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Journal de Théorie des Nombres
de Bordeaux 00 (XXXX), 000–000

Realising the cup product of local Tate duality

par Rachel NEWTON

Résumé. Nous présentons une description explicite, en termes
d’algèbres centrales simples, d’un cup-produit intervenant dans
l’énoncé de la dualité de Tate locale pour les modules galoisiens
d’ordre premier p. Étant donnés deux cocycles f et g, nous con-
struisons une algèbre centrale simple de dimension p2 dont la
classe dans le groupe de Brauer donne le cup-produit f ∪ g. Cette
algèbre est aussi petite que possible.

Abstract. We present an explicit description, in terms of cen-
tral simple algebras, of a cup product map which occurs in the
statement of local Tate duality for Galois modules of prime car-
dinality p. Given cocycles f and g, we construct a central simple
algebra of dimension p2 whose class in the Brauer group gives the
cup product f ∪ g. This algebra is as small as possible.

1. Introduction

Let F be a non-Archimedean local field with separable closure Fsep and
absolute Galois group GF = Gal(Fsep/F ). Let A be a finite GF -module
such that the cardinality of A is not divisible by the characteristic of F .
Denote by µ the group of all roots of unity in Fsep. Let A∨ = Hom(A,µ).
Tate proved the following result in [8].

Theorem 1.1 (Local Tate duality). For i ≥ 3, the group H i(GF , A) = 0.
For 0 ≤ i ≤ 2, the group H i(GF , A) is finite and the cup product

(1.1) ∪ : H i(GF , A)×H2−i(GF , A
∨)→ H2(GF , µ) ∼= Br(F ) ∼= Q/Z

gives a duality between H i(GF , A) and H2−i(GF , A
∨).

Local Tate duality is a valuable tool for computing the Galois cohomology
of local fields. It plays a crucial role in Kolyvagin’s work in [3] and [4], where
he applies Euler systems to elliptic curves and thereby provides evidence for
Birch and Swinnerton-Dyer Conjecture.

In the cases i = 0 and i = 2, the cup product (1.1) is easily computed,
using Lemma 1 of the appendix ‘Computations of Cup Products’ in [7], for
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2 Rachel NEWTON

example. In this paper, we focus on the case i = 1 for modules of prime
cardinality.

Notation and conventions. Let K be any field. We will consider K to
be fixed throughout the paper and will use the following notation.

Ksep a fixed separable closure of K
GK the absolute Galois group of K, GK = Gal(Ksep/K)
M a GK-module of prime cardinality p such that char(K) - p
µp the group of pth roots of unity in Ksep

M∨ the Tate dual of M , M∨ = Hom(M,µp)
HM the kernel of the natural map GK → Aut(M)
HM∨ the kernel of the natural map GK → Aut(M∨).
For elements f, g, ϕ, . . . of cohomology groups, we often employ the no-

tation f0, g0, ϕ0, . . . to refer to a choice of representative cocycles.

Our aim is to give an explicit description of the following cup product.

(1.2) ∪ : H1(GK ,M)×H1(GK ,M
∨) −→ H2(GK , µp) ∼= Br(K)[p].

The main result is Theorem 1.9 where, given non-trivial cocycle classes
f ∈ H1(GK ,M) and g ∈ H1(GK ,M

∨), we construct a central simple alge-
bra D with the following properties.
(1) The class of D in Br(K) is the class of the cup product f ∪ g.
(2) dimK(D) = p2. Therefore, D is a division algebra if and only if

f ∪ g 6= 0.

The usual construction gives a central simple algebra which can have di-
mension as large as p4(p−1)4 in general. Our minimisation of the dimension
of the central simple algebra makes the cup product (1.2) more amenable
to explicit computation.

From now on, we fix two non-trivial cocycle classes: f ∈ H1(GK ,M) and
g ∈ H1(GK ,M

∨). In order to compute the cup product f ∪ g as a central
simple algebra, we must replace GK with a finite Galois group. The action
of GK on M gives a map GK → Aut(M). Let HM denote the kernel of this
map and consider the inflation-restriction exact sequence

0 // H1(GK/HM ,M)
Inf // H1(GK ,M)

Res // H1(HM ,M)GK/HM

// H2(GK/HM ,M).

Observe that GK/HM injects into Aut(M), which has order p − 1. Hence,
GK/HM has order coprime to #M = p and consequently

H1(GK/HM ,M) = H2(GK/HM ,M) = 0.
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Therefore, the restriction map gives an isomorphism

H1(GK ,M) ∼= H1(HM ,M)GK/HM = HomGK
(HM ,M).

The restriction of f to HM is a homomorphism from HM to M . Let Nf de-
note the kernel of the restriction of f to HM . Then Nf is a normal subgroup
of GK . Because f 6= 0, the injective GK-homomorphism HM/Nf → M in-
duced by f is also surjective. So HM/Nf has order p. In the same way,
we define HM∨ and Ng. Let N = Nf ∩ Ng. The lattice of subgroups is as
follows.

GK

HM HM∨

Nf Ng

N

Lemma 1.2. If Nf = Ng, then M and M∨ are isomorphic as GK-modules.

Proof. We have isomorphisms of GK-modules HM/Nf →M , induced by f ,
and HM∨/Ng →M∨, induced by g. So it suffices to show that

HM/Nf = HM∨/Ng.

Observe that GK/Nf
∼= HM/Nf o GK/HM and therefore HM/Nf is the

unique Sylow p-subgroup of GK/Nf . But HM∨/Ng is also an order p sub-
group of GK/Nf = GK/Ng. �

Corollary 1.3. If Nf = Ng and p > 2, then f ∪ g = 0.

Proof. By Lemma 1.2,M andM∨ are isomorphic as GK-modules. By fixing
such an isomorphism, we identify M with M∨. The cup product map is
anti-symmetric and p > 2 so anti-symmetric implies alternating. Thus, it
is enough to show that g = nf for some n ∈ Z. The restriction map

Res : H1(GK ,M)→ H1(HM ,M) = Hom(HM ,M)

is injective, so it suffices to show that Res(g) = nRes(f) for some n ∈ Z.
Now Res(f) and Res(g) both have kernelNf , so they both arise from isomor-
phisms HM/Nf → M . But M has order p, so any two such isomorphisms
differ by a scalar multiple. �

Lemma 1.4. If Nf ⊂ Ng or Ng ⊂ Nf , then Nf = Ng.
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Proof. Suppose that Nf ⊂ Ng. We will show that Nf = Ng. The other
argument is identical. Let π : GK/Nf � GK/Ng be the natural projection.
Recall that GK/Nf

∼= HM/Nf o GK/HM , where HM/Nf has order p and
GK/HM has order coprime to p. Similarly, GK/Ng

∼= HM∨/Ng oGK/HM∨ .
Since HM∨/Ng has order p and π is surjective, the order of π−1(HM∨/Ng)
is divisible by p. Therefore, π−1(HM∨/Ng) contains the unique Sylow
p-subgroup of GK/Nf , namely HM/Nf . Suppose for contradiction that
π(HM/Nf ) = 0. This implies that Im(π) = π(GK/HM). But this con-
tradicts the surjectivity of π because the order of GK/HM is coprime to
p, whereas p divides the order of GK/Ng. Therefore, π defines an isomor-
phism of GK-modules π : HM/Nf → HM∨/Ng. Moreover, f and g define
GK-module isomorphisms f : HM/Nf → M and g : HM∨/Ng → M∨ re-
spectively. Hence, M and M∨ are isomorphic as GK-modules. But then
HM = HM∨ by definition. This, combined with the fact that the natu-
ral projection gives an isomorphism π : HM/Nf → HM∨/Ng, is enough to
complete the proof that Nf = Ng. �

Recall that N = Nf ∩ Ng. Consider the inflation-restriction exact se-
quence

0 // H1(GK/N,M)
Inf // H1(GK ,M)

Res // H1(N,M).

