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Journal de Théorie des Nombres
de Bordeaux 00 (XXXX), 000-000

Realising the cup product of local Tate duality

par RACHEL NEWTON

RESUME. Nous présentons une description explicite, en termes
d’algébres centrales simples, d’un cup-produit intervenant dans
I’énoncé de la dualité de Tate locale pour les modules galoisiens
d’ordre premier p. Etant donnés deux cocycles f et g, nous con-
struisons une algébre centrale simple de dimension p? dont la
classe dans le groupe de Brauer donne le cup-produit fUg. Cette
algébre est aussi petite que possible.

ABSTRACT. We present an explicit description, in terms of cen-
tral simple algebras, of a cup product map which occurs in the
statement of local Tate duality for Galois modules of prime car-
dinality p. Given cocycles f and g, we construct a central simple
algebra of dimension p? whose class in the Brauer group gives the
cup product f U g. This algebra is as small as possible.

1. Introduction

Let F' be a non-Archimedean local field with separable closure Fye, and
absolute Galois group Gr = Gal(Fisp/F). Let A be a finite Gr-module
such that the cardinality of A is not divisible by the characteristic of F.
Denote by u the group of all roots of unity in Fyep. Let AY = Hom(A, ).
Tate proved the following result in [8].

Theorem 1.1 (Local Tate duality). For i > 3, the group H{(Gp, A) = 0.
For 0 <i <2, the group H'(Gg, A) is finite and the cup product

(1.1)  U: H(Gp,A) x H*Y(Gp, AY) = H*(Gp,p) = Br(F) = Q/Z
gives a duality between H (G, A) and H*>7H(Gp, A).

Local Tate duality is a valuable tool for computing the Galois cohomology
of local fields. It plays a crucial role in Kolyvagin’s work in [3| and [4], where
he applies Euler systems to elliptic curves and thereby provides evidence for
Birch and Swinnerton-Dyer Conjecture.

In the cases ¢ = 0 and ¢ = 2, the cup product (1.1) is easily computed,
using Lemma 1 of the appendix ‘Computations of Cup Products’ in [7], for

2010 Mathematics Subject Classification. 16K20, 12GO05.



2 RacueL NEWTON

example. In this paper, we focus on the case ¢ = 1 for modules of prime
cardinality.

Notation and conventions. Let K be any field. We will consider K to
be fixed throughout the paper and will use the following notation.

K a fixed separable closure of K

Gx  the absolute Galois group of K, Gx = Gal(Kep/K)

M a Gg-module of prime cardinality p such that char(K) {p
p the group of pth roots of unity in Kgep

MY the Tate dual of M, MY = Hom(M, p,)

H,, the kernel of the natural map G, — Aut(M)

H,v the kernel of the natural map G, — Aut(MV).

For elements f, g, p, ... of cohomology groups, we often employ the no-
tation fo, go, o, - . - to refer to a choice of representative cocycles.

Our aim is to give an explicit description of the following cup product.
(1.2)  U: HY Gy, M) x HY(Gy, MY) — H*(Gx, 1) = Br(K)[p).

The main result is Theorem 1.9 where, given non-trivial cocycle classes
feHY Gy, M) and g € H(Gx, M"), we construct a central simple alge-
bra D with the following properties.

(1) The class of D in Br(K) is the class of the cup product f U g.

(2) dimg (D) = p?. Therefore, D is a division algebra if and only if

JUg#0.

The usual construction gives a central simple algebra which can have di-
mension as large as p*(p—1)% in general. Our minimisation of the dimension
of the central simple algebra makes the cup product (1.2) more amenable
to explicit computation.

From now on, we fix two non-trivial cocycle classes: f € H'(G g, M) and
g € HY(Gyx,M"). In order to compute the cup product f U g as a central
simple algebra, we must replace G with a finite Galois group. The action
of Gx on M gives a map Gx — Aut(M). Let H,, denote the kernel of this
map and consider the inflation-restriction exact sequence

00— HY(Gy/Hy, M) 2 HY(G o, M) RS H(H,,, M)CGK/HN

——= H*(Gy/Hy, M).

Observe that G /H,, injects into Aut(M ), which has order p — 1. Hence,
G /H),; has order coprime to #M = p and consequently

Hl(GK/H]\J7M) = H2(GK/HJM7M) :0
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Therefore, the restriction map gives an isomorphism
H Gy, M) = H (Hy,, M)CK/HM = Homg,, (Hyy, M).

The restriction of f to H,, is a homomorphism from H,, to M. Let Ny de-
note the kernel of the restriction of f to H,;. Then Ny is a normal subgroup
of Gg. Because f # 0, the injective G'x-homomorphism H,, /Ny — M in-
duced by f is also surjective. So H,;/Ny has order p. In the same way,
we define H,,v and Ny. Let N = Ny N N,. The lattice of subgroups is as

follows.
Gk

HM HMV

Nf\N/Ng

Lemma 1.2. If Ny = N,, then M and M" are isomorphic as G x-modules.

Proof. We have isomorphisms of G x-modules H,;/Ny — M, induced by f,
and H,v /Ny — M"Y, induced by g. So it suffices to show that

Hy /Ny = Hyv /N,

Observe that Gk /Ny = H, /Ny x Gx/H, and therefore H,;/Ny is the
unique Sylow p-subgroup of G /Ny. But H,,v /N, is also an order p sub-
group of Gy /Ny = G /Ny. O

Corollary 1.3. If Ny = Ny and p > 2, then fUg = 0.

Proof. By Lemma 1.2, M and MV are isomorphic as G x-modules. By fixing
such an isomorphism, we identify M with MY. The cup product map is
anti-symmetric and p > 2 so anti-symmetric implies alternating. Thus, it
is enough to show that g = nf for some n € Z. The restriction map

Res : HY (G, M) — H'(H,;, M) = Hom(H,,, M)

is injective, so it suffices to show that Res(g) = nRes(f) for some n € Z.
Now Res(f) and Res(g) both have kernel N, so they both arise from isomor-
phisms H,,/N; — M. But M has order p, so any two such isomorphisms
differ by a scalar multiple. O

Lemma 1.4. If Ny C Ny or Ny C Ny, then Ny = Ny.
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Proof. Suppose that Ny C N,. We will show that Ny = N,. The other
argument is identical. Let m : G /Ny — G /Ny be the natural projection.
Recall that G /Ny = H, /N¢ x G /H,, where H,,/N; has order p and
Gk /H) has order coprime to p. Similarly, Gx /Ny = Hyv /Ny X G /H v .
Since H,,v /N, has order p and 7 is surjective, the order of 7~ 1(H,v /Ny)
is divisible by p. Therefore, 7= (H,v/N,) contains the unique Sylow
p-subgroup of G /Ny, namely H, /Ny. Suppose for contradiction that
m(Hy /Ny) = 0. This implies that Im(m) = n(Gx/H,/). But this con-
tradicts the surjectivity of 7 because the order of G /H),, is coprime to
p, whereas p divides the order of G /N,. Therefore, m defines an isomor-
phism of Gy-modules 7 : Hy /Ny — Hyv/Ng. Moreover, f and g define
G-module isomorphisms f : H, /Ny — M and g : Hyv /Ny, — MY re-
spectively. Hence, M and MV are isomorphic as Gx-modules. But then
H,, = H,v by definition. This, combined with the fact that the natu-
ral projection gives an isomorphism 7 : Hy, /Ny — H,v /Ny, is enough to
complete the proof that Ny = N,. O

Recall that N = Ny N N,. Consider the inflation-restriction exact se-
quence

0—= HY Gy /N, M) 25 HY (G, M) 2=

HY(N,M).

