fraction was tested at an 13 

equivalent concentration of PAC, activation was still observed but significantly less CD25 positive cells were present 14 

compared to the F2 fraction (P<0.05; Figure 2B,C), showing clearly that this effect is dependent on degree of 15 

polymerization. Consistent with this, we observed that the flavan-3-ol monomers catechin and epicatechin, which are 16 

the dominant monomeric units of HN PAC polymers, did not induce CD25 expression (Figure 2C). In addition, this 17 

effect appeared to be largely confined to the γδ T-cell population; whilst there was an increase in the number of 18 

CD25
+
 cells in the non-γδ lymphocyte population after exposure to the F2 fraction,  this was not statistically significant 19 

(Figure 2D).   20 

 21 

We next tested whether the predominantly PD polymers purified from BC could also induce CD25 expression. Similar 22 

to the results with the HN PAC, we found that incubation of γδ T-cells with the F2 BC fraction induced marked up-23 

regulation of CD25 (P<0.05; Figure 3A), although the effect tended to be less strong than that observed with HN PAC.  24 

This effect was still present, but not significantly (P>0.05), with an equivalent concentration of the F1 fraction (Figure 25 

3B). Thus, both PC and PD type PAC are able to induce CD25 up-regulation on porcine γδ T-cells, and the degree of 26 

polymerization of the molecule appears to play a major role in the degree of activation. 27 

 28 
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As the activity of PAC seemed to be confined to γδ T-cells within the lymphocyte population, we investigated whether 1 

other mononuclear cells such as monocytes could be activated by PAC or whether γδ T-cells were particularly 2 

amenable to this effect.  Monocytes were purified from PBMC and exposed to either the TLR agonist LPS, or the F2 3 

fractions from HN and BC, and up-regulation of CD80/86 and TNF-α secretion was quantified. We detected a small, 4 

but statistically significant up-regulation of CD80/86 in monocytes exposed to LPS. Moreover, LPS induced  a marked 5 

secretion of TNF-α, indicating a significant activation of the monocytes (P<0.01; Figure 4A,B). In contrast, no increased 6 

expression of CD80/86 or TNF-α secretion was induced by either of the PAC fractions (Figure 4A, B). Thus, within the 7 

porcine mononuclear population, γδ T-cells appear to be specifically responsive to PAC.  8 

 9 

The present work has demonstrated that PAC are effective agonists for porcine γδ T-cells in vitro. This is consistent 10 

with previous work showing this effect in human, bovine and caprine γδ T-cells (Holderness et al., 2007; Tibe et al., 11 

2012).  Thus, this appears to be a highly conserved process across different animal species. Whilst for practical reasons 12 

our experiments were performed from PBMC-derived  γδ T-cells, rather than GI-resident cells, this apparently widely 13 

conserved process suggests that all γδ
+
 cells may respond in a similar fashion to PAC - as evidenced by Holderness et 14 

al. (2007) who reported similar responses to PAC from the two major primary subsets (CD8
+
 or CD8

-
)  of bovine γδ T-15 

cells (with the CD8
+
 cells being primarily a tissue-associated subset), as well as observing similar responses between 16 

Vδ1 and Vδ2 human T-cells.  17 

 18 

The ability of PAC to effectively activate these cells may be reflected in functional activity in animals fed a PAC-rich 19 

diet, such as enhanced innate immunity to GI pathogens such as helminths, protozoa and bacteria , if γδ T-cells primed 20 

by dietary PAC respond faster and more robustly to the presence of pathogens. The role of γδ T-cells in immunity to 21 

porcine pathogens has yet to be fully elucidated, however they are known to produce IL-17 and IFN-γ after stimulation 22 

with mitogens or bacterial antigens (Lee et al., 2004; Stepanova et al., 2012), and increased numbers of γδ T-cells are 23 

present shortly after infection with parasites such as Cystoisospora suis (Gabner et al., 2014), suggesting that these 24 

cells likely play a functional role in immunity to GI pathogens, as has been reported in mice (Smith and Hayday, 2000).  25 

 26 

Interestingly, Nantz et al. (2013) noted that, unlike γδ T-cells, αβ T-cell and B-cell proliferation was not enhanced by 27 

dietary PAC in humans. Similarly, Holderness et al. (2007) reported that whereas bovine γδ T-cells were activated by 28 
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PAC, αβ T-cells were not, however in this study a proportion of human αβ T-cells were also responsive to PAC. Our 1 

current results with porcine cells demonstrated that whilst some activation of αβ T-cells was evident, this was non-2 

significant and clearly not as pronounced as the robust response of the γδ T-cell population. Thus, it appears whilst 3 

there may be some conserved lymphocyte responses to PAC, the invariant nature of the γδ TCR seems to be uniquely 4 

suited to ligation by PAC.  5 

 6 

We also observed that the ability of PAC to induce CD25 expression was clearly dependent on the degree of 7 

polymerization, whilst monomeric flavan-3-ols had no effect. This is consistent with a number of studies 8 

demonstrating that the biological effects of PAC are related to polymer size. Our group and others have shown that in 9 

vitro anti-parasitic effects are also enhanced by increasing degree of polymerization (Quijada et al., 2015; Williams et 10 

al., 2014). In addition, other immune-modulating effects of PAC, such as the phosphorylation of STAT1 in human 11 