By definition of N , the element f is in the kernel of restriction to N . So f
comes from an element of H1(GK/N,M), which we will also call f . Simi-
larly, g comes from an element of H1(GK/N,M

∨), which we will also call
g. The properties of the cup product mean that the following diagram
commutes.

H1(GK ,M)×H1(GK ,M
∨)

∪ // H2(GK , µp)

H1(GK/N,M)×H1(GK/N,M
∨)

Inf

OO

Inf

OO

∪ // H2(GK/N, µp)

Inf

OO

Therefore, we can reduce to studying the cup product

(1.3) ∪ : H1(GK/N,M)×H1(GK/N,M
∨) −→ H2(GK/N, µp).

Let L = KN
sep so that Gal(L/K) = GK/N . Thus, L/K is a finite Galois

extension of degree dividing p2(p − 1)2. Note that the action of GK on
M∨ = Hom(M,µp) is given by (s ·φ)(m) = s ·φ(s−1 ·m) for all φ ∈M∨, all
s ∈ GK and all m ∈M . Hence, µp is fixed by all elements in HM ∩HM∨ , so
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µp ⊂ L∗. We have the following commutative diagram:

H2(GK , µp)
� � // H2(GK ,K

∗
sep)

∼= // Br(K)

H2(Gal(L/K), µp)

Inf

OO

// H2(Gal(L/K), L∗)
∼= // Br(L/K)

?�

OO

where Br(L/K) denotes the subgroup of Br(K) consisting of the classes of
central simple algebras over K which are split by L/K. The isomorphism
H2(Gal(L/K), L∗)→ Br(L/K) is induced by the map sending a 2-cocycle
ϑ to the central simple algebra Aϑ as defined below.

Definition 1.5. Let L/K be a finite Galois extension and let ϑ be a
2-cocycle representing an element of H2(Gal(L/K), L∗). The K-algebra
Aϑ is defined to be the left L-vector space with basis {es}s∈Gal(L/K) and
multiplication given by

esx = s(x)es ∀ s ∈ Gal(L/K), ∀ x ∈ L
eset = ϑ(s, t)est ∀ s, t ∈ Gal(L/K).

Aϑ is a central simple algebra of dimension [L : K]2 over K. See, for
example, [6], where this is Theorem 29.12.

From now on, fix representative cocycles f0, g0 for f and g respectively.

Definition 1.6. Let ϕ = f ∪ g. The formula given in the remark at the
end of §2.4 of [5] tells us that a representative 2-cocycle for ϕ is

ϕ0 : Gal(L/K)×Gal(L/K)→ µp

given by

(1.4) ϕ0(s, t) = (s · g0(t))(f0(s)).

Lemma 1.7. If Nf = Ng and p = 2, then f ∪g corresponds to a quaternion
algebra over K, generated by two elements x and y such that K(x) ∼= K

Nf
sep,

x2 ∈ K∗, y2 = −1 and yx = −xy. Consequently, f ∪ g = 0 if and only if
−1 ∈ N

K
Nf
sep /K

(K
Nf
sep).

Proof. This follows from the explicit construction of a central simple algebra
given above. By [2], Theorem 8.14, the quaternion algebra Aϕ0 is a division
ring if and only if y2 /∈ NK(x)/K(K(x)). �

Having dealt with the case Nf = Ng for all p, henceforth we assume that
Nf 6= Ng.

Definition 1.8. Define ker(f0) = {s ∈ GK | f0(s) = 0}. Since f0 is a
1-cocycle, ker(f0) is a subgroup of GK . Likewise, we define the subgroup
ker(g0) of GK by ker(g0) = {s ∈ GK | g0(s) = 0}.
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The Galois correspondence gives the following diagram of subfields.

L = KN
sep

K
Nf
sep K

Ng
sep

K
ker(f0)
sep K

ker(g0)
sep

KHM
sep K

HM∨
sep

K

Below, we state the main result which will be proved in this paper.

Theorem 1.9. Write Kker(f0)
sep = K(α) with TrK(α)/K(α) = 0. Similarly,

write Kker(g0)
sep = K(β) with TrK(β)/K(β) = 0. Let σ ∈ GK be such that σ

acts trivially on the normal closure of K(β, µp) and σ(α) 6= α. Likewise,
let ρ ∈ GK act trivially on the normal closure of K(α, µp) but non-trivially
on β. Let ζ = (g0(ρ))(f0(σ)) ∈ µp. Let hij =

∑p−1
`=0 ζ

j`σ`(αi). Write
ρj(β) =

∑p−1
i=0 mijβ

i for mij ∈ K
HM∨
sep . Let D be the left K(β)-vector space

with basis {zj}0≤j≤p−1, where z satisfies the same minimal polynomial over
K as α, with multiplication

zβ =

p−1∑
i,j=0

cijβ
izj

where the matrix (cij)i,j = (h1jmij)i,j(hij)
−1
i,j . Then D is a central simple

algebra of dimension p2 over K which gives the class of f ∪ g in Br(K).

Corollary 1.10. Suppose that p = 2. Then f ∪ g is represented by a
quaternion algebra over K, generated by two elements x and y such that
K(x) ∼= K

ker(g0)
sep and K(y) ∼= K

ker(f0)
sep , with x2, y2 ∈ K∗ and yx = −xy.

Consequently, f ∪g is trivial if and only if x2 ∈ NK(y)/K(K(y)), if and only
if y2 ∈ NK(x)/K(K(x)).

Proof. This follows immediately from Theorem 1.9. The quaternion alge-
bra is a division ring if and only if x2 /∈ NK(y)/K(K(y)), if and only if
y2 /∈ NK(x)/K(K(x)) by [2], Theorem 8.14. �

The algebra Aϕ0 , constructed as in Definition 1.5, is a representative
in Br(K) of f ∪ g. The dimension of Aϕ0 over K can be as large as
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p4(p − 1)4. In Section 2, we find a minimal left ideal S of Aϕ0 . The
Artin-Wedderburn Theorem shows that EndAϕ0

(S)opp represents the same
class in Br(K) as Aϕ0 . Moreover, the dimension of EndAϕ0

(S)opp over K
is just p2. In Section 3, we show that Kker(f0)

sep and K
ker(g0)
sep are maximal

commutative subalgebras of EndAϕ0
(S)opp, and that EndAϕ0

(S)opp is gen-
erated by Kker(g0)

sep together with any element d ∈ EndAϕ0
(S)opp \Kker(g0)

sep .
In Section 4, we find such an element d ∈ EndAϕ0

(S)opp \ Kker(g0)
sep and

in Section 5 we calculate its minimal polynomial over K and deduce that
K(d) ∼= K

ker(f0)
sep . In Section 6, we describe the multiplicative structure of

the algebra EndAϕ0
(S)opp in terms of structure constants. In Section 7, we

apply Theorem 1.9 to a specific example.

2. Applying the Artin-Wedderburn theorem

Recall the construction given in Definition 1.5 of the algebra Aϕ0 from
the 2-cocycle ϕ0 representing f ∪ g. The dimension of Aϕ0 over K is equal
to [L : K]2 and is therefore at most p4(p − 1)4. The Artin-Wedderburn
Theorem tells us that Aϕ0

∼= Mn(D) for some n ∈ N and some division
algebra D. It is the division algebra D which gives the class of Aϕ0 in
Br(K). We will show that if D 6= K then the dimension of D over K is p2
and we will describe D in terms of an endomorphism ring.

Definition 2.1. Let A be a central simple algebra over a field K. Write
A ∼=Mn(D) for n ∈ N and a division algebra D.
(1) The period of A is the order of the class of A in Br(K).
(2) The quantity

√
dimK(D) is called the index of A. The index of A is

known to be equal to the greatest common divisor of the degrees of
finite separable field extensions which split A. See Proposition 4.5.8
of [1], for example.