By definition of N, the element f is in the kernel of restriction to N. So f
comes from an element of H'(Gx /N, M), which we will also call f. Simi-
larly, g comes from an element of H'(Gx /N, M"), which we will also call
g. The properties of the cup product mean that the following diagram
commutes.

HY Gy, M) x HY(Gy, MY) S H2(G, pip)

InfT InfT InfT

HY(Gx /N, M) x HY(Gx/N,M") —> H2(Gx /N, j1))
Therefore, we can reduce to studying the cup product
(1.3) U: HY(Gx/N,M) x H (G /N, M) — H*(G /N, up).

Let L = K& so that Gal(L/K) = Gx/N. Thus, L/K is a finite Galois

sep
extension of degree dividing p?(p — 1)2. Note that the action of G on
MY = Hom(M, p1,) is given by (s-¢)(m) = s-¢(s~-m) for all ¢ € MV, all
s € Gk and all m € M. Hence, p, is fixed by all elements in H,, N H,,v, so
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pp C L*. We have the following commutative diagram:

]{Z(C;K,Mp)c““““%’112((;K7l(;p)

InfT

H*(Gal(L/K), i,) —> H2(Gal(L/K), L*) — Br(L/K)

Br(K)

where Br(L/K) denotes the subgroup of Br(K) consisting of the classes of
central simple algebras over K which are split by L/K. The isomorphism
H?(Gal(L/K),L*) — Br(L/K) is induced by the map sending a 2-cocycle
9 to the central simple algebra Ay as defined below.

Definition 1.5. Let L/K be a finite Galois extension and let 9 be a
2-cocycle representing an element of H?(Gal(L/K),L*). The K-algebra
Ay is defined to be the left L-vector space with basis {es}secqai(r/K) and
multiplication given by

est = s(x)es VseGal(L/K), Vaxel
eser = U(s,t)est  V s,t € Gal(L/K).

Ay is a central simple algebra of dimension [L : K]? over K. See, for
example, [6], where this is Theorem 29.12.

From now on, fix representative cocycles fo, go for f and g respectively.

Definition 1.6. Let ¢ = f Ug. The formula given in the remark at the
end of §2.4 of [5] tells us that a representative 2-cocycle for ¢ is

wo : Gal(L/K) x Gal(L/K) — pyp

given by
(1.4) eo(s,t) = (s-g0(t))(fo(s))-
Lemma 1.7. If Ny = Ny and p = 2, then fUg corresponds to a quaternion

algebra over K, generated by two elements x and y such that K(x) = Kgf;,

2?2 € K*, y?> = —1 and yx = —xy. Consequently, f U g = 0 if and only if
N

—1e€ NKS{ZI{/K(KSQIJ;).

Proof. This follows from the explicit construction of a central simple algebra

given above. By [2|, Theorem 8.14, the quaternion algebra Ay, is a division

ring if and only if y* ¢ N (4)/x (K (2)). O
Having dealt with the case Ny = N for all p, henceforth we assume that

N¢ # Ny.

Definition 1.8. Define ker(fy) = {s € Gk | fo(s) = 0}. Since fy is a
1-cocycle, ker(fy) is a subgroup of Gx. Likewise, we define the subgroup
ker(go) of Gk by ker(go) = {s € Gk | go(s) = 0}.
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The Galois correspondence gives the following diagram of subfields.

L=KZI,
/ \
Ked K.
\
ngepr(fo) Kéf;(g“)
Keeh! K

K/

Below, we state the main result which will be proved in this paper.

Theorem 1.9. Write Kéfg(fo) = K(a) with Trg(q)/x(a) = 0. Similarly,

write ngeg(go) = K(B) with Trggy/k(B) = 0. Let 0 € Gk be such that o
acts trivially on the normal closure of K(B, pp) and o(o) # «. Likewise,
let p € G act trivially on the normal closure of K (o, p1p) but non-trivially

on B. Let ¢ = (go(p))(fol0)) € pp. Let hyj = S070¢Hal(al). Write
P (B) = Zf;& m; B for m;j € Kgf)‘”v. Let D be the left K(B)-vector space
with basis {zj}ogjgp_l, where z satisfies the same minimal polynomial over
K as a, with multiplication

p—1
zf = Z cz-jﬁizj
i,j=0
-1
1,] :
algebra of dimension p? over K which gives the class of f U g in Br(K).

where the matriz (c;j)i; = (h1jmiz)ij(hij) Then D is a central simple

Corollary 1.10. Suppose that p = 2. Then f U g is represented by a
quaternion algebra over K, generated by two elements x and y such that
K(z) & Ké{(f;(go) and K(y) = K;{fg(f()), with 2%, y?> € K* and yr = —xy.
Consequently, fUg is trivial if and only if 2* € Ng k(K (y)), if and only
if y* € Ng(ay/ i (K(x)).

Proof. This follows immediately from Theorem 1.9. The quaternion alge-
bra is a division ring if and only if 2* ¢ Ny (,/k(K(y)), if and only if
y? ¢ Nk (z)/x (K (x)) by [2], Theorem 8.14. O

The algebra A, constructed as in Definition 1.5, is a representative
in Br(K) of fUg. The dimension of A,, over K can be as large as
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p*(p — )% In Section 2, we find a minimal left ideal S of A,,. The
Artin-Wedderburn Theorem shows that End s, (S)°PP represents the same
class in Br(K) as Ay,. Moreover, the dimension of Endy, (S)°PP over K

is just p?. In Sectlon 3, we show that Kge ker(f %) and Kéifg(go) are maximal
commutative subalgebras of Endy,, (S)°PP, and that Enda, (S)°PP is gen-

erated by K, éf;(go) together with any element d € Endy, (S)°rP \ Kég(go).
In Section 4, we find such an element d € Endga, (S)°PP \ Ké{:;(go) and

in Section 5 we calculate its minimal polynomial over K and deduce that

K(d) = Ksk:;(f 9. In Section 6, we describe the multiplicative structure of
the algebra Endy,, (8)°PP in terms of structure constants. In Section 7, we
apply Theorem 1.9 to a specific example.