CD11b
+
  cells, are instigated only by oligomeric PAC and not by monomeric sub-units such as catechin (Snyder et al., 12 

2014). It is also apparent that differences in biological activity of PAC can be related to the ratio of PC to PD within PAC 13 

(Novobilský et al., 2013; Scalbert, 1991). Increased biological activity is often associated with PAC molecules that have 14 

a high percentage of PD, perhaps due to the increased possibility of hydrogen-bonding with proteins resulting from 15 

the extra hydroxyl group in the B-rings. Our current data demonstrated that both PC and PD rich-PAC were able to 16 

induce CD25 expression, though the PC-type PAC from HN appeared to be more potent. However, this difference 17 

between HN and BC cannot be ascribed only to PC/PD ratio as mDP values were higher in the HN fractions (Table 1), 18 

which makes direct comparisons problematic. Further studies using larger panels of well-defined PAC will be 19 

necessary to determine the exact contribution of these monomeric subunits to the observed activity. For now, our 20 

data indicate that both PC and PD-type PAC are capable of priming porcine γδ T-cells, and that the size of the PAC 21 

molecule appears to be a critical factor in determining the potency of the effect.  22 

 23 

In conclusion, we have shown for the first time that PAC from two different plants are able to activate porcine γδ T-24 

cells through CD25 up-regulation. The degree of polymerization of the PAC polymers appeared to be the most critical 25 

structural characteristic for effective activation. Further in vivo experiments will aim to determine the functional 26 

importance of this relationship. 27 

 28 
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Table 1 1 

Chemical analysis of fractionated proanthocyanidins from two different plant sources. PC – procyanidin, PD – 2 

prodelphinidin , mDP – mean degree of polymerization. % purity – g PAC  / 100 g fraction.  3 

Also reported by Williams et al. (2014).  4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

Sample Fraction PC:PD ratio mDP % purity 

Hazelnut skin F1 81.7 : 18.3 4.6 51.3 

 F2 79.1 : 20.9 9.1 70.3 

Blackcurrant leaves F1 6.3 : 93.7 2.5 59.9 

 F2 5.5 : 94.5 6.5 100 
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 1 

Figure Legends 2 

 3 

Figure 1 – Structure of the trans flavan-3-ols catechin (gives rise to procyanidin-type PAC) and gallocatechin (gives rise 4 

to prodelphinidin-type PAC). Note the extra hydroxyl group in the B-ring of gallocatechin.  5 

 6 

Figure 2  - Proanthocyanidins (PAC) from hazelnut skin (HN) induce CD25 expression in porcine γδ T-cells. 7 

A) Gating strategy and staining controls. Lymphocytes were gated based on forward/side scatter. Staining controls 8 

consisted of APC and FITC isotype controls.  9 

B) Representative plots from one experiment of CD25 expression in γδ T-cells. The percentage of CD25 positive cells in 10 

the γδ T-cell population was quantified after exposure to 20 µg/mL HN PAC (Fraction 1 or 2) or 5 µg/mL con A (positive 11 

control).  12 

C) Mean results of 4 independent experiments using cells from different pigs. Results are presented as mean ± SEM. 13 

‘F2’ refers to Fraction 2 and ‘F1’ to refers to Fraction 1 (see materials and methods). ‘C’ – catechin. ‘EC’ – epicatechin. 14 

** P<0.01, *P<0.05, ns – non-significant.   15 

D) PAC from fraction 2 of HN do not significantly increase percentage of CD25+ cells in the γδ- lymphocyte population 16 

from porcine PBMC. ‘ns’ – non-significant. Results are mean ± SEM from four experiments with cells from different 17 

pigs.   18 

 19 

Figure 3 - Proanthocyanidins (PAC) from blackcurrant leaves (BC) induce CD25 expression in porcine γδ T-cells 20 

 A) Representative plots from one experiment of CD25 expression in γδ T-cells. The percentage of CD25 positive cells 21 

in the γδ T-cell population was quantified after exposure to 20 µg/mL BC PAC (Fraction 1 or 2) or 5 µg/mL con A 22 

(positive control). 23 

B) Mean results of 4 independent experiments using cells from different pigs. Results are presented as mean ± SEM. 24 

‘F2’ refers to Fraction 2 and ‘F1’ to refers to Fraction 1 (see materials and methods). ** P<0.01. *P<0.05.   25 

 26 

 27 

 28 
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Figure 4 – LPS, but not proanthocyanidins (PAC), induce CD80/86 expression and TNF-α secretion in porcine 1 

monocytes. 2 

A) Representative histograms showing CD80/86 expression in porcine monocytes exposed to LPS, or 20 µg/mL PAC 3 

from fraction 2 of hazelnut skins (HN) or blackcurrant leaves (BC).  4 

B) Mean fluorescence intensity (MFI) of CD80/86 and TNF-α secretion from monocytes.  Mean results of 3 5 

independent experiments using cells from different pigs. Results are presented as mean ± SEM. ***P<0.001, ** 6 

P<0.01.  7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 
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