Lemma 2.2. Kker(f0)
sep /K and Kker(g0)

sep /K are degree p subextensions of L
which split Aϕ0.

Proof. Recall that ker(f0) is a subgroup of GK because f0 is a 1-cocycle.
Also, f0 defines an injection from the left cosets of ker(f0) in GK toM . This
injection is also a surjection because the restriction of f to HM surjects onto
M . Thus, Kker(f0)

sep /K is a degree p extension. Since N ⊂ Nf ⊂ ker(f0), we
have Kker(f0)

sep ⊂ L. The following diagram commutes.

(2.1) H2(Gal(L/K), L∗)

Res
��

∼= // Br(L/K)

��

H2(Gal(L/K
ker(f0)
sep ), L∗)

∼= // Br
(
L/K

ker(f0)
sep

)



8 Rachel NEWTON

where the map Br(L/K)→ Br
(
L/K

ker(f0)
sep

)
is induced by

A 7→ A⊗K Kker(f0)
sep .

Recall that Gal(L/K
ker(f0)
sep ) = ker(f0)/N . The restriction of f to ker(f0)/N

is trivial in H1(ker(f0)/N,M), and the cup product commutes with the
restriction homomorphism. So we have

Res(f ∪ g) = Res(f) ∪ Res(g) = 0 ∪ Res(g) = 0.

Therefore, diagram (2.1) shows that Aϕ0 ⊗K K
ker(f0)
sep represents the trivial

class in Br(L/K
ker(f0)
sep ). In other words, Kker(f0)

sep splits Aϕ0 . The argument
for Kker(g0)

sep is analogous. �

Remark 2.3. If f0 is modified by a coboundary, the subgroup ker(f0) is
conjugated by an element of GK . Thus, the embedding of Kker(f0)

sep in L is
changed. But the K-isomorphism class of the field K

ker(f0)
sep only depends

on f . Therefore, the fact that Kker(f0)
sep splits Aϕ0 only depends on f and

not on the choice of cocycle representative f0.

Corollary 2.4. Suppose that the class of Aϕ0 in Br(K) is non-trivial. Then
Aϕ0 is isomorphic to Mn(D), where D is a central division algebra over K
of dimension p2 and n = p−1[L : K]. Thus, the index of Aϕ0 is equal to
its period, p. Moreover, Kker(f0)

sep and K
ker(g0)
sep embed into D as maximal

commutative subalgebras.

Proof. Recall that the index of Aϕ0 is the greatest common divisor of the
degrees of finite separable extensions which split Aϕ0 . Lemma 2.2 states
that Kker(f0)

sep /K is a degree p extension which splits Aϕ0 . Since p is prime,
the index of Aϕ0 is p. Consequently, Aϕ0

∼= Mn(D), where D is a central
division algebra of dimension p2 over K, and D has a maximal commutative
subalgebra isomorphic to Kker(f0)

sep . Likewise, Kker(g0)
sep also embeds into D as

a maximal commutative subalgebra. Moreover,

[L : K]2 = dimK(Aϕ0) = dimK(Mn(D)) = n2[D : K] = n2p2.

Therefore, n = p−1[L : K]. �

We know that Aϕ0 is isomorphic to Mn(D) for a division algebra D. We
want to compute D explicitly and relate its generators to the splitting fields
K

ker(f0)
sep and Kker(g0)

sep . The proof of the Artin-Wedderburn Theorem shows
that D ∼= EndAϕ0

(S)opp for any minimal left ideal S. The same proof also
shows that a left ideal I of Aϕ0 is minimal if and only if

dimK(I) = n[D : K].
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Definition 2.5. Let θ =
∑

t∈Gal(L/K
ker(g0)
sep )

et and let S be the left ideal of
Aϕ0 generated by θ.

Proposition 2.6. Let R be a set of left coset representatives for the sub-
group Gal(L/K

ker(g0)
sep ) in Gal(L/K). Then the elements {esθ}s∈R form a

basis for S as a left L-vector space. Consequently, the dimension of S as a
K-vector space satisfies the following equality.

dimK(S) = [Kker(g0)
sep : K][L : K] = p[L : K].

Proof. The elements {esθ}s∈Gal(L/K) span the left L-vector space S = Aϕ0θ.
For any s ∈ Gal(L/K),

esθ =
∑

t∈Gal(L/K
ker(g0)
sep )

eset =
∑

t∈Gal(L/K
ker(g0)
sep )

ϕ0(s, t)est =
∑

t∈Gal(L/K
ker(g0)
sep )

est

where the last equality holds because ϕ0(s, t) = 1 for all t ∈ Gal(L/K
ker(g0)
sep ),

by definition of ϕ0. In particular, if s ∈ Gal(L/K
ker(g0)
sep ), then esθ = θ. So,

since R is a set of left coset representatives forGal(L/K
ker(g0)
sep ) inGal(L/K),

the elements {esθ}s∈R span the left L-vector space S. In fact, these ele-
ments form a left L-basis for S. To show linear independence, suppose
that ∑

s∈R
xsesθ = 0

for some coefficients xs ∈ L. Then
0 =

∑
s∈R

xsesθ =
∑
s∈R

xs
∑

t∈Gal(L/K
ker(g0)
sep )

est =
∑

r∈Gal(L/K)

xrer

where the coefficients xr for r ∈ Gal(L/K) are given by xr = xs where s ∈ R
is the coset representative for the left coset of Gal(L/K

ker(g0)
sep ) in Gal(L/K)

containing r. But the elements {er}r∈Gal(L/K) form a left L-basis for Aϕ0 .
Therefore, xs = 0 for all s ∈ R. Hence, the elements {esθ}s∈R form a left
L-basis for S, with #R distinct elements. The cardinality of R satisfies

#R =
#Gal(L/K)

#Gal(L/K
ker(g0)
sep )

= [Kker(g0)
sep : K] = p,

whereby the dimension of S as a K-vector space is p[L : K], as required. �

Corollary 2.7. If the class of Aϕ0 in Br(K) is non-trivial, then S is a
minimal left ideal of Aϕ0.

Proof. The proof of the Artin-Wedderburn Theorem shows that a left ideal
in Aϕ0 is minimal if and only if its dimension over K is equal to n[D : K],
where Aϕ0

∼=Mn(D). By Corollary 2.4, [D : K] = p2 and therefore

[L : K]2 = dimK(Aϕ0) = dimK(Mn(D)) = n2[D : K] = n2p2.
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Thus, a left ideal in Aϕ0 is minimal if and only if its dimension over K is
equal to np2 = p[L : K]. �

Corollary 2.8. If D 6= K, then D ∼= EndAϕ0
(S)opp.

Proof. By definition, the class of Aϕ0 in Br(K) is trivial if and only if
D = K. The proof of the Artin-Wedderburn Theorem shows that

D ∼= EndAϕ0
(I)opp

for any minimal left ideal I of Aϕ0 . Therefore, the result follows from
Corollary 2.7. �

Remark 2.9. If the class of Aϕ0 in Br(K) is trivial, then S is no longer a
minimal left ideal of Aϕ0 . But EndAϕ0

(S)opp is still a central simple algebra
over K of dimension p2 with the same class in Br(K) as Aϕ0 . We will prove
that EndAϕ0

(S)opp is the algebra D described in Theorem 1.9.

3. Computing the endomorphism ring

We have seen that EndAϕ0
(S)opp gives the class of Aϕ0 in Br(K). We

want to give an explicit description of EndAϕ0
(S)opp in terms of genera-

tors and relations. The first step will be to find a maximal commutative
subalgebra of dimension p inside EndAϕ0

(S)opp.
Recall that S = Aϕ0θ, where θ =

∑
t∈Gal(L/K

ker(g0)
sep )

et. Let R be a set of

left coset representatives for Gal(L/K
ker(g0)
sep ) in Gal(L/K) and let

B = {xes | x ∈ L, s ∈ R}.
Proposition 2.6 tells us that S = Bθ. We would like B to be a subalgebra
of Aϕ0 , so we want to choose R so that it is a subgroup of Gal(L/K).