2. Applying the Artin-Wedderburn theorem

Recall the construction given in Definition 1.5 of the algebra A, from
the 2-cocycle g representing f U g. The dimension of A, over K is equal
o [L : K]? and is therefore at most p*(p — 1)*. The Artin-Wedderburn
Theorem tells us that Ay, = M,(D) for some n € N and some division
algebra D. It is the division algebra D which gives the class of A, in
Br(K). We will show that if D # K then the dimension of D over K is p?
and we will describe D in terms of an endomorphism ring.

Definition 2.1. Let A be a central simple algebra over a field K. Write
A = M, (D) for n € N and a division algebra D.

(1) The period of A is the order of the class of A in Br(K).

(2) The quantity /dimg (D) is called the index of A. The index of A is
known to be equal to the greatest common divisor of the degrees of
finite separable field extensions which split A. See Proposition 4.5.8
of [1], for example.

Lemma 2.2. Ké(eeg fo) /K and Ké(:g(go)/K are degree p subextensions of L
which split Ay, .

Proof. Recall that ker(fp) is a subgroup of G because fj is a 1-cocycle.
Also, fp defines an injection from the left cosets of ker(fy) in Gk to M. This
injection is also a surjection because the restriction of f to H,,; surjects onto

M. Thus, K;(eeg (fo) /K is a degree p extension. Since N C Ny C ker(fp), w

have Ké‘fg(f ) L. The following diagram commutes.

(2.1) H%(Gal(L/K),L*) ——= Br(L/K)

e l

H2(Gal(L/ KEU0)) 10y —=5 Br(L/ i)
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where the map Br(L/K) — Br(L/Kéfg(fo)) is induced by
A Aey KErlo),

Recall that Gal(L/Ké{:g(fo)) = ker(fp)/N. The restriction of f to ker(fy)/N
is trivial in H'(ker(fy)/N, M), and the cup product commutes with the
restriction homomorphism. So we have

Res(f Ug) = Res(f) URes(g) = 0URes(g) = 0.

Therefore, diagram (2.1) shows that Ay, ®x K;{(fg(f 0) represents the trivial

class in Br(L/Ké(:g(fO)). In other words, K;fg(f(’) splits Ay,. The argument

for Ké{f;(go) is analogous. O

Remark 2.3. If fj is modified by a coboundary, the subgroup ker(fy) is

conjugated by an element of GG. Thus, the embedding of Kég(fo) in L is

changed. But the K-isomorphism class of the field Ksl,(:g(f 0) only depends

on f. Therefore, the fact that K;f;(f 0) splits A, only depends on f and
not on the choice of cocycle representative fj.

Corollary 2.4. Suppose that the class of Ay, in Br(K) is non-trivial. Then
Ay, is isomorphic to M, (D), where D is a central division algebra over K
of dimension p* and n = p~'[L : K|. Thus, the index of Ay, is equal to
its period, p. Moreover, ngeg(fo) and ngeg(go) embed into D as maximal

commutative subalgebras.

Proof. Recall that the index of A, is the greatest common divisor of the
degrees of finite separable extensions which split A,,. Lemma 2.2 states
that Ké{,f;(f o) /K is a degree p extension which splits A,,. Since p is prime,
the index of A, is p. Consequently, A,, = M,(D), where D is a central
division algebra of dimension p? over K, and D has a maximal commutative
subalgebra isomorphic to Ké{:;(f 0). Likewise, Ké(:;(go) also embeds into D as
a maximal commutative subalgebra. Moreover,

[L: K> = dimg (Ay,) = dimg (M,(D)) = n?*[D : K] = n*p?.
Therefore, n = p~![L : K]. O

We know that Ay, is isomorphic to M, (D) for a division algebra D. We
want to compute D explicitly and relate its generators to the splitting fields
nge;(f °) and Ksl,(fg(go). The proof of the Artin-Wedderburn Theorem shows
that D = Endy,, (5)°PP for any minimal left ideal S. The same proof also
shows that a left ideal I of A, is minimal if and only if

dimg(I) =n[D : K].
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Definition 2.5. Let § = )
Ay, generated by 0.

reGal(L) K90 e; and let S be the left ideal of

Proposition 2.6. Let R be a set of left coset representatives for the sub-
group GaI(L/KéZe;(gO)) in Gal(L/K). Then the elements {es0}scr form a
basis for S as a left L-vector space. Consequently, the dimension of S as a
K -vector space satisfies the following equality.

dimg (S) = [KX2@0) : K)[L: K] = p[L : K].

Proof. The elements {50} scqal(r,/ k) Span the left L-vector space S = A, 0.
For any s € Gal(L/K),

650 = Z €s€t = Z @0(37 t)est = Z €st

teGal(L/Kioy90)) teGal(L/KE(690)) b Gal(L/ K90

where the last equality holds because ¢q(s,t) = 1 forallt € Gal(L/ K;{(f;(go)),
by definition of ¢q. In particular, if s € Gal(L/Ké(eeg(go)), then ez = 6. So,

since R is a set of left coset representatives for Gal(L/Ké(ee;(go)) in Gal(L/K),
the elements {es0}scr span the left L-vector space S. In fact, these ele-
ments form a left L-basis for §. To show linear independence, suppose

that
Z rsesd =0

sER
for some coefficients x5 € L. Then

0= Z:Usesﬁ = sz Z st = Z T,er

seER seER teGal(L/K::;(HO)) reGal(L/K)

where the coefficients x, for r € Gal(L/K) are given by x,, = x5 where s € R

is the coset representative for the left coset of Gal(L/ Ké{:g(go)) in Gal(L/K)
containing 7. But the elements {e;},cqai(r/k) form a left L-basis for A, .
Therefore, z; = 0 for all s € R. Hence, the elements {e 0},cr form a left
L-basis for S, with #R distinct elements. The cardinality of R satisfies

_ #Ga(L/K)
# Cal(L/Ksep ™)
whereby the dimension of S as a K-vector space is p[L : K], as required. [

Corollary 2.7. If the class of Ay, in Br(K) is non-trivial, then S is a
minimal left ideal of Ay, .

Proof. The proof of the Artin-Wedderburn Theorem shows that a left ideal
in Ay, is minimal if and only if its dimension over K is equal to n[D : K],
where Ay, & M, (D). By Corollary 2.4, [D : K] = p? and therefore

[L: K] = dimg (Ay,) = dimg (M,(D)) = n?*[D : K] = n*p*.

= KI5 K] =p,
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Thus, a left ideal in A, is minimal if and only if its dimension over K is
equal to np? = p[L : K]. O

Corollary 2.8. If D # K, then D = Enda, (S)°P".
Proof. By definition, the class of A, in Br(K) is trivial if and only if
D = K. The proof of the Artin-Wedderburn Theorem shows that

D = Enda,, (1)°P

for any minimal left ideal I of A,,. Therefore, the result follows from
Corollary 2.7. d

Remark 2.9. If the class of Ay, in Br(K) is trivial, then S is no longer a
minimal left ideal of Ay,. But Enda, (S)°PP is still a central simple algebra

over K of dimension p? with the same class in Br(K) as A,,. We will prove
that Endg,, (8)°PP is the algebra D described in Theorem 1.9.