Lemma 3.1. Let ρ ∈ HM∨/N be such that the image of ρ in HM∨/Ng gen-
erates HM∨/Ng. Then R = {ρi}0≤i≤p−1 is a set of left coset representatives
for Gal(L/K

ker(g0)
sep ) in Gal(L/K).

Proof. Recall that Gal(L/K) = GK/N and Gal(L/K
ker(g0)
sep ) = ker(g0)/N .

We have #R = [K
ker(g0)
sep : K]. By Lemma 2.2, [Kker(g0)

sep : K] = p. Thus, it
is enough to show that ρr ∈ ker(g0)/N if and only if p divides r. We have

Ng/N = (HM∨/N) ∩ (ker(g0)/N).

By construction, ρ ∈ HM∨/N . Hence, ρr ∈ ker(g0)/N if and only if
ρr ∈ Ng/N . But the image of ρ generates HM∨/Ng and [HM∨ : Ng] = p, so
ρr ∈ Ng/N if and only if p divides r. �

From now on, we fix R = {ρi}0≤i≤p−1, so B is a subalgebra of Aϕ0 . We
want to compute EndAϕ0

(S)opp. We know that S is a principal left ideal
generated by θ, so any χ ∈ EndAϕ0

(S) is completely determined by χ(θ).



Realising the cup product of local Tate duality 11

Since χ(θ) ∈ S = Bθ, we have χ(θ) = bθ for some b ∈ B. The question is,
which b can occur? In other words, for which b ∈ B does χ : θ 7→ bθ extend
to a well-defined element of EndAϕ0

(S)? The extension of χ to the whole
of S is given by

χ(cθ) = cχ(θ) ∀ c ∈ B.
This is well defined because it follows from Proposition 2.6 that any el-
ement of S can be written as cθ for a unique c ∈ B. But it may not
be an Aϕ0-endomorphism. We see that χ gives a well-defined element of
EndAϕ0

(S) if and only if

χ(aθ) = aχ(θ) = abθ ∀ a ∈ Aϕ0 .

The point is that, when we allow multiplication by the whole of Aϕ0

(rather than just the subalgebra B), it is possible to have a1θ = a2θ with
a1, a2 ∈ Aϕ0 and a1 6= a2. For χ to give a well-defined element of EndAϕ0

(S),
we would also need a1bθ = a2bθ in this case. Equivalently, χ extends to a
well-defined element of EndAϕ0

(S) if and only if

abθ = 0 for all a ∈ Aϕ0 such that aθ = 0.

Clearly, it suffices for b to commute with θ =
∑

t∈Gal(L/K
ker(g0)
sep )

et. Hence,

it suffices for b to commute with et for every t ∈ Gal(L/K
ker(g0)
sep ). The

multiplication on EndAϕ0
(S) is the opposite of the multiplication on B

inherited from Aϕ0 . Therefore, we can view EndAϕ0
(S)opp as a subalgebra

of B. We will make this identification from now on. Thus, we have

(3.1) B ⊃ EndAϕ0
(S)opp ⊃ {b ∈ B

∣∣ etb = bet ∀t ∈ Gal(L/Kker(g0)
sep )}.

Remark 3.2. In fact, a careful analysis of the left annihilator of θ may be
used to show that the rightmost inclusion is an equality. We omit the details
of this rather involved calculation and instead demonstrate the equality
simply by finding enough elements in the right-hand side and comparing
dimensions.

The rightmost inclusion in (3.1) leads us to ask the following question.
Which elements of B commute with et for every t ∈ Gal(L/K

ker(g0)
sep )?

Lemma 3.3. The field K
ker(g0)
sep is a subalgebra of B and every element

of Kker(g0)
sep commutes with et for every t ∈ Gal(L/K

ker(g0)
sep ). Therefore,

K
ker(g0)
sep is a maximal commutative subalgebra of EndAϕ0

(S)opp.
Proof. Recall that

B = {xeρi | x ∈ L, 0 ≤ i ≤ p− 1},
where ρ ∈ HM∨/N is such that its image generates HM∨/Ng. Recall the
definition of the multiplication in Aϕ0 . We have

esx = s(x)es ∀s ∈ Gal(L/K), ∀x ∈ L.
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Thus, x ∈ L commutes with es if and only if s(x) = x. By (3.1), we conclude
that Kker(g0)

sep ⊂ EndAϕ0
(S)opp ⊂ B. Now EndAϕ0

(S)opp is a central simple
algebra of dimension p2 over K and [K

ker(g0)
sep : K] = p. Therefore, Kker(g0)

sep

is a maximal commutative subalgebra of EndAϕ0
(S)opp. �

Lemma 3.4. EndAϕ0
(S)opp is generated as a K-algebra by the elements of

K
ker(g0)
sep together with any element d ∈ EndAϕ0

(S)opp \Kker(g0)
sep .

Proof. We know that the algebra EndAϕ0
(S)opp has dimension p2 over K.

Let d ∈ EndAϕ0
(S)opp\Kker(g0)

sep and let T be the subalgebra of EndAϕ0
(S)opp

generated over K by Kker(g0)
sep and d. Then,

K ⊂ Kker(g0)
sep ( T ⊂ EndAϕ0

(S)opp.

First, suppose that EndAϕ0
(S)opp is a division ring. Then T is also a division

ring and we can view EndAϕ0
(S)opp as a left T -vector space. We have

p2 = dimK EndAϕ0
(S)opp = (dimT EndAϕ0

(S)opp)(dimK T ).

But dimK T > [K
ker(g0)
sep : K] = p, whereby dimK T = p2 and therefore

EndAϕ0
(S)opp = T.

Now suppose that EndAϕ0
(S)opp is not a division ring. Since it is a central

simple algebra of dimension p2 over K, the Artin-Wedderburn Theorem
tells us that EndAϕ0

(S)opp ∼= Mp(K). In other words, EndAϕ0
(S)opp is

isomorphic to EndK(V ), where V is a K-vector space of dimension p. Note
that V is a faithful T -module. Moreover,

dim
K

ker(g0)
sep

V =
dimK V

[K
ker(g0)
sep : K]

= 1.

Therefore, V is a simple Kker(g0)
sep -module, and hence a simple T -module.

So T has a non-zero faithful simple module, whereby the Jacobson radical
of T is zero. Therefore, T is a semisimple K-algebra, since T is finite-
dimensional over K. Now the Artin-Wedderburn Theorem tells us that
T ∼=Mm(E) for some division ring E overK and somem ∈ N. Furthermore,
any nonzero simple module for Mm(E) is isomorphic to the left ideal I of
Mm(E) consisting of matrices with all entries zero except in the first column.
In particular,

p = dimK V = dimK I = m[E : K].

If m = 1 and [E : K] = p then T ∼= E and we get a contradiction because
K

ker(g0)
sep is a proper subalgebra of T of dimension p over K. Therefore, we

must have m = p and E = K, whereby T ∼=Mp(K). So T = EndAϕ0
(S)opp,

as required. �
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Proposition 3.5. EndAϕ0
(S)opp contains a maximal commutative subalge-

bra isomorphic to Kker(f0)
sep .