3. Computing the endomorphism ring

We have seen that Enda, (S)°PP gives the class of Ay, in Br(K). We
want to give an explicit description of Endg, (§)°PP in terms of genera-
tors and relations. The first step will be to find a maximal commutative
subalgebra of dimension p inside Endy,, (S)°PP.

Recall that S = A0, where 0 = ZteGal(L/Ké(gé(QO)) e

left coset representatives for Gal(L/ Ké(:;(go)) in Gal(L/K) and let
B ={zes |z € L,s € R}.

Proposition 2.6 tells us that § = Bf. We would like B to be a subalgebra
of A,,, so we want to choose R so that it is a subgroup of Gal(L/K).

.. Let R be a set of

Lemma 3.1. Let p € Hy,v /N be such that the image of p in Hy~ /Ny gen-
erates Hyv /Ny. Then R = {p'}o<i<p—1 is a set of left coset representatives

for Gal(L/ K9y in, Gal(L/K).

Proof. Recall that Gal(L/K) = Gx/N and Gal(L/Kr@)) = ker(gy)/N.
We have #R = [Kéfg(go) : K]. By Lemma 2.2, [Ké:eg(go) : K] = p. Thus, it
is enough to show that p" € ker(gp)/N if and only if p divides r. We have
Ny/N = (H)v/N) N (ker(go)/N).

By construction, p € H,v/N. Hence, p" € ker(go)/N if and only if
p" € Ng/N. But the image of p generates H,,v /Ny and [H,v : Nyj| = p, so
p" € Ng/N if and only if p divides 7. O

From now on, we fix R = {p'}o<i<p—1, 5o B is a subalgebra of A,,. We
want to compute Enda, (S§)°PP. We know that S is a principal left ideal
generated by 0, so any x € Enda, (S) is completely determined by x(0).
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Since x(0) € § = B, we have x(0) = bl for some b € B. The question is,
which b can occur? In other words, for which b € B does x : 8 — b8 extend
to a well-defined element of Enda, (S)? The extension of x to the whole
of § is given by

x(cd) =ex(0) VceB.
This is well defined because it follows from Proposition 2.6 that any el-
ement of § can be written as cf for a unique ¢ € B. But it may not

be an A, -endomorphism. We see that x gives a well-defined element of
Enda, (S) if and only if

x(af) = ax(f) = abl VacAg.

The point is that, when we allow multiplication by the whole of A,
(rather than just the subalgebra B), it is possible to have a10 = a6 with
ai,as € Ay and ay # ag. For x to give a well-defined element of Endy,, (S),
we would also need a1b6 = aobf in this case. Equivalently, x extends to a
well-defined element of Enda, (S) if and only if

abf = 0 for all a € Ay, such that af = 0.

Clearly, it suffices for b to commute with 0 = Hence,

ZtEGal(L/Kker(gO))
it suffices for b to commute with e; for every t € Gal(L/Kéfg(gO)). The
multiplication on EndAW0 (S) is the opposite of the multiplication on B
inherited from Ag,. Therefore, we can view Endy, (S)°PP as a subalgebra

of B. We will make this identification from now on. Thus, we have
(3.1) BDEnda, (S)P" D {be B|eb=be, Vte Gal(L/KEr0))},

Remark 3.2. In fact, a careful analysis of the left annihilator of # may be
used to show that the rightmost inclusion is an equality. We omit the details
of this rather involved calculation and instead demonstrate the equality
simply by finding enough elements in the right-hand side and comparing
dimensions.

The rightmost inclusion in (3.1) leads us to ask the following question.
Which elements of B commute with e; for every t € Gal(L/K, kcer 90))

Lemma 3.3. The field stg(g()) 1s a subalgebra of B and every element
ofK er(90) commutes with ey for every t € Gal(L/Ksl,{:g )), Therefore,

Ké(f;(go) is a mazimal commutative subalgebra of Enda, (S)orp.

Proof. Recall that
B={ze, |zre€L, 0<i<p-—1},

where p € H,v /N is such that its image generates H,v/N,. Recall the
definition of the multiplication in A, . We have

est = s(v)es Vse Gal(L/K), Vxel.
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Thus, z € L commutes with e if and only if s(x) = z. By (3.1), we conclude

that Ké(f;(g(’) C Endg,, (8)°PP C B. Now Enda,, (8)°PP is a central simple

algebra of dimension p? over K and [Ké?;(go) : K] = p. Therefore, K;(:;(go)

is a maximal commutative subalgebra of Endy, (S)°PP. O

Lemma 3.4. Endy,, (S)°PP is generated as a K-algebra by the elements of
Kéf;(go) together with any element d € Endy,, (8)°orp \ Kéf;(go).

Proof. We know that the algebra Enda, (S)°PP has dimension p? over K.
Let d € Endg,, (S)Opp\Ké{fg(go) and let 7" be the subalgebra of End 4, (S)°PP
generated over K by Ké;e;(go) and d. Then,

K C KX ¢ T C Endg,, (S)°PP.

First, suppose that End g4, (8)°PP is a division ring. Then T is also a division
ring and we can view Enda, (S)°PP as a left T-vector space. We have

p? = dimg Endg, (8)°F = (dimg Endga,, (S)°PP)(dimg T').

But dimg T > [Ké{:;(go) : K| = p, whereby dimg T = p? and therefore
Enda, (S)°PP =T.

Now suppose that End 4, (S)°PP is not a division ring. Since it is a central
simple algebra of dimension p? over K, the Artin-Wedderburn Theorem
tells us that Enda, (S)°P" = M,(K). In other words, Enda, (S)°PP is
isomorphic to Endg (V'), where V' is a K-vector space of dimension p. Note
that V is a faithful T-module. Moreover,

dimg V

dim xer(gy) V = ————— = 1.
Keep ?° [Ké(f;(g()) L K]

Therefore, V' is a simple Kg:;(go)—module, and hence a simple T-module.
So T has a non-zero faithful simple module, whereby the Jacobson radical
of T is zero. Therefore, T is a semisimple K-algebra, since T is finite-
dimensional over K. Now the Artin-Wedderburn Theorem tells us that
T = M,,(E) for some division ring £ over K and some m € N. Furthermore,
any nonzero simple module for M,,(F) is isomorphic to the left ideal I of
M, (E) consisting of matrices with all entries zero except in the first column.
In particular,

p=dimgV =dimg [ = m[E : K].

If m=1and [E: K| =pthen T'= E and we get a contradiction because

Kég(go) is a proper subalgebra of T' of dimension p over K. Therefore, we

must have m = p and £ = K, whereby 7' = M,(K). So T = Enda, (S)°*?,
as required. O
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Proposition 3.5. Endg, (S)P? contains a mazimal commutative subalge-

bra isomorphic to Kse er(fo)

Proof. Let T = AgyJ where J = ZteGaI (L KK o))

to that of Proposition 2.6 shows that dimg (7) = p[L : K] = dimg(S). The
algebra A, is a central simple algebra, so any two A, -modules with the
same finite dimension are isomorphic. Hence, T is isomorphic to S as an
Agy-module. Write T = {ze,iJ | v € L, 0 < i < p—1}, where 0 € Hy, /N is
such that its image generates H,,/N¢. Replacing S by 7 and imitating the

et. A similar argument

proof of Lemma 3.3, we find Kéfg(f 0 a5 a maximal commutative subalgebra
of Enda,, (7)°PP. Moreover, Enda, (T)°PP = Enda,, (S)°PP. 0

Remark 3.6. In Lemma 3.3, we found Kg’;(go) as a maximal commutative
subalgebra of Enda, (S)°PP. Proposition 3.5 tells us that Endg, (S)°PP

contains a maximal commutative subalgebra isomorphic to K, Sep( 0 If these
two subalgebras are distinct, then together they generate Enda,, (S )PP In

this case, in Lemma 3.4 we could choose d € Endga, (S)°PP \ Kse ker(go) such

that K(d) & Ke ker(f 9 In fact, in the next two sections we show that we can
always choose d € End, (S)°PP \ Kker(go) such that K(d) = Kker(fo)

4. Finding generators

Lemma 3.4 states that End 4, (S8)°PP is generated as a K-algebra by the
elements of Ké{:;(go) together with any element d € Endga,, (S)Opp\Ké{:S(gO).
Recall that

B={xe, |[xe€L, 0<i<p—1}C Ay,

where p € H,v/N is such that its image generates H,v/Ny. In light of
(3.1), we seek an element d € B\ Ké(eeé(go) such that d commutes with e; for
all t € Gal(L/Kke]r 90)). We can write d in the following way.

p—1
(4.1) d= Zaiepi for some a; € L.

i=0
We want to find suitable coefficients a;. We will determine the precise
conditions on the a; which must be satisfied if d is to commute with e; for

all t € Gal(L/ K@)y,

Lemma 4.1. We have NyNy/N = H, H,v /N as subgroups of G /N, and
therefore

(4.2) N
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and
Hyv NNy  Hyv
4.3 o ST
(13) L 2
Proof. Clearly, NyNy/N < H, H,~ /N, so it remains to show the reverse
inclusion. We will show that H,;/N < NyN,/N; the argument for H,,v /N
is identical. Recall that G /Ny = H, /Nt X Gy /H,, where H,; /Ny has
order p and G /H,, has order coprime to p. Thus, any non-trivial normal
subgroup of G /Ny contains H,;/N¢. Since Ny is a normal subgroup of
G, the subgroup N¢N,/N¢ is normal in G /N¢. Since we are assuming
that Ny # Ny, Lemma 1.4 tells us that NyNy/Ny is non-trivial. Therefore,
H, /Ny < NyNg/Ny and hence Hy, /N < NyNy/N, as required.

To prove the existence of the isomorphism (4.2), we observe that

N Ny Nf Ny
where the final intersection takes place in Gx/N¢. Above, we showed that
N¢Ny/N = H, H,v/N. Consequently, NyNy/Ny = Hy H,~/Ny. Thus,
the isomorphism (4.2) follows from (4.4). The argument regarding the iso-
morphism (4.3) is identical. O
Lemma 4.2. We have

Gal(L/Kkero)) — ke?&fgo) ~ (HM; Ng> y (ker(go)]r\wfker(fo)> .

(4.4)

seps> SO Gal(L/Kég(go)) = ker(go)/N. By defini-
tion, N = Ny N Ny and Ny = H), Nker(fy). Therefore,
H, NN A ker(go) Nker(fo) _0
N N ’
It remains to show that

(HM N Ng) (ker(go) N ker(fg)) _ ker(gop)
N N N
Lemma 4.1 shows that

Proof. Recall that L = KL

Hy,NN, _ Hy
N N
Let s € ker(gp). The cocycle fy gives an isomorphism H,,/Ny — M. So
there exists some h € H,, NN, such that fo(h) = fo(s). But then s = hh~1s
and h™'s € ker(go) Nker(fy). O

We require that d = esde; ! for all s € Gal(L/Kéf; go)) Writing

d= E aie,
i=0
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with a; € L, this requirement gives

p—1 p—1

-1
g aiey = E s(ai)eseyies .
=0 =0

for all s € Gal(L/Ki2())  Recall that Gal(L/KxZ9)) = ker(go)/N.
Lemma 4.2 allows us to look separately at conjugation by elements in
(Hy N Ng)/N and (ker(fo) N ker(go))/N. First, we look at conjugation
by e; for ¢t € (ker(fo) Nker(go))/N.

Lemma 4.3. For all t € (ker(fo) Nker(go))/N and alli € Z, we have
etepiet_l = €4pig—1-
Proof. If either s or t is in (ker(fo) Nker(gop))/N, then (1.4) gives
po(s,t) = (s - go(t))(fo(s)) =1
and hence ese; = eg. Thus, for all ¢ € (ker(fo) Nker(go))/N and for all
i € Z we have et_l = e;—1 and etepiet_l = €1€,i€4—1 = €yyip—1. g

Lemma 4.1 allows us to assume that p € (Hyv N Ny)/N, which we will
do from now on. Lemma 4.1 also shows that (H, N Ny)/N is isomorphic
to Hy/Ny¢. Thus, (Hy, N Ng)/N is a cyclic group of order p. Let o be a
generator of (H,, N Ny)/N. In particular, o and p act trivially on both M
and MV. Now we consider conjugation by e,.

Lemma 4.4. For alli € Z, we have eseie;t = (e, where ¢ = g(p)(f(o))

is a primitive pth root of unity in Kgep.

Proof. Recall that o € (Hy N Ny)/N, so go(o) = 0. Hence, (1.4) gives
wo(t,d?) =1 Vte Gg/N, Vj e Z.