Proof. Let T = Aϕ0J where J =
∑

t∈Gal(L/K
ker(f0)
sep )

et. A similar argument
to that of Proposition 2.6 shows that dimK(T ) = p[L : K] = dimK(S). The
algebra Aϕ0 is a central simple algebra, so any two Aϕ0-modules with the
same finite dimension are isomorphic. Hence, T is isomorphic to S as an
Aϕ0-module. Write T = {xeσiJ | x ∈ L, 0 ≤ i ≤ p−1}, where σ ∈ HM/N is
such that its image generates HM/Nf . Replacing S by T and imitating the
proof of Lemma 3.3, we find Kker(f0)

sep as a maximal commutative subalgebra
of EndAϕ0

(T )opp. Moreover, EndAϕ0
(T )opp ∼= EndAϕ0

(S)opp. �

Remark 3.6. In Lemma 3.3, we found Kker(g0)
sep as a maximal commutative

subalgebra of EndAϕ0
(S)opp. Proposition 3.5 tells us that EndAϕ0

(S)opp

contains a maximal commutative subalgebra isomorphic toKker(f0)
sep . If these

two subalgebras are distinct, then together they generate EndAϕ0
(S)opp. In

this case, in Lemma 3.4 we could choose d ∈ EndAϕ0
(S)opp \Kker(g0)

sep such
that K(d) ∼= K

ker(f0)
sep . In fact, in the next two sections we show that we can

always choose d ∈ EndAϕ0
(S)opp \Kker(g0)

sep such that K(d) ∼= K
ker(f0)
sep .

4. Finding generators

Lemma 3.4 states that EndAϕ0
(S)opp is generated as a K-algebra by the

elements of Kker(g0)
sep together with any element d ∈ EndAϕ0

(S)opp \Kker(g0)
sep .

Recall that
B = {xeρi | x ∈ L, 0 ≤ i ≤ p− 1} ⊂ Aϕ0 ,

where ρ ∈ HM∨/N is such that its image generates HM∨/Ng. In light of
(3.1), we seek an element d ∈ B \Kker(g0)

sep such that d commutes with et for
all t ∈ Gal(L/K

ker(g0)
sep ). We can write d in the following way.

(4.1) d =

p−1∑
i=0

aieρi for some ai ∈ L.

We want to find suitable coefficients ai. We will determine the precise
conditions on the ai which must be satisfied if d is to commute with et for
all t ∈ Gal(L/K

ker(g0)
sep ).

Lemma 4.1. We have NfNg/N = HMHM∨/N as subgroups of GK/N , and
therefore

(4.2)
HM ∩Ng

N
∼=
HM

Nf
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and

(4.3)
HM∨ ∩Nf

N
∼=
HM∨

Ng
.

Proof. Clearly, NfNg/N ≤ HMHM∨/N , so it remains to show the reverse
inclusion. We will show that HM/N ≤ NfNg/N ; the argument for HM∨/N
is identical. Recall that GK/Nf

∼= HM/Nf o GK/HM , where HM/Nf has
order p and GK/HM has order coprime to p. Thus, any non-trivial normal
subgroup of GK/Nf contains HM/Nf . Since Ng is a normal subgroup of
GK , the subgroup NfNg/Nf is normal in GK/Nf . Since we are assuming
that Nf 6= Ng, Lemma 1.4 tells us that NfNg/Nf is non-trivial. Therefore,
HM/Nf ≤ NfNg/Nf and hence HM/N ≤ NfNg/N , as required.

To prove the existence of the isomorphism (4.2), we observe that

(4.4)
HM ∩Ng

N
∼=
Nf (HM ∩Ng)

Nf
=

(
HM

Nf

)
∩
(
NfNg

Nf

)
where the final intersection takes place in GK/Nf . Above, we showed that
NfNg/N = HMHM∨/N . Consequently, NfNg/Nf = HMHM∨/Nf . Thus,
the isomorphism (4.2) follows from (4.4). The argument regarding the iso-
morphism (4.3) is identical. �

Lemma 4.2. We have

Gal(L/Kker(g0)
sep ) =

ker(g0)

N
∼=
(
HM ∩Ng

N

)
o
(
ker(g0) ∩ ker(f0)

N

)
.

Proof. Recall that L = KN
sep, so Gal(L/K

ker(g0)
sep ) = ker(g0)/N . By defini-

tion, N = Nf ∩Ng and Nf = HM ∩ ker(f0). Therefore,(
HM ∩Ng

N

)
∩
(
ker(g0) ∩ ker(f0)

N

)
= 0.

It remains to show that(HM ∩Ng

N

)(ker(g0) ∩ ker(f0)

N

)
=

ker(g0)

N
.

Lemma 4.1 shows that
HM ∩Ng

N
∼=
HM

Nf
.

Let s ∈ ker(g0). The cocycle f0 gives an isomorphism HM/Nf → M . So
there exists some h ∈ HM∩Ng such that f0(h) = f0(s). But then s = hh−1s
and h−1s ∈ ker(g0) ∩ ker(f0). �

We require that d = esde
−1
s for all s ∈ Gal(L/K

ker(g0)
sep ). Writing

d =

p−1∑
i=0

aieρi
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with ai ∈ L, this requirement gives
p−1∑
i=0

aieρi =

p−1∑
i=0

s(ai)eseρie
−1
s .

for all s ∈ Gal(L/K
ker(g0)
sep ). Recall that Gal(L/K

ker(g0)
sep ) = ker(g0)/N .

Lemma 4.2 allows us to look separately at conjugation by elements in
(HM ∩Ng)/N and (ker(f0) ∩ ker(g0))/N . First, we look at conjugation
by et for t ∈ (ker(f0) ∩ ker(g0))/N .

Lemma 4.3. For all t ∈ (ker(f0) ∩ ker(g0))/N and all i ∈ Z, we have

eteρie
−1
t = etρit−1 .

Proof. If either s or t is in (ker(f0) ∩ ker(g0))/N , then (1.4) gives

ϕ0(s, t) = (s · g0(t))(f0(s)) = 1

and hence eset = est. Thus, for all t ∈ (ker(f0) ∩ ker(g0))/N and for all
i ∈ Z we have e−1t = et−1 and eteρie

−1
t = eteρiet−1 = etρit−1 . �

Lemma 4.1 allows us to assume that ρ ∈ (HM∨ ∩Nf )/N , which we will
do from now on. Lemma 4.1 also shows that (HM ∩ Ng)/N is isomorphic
to HM/Nf . Thus, (HM ∩ Ng)/N is a cyclic group of order p. Let σ be a
generator of (HM ∩Ng)/N . In particular, σ and ρ act trivially on both M
and M∨. Now we consider conjugation by eσ.

Lemma 4.4. For all i ∈ Z, we have eσeρie−1σ = ζieρi , where ζ = g(ρ)(f(σ))
is a primitive pth root of unity in Ksep.

Proof. Recall that σ ∈ (HM ∩Ng)/N , so g0(σ) = 0. Hence, (1.4) gives

ϕ0(t, σ
j) = 1 ∀t ∈ GK/N, ∀j ∈ Z.

In particular, e−1σ = eσ−1 and for all i ∈ Z we have

eσeρie
−1
σ = eσeρieσ−1 = eσϕ0(ρ

i, σ−1)eρiσ−1 = eσeρiσ−1 = ϕ0(σ, ρ
iσ−1)eρi .

The last line holds because σ and ρ commute in GK/N , since their com-
mutator is in the intersection of the normal subgroups (Ng ∩ HM)/N and
(Nf ∩HM∨)/N , and this intersection is trivial. Now,

ϕ0(σ, ρ
iσ−1) = (σ · g0(ρiσ−1))(f0(σ))

= (σ · g0(ρi))(f0(σ)) since g0(σ−1) = 0
= g(ρi)(f(σ)) since σ acts trivially on M∨
= (g(ρ)(f(σ)))i since g gives a homomorphism

on HM∨ .