' = ¢_-1 and for all i € Z we have

In particular, e
-1 i -1 i —1

€oCpiCy = €x€piCa—1 = €apo(p', 07 )epig-1 = €x€pig—1 = @o(T, p'o " )e,

The last line holds because ¢ and p commute in Gk /N, since their com-

mutator is in the intersection of the normal subgroups (N, N H,;)/N and
(NyN Hyv)/N, and this intersection is trivial. Now,

wo(o,p'at) = (a-go(p'c™"))(fo(o))
= (o 90(p"))(fo(o)) since go(0 ™) =0
= g(p")(f(o)) since o acts trivially on MV
= (g9(p)(f(0)))" sincI(_eIg gives a homomorphism

Therefore, it suffices to show that ( = g(p)(f(o)) is a primitive pth root
of unity. We know that f induces an isomorphism H,;/Ny——M and f(o)
generates M as an abelian group. Likewise, g induces an isomorphism
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H,v /Nyg——M" and g(p) generates M = Hom(M, 11,,) as an abelian group.
Thus, ¢ = g(p)(f(o)) generates p, as an abelian group. O

Let ¢ = g(p )(f(a)) Combining the results of Lemmas 4.3 and 4.4, we
see that d = Zz o @ie,i commutes with e; for all ¢ € Gal(L/Ké{fg go)) if and
only if

e o(a;)=C"%a; Vi€Zwith0<i<p-—1,and
o if t € (ker(fy) Nker(go))/N is such that tpt~1 = p, then
t(ai):a&‘ VieZwith0<i<p-—1.

Proposition 4.5. Let o € Kgep be such that Ké(:;(fo) = K(a). For each
i€ Z with0 <i<p-—1, let a; = prlfijaj(a). Then d = ZZ 0 @i€,
commutes with e; for allt € Gal(L/K;{:g )).

Proof. In order to show that o(a;) = (‘a;, it suffices to show that o fixes
¢ € pp. Recall that o acts trivially on both M and MV. By definition,
MY = Hom(M, i) and therefore the action of o on up is trivial. Now, let
t € (ker(fo) Nker(go))/N and suppose that tpt—' = pf. It suffices to show
that ¢(a;) = ag;. We have

p—1 p—1
tlai) = ) HQ)to! (@) = ) t(¢) (tot™ ") t(a)
j=0 J=0
p—1
=)tV (tat™) (a)
7=0

er(

since t fixes a, because o € Ké{ep fo), Suppose that t acts as multiplication by
k on M. Then t acts as multiplication by k¢ on p,. We have isomorphisms
of Gg-modules H,,/Ny = M and H,v/Ny, = M" induced by f and g
respectively. Hence,

p—1 p—1
tlai) = > U (tot™) (a) =Y (o7 (a)
J=0 J=0
p—1
= >0 (@) = ag
7=0
as required. O

1

So we have found an element d = Y ?"J ase, € B such that d com-

mutes with e; for all ¢ € Gal(L/Ké(:; go)). By (3.1), this means that
d € Enda, (§)°PP. We want to show that the K-algebra Endy, (S)°PP

is generated by d together with the elements of Ké{:;(go) By Lemma 3.4, it
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only remains to check that d ¢ Ké(f; go). It suffices to show that some a;

with ¢ > 1 is nonzero.

Proposition 4.6. Write K;g(fo) = K(«a) with TYKkeruO)/K(a) = 0. For
sep

each i € Z with0 < i <p—1, let a; = Z?;é (Yol (a). Then there erists

i > 1 with a; # 0. Consequently, d = Zf:_ol aiepi is not in L.

Proof. Let V denote the Vandermonde matrix (Cij)ogi,jgp,l. Then a; is
the ith row of V(a, o(a),...,a? (a))T. Also,

det(V)= [ (&=¢)#0.
0<i<j<p—1

Thus, V(a,0(a),...,0P~(a))T is nonzero, so it has at least one nonzero
row. In other words, at least one of the a;’s is nonzero. But

= .. p—1 - -
ap=ato(@)+ -+ (o) = TTK;(:;(M/K(O&) = 0.
Hence, there exists ¢ > 1 with a; # 0, as required. U

Remark 4.7. Since we assumed from the start that the characteristic of
K is not p, we can subtract p~!Tr KEro) K(a) from any generator « of
sep

Ké‘ee; fo) /K to ensure that Tr Kler(fo) /K(oz) =0.

Corollary 4.8. Enda, (S)°PP is generated as a K-algebra by the elements
fKé{:g(gO together with the element d described in Proposition 4.6.

Proof. Lemma 3.4 states that Enda, (S)°PP is generated as a K-algebra by

the elements of Ké(:;(go) together with any d € Enda, (S)°P\ Ké(:;(go). By
(3.1) and Proposition 4.5 the d of Proposition 4.6 satisfies d € Enda,, (S)°PP.

By Proposition 4.6, this d also satisfies d ¢ Kge ker (g0), O

5. A minimal polynomial

Our next aim is to show that the K-subalgebra of Enda, (S)°PP gener-

ated by d is isomorphic to K(a) = Kse ker(f ) We will do this by showing

that d and pa satisfy the same minimal polynomial over K. Recall that o
is a generator for (H,, N Ny)/N and p is a generator for (H,,v N Ny)/N.

Recall that o € K, is such that Ké{:g(fo) = K(«) and TrKker(fO)/K(a) =0.
sep

Let ¢ = gao(a p) = g(p)(f(o)) and for i € Z with 0 < i < p-—1let
Zp (Yol (). We have d = > F_ Olaze . Similarly, let 8 € Kgep

be such that Kigp ™ = K(8) and Tr o) x(8) = 0. For i € Z with
sep
0<i<p-—1,letb E C”p7( ). In the proof of Proposition 4.6,
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we showed that a; # 0 for some ¢ > 1. The same argument shows that
by # 0 for some m > 1. Choose such a b, and denote it by B. We would
like to define a polynomial with roots BFdB~" for 0 < k < p—1. We
will show that B*dB~* commutes with BdB~¢ for every k,¢ € Z, so that
P(X) = Hﬁ;é (X — B¥dB~*) is the desired polynomial. First, we prove
two auxiliary lemmas.

Lemma 5.1. For all k € Z, we have

BEIBF = Zg‘mma, Z—ZU (a;)e

where B = by, = Y2070 (™I pI(B) # 0
Proof. We have

p—1 p—1 p—1
BYdBF = B ae,B7F = Z a;Be i BF = Z a;B*p' (B™)e
1=0 i i
p—1

— Z ainCikme Z CzkmaZ 5= Z o~ az

=0

Lemma 5.2. For all i,j,k € Z, we have epiak(aj)epj = O'k((lj)epi+j.

Proof. Since p € (HMV, N N¢)/N, clearly p fixes ¢ and a. Therefore, p
ﬁxes'ak'(aj) = SP ¢l (a). Moreover, f(p) = 0 and so (1.4) gives
wo(p',p?) =1 for all i, j € Z. Hence,

epiO'k((Ij)epj = piak( aje piCpi = O (aj)goo(pi,pj)epiﬂ = O'k(aj)epiJrj.

O
Corollary 5.3. For all k¢ € Z, BFdB~* commutes with B‘dB~*.
Proof. By Lemma 5.1, we have
B*dB~*B'aB~t = Z J_km(ai)epm_ "(aj)e
0<i,j<p—1
By Lemma 5.2, this is equal to
Z o kM (a)o ™ (a))e it = BdB~*BFaB7*.
0<3,j<p-—1
O

Proposition 5.4. Let P(X) = HZ;(l) (X — B¥dB~*). Then the coefficients
of P lie in K.
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Since K is the centre of Ay, it suffices to show that the coefficients of
P commute with every element of A, . As a K-algebra, A, is generated
by the elements of L and {es}scqai(r/x)- We prove Proposition 5.4 in three
steps.

Lemma 5.5. The coefficients of P commute with x for every x € L.

Proof. We chose p to be a generator of (H,v N N¢)/N. By Lemma 4.1,
(Hyv N Ny¢)/N is isomorphic to Hpv/Ng. Now Hpypv /Ng is isomorphic to
MY and therefore has cardinality p. Hence, [L : L<p>] = p and consequently
L = L)(z) for any x € L\ L. Since B = by, for some m € Z with
1 <m<p-—1, we have p(B) = ("™B # B. Therefore, L = L (B). Ob-
serve that conjugation by B permutes the roots of P. For any = € L{?), we
have zdz~! = d, since p'(x) = z for such x. Hence, conjugation by = € L
fixes the roots of P. Therefore, conjugation by any element of L fixes the
coefficients of P. 0

Lemma 5.6. The coefficients of P commute with e; Yt € Gal(L/Ké(:; gO))

Proof. By construction, d commutes with e; for all t € Gal(L/Ksep ker( 90)).
Suppose t € Gal(L/Kéfg go)) is such that t acts as multiplication by k& on
M and t acts as multiplication by £ on MY. Then tot~! = o, because f
induces an isomorphism of G x-modules H,,/Ny = M. Similarly, we have
tpt~—1 = p’. By definition of the action on MY = Hom(M, Lp), we have
t(¢) = ¢, Therefore,

p—1 p—1
eBBe;t = t(B) =Yt (tpt " H(B) = D ("I pIH(B)
=0 =0
p—1 ‘j ‘ p—1 o ’
= EPH(B) =D MR (B)
j=0 Jj=0

because 8 € Kég(go) and t € Gal L/Kﬁ;(go ). Hence,

eBdB e, = t(B)dt(B Zaz it(B
p—1 p—1
= t(B)ap'(t Zt (¢ Rmy( ))*1a,~epi
1=0 =0
p—1

Cikmaiepi = BkdBik

1=0
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by Lemma 5.1. Thus, we see that conjugation by e; for ¢t € Gal(L/K;fg ))
permutes the roots of P. Consequently, the coefficients of P commute with

e, for all ¢ € Gal(L/ K90, 0
Lemma 5.7. The coefficients of P commute with e; Vt € Gal(L/K).

Proof. By Lemma 5.6, the coefficients of P commute with e; for all ¢
in Gal(L/K;{é}l)r go)). Thus, it suffices to prove that the coefficients of P
commute with e; for all ¢ in some set R of left coset representatives for
Gal(L/Ké{f;(go)) in Gal(L/K). By Lemma 3.1, R can be taken to be
{p"}o<i<p—1. Since fo(p) =0, (1.4) gives po(p’,t) =1 for all t € Gal(L/K)
and all ¢ € Z. Hence, e, = eﬁ, for all ¢ € Z and it suffices to show that the
coefficients of P commute with e,. By Lemma 5.1,

p—1 p—1

k -k -1 _ ikm o —1 __ ikm -1

(5.1) e,B dB e, = e, E ¢"Majepe,” = g (Mepaie e,
1=0 =0

because ( is fixed by p, since p € (HMv N N¢)/N. By Lemma 5.2, we have

p—1
(5.2) Z Cikmepai Z C*Fmgqe €pit1e, Z (kaaz

Thus, equations (5.1) and (5.2) give e,B"dB "¢, B’de kfor all k € Z
with 0 < k < p — 1. Hence, the CoefﬁCIGDtb of P commute with e,,.
O

Combining Lemma 5.5 and Lemma 5.7, we see that the coefficients of P
lie in the centre of A,,, which is K. Thus, we have proved Proposition 5.4.
Definition 5.8. Let Q(X) be the minimal polynomial of pa over K,

p—1
Q(X) =[] (X =o' (pa)).
i=0
We will show that P = @ and thus conclude that P is irreducible and

K(d) = K(«).
Definition 5.9. We define R(X,Y) = [[2_} (X — 32— o*(a;) V).
Lemma 5.10. We have P(X) = R(X,e,) and Q(X) = R(X, 1).
Proof. Since p € (H,v N Ny¢)/N, we have fo(p) = 0 and consequently
wo(p',p?’) = 1 for all 4, € Z. Therefore, ej) = ey for all @ € Z. Thus, the

equality P(X) = R(X,e,) follows from Lemma 5.1. Regarding the second
claim, we have

p—1 p—1 p—1

R(X,1) = H ZO‘ a;) —H(X—O’k(' ai)).
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Observe that

p—1 p—1p—1 o p—1 A p—1 -
doai=) > (Tol(a)=) o)) ¢V =pa
i=0 i=0 j=0 j=0 i=0

because Zp o ¢ =0 unless j = 0. This proves that R(X,1) = Q(X). O
Proposition 5.11. We have P(X) = Q(X).

Proof. Write R(X,Y) = Zf;& Zj'v:o ci;XY7, where N = (p — 1)? and
Cij € L. Then

ZXZZ Z Cinj
=0

J=k (mod p)

where the innermost sum runs over j € Z with 0 < j < N. Therefore,

P(X) = R(X,e,) = ZX’ Ze > cij

j=k (mod p)

because p has order p in Gal(L/K), so el = 1. Hence, the coefficient of X*
is Zk —0 p j=k (mod p) Cij- By Lemma 5.4, the coefficients of P lie in K.

Therefore,
>, w=0

j=k (mod p)
unless k = 0. Consequently,

p—1
(5.3) RX,)Y)=) X' > i Y7,
=0

j=0 (mod p)
Since e =1, (5.3) gives P(X) = R(X,¢e,) = R(X,1) = Q(X). O
Corollary 5.12. The minimal polynomial of d over K is P and therefore
K(d) is isomorphic to K(a) = Kéfg(fo).

Proof. Proposition 5.11 shows that d and pa are roots of the same poly-
nomial over K. This polynomial is irreducible because it is the minimal
polynomial of pa. The characteristic of K is not p, so p is invertible and

K(d) = K(pa) = K(). O
6. The multiplicative structure

Now that we have found generators for the K-algebra Enda, (S)°PP, it
remains to describe its multiplicative structure. Recall that o € Kgep is

such that Ké‘(fg(fo) = K(a) and TrKker(fO)/K(a) = 0. Similarly, f € Kgep is
sep
ker
such that Kseep(go) = K(B) and TrKé‘j;(go)/K(B) =0.
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Definition 6.1. Let
p—1
z=p td=p! Zaiepi,
i=0

where a; = Z?;é (¥oJ(a). Thus, by Proposition 5.11, the minimal poly-
nomial of z over K is the same as that of a.