Therefore, it suffices to show that ζ = g(ρ)(f(σ)) is a primitive pth root
of unity. We know that f induces an isomorphism HM/Nf −̃→M and f(σ)
generates M as an abelian group. Likewise, g induces an isomorphism
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HM∨/Ng−̃→M∨ and g(ρ) generatesM∨ = Hom(M,µp) as an abelian group.
Thus, ζ = g(ρ)(f(σ)) generates µp as an abelian group. �

Let ζ = g(ρ)(f(σ)). Combining the results of Lemmas 4.3 and 4.4, we
see that d =

∑p−1
i=0 aieρi commutes with et for all t ∈ Gal(L/K

ker(g0)
sep ) if and

only if
• σ(ai) = ζ−iai ∀ i ∈ Z with 0 ≤ i ≤ p− 1, and
• if t ∈ (ker(f0) ∩ ker(g0))/N is such that tρt−1 = ρ`, then

t(ai) = a`i ∀ i ∈ Z with 0 ≤ i ≤ p− 1.

Proposition 4.5. Let α ∈ Ksep be such that Kker(f0)
sep = K(α). For each

i ∈ Z with 0 ≤ i ≤ p − 1, let ai =
∑p−1

j=0 ζ
ijσj(α). Then d =

∑p−1
i=0 aieρi

commutes with et for all t ∈ Gal(L/K
ker(g0)
sep ).

Proof. In order to show that σ(ai) = ζ−iai, it suffices to show that σ fixes
ζ ∈ µp. Recall that σ acts trivially on both M and M∨. By definition,
M∨ = Hom(M,µp) and therefore the action of σ on µp is trivial. Now, let
t ∈ (ker(f0) ∩ ker(g0))/N and suppose that tρt−1 = ρ`. It suffices to show
that t(ai) = a`i. We have

t(ai) =

p−1∑
j=0

t(ζ)ijtσj(α) =

p−1∑
j=0

t(ζ)ij(tσt−1)jt(α)

=

p−1∑
j=0

t(ζ)ij(tσt−1)j(α)

since t fixes α, because α ∈ Kker(f0)
sep . Suppose that t acts as multiplication by

k on M . Then t acts as multiplication by k` on µp. We have isomorphisms
of GK-modules HM/Nf

∼= M and HM∨/Ng
∼= M∨ induced by f and g

respectively. Hence,

t(ai) =

p−1∑
j=0

t(ζ)ij(tσt−1)j(α) =

p−1∑
j=0

ζijk`σjk(α)

=

p−1∑
j=0

t(ζ)ij`σj(α) = a`i

as required. �

So we have found an element d =
∑p−1

i=0 aieρi ∈ B such that d com-
mutes with et for all t ∈ Gal(L/K

ker(g0)
sep ). By (3.1), this means that

d ∈ EndAϕ0
(S)opp. We want to show that the K-algebra EndAϕ0

(S)opp

is generated by d together with the elements of Kker(g0)
sep . By Lemma 3.4, it
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only remains to check that d /∈ Kker(g0)
sep . It suffices to show that some ai

with i ≥ 1 is nonzero.

Proposition 4.6. Write Kker(f0)
sep = K(α) with Tr

K
ker(f0)
sep /K

(α) = 0. For

each i ∈ Z with 0 ≤ i ≤ p − 1, let ai =
∑p−1

j=0 ζ
ijσj(α). Then there exists

i ≥ 1 with ai 6= 0. Consequently, d =
∑p−1

i=0 aieρi is not in L.

Proof. Let V denote the Vandermonde matrix (ζij)0≤i,j≤p−1. Then ai is
the ith row of V (α, σ(α), . . . , σp−1(α))T . Also,

det(V ) =
∏

0≤i<j≤p−1
(ζj − ζi) 6= 0.

Thus, V (α, σ(α), . . . , σp−1(α))T is nonzero, so it has at least one nonzero
row. In other words, at least one of the ai’s is nonzero. But

a0 = α+ σ(α) + · · ·+ σp−1(α) = Tr
K

ker(f0)
sep /K

(α) = 0.

Hence, there exists i ≥ 1 with ai 6= 0, as required. �

Remark 4.7. Since we assumed from the start that the characteristic of
K is not p, we can subtract p−1Tr

K
ker(f0)
sep /K

(α) from any generator α of

K
ker(f0)
sep /K to ensure that Tr

K
ker(f0)
sep /K

(α) = 0.

Corollary 4.8. EndAϕ0
(S)opp is generated as a K-algebra by the elements

of Kker(g0)
sep together with the element d described in Proposition 4.6.

Proof. Lemma 3.4 states that EndAϕ0
(S)opp is generated as a K-algebra by

the elements of Kker(g0)
sep together with any d ∈ EndAϕ0

(S)opp \Kker(g0)
sep . By

(3.1) and Proposition 4.5 the d of Proposition 4.6 satisfies d ∈ EndAϕ0
(S)opp.

By Proposition 4.6, this d also satisfies d /∈ Kker(g0)
sep . �

5. A minimal polynomial

Our next aim is to show that the K-subalgebra of EndAϕ0
(S)opp gener-

ated by d is isomorphic to K(α) = K
ker(f0)
sep . We will do this by showing

that d and pα satisfy the same minimal polynomial over K. Recall that σ
is a generator for (HM ∩ Ng)/N and ρ is a generator for (HM∨ ∩ Nf )/N .
Recall that α ∈ Ksep is such that Kker(f0)

sep = K(α) and Tr
K

ker(f0)
sep /K

(α) = 0.
Let ζ = ϕ0(σ, ρ) = g(ρ)(f(σ)) and for i ∈ Z with 0 ≤ i ≤ p − 1 let
ai =

∑p−1
j=0 ζ

ijσj(α). We have d =
∑p−1

i=0 aieρi . Similarly, let β ∈ Ksep

be such that Kker(g0)
sep = K(β) and Tr

K
ker(g0)
sep /K

(β) = 0. For i ∈ Z with

0 ≤ i ≤ p − 1, let bi =
∑p−1

j=0 ζ
ijρj(β). In the proof of Proposition 4.6,
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we showed that ai 6= 0 for some i ≥ 1. The same argument shows that
bm 6= 0 for some m ≥ 1. Choose such a bm and denote it by B. We would
like to define a polynomial with roots BkdB−k for 0 ≤ k ≤ p − 1. We
will show that BkdB−k commutes with B`dB−` for every k, ` ∈ Z, so that
P (X) =

∏p−1
k=0 (X − B

kdB−k) is the desired polynomial. First, we prove
two auxiliary lemmas.

Lemma 5.1. For all k ∈ Z, we have

BkdB−k =
p−1∑
i=0

ζikmaieρi =

p−1∑
i=0

σ−km(ai)eρi ,

where B = bm =
∑p−1

j=0 ζ
mjρj(β) 6= 0.

Proof. We have

BkdB−k = Bk
p−1∑
i=0

aieρiB−k =
p−1∑
i=0

aiBkeρiB−k =
p−1∑
i=0

aiBkρi(B−k)eρi

=

p−1∑
i=0

aiBkζikmB−keρi =
p−1∑
i=0

ζikmaieρi =

p−1∑
i=0

σ−km(ai)eρi .

�

Lemma 5.2. For all i, j, k ∈ Z, we have eρiσk(aj)eρj = σk(aj)eρi+j .

Proof. Since ρ ∈ (HM∨ ∩ Nf )/N , clearly ρ fixes ζ and α. Therefore, ρ
fixes σk(aj) =

∑p−1
`=0 ζ

j`σ`+k(α). Moreover, f(ρ) = 0 and so (1.4) gives
ϕ0(ρ

i, ρj) = 1 for all i, j ∈ Z. Hence,

eρiσ
k(aj)eρj = ρiσk(aj)eρieρj = σk(aj)ϕ0(ρ

i, ρj)eρi+j = σk(aj)eρi+j .

�

Corollary 5.3. For all k, ` ∈ Z, BkdB−k commutes with B`dB−`.

Proof. By Lemma 5.1, we have

BkdB−kB`dB−` =
∑

0≤i,j≤p−1
σ−km(ai)eρiσ

−`m(aj)eρj .