Corollary 4.8 tells us that the algebra End, (S)°PP is generated over K

by  and z. The elements ‘2 for i,j € Z with 0 < 4,7 < p — 1 form a
basis for Enda, (S§)°PP as a K-vector space. To specify the multiplication
on Endga, (S)°PP, it is enough to specify structure constants ¢;; € K such

that .
zZf8 = Z cijf'7.
0<i,j<p—1

Lemma 6.2. Forall j € Z with 0 < j <p—1, we have

p—1
2= pi1 Z hjkepk
k=0
NyNH v

where hjk = Z;Z;é CkEO'K(OZj) S L(p) = Ksep

Proof. 1t is easily seen that hop = 0 for all k € Z with 1 < k <p—1, and
hoo = p. Thus, the statement holds for j = 0. The statement for j = 1
follows immediately from the definition of z, upon observing that hip = ax
for all k € Z with 0 < k < p — 1. We proceed by induction on j. Suppose
that

p—1
2 =p! Z homke o
k=0

for some m € Z with 0 < m < p — 2. Then,
p—1 p—1
ZmHl = ymy = (pil Z hmkepk> <p*1 Z aiepi)
k=0 i=0

p—1
= zf2 Z hmkaiepk+i by Lemma 5.2
i,k=0

p—1

— 2 h

=p mkAn—k€pm -
n,k=0

Hence, it suffices to prove that

p—1

Z hink@n—k = ph(m—i—l)n'
k=0
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We have
p—1 p—1
thkan—k _ Z Ckfo_é(am)é-(nfk)jo_j(a)
k=0 k,0,j=0

p—1 p—1
_ Z ano.f(am)o.j(a) Z Ck(z_j)'
£,j=0 k=0
Now observe that Zi;(l) ¢k(=9) equals zero when £ # j, and equals p when
¢ = j. This concludes the proof. O

We want to find structure constants ¢;; € K for all integers 7 and j with
0 <14,7 <p—1such that

(6.1) 2 = Z cijB'2!.
0<i,j<p-1
By the definition of z,

p—1 p—1
(6.2) z2B=p ! Z aieyif = p 1 Z a;p'(B)ey:-
i=0 i=0
Using Lemma 6.2, we expand the right-hand side of (6.1) as
p—1 p—1 p—1
(6.3) Z Cijﬁzzj :p_l Z Cij,@th]’kepk.
i,j=0 i,j=0 k=0
Equating (6.2) and (6.3), we obtain for every integer k with 0 <k <p—1
p—1
(6.4) akpk(ﬂ) = Z Cijﬂlhjk.
i,j=0

Recall that N, = ker(go) N Hy,v, so KSJXI") = stellé‘” (B8). Moreover, N, is a
normal subgroup of G, so stgf Y(B) is Galois over K. Write

p—1
(6.5) PE(B) = mip’
i=0

for my, € Kggf Y ¢ L?). We know that L /L) has degree p and is generated
by 3. Thus, the elements 1, 3,... 3P~ form a basis for L as a vector space
over L), Therefore, combining (6.4) and (6.5) gives

p—1
(6.6) ARpm;g — Z Cijhjk
7=0

forall i,k € Z with 0 <4,k <p— 1.
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Definition 6.3. We define three p-by-p matrices X, Y and Z.
X = (axmir)ik, Y = (Cik)igks Z = (hi)ik-

In all three cases, the indices ¢ and k£ run from 0 to p — 1.

In terms of these matrices, (6.6) becomes X = Y Z, where Y is to be
found. We know that such a Y exists and is unique because the elements
Bt27 for i,j € Z with 0 <4, j < p — 1 form a basis for Enda, (S)°PP.

Lemma 6.4. The matriz Z is invertible. Thus, Y = XZ 1.

Proof. Suppose for contradiction that Z is not invertible. Then Z has a non-
trivial kernel and there exists a nonzero matrix 7" such that TZ = 0. But
then (Y +7T)Z =Y Z = X. This contradicts the fact that Y is unique. O

Corollary 6.5. The algebra D described in Theorem 1.9 is Enda, (S)P?.

Proof. The algebra Endy4,, (S)°PP has a basis {B%27}o<ij<p—1 as a K-vector
space, where z satisfies the same minimal polynomial over K as «, and the
multiplication satisfies

p—1
B= ;B
4,j=0
where (c;j);; = XZ 7! for X and Z as defined in Definition 6.3. Recall that
Gx/N¢ = Hy /Nt x G /Hy, where Hy /Ny has order p and G /H,, has
order coprime to p. Thus, any non-trivial normal subgroup of G /Ny con-

tains H,,/Ny. Therefore, the normal closure of Kéf;(f 0)

in Kgep is equal to
Ks]g{, Since p is a generator for (H,,~v N Ny¢)/N, p acts trivially on the nor-

mal closure of K;{:;(f o) (1p) and non-trivially on 8. Likewise, o acts trivially

ef(go)(

on the normal closure of Ksl,{ep ptp) and non-trivially on «. Therefore,
Enda, (S)°PP is the algebra D described in Theorem 1.9. O

7. An example
We apply Theorem 1.9 to the case M = p,. In this case, any 1-
cocycle fo which represents a non-trivial element f € H'(Gg, M) has
Ké{fg(fo) = K(a), where o? € K*. By definition of the Tate dual, Gk acts
trivially on M. Thus, H* (G, M") = Hom(G, Z/pZ) and any non-trivial
g € HY (G, M) corresponds to a degree p Galois extension Kéif;(g)/K. Let

Ké{‘f;(g) = Kep(B) with Tri()/x(8) = 0. Let 0 € G be such that o fixes
K(B, 1p) and o(a)/a = ¢ for some primitive pth root of unity (. Choose
p € G such that p fixes K(a, pp) and (g(p))(fo(o)) = ¢. We calculate

p—1 p—1
hij _ chfo_ﬁ(az) _ ZC(H—J)ZO‘Z-
=0 (=0



Realising the cup product of local Tate duality 25

Hence, h;; = 0 unless i +j = 0 (mod p). Write p?(8) = Zf;ol my; 3" for
m;; € K. An easy matrix calculation shows that

0 mo(p_l) 0 ... 0

_ 0 ml(p,l) 0 .. 0
(hagmi)ig(hij)ij = | : N

0 m(p_l)(p_l) 0 .. 0

Now Theorem 1.9 tells us that the class of f U g in Br(K) is given by the
algebra D with K-basis {°27 }o<i j<p—1, where 2P = of € K, and we have

p—1
28271 = Zmi(p—l)ﬁl =p ().
i=0
So in this case D is a cyclic algebra of dimension p? over K.
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