By Lemma 5.2, this is equal to∑
0≤i,j≤p−1

σ−km(ai)σ
−`m(aj)eρi+j = B`dB−`BkdB−k.

�

Proposition 5.4. Let P (X) =
∏p−1
k=0 (X − B

kdB−k). Then the coefficients
of P lie in K.
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Since K is the centre of Aϕ0 , it suffices to show that the coefficients of
P commute with every element of Aϕ0 . As a K-algebra, Aϕ0 is generated
by the elements of L and {es}s∈Gal(L/K). We prove Proposition 5.4 in three
steps.

Lemma 5.5. The coefficients of P commute with x for every x ∈ L.

Proof. We chose ρ to be a generator of (HM∨ ∩ Nf )/N . By Lemma 4.1,
(HM∨ ∩Nf )/N is isomorphic to HM∨/Ng. Now HM∨/Ng is isomorphic to
M∨ and therefore has cardinality p. Hence, [L : L〈ρ〉] = p and consequently
L = L〈ρ〉(x) for any x ∈ L \ L〈ρ〉. Since B = bm for some m ∈ Z with
1 ≤ m ≤ p− 1, we have ρ(B) = ζ−mB 6= B. Therefore, L = L〈ρ〉(B). Ob-
serve that conjugation by B permutes the roots of P . For any x ∈ L〈ρ〉, we
have xdx−1 = d, since ρi(x) = x for such x. Hence, conjugation by x ∈ L〈ρ〉
fixes the roots of P . Therefore, conjugation by any element of L fixes the
coefficients of P . �

Lemma 5.6. The coefficients of P commute with et ∀t ∈ Gal(L/K
ker(g0)
sep ).

Proof. By construction, d commutes with et for all t ∈ Gal(L/K
ker(g0)
sep ).

Suppose t ∈ Gal(L/K
ker(g0)
sep ) is such that t acts as multiplication by k on

M and t acts as multiplication by ` on M∨. Then tσt−1 = σk, because f
induces an isomorphism of GK-modules HM/Nf

∼= M . Similarly, we have
tρt−1 = ρ`. By definition of the action on M∨ = Hom(M,µp), we have
t(ζ) = ζk`. Therefore,

etBe−1t = t(B) =
p−1∑
j=0

t(ζ)mj(tρt−1)jt(β) =

p−1∑
j=0

ζmjk`ρj`t(β)

=

p−1∑
j=0

ζmjkρjt(β) =

p−1∑
j=0

ζmjkρj(β)

because β ∈ Kker(g0)
sep and t ∈ Gal(L/K

ker(g0)
sep ). Hence,

etBdB−1e−1t = t(B)dt(B)−1 = t(B)
p−1∑
i=0

aieρit(B)−1

=

p−1∑
i=0

t(B)aiρi(t(B))−1eρi =
p−1∑
i=0

t(B)(ζ−ikmt(B))−1aieρi

=

p−1∑
i=0

ζikmaieρi = BkdB−k
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by Lemma 5.1. Thus, we see that conjugation by et for t ∈ Gal(L/K
ker(g0)
sep )

permutes the roots of P . Consequently, the coefficients of P commute with
et for all t ∈ Gal(L/K

ker(g0)
sep ). �

Lemma 5.7. The coefficients of P commute with et ∀t ∈ Gal(L/K).

Proof. By Lemma 5.6, the coefficients of P commute with et for all t
in Gal(L/K

ker(g0)
sep ). Thus, it suffices to prove that the coefficients of P

commute with et for all t in some set R of left coset representatives for
Gal(L/K

ker(g0)
sep ) in Gal(L/K). By Lemma 3.1, R can be taken to be

{ρi}0≤i≤p−1. Since f0(ρ) = 0, (1.4) gives ϕ0(ρ
i, t) = 1 for all t ∈ Gal(L/K)

and all i ∈ Z. Hence, eρi = eiρ for all i ∈ Z and it suffices to show that the
coefficients of P commute with eρ. By Lemma 5.1,

(5.1) eρBkdB−ke−1ρ = eρ

p−1∑
i=0

ζikmaieρie
−1
ρ =

p−1∑
i=0

ζikmeρaieρie
−1
ρ

because ζ is fixed by ρ, since ρ ∈ (HM∨ ∩Nf )/N . By Lemma 5.2, we have

(5.2)
p−1∑
i=0

ζikmeρaieρie
−1
ρ =

p−1∑
i=0

ζikmaieρi+1e−1ρ =

p−1∑
i=0

ζikmaieρi .

Thus, equations (5.1) and (5.2) give eρBkdB−ke−1ρ = BkdB−k for all k ∈ Z
with 0 ≤ k ≤ p− 1. Hence, the coefficients of P commute with eρ.

�

Combining Lemma 5.5 and Lemma 5.7, we see that the coefficients of P
lie in the centre of Aϕ0 , which is K. Thus, we have proved Proposition 5.4.

Definition 5.8. Let Q(X) be the minimal polynomial of pα over K,

Q(X) =

p−1∏
i=0

(X − σi(pα)).

We will show that P = Q and thus conclude that P is irreducible and
K(d) ∼= K(α).

Definition 5.9. We define R(X,Y ) =
∏p−1
k=0 (X −

∑p−1
i=0 σ

k(ai)Y
i).

Lemma 5.10. We have P (X) = R(X, eρ) and Q(X) = R(X, 1).

Proof. Since ρ ∈ (HM∨ ∩ Nf )/N , we have f0(ρ) = 0 and consequently
ϕ0(ρ

i, ρj) = 1 for all i, j ∈ Z. Therefore, eiρ = eρi for all i ∈ Z. Thus, the
equality P (X) = R(X, eρ) follows from Lemma 5.1. Regarding the second
claim, we have

R(X, 1) =

p−1∏
k=0

(X −
p−1∑
i=0

σk(ai)) =

p−1∏
k=0

(X − σk
(p−1∑
i=0

ai

)
).
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Observe that
p−1∑
i=0

ai =

p−1∑
i=0

p−1∑
j=0

ζijσj(α) =

p−1∑
j=0

σj(α)

p−1∑
i=0

ζij = pα

because
∑p−1

i=0 ζ
ij = 0 unless j = 0. This proves that R(X, 1) = Q(X). �

Proposition 5.11. We have P (X) = Q(X).

Proof. Write R(X,Y ) =
∑p−1

i=0

∑N
j=0 cijX

iY j , where N = (p − 1)2 and
cij ∈ L. Then

R(X,Y ) =

p−1∑
i=0

Xi
p−1∑
k=0

∑
j≡k (mod p)

cijY
j

where the innermost sum runs over j ∈ Z with 0 ≤ j ≤ N. Therefore,

P (X) = R(X, eρ) =

p−1∑
i=0

Xi
p−1∑
k=0

ekρ
∑

j≡k (mod p)

cij

because ρ has order p in Gal(L/K), so epρ = 1. Hence, the coefficient of Xi

is
∑p−1

k=0 e
k
ρ

∑
j≡k (mod p) cij . By Lemma 5.4, the coefficients of P lie in K.

Therefore, ∑
j≡k (mod p)

cij = 0,

unless k = 0. Consequently,

(5.3) R(X,Y ) =

p−1∑
i=0

Xi
∑

j≡0 (mod p)

cijY
j .

Since epρ = 1, (5.3) gives P (X) = R(X, eρ) = R(X, 1) = Q(X). �

Corollary 5.12. The minimal polynomial of d over K is P and therefore
K(d) is isomorphic to K(α) = K

ker(f0)
sep .

Proof. Proposition 5.11 shows that d and pα are roots of the same poly-
nomial over K. This polynomial is irreducible because it is the minimal
polynomial of pα. The characteristic of K is not p, so p is invertible and
K(d) ∼= K(pα) = K(α). �

6. The multiplicative structure

Now that we have found generators for the K-algebra EndAϕ0
(S)opp, it

remains to describe its multiplicative structure. Recall that α ∈ Ksep is
such that Kker(f0)

sep = K(α) and Tr
K

ker(f0)
sep /K

(α) = 0. Similarly, β ∈ Ksep is

such that Kker(g0)
sep = K(β) and Tr

K
ker(g0)
sep /K

(β) = 0.
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Definition 6.1. Let

z = p−1d = p−1
p−1∑
i=0

aieρi ,

where ai =
∑p−1

j=0 ζ
ijσj(α). Thus, by Proposition 5.11, the minimal poly-

nomial of z over K is the same as that of α.

Corollary 4.8 tells us that the algebra EndAϕ0
(S)opp is generated over K

by β and z. The elements βizj for i, j ∈ Z with 0 ≤ i, j ≤ p − 1 form a
basis for EndAϕ0

(S)opp as a K-vector space. To specify the multiplication
on EndAϕ0

(S)opp, it is enough to specify structure constants cij ∈ K such
that

zβ =
∑

0≤i,j≤p−1
cijβ

izj .

Lemma 6.2. For all j ∈ Z with 0 ≤ j ≤ p− 1, we have

zj = p−1
p−1∑
k=0

hjkeρk

where hjk =
∑p−1

`=0 ζ
k`σ`(αj) ∈ L〈ρ〉 = K

Nf∩HM∨
sep .

Proof. It is easily seen that h0k = 0 for all k ∈ Z with 1 ≤ k ≤ p − 1, and
h00 = p. Thus, the statement holds for j = 0. The statement for j = 1
follows immediately from the definition of z, upon observing that h1k = ak
for all k ∈ Z with 0 ≤ k ≤ p − 1. We proceed by induction on j. Suppose
that

zm = p−1
p−1∑
k=0

hmkeρk

for some m ∈ Z with 0 ≤ m ≤ p− 2. Then,

zm+1 = zmz =
(
p−1

p−1∑
k=0

hmkeρk
)(
p−1

p−1∑
i=0

aieρi
)

= p−2
p−1∑
i,k=0

hmkaieρk+i by Lemma 5.2

= p−2
p−1∑
n,k=0

hmkan−keρn .

Hence, it suffices to prove that
p−1∑
k=0

hmkan−k = ph(m+1)n.
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We have
p−1∑
k=0

hmkan−k =

p−1∑
k,`,j=0

ζk`σ`(αm)ζ(n−k)jσj(α)

=

p−1∑
`,j=0

ζnjσ`(αm)σj(α)

p−1∑
k=0

ζk(`−j).

Now observe that
∑p−1

k=0 ζ
k(`−j) equals zero when ` 6= j, and equals p when

` = j. This concludes the proof. �

We want to find structure constants cij ∈ K for all integers i and j with
0 ≤ i, j ≤ p− 1 such that

(6.1) zβ =
∑

0≤i,j≤p−1
cijβ

izj .

By the definition of z,

(6.2) zβ = p−1
p−1∑
i=0

aieρiβ = p−1
p−1∑
i=0

aiρ
i(β)eρi .

Using Lemma 6.2, we expand the right-hand side of (6.1) as

(6.3)
p−1∑
i,j=0

cijβ
izj = p−1

p−1∑
i,j=0

cijβ
i
p−1∑
k=0

hjkeρk .

Equating (6.2) and (6.3), we obtain for every integer k with 0 ≤ k ≤ p− 1

(6.4) akρ
k(β) =

p−1∑
i,j=0

cijβ
ihjk.

Recall that Ng = ker(g0) ∩HM∨ , so K
Ng
sep = K

HM∨
sep (β). Moreover, Ng is a

normal subgroup of GK , so K
HM∨
sep (β) is Galois over K. Write

(6.5) ρk(β) =

p−1∑
i=0

mikβ
i

formik ∈ K
HM∨
sep ⊂ L〈ρ〉. We know that L/L〈ρ〉 has degree p and is generated

by β. Thus, the elements 1, β, . . . βp−1 form a basis for L as a vector space
over L〈ρ〉. Therefore, combining (6.4) and (6.5) gives

(6.6) akmik =

p−1∑
j=0

cijhjk

for all i, k ∈ Z with 0 ≤ i, k ≤ p− 1.
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Definition 6.3. We define three p-by-p matrices X, Y and Z.

X = (akmik)i,k, Y = (cik)i,k, Z = (hik)i,k.

In all three cases, the indices i and k run from 0 to p− 1.

In terms of these matrices, (6.6) becomes X = Y Z, where Y is to be
found. We know that such a Y exists and is unique because the elements
βizj for i, j ∈ Z with 0 ≤ i, j ≤ p− 1 form a basis for EndAϕ0

(S)opp.

Lemma 6.4. The matrix Z is invertible. Thus, Y = XZ−1.

Proof. Suppose for contradiction that Z is not invertible. Then Z has a non-
trivial kernel and there exists a nonzero matrix T such that TZ = 0. But
then (Y + T )Z = Y Z = X. This contradicts the fact that Y is unique. �

Corollary 6.5. The algebra D described in Theorem 1.9 is EndAϕ0
(S)opp.

Proof. The algebra EndAϕ0
(S)opp has a basis {βizj}0≤i,j≤p−1 as a K-vector

space, where z satisfies the same minimal polynomial over K as α, and the
multiplication satisfies

zβ =

p−1∑
i,j=0

cijβ
izj

where (cij)i,j = XZ−1 for X and Z as defined in Definition 6.3. Recall that
GK/Nf

∼= HM/Nf o GK/HM , where HM/Nf has order p and GK/HM has
order coprime to p. Thus, any non-trivial normal subgroup of GK/Nf con-
tains HM/Nf . Therefore, the normal closure of Kker(f0)

sep in Ksep is equal to
K
Nf
sep . Since ρ is a generator for (HM∨ ∩Nf )/N , ρ acts trivially on the nor-

mal closure of Kker(f0)
sep (µp) and non-trivially on β. Likewise, σ acts trivially

on the normal closure of Kker(g0)
sep (µp) and non-trivially on α. Therefore,

EndAϕ0
(S)opp is the algebra D described in Theorem 1.9. �

7. An example

We apply Theorem 1.9 to the case M = µp. In this case, any 1-
cocycle f0 which represents a non-trivial element f ∈ H1(GK ,M) has
K

ker(f0)
sep = K(α), where αp ∈ K∗. By definition of the Tate dual, GK acts

trivially onM∨. Thus, H1(GK ,M
∨) = Hom(GK ,Z/pZ) and any non-trivial

g ∈ H1(GK ,M
∨) corresponds to a degree p Galois extensionKker(g)

sep /K. Let
K

ker(g)
sep = Ksep(β) with TrK(β)/K(β) = 0. Let σ ∈ GK be such that σ fixes

K(β, µp) and σ(α)/α = ζ for some primitive pth root of unity ζ. Choose
ρ ∈ GK such that ρ fixes K(α, µp) and (g(ρ))(f0(σ)) = ζ. We calculate

hij =

p−1∑
`=0

ζj`σ`(αi) =

p−1∑
`=0

ζ(i+j)`αi.
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Hence, hij = 0 unless i + j ≡ 0 (mod p). Write ρj(β) =
∑p−1

i=0 mijβ
i for

mij ∈ K. An easy matrix calculation shows that

(h1jmij)i,j(hij)
−1
i,j =


0 m0(p−1) 0 . . . 0
0 m1(p−1) 0 . . . 0
...

...
. . .

...
0 m(p−1)(p−1) 0 . . . 0

 .

Now Theorem 1.9 tells us that the class of f ∪ g in Br(K) is given by the
algebra D with K-basis {βizj}0≤i,j≤p−1, where zp = αp ∈ K, and we have

zβz−1 =

p−1∑
i=0

mi(p−1)β
i = ρ−1(β).

So in this case D is a cyclic algebra of dimension p2 over K.
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